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Application of the Manifold Cell Model in Rainfall-Runoff 

         Analysis of a Hydrologic System

By Ru-yih WANG and Shuichi IKEBUCHI

(Manuscript recieved on June 25, 1994, revised on August 19, 1994)

Abstract

   The paper aims to modify the newly developed manifold cell model, then to build up adequate rainfall-
runoff model for simulating the spatially distributed characteristics of a hydrologic system, and finally, to apply 
the model for flood forecasting so as to predict accurately and instantaneously the possible flood trend in a river 
basin during typhoon hitting period. In order to verify the accuracy of the manifold cell model, Tseng-wen 
River Basin, Taiwan was chosen as a project area for illustration. From the analyzed results, the proposed 
manifold cell model was found to be proper for applying to the simulation of the deterministic relationship 
between rainfall and runoff.

1. Introduction

   Hydrologic modeling is a mathematical formulation by which appropriate govern-
ing equations to study the relationship of cause and effect in a hydrologic system are set 
up. Hydrologic phenomenon occurring in a river basin usually varies with respect to 
time and space (2, 3, 11). The time base and spatial extent of a hydrologic model will 
reflect both the modeling objectives and the degrees of realism sought in the model. If 
a river basin is regarded as a lumped system, all the hydrologic variables are treated as 
constant in space. As a result, characteristics of spatial non-uniformity among 
meteorologic components, hydrologic parameters and physiographic factors are com-
monly neglected. On the other hand, distributed model considers the characteristics of 
spatial variation in a real and complicated river basin, leading to complexity in model 
structure. A distributed model has a wide application especially for those project areas 
which have abrupt weather changes, flashy flood variations and rugged topographic 

 situation. 
   Distributed models place more emphasis on the particular situation such as 
irregular changes of hydrologic condition and great spatial variation of physiographic 
situation. Some examples of applicable distributed models are: (1) isochrone routing 
model, originally proposed by Clark in 1945, which is based on time-area diagram of a 
watershed as a weighting input function routing from the upstream component to the 
outlet (6, 13). (2) geomorphologic instantaneous unit hydrograph model (GIUH), 
which is a physically-distributed model developed by means of the queuing theory. 
Based upon the data accumulation from topographic maps of a project basin, a GIUH 
can be built up for flood estimation (12). (3) topographic basin model, proposed by
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Takasao and Shiiba in 1989, which is a numerical model for taking account of the 
direction of water flow. A topographic surface is numerically represented using a 
data structure of Digital Elevation Model (DEM) formed by a Triangulated Irregular 
Network (TIN). Land surfaces are modeled as a set of contiguous non-overlapping 
triangular facets whose vertices are made up by points on regular grids and points on 
river segments (9). (4) cell model which is a conceptually distributed model that divides 
a watershed into several adequate subareas or cell according to respective topographic 
character. The characteristics of spatial variation of topography can be revealed in 
the cell model if a spatially uniform rainfall falls on a river basin. 

   The aims of this paper are firstly to discuss and modify the impulse response func-
tions of manifold cell model, secondly to build up suitable hydrologic model for 
simulating the spatially distributed characteristics of a river system, and finally, to apply 
the modeling results for flood prediction. 

2. Discussion and Modification of Impulse Response Function for the Manifold 
   Cell Model 

   Impulse response function (IRF) is defined as the resulting outflow at the outlet of a 
river basin by adding instantaneously an unit depth of rainfall excess into a hydrologic 
system. It is conceptually similar to the instantaneous unit hydrograph. In this study, 
hydrologic phenomena occurring in a cell are assumed to be linear processes. Regar-
ding rainfall excess as inflow to the cell, by means of operation with IRF of the cell, the 
resulting outflow hydrograph at the outlet of a river basin can be routed in sequence by 
applying the principle of convolution. 

   The structure of the manifold cell model is composed of two cascaded linear reser-
voirs. The first element is a linear reservoir of storage constant ka to simulate the effect 
of overland flow; the second element is another linear reservoir of storage constant of  it' 
cell  i  •  kra  (1=  1,2,  •  •  •  , n, n: number of cells), to simulate the channel effect as shown in 
Fig. 1. From Fig. 1(B), the longer the distance to the outlet, the larger the storage 

constant of a channel is, and the longer the time lag becomes. As a result, the IRF of 
  cell to the outlet can be obtained by applying the principle of convolution as: 

 t—v  
  ,11       gi(t)=n1kaeedv 

       1  1 _ t _ t   • e e (1) 
 n ka— ant 

Summating eq. (1) for  i=  1,2,  •  •  •  , n,  ha(l) can be expressed as: 

 hn(t) = ig(1) 

             =        1   

 =(e—— e—(2) 
            nak— ik,a
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                       Fig. 1. Diagram of the manifold cell model. 

where,  hn(t) is the IRF for whole river basin . 
   Taking the Laplace transform of eqs. (1) and (2) yields: 

 Gi(s)=L 

    =1  1 1  

 •  

  n 1--1-kas 1 +/kips(3) 

and  Hn(s)= 

 1  1  n  1  
     = •  

  n 1+ kas 1-11+1k,,,s(4) 

Taking the first moment of  hn(t) as the first derivative of  Hn(s) at  s=0,  so 

          dH,„(s)   M
n=             ds  s=0 

           (n+1)k„,  =  ka+(5)  2 

Let  M=L—ka, where  L=  Mn represents time lag, then 

       2M  k
m= (6)         n+ 1
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Substituting eq. (6) into eq. (4) yields: 

      1n 1 1       H
n(s)=—  n  i1  1  +k

as 2Mis (7)                        '  n±1 

When  n—>C0  , then 

        1 1 n  1    li
mHn(s)=lim ./(8)      nH=01 + kasn==11+  2Mzs  

 n+1 

               n Here, 1+1 ib = 
n1 [1 ib±(ib)2 (ib)3+   

                                 1       =I[n 234 n(n+  1)1)                          *4--1(n2)n2(n±1.)2  
 b+b2b3+   (9) 

where,  b=2Ms
n+  1 

   Substituting eq. (9) into eq. (8) obtains: 

              1  1  [0A‘(2Ms)2(2Ms)3 .4_  1  limH n(s)=           1 + k
as2Msr's23 

 1  1   i
n  (1  ±  2Ms) (10)  1  ±  k

as 2Ms 

Taking the inverse Laplace transform of eq. (10) yields: 

 h(0=  Hn(s)} 

                  1  

        L II1±
as 2Ms 

 in  (1+2Ms)} (11)       1

k 

           1  

                  s 
in which, L-1{2M• ln (1±2Ms)}=E1(2+1) 

 5 11111111111111111111 

 4 

   E1(X)23 111111111111111111111  1
1.111111111111111111 

    

1  IIIIIIIII1P1
111111-11 

                   0  0.2  0.4  0.6  0.8  1.0  12  1.4  1.6  1,8  2.0 

 X 

                   Fig. 2. Illustration of the exponential integral function.
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                 Fig. 3. Impulse response function of the manifold cell model. 

