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A New Approach to Stokes Wave Theory

By Yoshito Tsuchiva and Takashi Yasupa

(Manuscript received November 28, 1980)

Abstract

Stokes wave theories to third-order approximation have widely been employed to calculate
wave properties for waves propagating over finite depths of water in most engineering appli-
cations. However, different and often inconsistent expressions of wave variables can be observed
from the numerous theories available.

Examinations of the usual Stokes wave theories are on the so-called Stokes definitions
of wave celerity and Bernoulli constant, as well as on the physical explanations of some theo-
retical problems involved. A new Stokes wave theory to third order approximation is derived
by applying only necessary conditions and assumptions, without using the definitions of wave
celerity. The resulting mathematical formulations for some pertinent wave variables are
presented.

Comparison is made between the new third-order approximation and the usual ones
derived from using the Stokes definitions of wave celerity, showing different expressions of
wave celerity, horizontal water particle velocity, and mass transport velocities. It is found
that the mass transport velocity exists in the Eulerian description as well as the usual Stokes
drift in the Lagrangian description.

1. Introduction

A thorough understanding of wave characteristics in shallow water is essential
in estimating wave forces on structures, as well as investigating various mechanisms
of wave-induced transport phenomenon, such as nearshore currents and sand drift.

A finite amplitude wave theory in inviscid fluid and irrotational motion was
first derived by Stokes!’ in 1847, thus bearing the name “Stokes waves”. Another
wave theory proposed by Korteweg de Vries? in 1895 has been referred to cnoidal
waves. Since then, numerous theories describing wave motions have been derived
to higher order of approximation for finite amplitude waves of permanent type.
By the perturbation method many fruitful results have been produced by solving
the governing hydrodynamic equations of wave motion. Higher order approximations
have also been developed in using computers for Stokes waves by Schwartz® and
Horikawa et al.#; and for cnoidal waves by Fenton®. Approximate waves theories,
applicable to water of arbitrary depth and independent of shallowness, have suc-
cessfully been derived to a very high order by Cokelet® and Chaplin®,

Higher order solutions of finite amplitude waves of permanent type in uniform
depths of water have been derived, having results agreeing very well with experimental
results, particularly when applied to wave profile and wave pressure. Itis unfortunate,
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however, that the required exactness for other wave properties, such as water particle
velocities and the resulting mass transport, has remained in doubt.

In deriving a Stokes wave theory, an additional condition, the definition of
wave celerity? is required and yields a different expression of mass transport by
waves. Besides, the inter-relationship among integral properties of periodic gravity
waves of finite amplitude derived by Longuet-Higgins® should also be governed
by the definition of wave celerity.

Table 1 Classification of usual Stokes wave theories by definition of wave celerity.

* Definition of |
W lerit
AN _wave celerity

First definition Second definition

Wave theory\ I

Stokes (2nd approximation) o
Skjelbreia (3rd approximation) ‘ (4th approximation)

Horikawa, Nishimura & Isobe

Tanaka (3rd approximation) | (51st approxirnation)

Laitone (3rd approximation)
Goda & Abe (3rd approximation)

Skjelbreia-Hendrickson
(5th approximation)

Stokes waves

| Bretscheider (5th approximation)

Fenton (9th approximation) Laitone (2nd approximation)
Tsuchiya & Yamaguchi
Cnoidal waves (3rd approximztion)

Horikawa, Nishimura & Isobe
(24th approximation)

As depicted in Table 1, the usual wave theories for waves of finite amplitude
are classified based on the kind of definition of wave celerity. The first definition
of wave celerity gives

L L
c=gn(c+u)dx/godx ...... e (1)
while the second definition renders
c:Sjgjh(c—l—u)dzdx/gﬁihdzdx ................................................... @)

in which ¢ is the wave celerity, u the horizontal water particle velocity, 7 the water
surface displacement,  the water depth, and L the wave length. Given as an example,
the vertical distributions of mass transport in the Stokes waves by the first and second
definitions of wave celerity respectively are illustrated in Fig.1. In the Lagrangian
description, as already described, the mass transport depends upon the definition
of wave celerity, vielding quite different conclusions. It is seen from this figure
that net mass transport exists in the direction of wave propagation by the first definition,
but no net value results from the second definition. The vertical distribution of mass
transport derived by Longuet-Higgins® is shown in the same figure. The effect
of viscosity is taken into consideration in calculating mass transport based on the
second definition of wave celerity, but no net value exists in this formulation. The
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Fig. 1 Vertical distributions of mass transport velocity by usual
Stokes wave theories.

results so obtained could be applied to the waves generated in a normal wave tank
with end walls. But the waves may no longer be permanent type in the exact sense.
Mass transport, which can be defined as the time-averaged water particle velocities,
does not exist generally in the Eulerian description, but it may be obtained by the
inter-relationship between the water surface displacement and water particle velocity
at the free surface. To study the so-called wave-induced transport phenomena,
the mass transport velocity may expectantly be formulated both in the Eulerian
and Lagrangian descriptions. As mentioned previously, the expression of mass
transport varies with the definition of wave celerity as shown in Table 1. This
problem has desired further investigation.

