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A spherical droplet is placed in a binary mixture composed of the vapor of the droplet and another
gas which neither evaporates nor condenses �a noncondensable gas�. The mixture is in an
equilibrium state at rest at infinity. A slow steady flow of the vapor caused by weak evaporation or
condensation, under the influence of the noncondensable gas, is investigated on the basis of a
linearized model Boltzmann equation. Numerical analyses by means of a finite-difference method
are carried out for a wide range of the Knudsen number �i.e., from a large to small droplet compared
to the molecular mean free path�. The numerical results, together with analytical solutions for small
and large Knudsen numbers, clarify the behavior the mixture, i.e., the mass- and heat-flow rates
from or onto the droplet as well as spatial distributions of the macroscopic quantities, in the entire
range of gas rarefaction. The solution for the steady heat transfer problem between a solid sphere
and a binary gas mixture is also obtained as a byproduct. © 2010 American Institute of Physics.
�doi:10.1063/1.3432130�

I. INTRODUCTION

A vapor flow around its condensed phase is one of the
major subjects of research in molecular gas dynamics �or
rarefied gas dynamics�. Since the state of the vapor at an
interface where net evaporation or condensation is taking
place may deviate significantly from an equilibrium, one
cannot apply conventional gas dynamics �i.e., the Navier–
Stokes set of equations� and should employ molecular gas
dynamics based on the Boltzmann equation. As described in
Refs. 1–6, fundamental problems for evaporating or con-
densing vapor flows, such as the flow in a half space in
contact with a plane condensed phase �see, e.g., Refs. 7–15
and Sec. 6.1 in Ref. 6�, that between two parallel plane con-
densed phases �e.g., Refs. 16–18�, and that around a cylin-
drical or spherical condensed phase �see, e.g., Refs. 19–28
and Secs. 6.2–6.4 in Ref. 6�, have extensively been studied
in the framework of molecular gas dynamics during past de-
cades. Those problems were first considered in the case of a
single-component system �i.e., a pure vapor and its con-
densed phase�. Then part of the analysis has been extended
to the case of mixtures, i.e., the case of a binary mixture of
vapor and noncondensable gas29–32 or a mixture of
vapors,33–35 because of the practical importance as well as of
the theoretical interest for the mixtures.

In the present paper, we will focus on vapor flows
evaporating from or condensing onto its spherical condensed
phase �a droplet� in the presence of a noncondensable gas.
There is a long history of studies on this problem tracing
back to Maxwell because of its fundamental importance in
connection with the droplet growth or evaporation phenom-

enon appearing in a wide area of science and technology.
The detailed analysis of this problem may contribute directly
or indirectly toward the better understanding of physics of,
e.g., atmospheric aerosols36,37 and fuel droplets in internal
combustion engines38,39 and toward a precise modeling of
compressible flows with phase transition.40 However, the
theoretical studies so far have been based mostly on a simple
physical model �e.g., the Langmuir model employed in Refs.
41 and 42 or the similar type of model in Ref. 39� or on
rough analyses of the Boltzmann equation using the Maxwell
moment method19,43,44 or the Grad moment method.45,46 In
addition, many of the preceding works based on the Boltz-
mann equation �or its model equation� have been concerned
only with the limited case where concentration of the vapor
is very low,47–49 or the case where the Knudsen number �the
molecular mean free path divided by droplet’s radius� is very
small.50,51 Reliable solutions of the Boltzmann equation for a
wide range of parameters �i.e., for intermediate Knudsen
numbers, arbitrary concentration of the vapor, and so on�
have not been reported yet.

In the present study, under the assumption that evapora-
tion and condensation are weak, we carry out a direct nu-
merical analysis of the linearized model Boltzmann equation
by means of a finite-difference method. The discontinuity of
the velocity distribution function of molecules, which is a
phenomenon generally observed around a convex body,25,52

is accurately handled in the computation by use of the hybrid
scheme devised in Ref. 25. The numerical solutions for in-
termediate Knudsen numbers thus obtained and the theoreti-
cal solutions for large and small Knudsen numbers �Ref. 50�
together clarify the behavior of the vapor and noncondens-
able gas around the droplet in the whole range of the Knud-
sen number. Specifically, the mass and heat fluxes from thea�Electronic mail: kosuge@aero.mbox.media.kyoto-u.ac.jp.
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droplet are obtained as functions of the Knudsen number and
are compared with Young’s approximate formula proposed in
Ref. 42. The profiles of the macroscopic quantities, such as
the density, pressure, temperature, etc., are also obtained.

This paper is organized as follows. The physical setting
of the problem and assumptions are described and are for-
mulated in Sec. II. The analyses are carried out in Sec. III.
Some relations resulting from Onsager’s reciprocity relation
and the principle of increase in entropy are introduced in
Sec. III A, solutions for the free-molecular gas and for small
Knudsen numbers are introduced in Sec. III B, and key is-
sues in the numerical analysis for intermediate Knudsen
numbers are summarized briefly in Sec. III C. The results of
the analyses and the data of numerical computations are
given in Sec. IV. Finally, a generalization of the boundary
condition on the surface of the droplet is discussed in Sec. V
and the paper is concluded in Sec. VI.

II. FORMULATION

A. Problem and assumptions

Consider a spherical droplet with radius L and tempera-
ture Tw, placed in a binary mixture composed of the vapor of
the droplet �gas A� and another noncondensable gas �gas B�.
The mixture is in an equilibrium state at rest with tempera-
ture T0, partial pressure of the vapor p0

A, and that of the
noncondensable gas p0

B at infinity. We investigate the steady
flow of the vapor caused by evaporation or condensation on
the droplet and the behavior of the noncondensable gas under
the following assumptions: �i� the behavior of the mixture is
described by the model Boltzmann equation proposed by
Hamel53 or that proposed by Garzó et al.;54 �ii� the vapor
molecules leaving the surface of the droplet are distributed
according to the stationary Maxwellian distribution with
temperature Tw and pressure pw

A, where pw
A is the saturated

vapor pressure of gas A at temperature Tw �the complete
condensation condition�; �iii� the noncondensable-gas mol-
ecules are reflected diffusely on the surface of the droplet;
and �iv� �pw

A − p0
A� / p0

A and �Tw−T0� /T0 are small, so that the
equation and the boundary condition can be linearized
around the equilibrium state at infinity.

Note that the model equation of Hamel and that of Garzó
et al. become identical once the linearization around an equi-
librium state at rest is made. This means that, no matter
which of the two models we choose, the basic equation for
the present problem �under assumption �iv�� will be given by
the same equation, i.e., Eq. �2� appearing in Sec. II C. It
should be also noted that we will not use the relation be-
tween the saturated vapor pressure pw

A and temperature Tw of
the droplet �i.e., the Clausius–Clapeyron relation� and treat
them as if they were independent parameters in the following
analyses.