 (Ka=0.4,  M=4.6,  n=00) 

where, Ei(2Mis the exponential integral function, and its shape is drawn in Fig. 2.     -1 

Hence eq. (11) can be modified as: 

  h(t)=  kekE1( 2MYlv (12) 
                        Because no analytical solution can be obtained for eq. (12), method of numerical 

integration by applying Simpson's 1/3 rule is adopted. Setting time lag  L=  5,  ka=  0.4, 
 M=  L  —ka=  4.6 and integrating for numerical solution, the result of IRF can be shown 

as Fig. 3. It can be seen from Fig. 3 that IRF of the manifold cell model is quite similar 
to the typical shape of IUH. Theoretically, the manifold cell model is a distributed 
model if the number of subareas becomes large enough. For determining the number of 
divisions of a river basin for practical application, numerical tests are carried out by the 
following two groups: 

 0.19 ,            °0.1187--  /IP' - ‘IRF of Manifold Cell Model 
        0.16 , •  

, M=4 , Ka=1  0.15  - 
       0.14  ,  - ^ n=infinite  0.13  - i\'± n=1 

                  0.12 - / 
                              \• n=4      0.11 -).-•n=8 

     0.10 --^ 
                 ,,        0.09-^,,,,,      h 

nV./ 0.08 -  ':1-., 
        0.07  - 1,....t.,,, 

       0.06 - 11 „,..., .. 
     0.05 - -  --  --

                   0.04-
                    0.03 - 

                  0.02 
                   0.01 
    0  ,  .  .  ,  , . 1 

    0 2 4 6 8 10 
 t (unit time) 

                 Fig. 4. Impulse response function of the manifold cell model. 

 (Ka=  1,  M=4)
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 0.24   
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               0.14 • n=infinite  0.16 / \ 
                                                                + n="I 

    .14  -/•n=   hn(t) \
\ 

                                                  •n=84  0
.12 - 

 0.10  -  1  0.08  -  !  N,..,... 
 0.06  - 

                     0.04  - 
 0.02  _... 

 0 
 2  4  6  a  10 

 t  (  unit  time  ) 
                 Fig. 5. Impulse response function of the manifold cell model. 

 (Ka=0.5,  M=4.5) 

   Group 1  LetL  =5,  k4=1.0,  M=4.0, then IRF is from eqs. (2) and (6) 

 t-  
n

e1t.0_enT.1  h n(t)=./ (13)            n,---18i              1 
 n  +  1 

the functional figure of eq. (13) is shown as in Fig. 4. 
   Group 2  LetL  =5,  ka=0.5,  M=4.5, then IRF is 

 t  

 1n9               1  
e--05-e n-1  h n(0=(14) 

               n i=i             0 .5 9i   n  +  1 

the functional figure of eq. (14) is plotted as in Fig. 5. 
   The results of numerical tests from eqs. (13) and (14) are summarized in Table 1. 

                 Table 1. Result of numerical test of the manifold cell model 

    M Ka L M Ka L 
  number 4.5 0.5 5.0  4.0 1.0 5.0 

    of cells ratio of time to ratio of peak ratio of time to ratio of peak 
           peak discharge peak discharge  

  1 1.67 0.73 1.40 0.84 
  2 1.67 0.80 1.40 0.89 
  4 1.33 0.87 1.20 0.94  - 

  8 1.33 0.93 1.20 0.98 
  16 1.00 0.97 1.00 0.99  _ 

  32 1.00 0.99 1.00 1.00 
  64 1.00 1.00 1.00 1.00 
   128 1.00_1.00 1.00 1.00  
  256 1.00 1.00 1.00 1.00
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It can be seen that the ratio of time to peak and the ratio of peak discharge become 
unity when the number of divisions of a river basin, n is large enough. The ratio of 
time to peak remains as one and the error of the ratio of peak discharge is 3% when 
n is 16. As a result, n  =16 or so is appropriate for practical flood estimation when 
applying the manifold cell model. 

3. Modification of the Manifold Cell Model by ARX Scheme 

   Manifold cell model was originally proposed by Diskin in 1987 (4, 8, 9). Similar 
hydrologic characteristic is assumed in each cell. An adequate flow network can be con-
structed according to the flow pattern occurred in the mechanism of a river basin (7). 
The deterministic relationship between rainfall and runoff can be finally simulated by 
connecting cells and formed as a cell model. Because the varying physiographic factors 
in each cell are considered, the manifold cell model can be regarded as a distributed 
model. 
   Modification of the manifold cell model by applying the scheme of an autoregressive 
model with exogenous input (or simply ARX model) is proposed herein. As shown in 
Fig. 1, components of overland flow and  streamflow can be individually derived in the 
manifold cell model. 

   3.1 Overland Flow 

   Let us consider the equation of continuity  of  jth cell as: 

 ii(t)dSAO'dtt) (15) 
where,  yt) : input function  offh cell,  cms; 

           : overland flow  of  nth cell,  cms; 
 SO) : storage of overland flow  ofith cell,  m3. 

Substituting  S  ,(0=  k  aQi  j(t) into eq. (15) obtains: 

        1   1
-1(t)--kaSli(t)=dS;0) (16) 

Integrating the above equation from  t  —1 to t by applying the trapezoidal rule, we get: 

    1     —
2 (1 ± B)./i(t) — —1 2(1 ± B)Si i(t)= Sii(t)(1 B) (17)  k 

where, B: backshift operator, 

                        1 thus [(1—B)a (1 ± B)1 S j(t)=—2(1-1-B)/p) (18) 
   1 1 Let a1= — (1), a2=  1 ±-2k, then eq. (18) can be rewritten as: 

                                               a                 1 

  [a2+=—2(1  ±B)/i(t) (19)
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 —
2—  (1+B) or  Si,,O=  [a2+  1J(t) (20) 

    3.2  Streamflow 

   The equation of continuity for the  streamflow part can be expressed as: 

                  2,,(t)  Q0) —(2(t)=dS
di (21) 

where,  GAO represents  streamflow discharge of  jth cell,  cms and  S2  j(t) is storage of 
 streamflow  aim cell, m3. 

   Substituting the relation  S2,0=  MiQ2d(t) into eq. (21), where  Mi is the storage 
constant of  streamflow for the  jth cell, we have: 

   11AP)  
  Tca-Sia(t)-71,TS2P)=di(22) 

Integrating the above equation from  t  —  1 to  t by applying the trapezoidal rule  and yields: 

    —2ka (1 +B)Sii(t)2M'  ±B)S2,(t)  =  (1  —B)S2P) (23) 
  1 1 or [(1 — B)d-—(1 ± B)1S2j(t)=—2ka  (1  + B)S  Xi) (24) 

                    1  

                                                    ' Let— (12M22M=1+and substituting the result of eq. (20) into eq. (24) 
                                      . yields: 

             1  T (1  +B)/j(t)     (9
2 +131B)S2P) -           2ka('1  a2-  alB (25) 

             „if, (1  +B)2 
or S2,(t)= (a2+ a-iB)(j32+131B)  qt) (26)      

1  1  +2B±B2  thus Q2j(t)=           4k
aMj(a2i32+a132B±a2181B+ a1i31B2) IXt) (27) 

Extension of eq. (27) in ARX form yields: 

     Q2,70= a 01A.2,,Q— 1) — 02A2a,0— 2) + 00,10+ ol,•lf(t— 1) + 6 2,  —2) (28) 

in which, 

         (2ka— 1)(24+ 1) ± (2ka+ 1)(24-1)  _ (2ka — 1)(2/11i-1)      01,= (2ka+  1)(24+1)  '  °2j—  (2ka  +1)(24+1) 

 1  

     0`4=  (2k
a+  1)(24+  1)  '  0  200j,  02,j=  00j
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and furthermore, for  ka� 1,  Mi.� 1, these parameters range as  follows: 

 2  1  1 21                                        o<0
,;�, o<02i.�-9 

and the relation —  g51,—  952i+  00  j+  Oii+  82  j=  1 holds for keeping the requirement of 

volume  balance. 

   3.3 Addition of Spilling-Water Condition of a Reservoir to Manifold Cell Model 

   Because a flash flood usually occurs in the typhoon-hitting period, spilling excess 

water from the storage reservoir is a necessary measure for safety considerations Spilling 

water is thus added as an additional inflow from upstream to downstream. Including 

the spilling-water condition of a reservoir in the manifold cell model is an important 

issues in model building. 

   The spilling-water condition can be added as an additional inflow to the  streamflow 

part of the upper cell subsequently coming close to a reservoir as shown in Fig. 6, the 
equation of continuity for the manifold cell model then can be expressed as: 

                              21     Qi,i(t)+R(t)— Q2,1(0dS(t)     =a (29) 

where,  R(t): spilling discharge to channel from a reservoir,  ems. 
   Substituting  S2,1(0=  All  (2-2,1(t) into eq. (29), where M1 is storage constant, yields: 

                       dS21(t)    —1Si1(0+ R(t) ——1S21(0=(30) 
  ka''di 

Integration of eq. (30) from  t-1 to  t by applying the trapezoidal rule yields: 

 1
2M1  —1     2ka (1  +B)Si,i(t)±(1  +B)R(t)(1  +  B)S2,1(t)  =  (1  —B)S2,/(t) (31) 

  1 1 or  {(1  B)-F2M12 (1  +B)1 S2,1(0-=—2ka(1±B)S1,1(t) ±—1(1 ±B)R(t) (32) 
Substituting the relation  of eq. (20) into eq. (32) and simplifying obtains: 

                               1 
  11    1+ 1)(12A11 )131S2,1(1)=1/1 n\ 2(1 +13)1j(t [) ±1 (1  ±  B)R(t)  (2A4.                    2ka"a2+04B2  (33) 

 (1 +B)(a2+ a1B) R(t)(34) or(
192+131B)S2,1(0= 1 1 +2B-1-B2   I.(t)+                  k 

a  a  2  ±  a  iB  2(a2  ±  a  1B) 

Rewriting eq. (34) into ARX form gives: 

 (132  P  1B)(a2  +  a  1B)  Q.2  ,i(t) 

 4kaMi1                                             i  (1 +2B+ B2)1i(t)±2M(a2 ± a iB a2B ± a 1.82)R(t) (35)
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          Fig. 6. Diagram of the manifold cell model including spilling-water condition. 

thus  Q2,1(t)=  —  01,1Q2,1(t—  1)-932,1Q.2,1(t—  2)+00,1/1(0-1-01,1h(t—  1)  +  02,1/1(t—  2) 
         cboR(t)± 951R(t— 1)+02R(t— 2) (36) 

where, 

          (2ka— 1)(2Mi ± 1) + (2ka+ 1)(2Mi — 1)(2ka— 1)(2iV/i — 1)     95
1,1=(2k

a+ 1)(2Mi+ 1)—                                      2'1  (2ka±  1)(2/1//i  ±  1) 
    1   O

o,1 =  (2k
a±  1)(2Mi  +  1)  81,1=28°,1,  82,1  =00,1 

and for  ka� 1,  M1  �  1, 

     1  1  2  2   2ka—  1  1 
    Cbc1= (2M

i + 1)3 '=(21ca 1)(2N/i ± 1) � 9952 = (2ka+ 1)(2Mi+ 1)9 

   3.4 Introduction of the effect of time delay 

   Time delay is conceptually different from time lag. Time lag is defined as the 
average runoff time for a flood wave moving from initiation point to the outlet of a river 
basin. The concept of time lag can be illustrated by the conceptual model  of  linear reser-
voirs. On the other hand, time delay denotes the time interval from the start of rainfall 
to the time when runoff variation is significantly large. The concept of time delay can be 
explained by the conceptual model of linear channels. In a larger river basin, time delay 
will be longer. Consequently, the effect of time delay must be introduced into the 
manifold cell model. 