B. Notation

Let us summarize the main notation used in the paper. In
the sequel, the Greek letters � and � will be used symboli-
cally to represent the gas species, i.e., �� ,��= �A ,B�. n0

� is
the molecular number density of gas � at infinity and is

given by n0
�= p0

� /�T0, where � is the Boltzmann constant.
�Lr ,� ,�� is the spherical coordinate system with its origin at
the center of the droplet, m� is the molecular mass of gas �,
and �2�T0 /mA�1/2� is the molecular-velocity vector. The
magnitude and components of � are denoted by ��=���� and
��r ,�� ,���, respectively. f0

��1+��� is the velocity distribu-
tion function of �-gas molecules, where f0

� is the reference
distribution �i.e., the equilibrium state at infinity� expressed
as f0

�=n0
��mA /2�T0�3/2E� with E�= �m̂� /��3/2exp�−m̂��2�

and m̂�=m� /mA. Note that ����	1 under assumption �iv�. In
the case of the Hamel or Garzó et al. model equation, the
collision frequency of an �-gas molecule for collisions with
�-gas molecules in the reference state is given by K��n0

� with
K���=K��� being a positive constant. Then, we define the
reference mean free path �0

A of the vapor molecules as
�0

A= �8�T0 /�mA�1/2 / �KAAn0
A+KABn0

B�. With n0
�, K��, and �0

A,

we define n̂0
�=n0

� /n0
A, K̂��=K�� /KAA, and k= ��� /2�Kn

= ��� /2���0
A /L�, where Kn is the Knudsen number. The mo-

lecular number density, flow velocity, temperature, pressure,
stress tensor, and heat-flow vector of gas � are denoted by
n0

��1+
��, �2�T0 /mA�1/2ui
�, T0�1+���, p0

��1+ P��, p0
���ij

+ Pij
��, and p0

��2�T0 /mA�1/2Qi
�, respectively, where �i , j�

= �r ,� ,�� and �ij is the Kronecker delta. The corresponding
quantities of the mixture are similarly denoted by n0�1+
�,
�2�T0 /mA�1/2ui, T0�1+��, p0�1+ P�, p0��ij + Pij�, and
p0�2�T0 /mA�1/2Qi, where n0=n0

A+n0
B and p0= p0

A+ p0
B.

C. Basic equation and boundary condition

Because of the spherical symmetry of the problem, one
may expect that �� depends only on r, �r, and ���

2+��
2�1/2.

Indeed, the solution �� can be sought in the following form
�similarity solution�:

�� = ���r,�,��� , �1�

where �� �0
��
�� is the angle between the vector � and
r-direction, namely, ��=cos−1��r /��. The compatibility of
form �1� with the problem can be checked by direct substi-
tutions into the linearized Boltzmann equation �or its model
equation� and the boundary conditions �see Refs. 28 and 55�.

By use of the notation introduced in Sec. II B and the
similarity solution �1�, the linearized version of the Hamel or
Garzó et al. model equation for the present problem may be
written as follows �see the second paragraph in Sec. II A�:
for �=A ,B,

� cos ��

���

�r
−

� sin ��

r

���

���

=
1

�1 + K̂ABn̂0
B�k

	
�=A,B

K̂��n̂0
����� − ��� , �2�

where

��� = 
� + 2m̂�� cos ��ur
�� + �m̂��2 − 3

2����, �3a�

ur
�� =

m̂�ur
� + m̂�ur

�

m̂� + m̂�
, �3b�
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��� = �� +
2m̂�m̂�

�m̂� + m̂��2 ��� − ��� . �3c�

The expressions of 
�, ur
�, and �� in terms of ��, which

complete Eq. �2�, are given in Eq. �8� appearing later.
The boundary condition on the surface of the droplet is

written as follows: at r=1, for 0
���� /2,

�A = �P + ��2 − 5
2��T , �4a�

�B = �m̂B�2 − 2��T − 2��m̂B�1/2
� cos ���
BEB�w, �4b�

where

�P = �pw
A − p0

A�/p0
A, �T = �Tw − T0�/T0, �5�

and 
¯ �w is defined for a function ��� ,��� as


��w � 2�

0

� 

�/2

�

��2 sin ��d��d� . �6�

Note that ��P� and ��T� are small �i.e., assumption �iv��. On
the other hand, the condition at infinity is given by

�� → 0 as r → � . �7�

The macroscopic quantities of gas � are expressed in
terms of moments of �� as


� = 
��E��, ur
� = 
� cos ���

�E�� , �8a�

�� =
2

3
��m̂��2 −

3

2
���E�� , �8b�

Prr
� = 2m̂�
�2 cos2 ���

�E�� , �8c�

P��
� = P��

� =
3P� − Prr

�

2
, P� = 
� + ��, �8d�

Qr
� = �� cos ���m̂��2 −

5

2
���E�� , �8e�

with 
¯ � being defined as


�� � 2�

0

� 

0

�

��2 sin ��d��d� . �9�

They are functions of r only. The other components of the
flow velocity, stress tensor, and heat-flow vector all vanish,
i.e., u�

�=u�
�=0, Pr�

� = Pr�
� = P��

� =0, and Q�
�=Q�

�=0. The
macroscopic quantities of the total mixture are written in
terms of those of the component gases as


 =

A + n̂0

B
B

1 + n̂0
B , ur =

ur
A + m̂Bn̂0

Bur
B

1 + m̂Bn̂0
B , �10a�

� =
�A + n̂0

B�B

1 + n̂0
B , P = 
 + � , �10b�

Prr =
Prr

A + n̂0
BPrr

B

1 + n̂0
B , P�� = P�� =

3P − Prr

2
, �10c�

Qr = Qr
� +

5

2
�ur

� − ur� . �10d�

Here ur
� and Qr

� in Eq. �10d�, which are introduced for the
later convenience, are defined by

ur
� =

ur
A + n̂0

Bur
B

1 + n̂0
B , Qr

� =
Qr

A + n̂0
BQr

B

1 + n̂0
B . �11�

That is, ur
� �or Qr

�� is the average of ur
� �or Qr

�� of individual
component gases weighted by the reference number density
n0

�.