   Assuming that the time-delay effect is something related to the distance of cell to the 
outlet of a river basin, it can be expressed as: 

• 

 Dj=  D  •L(hrs) (37)               L 
ma. 

in which,  Li : distance from  the  /11 cell to the outlet, km; 
 Lmax  : total distance from the remotest upper cell to the outlet of a project



         Application of the Manifold Cell Model in Rainfall-Runoff Analysis of a Hydrologic System 103 

             basin, km; 
        D : time delay, hrs. 

4. Parameter Optimization of the Manifold Cell Model 

   Parameter calibration and verification are important procedures for the application 
of a hydrologic model. The purpose of calibration is an attempt to determine a set of 
adequate parameters in order that the resulting outcomes of the model  will be as close as 

possible to those observed. The model with the calibrated parameters should be verified 
with several events that occur in the future or events remaining for verification. The 
simulated results of verified events should be within certain accuracy. That is, the 
residual errors between the simulation and the observed data are within a certain degree 
of acceptability. 

   The objective function for parameter optimization is set up in this study as: 

         1     OBJ=m1[Q,,b,(0— Q,,,,(1)12 -  WT(i)}T±DQ 
                                            ;(38) where, WT(i): weighting constant of discharge at time i,  WT(i)  =   

: observed discharge at time  1,  cms; 

       Qobs  : mean of observed discharges; 
 Qese(i) : estimated discharge at time i,  cms; 

 m : duration of  streamflow, hrs; 
      DQ : correction factor (14), if peak discharge of estimated  streamflow  (Q,)„, is 

            larger than peak discharge of observed  streamflow,  (Qp)obs,  DQ=0;  if 

 (Qp).<(Qp)obs, then  D(2={(Qp)obs—(Qp)adirn2. 
If the model has a superior accuracy, OBJ will be close to zero. 

   The method of steepest descent is chosen for parameter optimization in this study. 
The principle of the steepest descent in parameter optimization (5, 15) can be briefly 
described as: 

 Letf(X) be the objective function as shown in eq. (38), Xis a parameter vector of the 
model. Assuming  that  f(X) is a differentiable function of the first order, and for any 
initial value  X°, a neighboring point  X°  ±  dX can be found to  satisfy  f(X)-F  dX)<AX°) 
and to meet the requirement of df=fiX°)--,f(X°+ dX)=  maximum. 

   Let us define (coii,(dxr 
           •= 

            dx,          or  1  —)2=0  (39) 
              as 

    dX where,` —
cis: cosine of direction, and 

    dfzof dXi                                                    40 
 ds  ==i  axi ds() 

                                                dXi    Th
e so-called steepest descent method is to properly choose

s so that the
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maximum value of  df can be found out.  d
s 
   When the lagrange multiplier is applied to eq. (39), we have 

  Lt+ A!—(61-2921 (41) 
      kdsi=1 ax„ dsi=1ds 

 dX If 
there is a set of solutions  of  (i=  1,2,  •  • ,  m)  in eq. (41), the following two equations  d

s 
should be satisfied. 

 ofdX.    V 
dxL=—22-1•=0 (1=1,2,  (42)  --ds 
 ds 

and V2L= 1 —i1)2=0 (43)              = ds 

Solving eqs. (42) and (43), we get: 

 dXi  =  1 of   (44) 
 ds  22  ax, 

and A= ±I[E(-2921+(45) 
            axi 

Substituting eq. (45) into eq. (44) yields: 

 of  
    dx           ax„                                             (46)    ds(9211/2 

            aXi 

           ±:d.S  
or dXj=(47)  2  1/2 ax, 

 [igi(ax,)1 
 of  +  ds   ds L

et gk=, a==— 

        [(921/222                 i=iax, 

and  Ar  —  dill 
where, k: number of iteration. 

thus  xi,c±1=-Al+aisk (48) 

   In eq. (48), ak is called the step size. If a smaller ak is chosen, the speed of con-
vergence is rather slow. On the contrary, an up-and-down fluctuation could probably 
occur near the optimal value if too large an  ak value was chosen. An appropriate 
quadratic form of curvature is adopted in this study to increase its efficiency of con-
vergence as shown below: 

Let  f(X1)=f(X°4-ace0)=zsaa2±bad-c=11(a) (49)
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      C START 
        Estimate initial value 

 X°  =  (Xi,  X2,—,  Xm) 

            Calculate 
)...,df dfaf\Ivo  V f =k——• • • .II.n.            dX

,' eX2"A rn, 

 i 

            Calculate                               T 
: transposed matrix 

          g = (–V flx.x° )7' 

        Find a* in order that                   or  A 
      f (X° + ce*g) is minimum 

 I1 

        Let  X1=  X°  +  a*g 

 61,  62: the required degrees of accuracy 

 f(X1)  <6.1 

           ifK-F1_ fx, 
Nor 

          IfKI< 62 

 Y 

 Print X* =  (Xl,  X2,•  •  •  ,  X.) and  f  (r)  

 V  

 (  END 
               Fig. 7. Flow chart of the steepest descent method.
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                          A 

 c  =  mo)  =  f  (x°) 

    V  

 b  =  V  f  *  g1,0 

                     afix° +e)go-_be)c                   )1. 

 (e))2 

          (0)=(1)       a-aao)b  xi xo  do  go 
                              2a ' 

       A 

 f(Xi)  <f(r) 

             N 

                         Y 

                                   a* = a(1) 
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 Fig. 8. Flow chart for determining the optimal step size of the steepest descent method. 

where  c=  I1(0)=f(X°)  (50) 

   b= all=ALI 
         aaa=0 asia=0 

     

. .jL=jL . ax=v,f.g 
 as ax as 

 .'.b=  Vf•gia=o (51)
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For any value of a(°) 

    f(X1)= f(X°  + a(°)go)  a(01))2 +  b(a(9+  c 

        f(X1)— b(a(9—c   . a= (52)             (
a(°))2 
                      a) LetII(a) be the minimum, i.e.,all( =0 forfinding out the optimal step size  a* as:                          aa 

 MM  II(a)  =  Min  (aa2  +  ba+  c) (53) 

so aa—all=2aa+ b=0 

 =  
2aand  a(1)  <  a(°) (54) 

Let  X1  =  X°  +  a(1)go. If  Ax-1)<Ax0), then  °LW is equal to the optimal step size  a*; 
otherwise, let  aM=a(1). Repeat the procedure until a* can be determined. Figs. 7 
and 8 show the flow charts of the method of steepest descent for parameter optimization. 

5. Real-time Prediction of Model 

   For extending the applicability of hydrologic prediction, Kalman filter is combined 
with the manifold cell model in this study. Kalman filter is a recursive process which 
is a very powerful tool for the prediction by hydrologic model (1, 14). 

   Equation of state and euation of observation are two essential governing equations 
which should be considered. 

Equation of State: X(t+  1)=  0(0X(0+ W(t) (55) 

where, X(t) : state vector of system at time  t; 
 sb(t) : transformed coefficient matrix at time t; 

      W(t): state error vector at time t. 

Equation of Observation:  Y(t)=  H(t)X(t)+ V(t) (56) 

where, Y(t) : observation vector at time  t; 
 H(t)  : coefficient matrix at time  t; 

      V(t) : observation error vector at time  t. 
   Assuming that state error of system W(t) and observation error V(t) follow Gauss 

distribution,  E[W(t)]=  0 and  Et  V(t)]  =0 can be achieved. The optimal state for next 
time stage  t+  1,  X(t+ 1 t) and the optimal predicting value for next time stage,  At+1  I  0 
can be expressed respectively as: 

 X(t+  1  I  t)  =i(t  t) (57) 

 t(t+ 1  t)=H(t  + 1)i(t+  1  I  0 (58) 

where,  (1+ 1 t): given data at time  t, the finded predicting value for time t+ 1. "Predic-
             ting" is called for the process.
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 (t1t) : given data at time t, the finded predicting value for time  t as  "filtering". 
   As derivation of modified formulation of the manifold cell model as eq. (28), every 

cell can be assumed as a linear structure. The resulting total  streamflow at the outlet of 
a river basin can be expressed as: 

 Q(t)= 

       =
1-1cblAi(t— 1)— 02/2,(t— 2) 

 801,(t—  Di)±  kip—  1—  Di)±  02,1,(t—  2  —Di)}  V(t) (59) 

where, n : total number of subareas in the river basin; 
     D : time delay  offh cell, hrs; 

 V(t): observation error; 
 1(t) : rainfall  to  fh cell at time t,  cms; 

 QM: outflow discharge  of  jth cell at time t,  cms; 
 Q(t)  : outflow discharge of total river basin,  cms; 
 951,02,/,6oi3O1j,02j:  coefficients. 

Eq.(59) can be expressed as the form of state space as: 

 Q(t)=  H(t)X(t)-1- V(t) (60) 

where,  H(t)=[Qi(t—  1),(210—  2),  ,  Q,,(1—  1),  Qn(t  —2), 

 1"1(t—Di),11(t—D1-1),I1(t—D1-2),   

 I„(t—D„),4(t—D„-1),I,i(t—  D„—  2)] (61) 

and X(t)=[—c51,1,-952,1, 01,n,02,700,1,01,1302,1,00,n)01,n,02,n]T (62) 

Kalman filter can be combined with the manifold cell model for flood prediction by eq. 

(60). 
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               Fig. 9. Location and layout of Tseng-Wen River basin, Taiwan.
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 Fig.  10.  Flow  network  of  cells for the upstream reservoir watershed of Tseng-Wen River Basin. 

6. Practical Applications 

   For verification of the applicability of the manifold cell model, Tseng-wen River 
Basin, Taiwan was adopted as a project basin. 

   6.1 Brief Introduction of the Project Basin 

   Tseng-wen River Basin is located at the southwestern part of Taiwan as shown in 
Fig. 9. Its watershed area is 1,177  km2, the length of the main steam is 138.5 km and 
the mean gradient of the river is from 1/1000 to 1.5/1000 flowing westward to the 
Taiwan Strait. Three reservoirs, namely, Wu-shan-tou, Tseng-wen and Nan-hua were 
built in the project basin. It is regarded as a comprehensive reservoir watershed and the 
most prosperous area in southwestern Taiwan. 

   6.2 Analysis of Hydrologic Records and Physiographic Data 

   6.2.1 Zoning of Project Basin 

   For ease of analyzing the manifold cell model in the project basin, classification of a 

     11  
 1  

   13<   12   6   .<•   3  

   2  
 9  7  5  4 

Fig. 11. Block diagram of zoning of cells in the upstream reservoir watershed of Tseng-Wen River Basin.
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    Fig. 12. Flow network of cells in the downstream plain watershed of Tseng-Wen River Basin. 

cell was ascertained directly from the topography maps. Each cell was determined by 

the orientation of river pattern and divide form which could be regarded as an indepen-

dent hydrologic element for analysis. For simplification, Tseng-wen River Basin is 

divided into two zones; namely, the upstream reservoir watershed and the downstream 

plain watershed. In the upstream watershed, five raingage stations, namely, Ma-tou-
shan, Lo-yea, Shui-shan, Li-chia, Bieu-hu and one stage gaging station at Tseng-wen 

Dam Site were set up. In the downstream plain watershed, three raingage stations, 

namely, Tseng-wen New Village,  Shi-a-li-kuan, Nan-hua and one gaging station at 

Ma-shan Bridge were built. 

   The flow network of cells of the upstream reservoir watershed is shown in Fig. 10, 

and block diagram of connected subareas connecting from upstream to downstream 

in the upstream reservoir watershed is drawn in Fig. 11. Flow network of cells and 

block diagram of subareas for the downstream plain watershed are shown in Figs. 12 

and 13. Physiographic characteristics of cell including area of cell, length of river 

courses, distance to outlet, connecting cell of upstream, etc., for the upstream reservoir 

 <  1  2   <   1  1   <   7  3   <   2  <   1  

 10  <   5   <  4  

  9 8  
Fig.  13. Block digram of zoning of cells in the downstream plain watershed of Tseng-Wen River Basin.
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         Table 2. Physiographic characteristics of cells in Tseng-Wen River Basin, Taiwan 

     (A) Upstream reservoir watershed 

                       ehofdistancetouence    number of cells 
area (km2)lstream  (km)mainofoutlet (km)ofupstream cell  

 