D. Conservation relations

Let us derive the conservation relations from the basic
equation and the boundary condition. Integrating Eq. �2�
multiplied by �2 sin ��E

� over the whole domain of �� and
� �i.e., 0
��
� and 0
���� and taking into account
the boundary condition �4b� for gas B, we obtain the follow-
ing relations describing the mass conservation of each
component:

r2ur
A =

Mf

8�L2p0
A�2�T0/mA�−1/2 , �12a�

ur
B = 0. �12b�

Here Mf is a constant equal to the total mass of the vapor
evaporating from the droplet per unit time �the evaporation
rate or the mass-flow rate�. Equation �12b� means that the
noncondensable gas does not have flow velocities in the
whole space as a result of the diffuse reflection condition
�4b�. Substituting Eq. �12b� into the definitions of ur and ur

�

�Eqs. �10a� and �11��, we have

ur =
ur

A

1 + m̂Bn̂0
B , ur

� =
ur

A

1 + n̂0
B . �13�

Similarly, if we integrate Eq. �2� multiplied by
n̂0

�m̂��3 sin 2��E
� or n̂0

�m̂��4 sin ��E
� over the whole domain

of �� and �, and take the summation with respect to � �i.e.,
�=A and B�, then we obtain the following relations describ-
ing the conservation of momentum or energy of the total
mixture:

r3Prr = Prr�r = 1� + 3

1

r

t2P�t�dt , �14a�

r2�Qr +
5

2
ur� =

Ef

4�L2p0�2�T0/mA�1/2 , �14b�

where Ef is a constant equal to the total energy flowing from
the droplet to the gas per unit time �the energy-flow rate�.
The above relations �12� and �14� will be used later to esti-
mate the accuracy of numerical computations.
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III. ANALYSIS OF THE PROBLEM

A. Decomposition of the solution and Onsager’s
reciprocity relation

Since m̂A= K̂AA= n̂0
A=1 by definition, the boundary-value

problem �Eqs. �2�, �4�, and �7�� is characterized by seven

parameters, i.e., m̂B, K̂BB, K̂AB, n̂0
B, k, �P, and �T. Because of

the linearity of the problem, however, the solution for arbi-
trary values of �P and �T�	1� may be decomposed into
two parts as

���r,�,��� = �P
��r,�,����P + �T

��r,�,����T , �15�

where �P
� is the solution for ��P ,�T�= �1,0� and �T

� that for
��P ,�T�= �0,1�. It should be noted here that the existence
of the two independent solutions �P

� and �T
� �or equivalently

the existence of the solution �� for arbitrary �P and �T� is
not guaranteed in advance, but will be confirmed in the sub-
sequent analyses where �P

� and �T
� will actually be obtained

numerically or analytically. The existence of �P
� and �T

� is
due to the fact that the problem concerns a gas around a
finite body in the three-dimensional space. See the discussion
in Ref. 28 in the case of a single-component gas.

The macroscopic quantities h �h=
�, 
, ur
�, ur, etc.� are

correspondingly expressed as

h�r� = hP�r��P + hT�r��T . �16�

Here, hJ �J= P ,T� represents the macroscopic quantities of
gas � corresponding to �J

� �i.e., Eq. �8� with �� being re-
placed by �J

�� or those counterparts of the total mixture �i.e.,
Eq. �10� with h being replaced by hJ�.

Let us now introduce some important results derived
from Onsager’s reciprocity relation and the principle of in-
crease in entropy. Sharipov56,57 extended the applicability of
Onsager’s relation to open gaseous system described by the
linearized Boltzmann equation at any rarefaction �or at any
Knudsen numbers�. His results are applicable also to the
present analysis based on the model equation. Following the
discussion in Ref. 57, one can derive the following expres-
sion for the entropy production � in the system considered in
the present problem �see also Ref. 42�:

�

�/mA =
8�L2p0

�2�T0/mA�1/2 �r2ur
��P + r2Qr

��T� . �17�

Note that r2ur
� and r2Qr

� are constants with respect to r �see
Eqs. �12a�, �13�, �14b�, and �10d��. Since r2ur

� and r2Qr
�,

which correspond to what is called �dimensionless� thermo-
dynamic fluxes conjugate to the thermodynamic forces �P
and �T, are also expressed in the form of Eq. �16�, Onsager’s
reciprocity relation may be written as

r2QrP
� = r2urT

� . �18�

Here, we should note that the discussion in Ref. 56 on the
asymptotic behavior of the velocity distribution function at
infinity is not correct. This fact was pointed out by
Takata58,59 recently. In the present problem, we can verify
that the error does not affect the final relation �18�. Further-
more, because of the principle of increase in entropy �i.e.,
��0�, one has

r2urP
� � 0, r2QrT

� � 0, �19a�

�r2urP
� ��r2QrT

� � − �r2QrP
� ��r2urT

� � � 0. �19b�

The above relations will be referred to in the later discussion.

B. Free-molecular solution for k\� and asymptotic
solution for k™1

We first present the solutions for the free-molecular gas
�or the Knudsen gas� in the limit k→�. Since the collision
term �i.e., the right-hand side �RHS�� of Eq. �2� vanishes in
this limit, the velocity distribution function �� does not
change along the characteristic, i.e., r sin ��=const. There-
fore, the solutions �P

� and �T
� satisfying the boundary con-

ditions �4� and �7� are readily obtained and the corresponding
macroscopic quantities can be calculated from Eq. �8� as
follows:

�P
A = �1 �0 
 �� � sin−1�1/r�� ,

0 �sin−1�1/r� � �� 
 �� ,
� �20a�

�P
B = 0, �20b�


P
A = PP

A =
1

2
�1 − �1 − r−2�1/2� , �20c�

�P
A = 0, PrrP

A =
1

2
�1 − �1 − r−2�3/2� , �20d�

urP
A = − 2QrP

A =
�−1/2

2
r−2, �20e�


P
B = PP

B = �P
B = PrrP

B = QrP
B = 0, �20f�

and

�T
A = ��2 −

5

2
�0 
 �� � sin−1�1/r�� ,

0 �sin−1�1/r� � �� 
 �� ,
� �21a�

�T
B = �m̂B�2 − 2 �0 
 �� � sin−1�1/r�� ,

0 �sin−1�1/r� � �� 
 �� ,
� �21b�

− 
T
A = �T

A =
1

2
�1 − �1 − r−2�1/2� , �21c�

PT
A = PrrT

A = 0, − urT
A =

2

9
QrT

A =
�−1/2

4
r−2, �21d�

− 
T
B = PT

B =
1

4
�1 − �1 − r−2�1/2� , �21e�

�T
B = �T

A, PrrT
B =

1

4
�1 − �1 − r−2�3/2� , �21f�
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QrT
B = ��m̂B�−1/2r−2. �21g�

Since the molecular collision is absent in this limit, the

amount of gas B �or n̂0
B� and the parameter K̂�� have no

influence on the behavior of individual component gas. Note
that the above results satisfy Eqs. �12b�, �14a�, �18�, and �19�
derived in Secs. II D and III A.