1  53.5  8.72  54.84  ---

   2  52.0  9.73  49.05  1 

   3 38.1 6.85 40.78 2 

 4  52.3  11.08  82.74  ---

   5  66.4  20.56  66.92  4 

   6 47.5 19.31 46.99 5 

    7 62.5 19.40 27.63  3,6 

 8  54.5  13.08  52.16  ---

   9   31.8  13.62  45.89  ---

    10  45.1  21.15  28.51  8,9 

    11 46.3 8.32 13.77 7,10 

   12  58.0 9.61 4.81 11  

   - 

     (B) Downstream plain watershed 

 , 

                           length of main distance to sequence number 
   number of cellsarea (km2)stream (km) outlet (km) of upstream cell  

 1  29.1  10.87  49.31  ---
  2   45.2  8.89  48.32  _ 
   362.6 12.48 37.64  1,2 

                                                                   

.„„ 

 4 34.4  8.99  35.91  ---
   5  22.1  8.36  35.60  ---
   6  37.8  9.14  26.84  3,4,5 

 7  20.4  8.98  26.78  ---
   8  31.1  5.67  19.44  6,7 
 9   25.0  8.72  20.96  --- 
 10  25.5  5.15  14.03  8,9 
 11  41.6  11.13  17.02  ---
   12  52.1  5.31  8.80  11,10 

   13 55.9 6.14 3.07 12   

watershed and downstream plain watershed are summarized in Table 2. 

   6.2.2 Determination of Areal Average Rainfall and Effective Rainfall 

   For determining the areal average rainfall in the project area, Thiessen's polygon 
method was adopted and a polygon network controlled by raingage stations is drawn 
as Fig. 14. Table 3(A) and 3(B) show the control area and weighting for each raingage 
station of the upstream reservoir watershed and downstream plain watershed, respec-
tively. Due to the lack of detailed infiltration data in the project area,  0-index was 
adopted for estimating the effective rainfall of ordinary situation (11). During the 
spilling-water situation of typhoon-hitting period in the project basin,  (1)=5 mm/hr is 
usually used in Taiwan. 

   6.2.3 Selection of Storm and Flood Records 

   Typhoon events occurring from 1976 to 1986 were collected as calibration and 
verification of the manifold cell model for event simulation as shown in Table 4, in
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       Fig. 14. Thiessen's polygons network for raingage stations in Tseng-Wen River Basin. 

which five typhoon events for upstream reservoir watershed and five typhoon events for 
downstream plain watershed are included. During hitting of Typhoon Billie on August 
10, 1976, spilling flood from  spillways of Tseng-wen Reservoir occurred at a peak 
discharge of 900  cms, which made the analysis of the manifold cell model more com-

plicated. 

   6.3 Criteria of Evaluation for the Accuracy of Manifold Cell Model 

   For checking the suitability of the manifold cell model to flood estimation of the 

project basin, the following four criteria of evaluation were adopted: 

     Table 3. Control areas and weightings of raingage station divided by Thiessen's polygon 
              network in Tseng-Wen River Basin 

     (A) Upstream reservoir watershed 

    station name Ma-Lou-Shan Lo-Yea Shui-Shan Li-Chia Bieu-Hu 

    control area  181 .4 42.4 44.3 128.7 84.3  (k
m2)  

   weighting 0.38 0.09 0.09 0.27 0.17 

     (B) Downstream plain watershed 

                     Tseng-Wen New 
   station nameShi-A-Li-Kuan Nan-Hua  Village 

  control area (km2) 110.3 122.7 367.3 

  weighting 0.18 0.20  0.62
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          Table 4. List of typhoon events occurring in Tseng-Wen River Basin, Taiwan 

     region typhoon  time  of  occurrenceduration of stream -index  (mm/hr)  name  flow  (hrs) 
          * Billie 1976.08.10 98 5.0 

 upstream Amy 1977.08.22 54 4.8 
   reservoir Vera 1980.08.31 48 5.2 
  watershed Alex 1984.07.03 75 8.3 
        Abby 1986.09.19 93 7.5 
          * Billie 1976.08.10 104 2.8 
  downstream Irving 1979.08.14 155 2.2 
   plain Norris 1980.08.27 96 3.5 
  watershed Alex 1984.07.03 42 3.8 
       Abby 1986.09.19 80 2.6  
     * spilling water from Tseng-Wen Reservoir. 

 (1) Coefficient of Efficiency, CE 

               Qs(012   CE=  1(63)             
.2[Q.0,0-Q„bs]2 

                  1 in which,  Q„,(0  : estimated discharges by the cell model,  cms; 

 Q.pbs(t): observed discharges,  cms; 
 bs  : mean of observed discharges,  cms; 

        n : number of records. 
If CE is near to  1, it means that there is a superior conformity between the estimated and 
the observed. The larger CE is, the more accurate the model becomes. 

 (2) Error of Peak Discharge,  EQp(%) 

    Ef2p=(Qp)m— (Q.p)obs   X 100%  (64)            (Q
p)obs 

where,  (Qp)„,: estimated peak discharge,  cms; 

      (Q.p)obs: observed peak discharge,  cms; 
If the estimated peak discharge is larger than the observed peak discharge, a positive  EQi, 
is obtained, and vice versa. The smaller  EQp is, the more accurate the model. is. 

 (3) Error of Time to Peak Discharge,  ETp (hours) 

 ET  p=  (T)  t—(Tp)abs (65) 

where,  (Tp)„,: estimated time to peak discharge, hrs; 

 (Tp)obs: observed time to peak discharge, hrs; 
If the model has a good accuracy in error of time to peak discharge, then  ETp approaches 
zero. 

 (4) Value of Objective Function, OBJ 
   For evaluating the accuracy of the manifold cell model adopted, value of objective 

function in eq. (38) was also adopted in this study.
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Fig. 15. Simulated results vs. the observed values in the upstream reservoir watershed of Tseng-Wen 

        River Basin (Typhoon Amy, 1977). 

    6.4 Discussion of Results 

 (1) The simulated results of historical typhoon events for the upstream reservoir 
watershed of Tseng-wen River Basin by applying the manifold cell model are shown in 
Table 5(A) and two examples are illustrated in Figs. 15-16. 

  O   _ 

     ,5-, 
  0=ABBY  01986.09.19) 

         -...  10-  11/   = BY OBSERVED RAINFALL  E
.  15- 

                                              THE RESERVOIR WATERSHED 
           20- 

      &'=  25  -

  1600  0  III OBSERVED VALUES 
   1500  .:".•  0  0 MANIFOLD CELL MODEL 

 1400  1300; 1Iis 
 1200 

 I!o 
 1100 

   a1000 

                  ::" 
                           00 ,, 8 

900o 
   Lu BOO          /...9     CC 

 cr 700oo 
  =  (-) BOO01ii       CrJ 

 E  soo..Ill 

                                .1 
 4001.:-. 