Let us next consider the case of small k. The present
problem for k	1 has already been investigated in Ref. 50
with the aid of the asymptotic theory60 �see also Refs. 5 and
6�. For the sake of brevity, only a part of the results are
presented below, i.e., the expressions for the flow velocity urJ

A

of the vapor and those for the average heat flow QrJ
� �J

= P ,T� defined in Eq. �11� valid up to order O�k3� �see Ref.
50 for the behavior of other macroscopic quantities as well as
of the velocity distribution function �several macroscopic
quantities in the limit k→0 will be shown later in Sec.
IV B��:

r2urP
A =

k��1 + kS4�
S

, r2urT
A = −

k2�S2

S
, �22a�

r2QrP
� = −

5�1 + �n̂0
B/m̂B�

4�1 + n̂0
B�

k2�S3

S
, �22b�

r2QrT
� =

5�1 + �n̂0
B/m̂B�

4�1 + n̂0
B�

k�1 + k�S1�
S

, �22c�

with

S1 = − C4
A + 2k�2C6

A + C7
A�, S2 = C1

A + 2kC5
A, �23a�

S3 = − d4
M + 2k�2d6

M + d7
M�, S4 = d1

M + 2kd5
M , �23b�

S = 1 + k��S1 + S4� + k2��S1S4 − S2S3� , �23c�

and

� =
�1 + K̂ABn̂0

B��1 + m̂B�

2K̂ABn̂0
Bm̂B

, �24a�

� =
1 + K̂ABn̂0

B

K̂AB + K̂BBn̂0
B

. �24b�

Here Ci
A and di

M �i=1,4 ,5 ,6 ,7� are constants, the so-called
jump coefficients, which are relevant to the pressure or tem-
perature jump occurring on the surface of the condensed
phase. Those jump coefficients are determined by analyzing
the behavior of the mixture in a thin layer, whose thickness is
of the order of the molecular mean free path, adjacent to the
surface, i.e., by solving the Knudsen-layer problem formu-
lated in Sec. 4 in Ref. 50. In the case of the model equation,

Ci
A and di

M depend on four parameters: m̂B, K̂BB, K̂AB, and n̂0
B.

Their data in the case of K̂BB= K̂AB=1 are given in Ref. 50
for several values of m̂B and n̂0

B.
Taking the limit n̂0

B→0 of Eq. �22�, one obtains the fol-
lowing results for a pure vapor:

r2urP
A = −

1

C4
A , r2urT

A =
C1

A

C4
Ak , �25a�

r2QrP
A = −

5

4

d4
M

C4
A k, r2QrT

A =
5

4
k . �25b�

The above expression for r2urP
A is valid up to O�1� and those

for the others are up to O�k�. The values of coefficients for
n̂0

B=0 are −1 /C4
A=0.469 035, C1

A /C4
A=−0.261 926, and

d4
M /C4

A=0.209 541 �see Ref. 50�. Comparing Eqs. �22� and
�25�, we note that r2urP

A vanishes as k→0 in the case of a
mixture �n̂0

B�0� but does not in the case of a pure vapor
�n̂0

B=0�.
It is finally noted that by using the data of the jump

coefficients in Ref. 50 �for K̂BB= K̂AB=1�, one sees that Eq.
�22� �or Eq. �25�� incidentally satisfies Onsager’s relation
�18� up to O�k2� �or up to O�k�� quite well. The inequalities
�19� are satisfied for sufficiently small k.

C. Numerical analysis for intermediate values of k

In the case of intermediate values of k, we carry out
direct numerical analyses of the boundary-value problem for
�P

� and �T
� �i.e., Eqs. �2�, �4�, and �7� with ��P ,�T�

= �1,0� and those with ��P ,�T�= �0,1�� by means of a
finite-difference method. The difference scheme for Eq. �2�
and iteration process for obtaining the solution are essen-
tially the same as those described in Ref. 28, where the
present problem in the case of a single-component system
�i.e., n̂0

B=0� is analyzed on the basis of the original Boltz-
mann equation. However, since we are now handling much
simpler model equation, the computation of the collision
term is much easier. In the following, we just summarize
some difficulties which we still share with Ref. 28. The lat-
tice system for �r ,� ,��� and the criterion for convergence
employed in the present computation will be given later in
Sec. IV C.

The first difficulty comes from the fact that the velocity
distribution function generally exhibits discontinuities
around convex bodies.25,52 In the present problem around the
spherical droplet, the discontinuity exists at ��=� /2 on the
surface of the droplet �r=1� and propagates into the gas
along the characteristic of Eq. �2� touching the droplet, i.e.,

r sin �� = 1 �0 
 �� 
 �/2� . �26�

The discontinuity decays rapidly by molecular collisions �ex-
cept for the case of the free-molecular gas; see Eqs. �20� and
�21�� but is appreciable at least in the vicinity of the droplet.
If one approximates the derivatives ��� /�r and ��� /��� in
the neighborhood of characteristic �26� by taking differences
in �� across the discontinuity, unacceptable errors may be
introduced. To bypass this difficulty, we employ the hybrid
scheme devised in Ref. 25, by which the discontinuity is
properly handled. In this scheme, values of �� on both sides
of the discontinuity are calculated by finite differences along
the characteristic separately, and then are embedded in an
ordinary scheme on a rectangular lattice system in the
�r ,���-plane. The same method has been successfully applied
to various flow problems around a cylindrical or spherical
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body in Refs. 26–28, 32, and 61. The discontinuity should be
also taken into account in the numerical integrations of Eq.
�8�.

The second difficulty comes from the fact that �� for
large r approaches to zero very slowly ��r−n� in the present
problem, which can be expected from the free-molecular so-
lution �for k→�� and the asymptotic solution for small k
shown in the previous section. In the numerical analyses,
therefore, we need vast computational domain 1
r
rD

with extremely large rD, if we directly apply the boundary
condition �7� at r=rD. Instead, to reduce the size of the com-
putational domain without spoiling the accuracy, we apply
the following connection condition at r=rD with reasonably
large rD:

���rD,�,��� = �far
� �rD,�,��� , �27�

where �far
� is the asymptotic solution in the far field from the

droplet �i.e., the asymptotic solution for large r�. The explicit
form of �far

� is given in Appendix A. This technique was
proposed and applied successfully in previous studies �e.g.,
Refs. 27, 28, and 61�. As for the molecular velocity �, we use
likewise a finite computational domain 0
�
�D with suffi-
ciently large �D. No serious problem is caused in this case
since ��E� decays exponentially as �→�. The values of
rD and �D used in the computation will be given later in
Sec. IV C.

In addition to the countermeasures against the difficul-
ties mentioned above, we also adopt the idea in Refs. 27 and
61 to improve the accuracy of computations for small
Knudsen numbers. That is, in the case of small k �say,
k�0.1�, we carry out computations not for �� directly but

for �̃�����−�H�1�
� �, where �H�1�

� is the Hilbert solution up
to O�k� obtained in the asymptotic analysis in Ref. 50 �i.e.,
�H�1�

� here corresponds to �H0
� +�H1

� k in that reference�. The

numerical computations for �̃� might be more advantageous

than those for �� in the case of small k since �̃�=O�k2� �or

�̃�=O�k� in the Knudsen layer adjacent to droplet’s surface�
and the relative errors occurring in the computations for �̃�

and those for �� are expected to be of the same order �see
the discussion in Refs. 27 and 61�.

IV. RESULTS AND DISCUSSIONS

In the present paper, we limit ourselves to the case of

m̂B=0.5, 1, and 2, n̂0
B=0.1, 1, and 10, and K̂BB= K̂AB=1. Note

that m̂B=1 �with K̂BB= K̂AB=1� corresponds to the case where
the molecules of the vapor and those of the noncondensable
gas are mechanically identical. For each pair of m̂B and n̂0

B,
numerical computations are carried out for k=20, 10, 5, 2, 1,
0.5, 0.2, 0.1, and 0.05. Those numerical results, together with
the results based on the analytical solutions for large and
small k, are presented in this section.

A. Mass- and heat-flow rates

The dimensionless mass-flow rate �or the evaporation
rate� r2urJ

A and the heat-flow rate r2QrJ �J= P ,T� are shown as
functions of k in Figs. 1–3; Fig. 1 is for m̂B=1, Fig. 2 for
m̂B=0.5, and Fig. 3 for m̂B=2. See supplementary material62

for tables of their numerical data. While r2urJ
A and r2QrJ are

constant with respect to r theoretically �see Sec. II D�, their
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FIG. 1. The mass- and heat-flow rates vs k for m̂B=1. �a� r2urP
A and r2QrP

and �b� r2urT
A and r2QrT. The symbols indicate numerical results for

n̂0
B=0.1 ���, 1 ���, and 10 ���. The asymptotic solution for small k in

Ref. 50 is represented by dashed lines and the free-molecular solution for
k→� by dashed-dotted lines.
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values obtained in the numerical analyses are not exactly
uniform but show small fluctuations caused by numerical
errors �the magnitude of the fluctuations will be given later
in Sec. IV C�. Their values at r=1 are, therefore, shown as
representatives in the figures and tables. The results for the
free-molecular gas �Eqs. �20� and �21�� and for small k �Eq.
�22�� are also shown in the figures.

We first consider the mass-flow rates r2urP
A and r2urT

A . As
seen in the figures, r2urP

A �0 and r2urT
A �0 hold irrespective

of the values of k and n̂0
B. The former corresponds to the

evaporation, which is consistent with the first inequality of
Eq. �19a�, and the latter to the condensation. The r2urP

A and
r2urT

A approach their limiting values for the free-molecular
gas, which are independent of n̂0

B �see the sentence just after
Eq. �21��, as k→�, and vanish as k→0 �see Eq. �22��. Since
the noncondensable gas cannot flow, i.e., ur

B�0 �see Eq.
�12b��, in the present problem, it just obstructs the vapor
flow and such obstruction is expected to be stronger for
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FIG. 2. The mass- and heat-flow rates vs k for m̂B=0.5. �a� r2urP
A and r2QrP

and �b� r2urT
A and r2QrT. See the caption of Fig. 1.
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FIG. 3. The mass- and heat-flow rates vs k for m̂B=2. �a� r2urP
A and r2QrP

and �b� r2urT
A and r2QrT. See the caption of Fig. 1.
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larger values of m̂B and n̂0
B. The absolute values of r2urP

A and
r2urT

A for fixed k indeed become smaller for larger m̂B or n̂0
B.

However, the dependence of r2urT
A on m̂B and n̂0

B is relatively
weak. The magnitude of r2urT

A is monotonically increasing as
a function of k, whereas r2urP

A may have a peak at an inter-
mediate value of k as seen from the figures �see the data for
n̂0

B=0.1 in Figs. 1�a�, 2�a�, and 3�a��. The nonmonotonic be-
havior of r2urP

A will be discussed again in a later paragraph in
this section.

As for the heat-flow rates r2QrP and r2QrT, they show
strong and complicated dependence on m̂B and n̂0

B. In particu-
lar, r2QrP for m̂B=2 shows nonmonotonic behavior: It is
positive in the entire range of k in the case of n̂0

B=1 and 10,
but changes its sign depending on k in the case of n̂0

B=0.1.
The r2QrT for fixed k becomes larger for smaller �or larger�
values of n̂0

B in the case of m̂B=1 and 2 �or in the case of
m̂B=0.5�. The heat-flow rates vanish as k→0 �see Eq. �22��.

We now make a comparison with the results for a pure
vapor �n̂0

B=0� in Ref. 28. The behavior �i.e., the dependence
on k� of r2QrP, r2urT

A , and r2QrT for n̂0
B=0.1 in Figs. 1–3 are

similar to that of the corresponding quantities for a pure va-
por, i.e., Figs. 1 and 2 in Ref. 28 �except r2QrP for m̂B=2�.
Therefore, their behavior for the mixture seems to approach
that for a pure vapor as n̂0

B tends to vanish. The behavior of
r2urP

A for n̂0
B=0.1 is, however, qualitatively different from

that for a pure vapor �n̂0
B=0� in Ref. 28. More specifically,

r2urP
A has a peak at an intermediate value of k �cf. the second

paragraph in this section�, but the mass-flow rate for a pure
vapor increases monotonically as k decreases �cf. Fig. 1 in
Ref. 28�. The difference can be explained as follows. In the
case of n̂0

B=0, r2urP
A is still given by Eq. �20e� in the free-

molecular limit �k→��. It increases monotonically with de-
creasing k and approaches its limit, i.e., Eq. �25a�, as k→0
�see Fig. 1 in Ref. 28�. In the case of n̂0

B�0, the vapor flow
is completely blocked �r2urP

A →0� in the limit k→0 by fre-
quent molecular collisions with gas B �see Eq. �22a��. If n̂0

B is
sufficiently large �say n̂0

B=10�, the effect of gas B as an ob-
stacle is dominant in the whole range of k and thus r2urP

A

decreases monotonically with decreasing k. If n̂0
B is small

�say n̂0
B=0.1�, however, the effect of gas B manifests itself

only in the small-k region. Therefore, r2urP
A increases with

decreasing k in the large-k region as in the case of a pure
vapor. The combination of these two effects causes the non-
monotonic behavior of r2urP

A . See also Refs. 50 and 42 for
discussions on the behavior of r2urP

A for a pure vapor and that
for a mixture.

The tables for r2urJ
A and r2QrJ �J= P ,T� presented in the

supplementary material62 also show the values of r2�1
+ n̂0

B�QrP
� . Because of Onsager’s reciprocity relation �18�, it

should coincide with r2urT
A in the whole range of k theoreti-

cally �see also Eq. �13��. Their values in the tables show
good agreement, with small differences at small k. The dif-
ferences give an estimate for accuracy of the numerical com-
putations. Note that in the case of m̂B=1, QrP=QrP

� holds by
definition and thus r2QrP=r2urT

A / �1+ n̂0
B� follows. We also

confirmed that the numerical solutions satisfy the second in-
equality of Eq. �19a� and Eq. �19b�.

Figure 4 shows the results for m̂B=1 of the present com-
putations and those of Young’s approximate formula pro-

posed in Ref. 42. The formula has been constructed on the
basis of a simple physical model. However, if the adjustable
parameters are chosen appropriately �see the last sentence of
Appendix B�, it reproduces qualitative features of the present
results quite well. We also made comparisons in the case of
m̂B=0.5 and 2 and arrived at a similar conclusion �see Figs.
1 and 2 in the supplementary material62�. The r2QrP is omit-
ted in Fig. 4 because it coincides with r2urT

A / �1+ n̂0
B� theoreti-

cally �see the last paragraph�. The explicit form of Young’s
formula, as well as some details of the comparison, is pre-
sented in Appendix B. By the way, Young’s formula has also
been verified experimentally in Ref. 63, where excellent
agreement between the measurement and the prediction by
the formula concerning the droplet growth and evaporation
rate is reported.