                                                                            

.k. 
 300-                      . 141 , .. 0  200  ":,  ,  -_.  -.  ':  '  ..  , 

       100 ..1th .- --%..",......1..,,-„.o 
            O',':.:-'!' ]1!,r'.'''..---------•. :41..4.II".- ' . ' ' ̀ •! 

         0 5 10 15 20 25 30  35 40  45 50  SS  60  65 70 75  80  65  50  55 
                                     TIME  EHR3 

Fig. 16. Simulated results vs. the observed values  in the upstream reservoir watershed of Tseng-Wen River 
        Basin (Typhoon Abby, 1986).
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                 Table 5. Results of verification for the manifold cell model 

     (A) Upstream reservoir watershed 

        typhoon name Billie Amy Vera Alex Abby 
   item 1976.08.10 1977.08.22 1980.08.31 1984.07.03 1986.09.19 

  observed Qp 2808 2660 1682 4361 1481 
 values Tp 16 22 26 10 30  

        Qp 2841 2686 1568 4366 1433 
 manifold Tp 17 23 28 10 28 
   cell CE 0.78 0.90 0.66 0.65 0.68 

   model EQp (%) 1.18 0.98 -6.78 0.15 -3.24 
 ETp  (hrs) 1 1 2 0 -2 

            OBJ  0.0138 0.0276 0.0213 0.0397 0.0356  

     (B) Downstream plain watershed 

         typhoon name Billie Irving Norris Alex Abby 
   item 1976.08.10 1979.08.14 1980.08.27 1984.07.03 1986.09.19 

  observed Qp 1824 1490 1182 1358 805 
 values Tp 20 15 16 15 18 
        Qp 1905 1487 1180 1280 779 

 manifold Tp 21 13 17 15 17 
   cell CE 0.96 0.81 0.78 0.91 0.94 

   model EQp (%) 4.45 -0.20 -0.17 5.74 -3.23 
     ETp (hrs) 1 -2 1 0 -1 

            OBJ 0.0118 0.0279  0.0149 0.0197 0.0265  

         li--JI- -.J/LI , - 
 8--                                             BILLIE  [ 1976  .08  -  10] 

   = 

             ^-.. 

 E  12-, ..-1 - BY OBSERVED RAINFALL 
 z161THE DOWNSTREAM WATERSHED   ̂ -^-          •ca 

 =  20  - 

  2000 -,  D  MI OBSERVED VALUES 

 1800 0 o MANIFOLD CELL MODEL 

 16013  i.
...  Li  1400 f.                 ".4% 

 c7,61  5
Imo 

 ,_...,,.    "
.-   1000 

• - - -     CD 
    CC     a - -• .   A 

BOO  :=1  600  .,k 
 400  uo 

 A1111 
 200uIL. o                                                                                        ..: . 

        D r. .:. 4'.---'.- ' . ' . ! . ''! ' ' . ' i i'z z ! z 7 ' ' .,! 
 0  5 10 15 20 25 BO 36  40  45  50  SS  60  66 70 75  BO  85  90  SS 

                                    TIME  [HR] 

Fig. 17. Simulated results vs. the observed values in the downstream plain watershed of Tseng-Wen River 
       Basin (Typhoon Billie, 1976).
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Fig. 18. Simulated results vs. the observed values in the downstream plain watershed of Tseng-Wen River 

       Basin (Typhoon Abby, 1986). 

   A. CE of Typhoon Alex is the minimum,  (CE=0.65), and that of Typhoon Amy is 
the maximum  (CE=  0.90). 

   B. Errors of peak discharge were within 7%. 
   C. Errors of time to peak discharge were within 2 hours. 

   D. The maximum OBJ was found in Typhoon Alex (OBJ=0.0397), next was 
Typhoon Abby  (OBJ=  0.0356), and the rest were less than 0.03. 

    Table 6. Optimized parameters of the manifold cell model in Tseng-Wen River Basin, 
               Taiwan 

     (A) Upstream reservoir watershed 

    typhoon name Ka  (hrs) M (hrs)  Pi  (hrs) 

   Billie 3.34 1.50 0 
  Amy 2.82 1.63 0 
   Vera 2.11 1.00 0 
   Alex 1.45 1.01 0 
   Abby 2.68 1.36  0 
  Average 2.48 1.30 0  

     (B) Downstream plain watershed 

    typhoon name Ka (hrs) M (hrs) DJ (hrs) 

   Billie 4.63 2.20 8 

   Irving 1.78 1.02 14 
   Norris 3.00 1.50 14 

   Alex 3.30 1.59 14 
  Abby 3.58 2.16 11  

   Averaae 3.26 1.69 12.2
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 (2) The results for the downstream plain watershed are shown in Table 5(B) and two 
examples are illustrated in Figs. 17-18. 

   A. The minimum  CE=  Typhoon Norris  (CE=  0.78), the maximum  CE=  Typhoon 
Billie  (CE=  0.96). 

   B. Errors of peak discharge were less than 5.74%. 
 C. Errors of time to peak discharge were  —2 hours for Typhoon Irving, and less 

than 1 hour for the rest. 
   D. The maximum objective function was found in Typhoon Irving  (OBJ=  0.0279), 

and the minimum OBJ in Typhoon Billie  (OBJ=  0.0118). 

 (3) Spilling water condition from spillways of a reservoir during typhoon-hitting 
period can be included in the manifold cell model. Taking the case study of Typhoon 
Billie for example, the simulated hydrographs and results are shown in Fig. 17 and 
Table 5(B). It can be seen from Fig. 17 that the manifold cell model well simulates the 
effect of spilling water to the downstream of the reservoir. The coefficient of efficiency of 
the simulated results for the manifold cell model is of satisfactory accuracy with CE 
above 0.95. 

  (4) In general, the simulated results in the downstream plain watershed are much 
better than those obtained in the  upstream reservoir watershed. The reasons are pro-
bably due to the  effect of rugged topography on hydrologic phenomena causing uneven 
distribution of rainfall in the upstream reservoir watershed. 