Finally, let us consider the special case where the present
problem reduces to the heat transfer problem. Recalling that
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FIG. 4. Comparison with Young’s formula �Ref. 42� in the case of m̂B=1.
�a� r2urP

A and �b� r2urT
A and r2QrT. The symbols indicate present numerical

results for n̂0
B=0.1 ���, 1 ���, and 10 ���, and dashed-dotted lines the

results of Young’s formula. The dashed lines indicate the asymptotic solu-
tion for small k in Ref. 50 or the free-molecular solution for k→�.
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the mass-flow rate r2ur
A for arbitrary �P and �T�	1� is

given as r2ur
A=r2urP

A �P+r2urT
A �T, one notices that the

evaporation or condensation may stop for special values of
�P and �T �except the trivial case, i.e., �P=�T=0� which
satisfy

�P/�T = − �r2urT
A �/�r2urP

A � . �28�

With such values of �P and �T, the boundary condition �4a�
at the interface �r=1� for the vapor becomes equivalent to
the diffuse reflection condition �i.e., Eq. �4b� with the super-
script B being replaced by A�. Thus, the corresponding solu-
tion �� can be interpreted as a solution for the heat transfer
problem between a solid sphere with temperature Tw and the
surrounding binary mixture which is in a stationary equilib-
rium state with temperature T0 and partial pressures p0

A and
p0

B at infinity. The heat-flow rate r2Qr�=r2QrP�P+r2QrT�T�
in such a situation is written as

r2Qr

�T
=

�r2urP
A ��r2QrT� − �r2QrP��r2urT

A �
r2urP

A

=
�r2urP

� ��r2QrT
� � − �r2QrP

� ��r2urT
� �

r2urP
� . �29�

The second equality comes from Eqs. �10d� and �13�. Be-
cause of Eq. �19�, r2Qr /�T should be positive. The ratio
�P /�T determined by Eq. �28� and the corresponding
r2Qr /�T for various k are tabulated in Table I. It is seen from
the data in the table and Eq. �22� that both �P /�T and
r2Qr /�T decrease with decreasing k and vanish as k→0. In

the case of m̂B=1 �with K̂BB= K̂AB=1� one can prove theo-
retically that �P /�T and r2Qr /�T are independent of n̂0

B,
while their values in the table show slight dependence caused
by numerical errors. In the case of m̂B=0.5 �or m̂B=2�, they
increase �or decrease� with increasing n̂0

B.

TABLE I. The heat-flow rate r2Qr /�T and the ratio �P /�T for the heat transfer problem.

k

n̂0
B=0.1 n̂0

B=1 n̂0
B=10

�P /�T r2Qr /�T �P /�T r2Qr /�T �P /�T r2Qr /�T

m̂B=1

� 0.5 0.5642 0.5 0.5642 0.5 0.5642

20 0.4920 0.5566 0.4920 0.5566 0.4920 0.5566

10 0.4834 0.5487 0.4834 0.5487 0.4835 0.5487

5 0.4659 0.5328 0.4659 0.5328 0.4659 0.5329

2 0.4145 0.4871 0.4145 0.4871 0.4146 0.4871

1 0.3421 0.4216 0.3421 0.4216 0.3422 0.4216

0.5 0.2433 0.3268 0.2434 0.3268 0.2434 0.3268

0.2 0.1187 0.1890 0.1188 0.1890 0.1188 0.1890

0.1 0.059 98 0.1089 0.060 00 0.1089 0.060 03 0.1088

0.05 0.029 26 0.058 43 0.029 28 0.058 41 0.029 29 0.058 41

m̂B=0.5

� 0.5 0.5854 0.5 0.6810 0.5 0.7766

20 0.4920 0.5778 0.4920 0.6734 0.4921 0.7690

10 0.4835 0.5700 0.4836 0.6656 0.4837 0.7612

5 0.4660 0.5541 0.4665 0.6498 0.4668 0.7454

2 0.4151 0.5084 0.4170 0.6038 0.4184 0.6987

1 0.3434 0.4425 0.3477 0.5357 0.3508 0.6279

0.5 0.2453 0.3460 0.2521 0.4314 0.2569 0.5156

0.2 0.1206 0.2030 0.1271 0.2651 0.1318 0.3263

0.1 0.061 22 0.1180 0.064 96 0.1572 0.067 82 0.1965

0.05 0.030 00 0.063 82 0.031 88 0.086 01 0.033 41 0.1085

m̂B=2

� 0.5 0.5492 0.5 0.4816 0.5 0.4140

20 0.4920 0.5415 0.4919 0.4739 0.4919 0.4063

10 0.4834 0.5337 0.4833 0.4661 0.4831 0.3984

5 0.4658 0.5179 0.4653 0.4503 0.4647 0.3827

2 0.4142 0.4724 0.4125 0.4060 0.4100 0.3391

1 0.3415 0.4077 0.3380 0.3448 0.3329 0.2811

0.5 0.2425 0.3148 0.2377 0.2606 0.2309 0.2056

0.2 0.1180 0.1812 0.1143 0.1461 0.1091 0.1106

0.1 0.059 57 0.1042 0.057 44 0.082 90 0.054 45 0.061 51

0.05 0.029 06 0.055 83 0.027 97 0.044 13 0.026 46 0.032 41
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B. Behavior of the macroscopic quantities

The profiles of the macroscopic quantities for m̂B=1 and
n̂0

B=1 are shown in Fig. 5; Fig. 5�a� is for 
P
A, 
P

B, PP, PrrP,
and �P resulting from the solution �P

� for ��P ,�T�= �1,0�,

and Fig. 5�b� for 
T
A, 
T

B, PT, PrrT, and �T from �T
� for

��P ,�T�= �0,1�. The profiles for k→� �i.e., Eqs. �20� and
�21�� and those for k→0 derived in Ref. 50 are also shown in
the figures �
P

A =−n̂0
B
P

B =r−1, PP= PrrP=�P=0, −
T
A=−
T

B
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(b)

FIG. 5. Profiles of the macroscopic quantities for m̂B=1 and n̂0
B=1. �a� 
P

A, 
P
B, PP, PrrP, and �P and �b� 
T

A, 
T
B, PT, PrrT, and �T. The dashed lines indicate

the results for k→0 and dashed-dotted lines those for k→�.
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=�T=r−1, and PT= PrrT=0 in the limit k→0�. Also the results
for other pairs of m̂B and n̂0

B are shown in the supplementary
material.62

The density 
P
A �or 
P

B� takes its maximum �or mini-
mum� on the surface of the droplet �r=1� and monotonically
decreases �or increases� to zero as r→�. The �
P

B� for fixed r
is a monotonically decreasing function of k and vanishes as
k→�. However, 
P

A does not vanish as k→� �
P
A for

small n̂0
B may show slightly nonmonotonic behavior as a

function of k; see Fig. 3 in the supplementary material62�.
The temperature �P is negative, takes its minimum in the
close vicinity of the droplet �not on the interface�, and van-
ishes as r→�. That is, the mixture is cooler than the droplet
and also the equilibrium state at infinity. As a function of k,
�P for fixed r vanishes as k→� and also as k→0, and thus
takes its minimum at an intermediate value of k �i.e., k
�0.2–0.5�. We should note here that �P for a pure vapor
�n̂0

B=0� also vanishes as k→� but does not as k→0, i.e., �P

for fixed r monotonically decreases with decreasing k to its
limit as k→0 �see Fig. 4 in Ref. 28�. The different behavior
of �P for small k is related to the existence of the evaporating
flow urP

A for a pure vapor in the limit k→0 �see, e.g., Ref. 5,
p. 82�. The pressure PP and stress tensor PrrP behave mono-
tonically as functions of both r and k.

The densities 
T
A and 
T

B and temperature �T are mono-
tonic with respect to both r and k. The pressure PT and stress
tensor PrrT decrease monotonically as functions of r, while
they may show nonmonotonic behavior as functions of k in
the case of n̂0

B�1 �see also Fig. 3 in the supplementary
material62�. Note that in the case of a pure vapor �n̂0

B=0� PT

and PrrT vanish as k→� �see Eq. �21d��.
By comparison with Figs. 3–6 in the supplementary

material,62 it is seen that the dependence on m̂B is relatively
weak and the maximum values of �
P

B�, PP, PrrP, and ��P� �or
PT and PrrT� decrease �or increase� with increasing n̂0

B.

C. Data of computation

Let us here summarize the data of the lattice system used
in the finite-difference analysis and accuracy of the compu-
tations for intermediate values of k.

In all the computations, we used the following lattice
system �r�i� ,��j� ,��

�l�� for the independent variables �r ,� ,���:

r�i� = 1 + �rD − 1��i/Nr�3 �i = 0,1, . . . ,Nr� , �30a�

��j� = �D�j/N��3 �j = 0,1, . . . ,N�� , �30b�

��
�l� = �l/2N� �l = 0,1, . . . ,2N�� , �30c�

with Nr=600, N�=40, �D=6, and N�=100. The rD was set to
be proportional to k as rD=100k for k�10, 150k for k=5,
and 200k for k
2. As mentioned in Sec. III C, the finite-
difference scheme for Eq. �2� and iteration process are essen-
tially the same as those in Ref. 28. Also, essentially the same
criterion for convergence was used. That is, the iteration was
stopped when the variation in the macroscopic variables 
�,
ur

A, and �� over the whole space in ten steps becomes less
than 1�10−8. In general, the computations for smaller k
need more iterations to achieve the convergence and thus

take more CPU time. Typically, about 4.7 days computation
using a personal computer with Intel Pentium 4 3.2 GHz
processor was needed to obtain �P

� for m̂B= n̂0
B=1 in the case

of k=0.05.
As mentioned in the first paragraph in Sec. IV A, r2urJ

A

and r2QrJ obtained in the numerical analyses are not constant
with respect to r but show small fluctuations, which provide
a measure of error estimate for the computations. Let ��h�r��
be the maximum value of ��h�r�i��−h�1�� /h�1�� for 1
r�i�


4, i.e., the maximum relative error of a quantity h�r� evalu-
ated at the lattice points in 1
r
4. Then, ��r2urP

A �
�0.09% holds in all the computations, ��r2urT

A ��0.07% in
the computations for k�1, and ��r2urT

A ��0.24% in those for
k
0.5. Meanwhile, ��r2QrP��0.1% holds for k�2 and
��r2QrP��0.58% for k
1 except for the case of
�m̂B , n̂0

B ,k�= �2,0.1,0.5�, where we have ��r2QrP�=1.4%;
��r2QrT��0.14% holds except for the case of �m̂B , n̂0

B ,k�
= �0.5,0.1,0.05�, where we have ��r2QrT�=0.52%.

Another measure of accuracy is provided by the flow
velocity urJ

B of the noncondensable gas, which should be zero
theoretically �see Eq. �12b��. In all the computations, �urP

B � is
less than 6.5�10−6 and �urT

B � less than 1.9�10−5 at the whole
lattice points.

V. EXTENSION TO GENERALIZED BOUNDARY
CONDITION

Up until now, we assumed the complete condensation
condition for the vapor �i.e., Eq. �4a�� on the surface of the
droplet, where the velocity distribution of outgoing mol-
ecules is determined solely by the state of the condensed
phase and is not influenced by incoming molecules. In this
section, we shall consider a more general boundary condition
for the vapor which includes the effect of incoming mol-
ecules. The following discussion is the extension of the cor-
responding one for a pure vapor in Ref. 28.

Let us consider the generalized boundary condition for
the vapor, which is written in the form of a linear combina-
tion of the complete condensation and the diffuse reflection
condition. To be more specific, let the velocity distribution
�A of outgoing molecules be given by the RHS of Eq. �4a�
multiplied by �c plus the RHS of Eq. �4b� with the super-
script B being replaced by A multiplied by 1−�c, where �c

�0
�c
1� is a constant corresponding to the condensation
coefficient. Then, the resulting condition is written as fol-
lows: at r=1, for 0
���� /2,

�A = �c�P + �1 − �c��̃w + ��2 − 5
2��T , �31a�

�̃w = 1
2�T − 2�1/2
� cos ���

AEA�w. �31b�

As for the noncondensable gas, we impose the diffuse reflec-
tion condition �4b� again. The solution of the boundary-value
problem �Eqs. �2�, �31�, �4b�, and �7�� is denoted by �G

� in
the following.

Condition �31a� is equivalent to the complete condensa-
tion condition �4a� if the constant �P is replaced by �c�P
+ �1−�c��̃w. Taking into account this fact, we seek the solu-
tion �G

� in the following form:
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�G
� = �P

��P̃ + �T
��T . �32�

It is immediately seen that the above solution satisfies Eq. �2�
and condition �7� at infinity. In addition, one can easily verify
that �G

B always satisfies condition �4b� irrespective of value

of �P̃. Then, we determine �P̃ by substituting Eq. �32� with
�=A into Eq. �31� and solving for it,

�P̃ =
�c�P − 2�1/2�1 − �c�urT

A �r = 1��T

�c + 2�1/2�1 − �c�urP
A �r = 1�

. �33�

With the above �P̃, �G
A satisfies condition �31�. Therefore,

the solution �G
� under the generalized boundary condition

�31� can be constructed from the solution �P
� and �T

� under
the complete condensation condition obtained in the present
work. Note that �G

� for �c=0 corresponds to the solution for
the heat transfer problem discussed in the last paragraph in
Sec. IV A.