 (5) Parameters adopted in the manifold cell model were  obtained by applying the 
method of the steepest descent as shown in Tables 6(A) and 6(B) for both upstream 
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Fig. 19. Flood predictions of 1, 2 and 3 hours ahead for Typhoon Billie (1976) in the upstream reservoir 
         watershed of Tseng-Wen River Basin.
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Fig. 20. Flood predictions of 4, 5 and 6 hours ahead for Typhoon Billie (1976) in the upstream reservoir 
         watershed of Tseng-Wen River Basin. 

reservoir watershed and downstream plain watershed. Values of those parameters 
obtained by the method of parameter optimization may be used as the basis for applying 
to the flood estimation in the project basin. 

 (6) The manifold cell model was combined with Kalman filter in this study for apply-
ing to  flood prediction of one to six hours ahead in the project basin. Examples of flood 

prediction of 1, 2, 3, 4, 5 and 6 hours ahead for Typhoon Billie of the upstream reservoir 
watershed are shown in Figs. 19 to 20 and Table 7. Examples for flood prediction 
of  1-6 hours ahead for Typhoon Andy of the downstream plain watershed are shown 
in Figs. 21 to 22 and Table 8. From the predicted results shown, flood predictions of 

 1-3 hours are still satisfactory. The larger the lead time for prediction is, the poorer 
the accuracy of the model becomes. How to predict most accurately the trend of a 

     Table 7. Results of flood prediction from  I  to 6 hours ahead for Typhoon Billie (1976) in the 
               upstream reservoir watershed of Tseng-Wen River Basin, Taiwan 

   time of predicted values 
   prediction  Qp(cms) Tp(hr) CE  EQp(%) ETp OBJ  

  1-hr ahead 3074 17 0.82 9.55 1 0.0310 
  2-hr ahead 3075 17 0.79 9.60 1 0.0336 
 3-hr  ahead 3119 18 0.75 11.16 2 0.0380 
  4-hr ahead 2933 18 0.65  - 4.53 2 0.0475 
  5-hr ahead 2431 19 0.45 -13.37 3 0.0971 
  6-hr ahead 1905 20 0.21 -32.10 4 0.1608  
 observed       2806 16 ---  ---  —  — 

      values
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   Fig. 21. Flood predictions of 1, 2 and 3 hours ahead for Typhoon Andy (1982) in the downstream plain 
             watershed of Tseng-Wen River  Basin. 

  storm/flood as early as possible during the  typhoon-hitting period is one of the impor-
   tant issues in disaster prevention research. It can be seen that the manifold cell model 
  is the appropriate hydrologic model for applying to flood prediction in the project 
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   Fig. 22. Flood predictions of 4, 5 and 6 hours ahead for Typhoon Andy (1982) in the downstream plain 
             watershed of Tseng-Wen River Basin.
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     Table 8. Results of flood prediction from 1 to 6 hours ahead for Typhoon Andy (1982) in the 
              downstream plain watershed of Tseng-Wen River Basin, Taiwan 

  time of  predicted values  
   prediction  Qp(cms)  Tp(h  r) CE  EQ  p(%) ETp OBJ  

  1-hr ahead 2558 27 0.87 -2.75 -1 0.0257  
  2-hr ahead 2623 27 0.85 -0.28 -1 0.0224  
  3-hr ahead 2848 27 0.82 8.29 -1 0.0249  
  4-hr ahead 3049 28 0.77 15.95 0 0.0291  
  5-hr ahead 3180 28 0.71 20.92 0 0.0338  
  6-hr ahead 3321 28 0.63 26.29 0 0.0386  
    observed  2630  28  ---

values  

river basin. 

 (7) The effect of time delay when applying the manifold cell model is that longer the 
distance from the project site to the outlet, the more significant the effect of time delay 
becomes. The longer the time delay  Di will dampen the effect of uncertainty of 
hydrologic behavior, or hydrologic phenomena in a larger watershed, being more stable 
than that in a smaller watershed. As a consequence, the simulated results of down-
stream plain watershed is more accurate than those of upstream reservoir watershed. 

7. Concluding Remarks 

 (1). The concept of the manifold cell model is based on dividing a watershed into 
several adequate subareas or cells according to topography and  streamflow orientation. 
Linear reservoirs can be analogized to simulate the overland flow and channel flow. 
Characteristics of spatial variation of  runoff process can be revealed in the manifold cell 
model if an average burst of rainfall  falls on a watershed. The resulting runoff 
hydrograph at the outlet of a river basin can be obtained by convolutional integration 
from upstream to downstream based upon cell diagram of the actual river basin. 

 (2) The impulse response function (IRF) for the manifold cell model is derived 
systematically. When the number of zones n becomes infinite, IRF of the manifold cell 
model can achieve reasonable figure similar to the functional shape of a hydrograph. In 

practical applications,  n� 10 is acceptable for a moderate size watershed zoning. 
 (3) ARX routing method was used in this study to the manifold cell models. The 

ARX shceme is simpler and quicker in calculation than  convolution. Another impor-
tant advantage is that the ARX method can be linked to Kalman filter. That is why the 
manifold cell model is a powerful distributed hydrologic model fit to be extensively 
employed in flood prediction and prevention. 

 (4) The criteria of objective function adopted are very important for evaluating the 
adequacy of a hydrologic model. To meet the requirements of hydrologic design and 

planning, a bilateral objective function of considering both hydrograph pattern and peak 
discharge was used in this study. Also for determining accurately and efficiently the 

parameters used in the manifold cell model, the method of the steepest descent was 
adopted for parameter optimization.
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 (5) From the simulated results of the historical typhoon events in the project river 
basin, the results of the manifold cell model were almost satisfactory. 

 (6) Adding some boundary conditions into a hydrologic model sometimes becomes a 
difficult task when model building. Spilling-water condition of a reservoir during 
typhoon-hitting period was incorporated into the manifold cell model in this study. 
From the simulated results of Typhoon Billie, manifold cell model accurately revealed 
the effect of spilling water to the downstream plain watershed. This may be regarded as 
one of the important advantages of the manifold cell model when applied to a comprehen-
sive reservoir project area such as Tseng-wen River Basin, Taiwan. 

 (7) Linking the manifold cell model to Kalman filter for flood prediction of 1, 2 and 3 
hours  ahead,, the predicted results were rather satisfactory. Flood prediction for longer 
time intervals may need more detailed modification. 
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