VI. CONCLUSIONS

The vapor flow caused by evaporation or condensation
on a spherical droplet has been investigated on the basis of
kinetic theory in the case where another noncondensable gas
is also present in the gas phase. Under the assumption of
weak evaporation or condensation, the linearized model
Boltzmann equation for gas mixtures �a linearized version of
the model proposed by Hamel53 and that by Garzó et al.54�
was solved with the complete condensation condition for the
vapor and the diffuse reflection condition for the noncon-
densable gas being imposed on the surface of the droplet.
The accurate numerical analysis by means of a finite-
difference method was carried out, in which the hybrid
scheme devised in Ref. 25 was employed to treat correctly
the discontinuities of the velocity distribution function. The
numerical results, together with the free-molecular solution
and the asymptotic solution for small Knudsen numbers in
Ref. 50, clearly exhibit the behavior of the mixture in the
whole range of the Knudsen number.

In comparison with the case of a pure vapor studied in
Ref. 28, it may be said that the main difference is seen in the
behavior of the mass-flow rate r2urP

A for ��P ,�T�= �1,0� as
a function of k. That is, r2urP

A vanishes as k→0 in the case of
a mixture because of the obstruction caused by the noncon-
densable gas. We also made a comparison between the
present results and Young’s approximate formula,42 which
gives an assessment of the performance of the latter formula.
As a byproduct of the present analysis, the solution for the
heat transfer problem between a solid sphere and a binary
gas mixture was also obtained. Finally, we confirmed that a
solution under the generalized boundary condition can be
constructed from the present results.
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APPENDIX A: ASYMPTOTIC SOLUTION FOR LARGE r

The velocity distribution function �� in the far field
from the droplet �r�1� may be expected to be proportional
to inverse power of r, i.e., ���O�r−n� �see Sec. III B and
the third paragraph in Sec. III C�. Consequently, ��� /�r
��� /r holds there, and thus the length scale of variation in
�� is of the order of Lr. In the far field r�r0 �r0�1�, there-
fore, the effective Knudsen number may be written as
�0

A / �Lr0�=Kn /r0, which will be smaller for larger r0. With
this fact in mind, we can derive the asymptotic solution �far

�

for large r from that for small k given in Ref. 50. The result
is

�far
A =

1

k�
ar−1 + 2ar−2�� cos �� + kr−1�2�3 cos2 �� − 1��

+ br−1��2 −
5

2
��1 + kr−1� cos ��

+ k2r−2�2�3 cos2 �� − 1�� , �A1a�

�far
B = −

1

k�n̂0
Bar−1 + br−1�m̂B�2 −

5

2
�

��1 + �kr−1� cos �� + �2k2r−2�2�3 cos2 �� − 1�� ,

�A1b�

where � and � are defined in Eq. �24� and k is arbitrary. In
the derivation of Eq. �A1�, the following asymptotic behav-
ior of the macroscopic quantities for r�1, which also fol-
lows from the analysis for small k in Ref. 50, is taken into
account:

ur
A = ar−2, �A = �B = br−1, �A2�

where a and b are undetermined constants.
As described in Sec. III C, the above solution was

used in the numerical analysis as the boundary condition at
r=rD with sufficiently large rD. In the computation, the con-
stants a and b were determined numerically at each iteration
step from the behavior of ur

A, �A, and �B in the far field.

APPENDIX B: YOUNG’S APPROXIMATE
FORMULA

Young’s approximate formula42 for the mass- and heat-
flow rates from the spherical droplet in the presence of a
noncondensable gas may be written in terms of the present
notation as follows:

r2urP
� =

AqqBm

2�1/2H
, r2urT

� = −
AmqBq

2�1/2H
, �B1a�

r2QrP
� = −

AqmBm

2�1/2H
, r2QrT

� =
AmmBq

2�1/2H
, �B1b�

with

Amm = F2A2n̂0
B + F1A1KnY +

A1A2G1KnY

4B2
, �B2a�
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Amq =
A1A2G1KnY

2B2
, Aqm =

G1B1KnY

2
, �B2b�

Aqq = G2 + G1B1KnY, �B2c�

H = AmmAqq − AmqAqm, �B2d�

Bm = A1A2KnY, Bq = B1B2KnY, �B2e�

and

A1 =
4

Sc
� R

�/mA�1/2
, A2 =

1

1 + n̂0
B , �B3a�

B1 =
8

Pr

�

� + 1
, B2 =

� + 1

2�� − 1�� R

�/mA�1/2
, �B3b�

F1 =
1

�c
−

1

2
F2

2, F2 =
1

1 + 2�mKnY
, �B3c�

G1 = 1 −
1

2
G2

2, G2 =
1

1 + 2�qKnY
. �B3d�

Here Sc is the Schmidt number, Pr is the Prandtl number, and
KnY is the Knudsen number defined in Ref. 42. They are
written in terms of the transport coefficients �e.g., Ref. 64�,
i.e., the viscosity � of the mixture, thermal conductivity � of
the mixture, and binary diffusion coefficient D as

Sc =
�

�0D
, Pr =

�R�

�� − 1��
, �B4a�

KnY =
��2�RT0�1/2

4p0L
, �B4b�

with �0=mAn0
A+mBn0

B. The R is the specific gas constant of
the mixture per unit mass and � is a constant defined by the
following equation:

� + 1

� − 1
�1 + n̂0

B� =
�A + 1

�A − 1
��/mA

R
�1/2

+
�B + 1

�B − 1
n̂0

B��/mB

R
�1/2

,

�B5�

with �A and �B being the specific heat ratios of the vapor and
noncondensable gas. The �c appearing in Eq. �B3c� is the
condensation �or evaporation� coefficient, and �m and �q in
Eqs. �B3c� and �B3d� are positive constants defining the
Knudsen-continuum interface in the Langmuir model. Note
that Onsager’s reciprocity relation �18� and inequality �19�
hold in formula �B1�.

Formula �B1� is compared to the present results in Sec.
IV A �see Fig. 4 and also Figs. 1 and 2 in the supplementary
material62�. In the comparison, the specific gas constant R of
the mixture appearing in the above equations is defined as
R= �n0 /�0��, the specific heat ratios are set as �A=�B=5 /3
�i.e., the value for a monoatomic ideal gas�, and �c=1. As for
the transport coefficients, the following expressions for the
model equation are used �see Refs. 53 and 54�:

� =
p0

A

KAAn0
A + KABn0

B +
p0

B

KABn0
A + KBBn0

B , �B6a�

� =
5

2
�� p0

A/mA

KAAn0
A + KABn0

B +
p0

B/mB

KABn0
A + KBBn0

B� , �B6b�

D =
�mA + mB��T0

mAmBKABn0
. �B6c�

Using the above expression for �, we can derive the relation
between KnY and k as

KnY =
�1/2

4

1 + �n̂0
B

�1 + n̂0
B�1/2�1 + m̂Bn̂0

B�1/2k , �B7�

with � being defined in Eq. �24�. The parameters �m and �q

are set as ��m ,�q�= �1.5,0.75� so that formula �B1� best ap-
proximates the maximum values of r2urP

A for n̂0
B=0.1 in Figs.

1�a�, 2�a�, and 3�a�.
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