Generally, the third-order approximation to Stokes waves has demonstrated
its availability to most engineering applications. Though the solutions of Laitone!®
and of Skjelbreial?’ differ slightly from each other in form due to different treatment
of the Bernoulli constant, both have not elucidated the definition of wave celerity.
The discrepancy in these approximate solutions results in different expressions of
water particle velocity, thus rendering the application of Stokes wave theories ques-
tionable in wave-induced transport phenomena in shallow water. Therefore, it
is most certain that the required exactness in the Stokes wave theory, which has so
often been applied and mathematically examined by many researchers over one
century, has not yet been fully established.

In this paper, examinations on the usual Stokes wave theories are firstly made
on the basis of the definition of wave celerity and Bernoulli constant. Various dis-
cussions on the theoretical problems are envisaged. A new approach to Stokes
wave theory is then proposed without using the definitions of wave celerity. Com-
parison of this new theory with the usual approximations is illustrated, specifying
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also necessary conditions in deriving higher order solutions.

2. Governing Equations

In order to study the so-called “Stokes waves” rigorously, the variables of this
wave system contained in the governing equations and other essential conditions
should receive a fuller examination. This can equally be applied to all assumptions
used in deriving the wave theory. Stokes waves can be regarded as a kind of nonlinear
dispersive waves with weak nonlinearity having the full dispersion relation to the
lowest order given by

c= {(g/k) tanh kh} V2= +/gh {1 —(2zh/L)2]6
+(29/360) (2zh/L)4—(55/3024) (2zh{L)5 ... +} .iooiiiriiiiin, (3)
as well as being periodic progressive waves of permanent type over uniform depths
of water. Upon examining Eq.(3), it is found in the first order that a basic term
relating to v gk alone is introduced into the dispersion relationship, representing a
fundamental component of wave celerity of Stokes waves, besides the corrections
in terms of shallowness A4/L, available to high-order expansion. While nonlinear
corrections associated with wave steepness at each higher order approximation have
not yet been included. This is a remarkable feature of the Stokes waves.

[TETTTT I TTiTTrrr7ITiri7z7rr7r 777y
Fig. 2 Co-ordinate system used.

Considering the velocity potential ¢ for irrotational wave motion, and taking
the Cartesian co-ordinate system as shown in Fig.2, the governing equation given
by Laplace’s equation renders

e (4)
The dynamic and kinematic boundary conditions at the free water surface are given
respectively by

Bt (B2 8.2 /2482120 =0 et (5)

e 7P —Pale=n=0 i (6)

in which 7 is the water surface elevation, g the acceleration due to gravity, x and
z the Cartesian co-ordinates and ¢ the time. In Eq.(5) the Bernoulli constant Q
is included in the first term ¢,. The bottom boundary condition is given as
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¢z|,:._n:0 ........................................................................... (7)
Additional conditions for the periodic, progressive waves of permanent type
can be specified as follows,

D0, 1) =D(X—CL) e (8)
n(x, ) =n(x+2xlk, t)==n(x, 14 2x[0) .o (9)
po(x, 2, 1) =p¢(x-+2nfk, 2, t)=pd(x, 2, t-+2rfo) .ooooiiiiiii (10)

Eqs.(9) and (10) describe the periodicity in wave profile and water particle velocity.
In addition, the continuity equation of the profile is given as

s me= 0, =0 (11)

Jo

in which £ is the wave number and ¢ the wave frequency (i.e. 2z/7"). Part or all
of the conditions above have also been employed in deriving various progressive
waves of permanent type other than the Stokes waves, but are specified only as obvious
assumptions.

Since solutions of the linearized equations specifying the free water surface
boundary conditions also satisfy Eq.(4), the following perturbation series with respect
to a small parameter ¢ are assumed, giving

¢=§15»¢,, ........................................................................ (12)
7):7215"7],. ........................................................................ (13)

to the unknown functions ¢ and 7, in order to perturb the nonlinear terms contained
in Egs.(5) and (6).

3. Usual Stokes Wave Theories

Although numerous expressions have been developed for Stokes wave theories
since Stokes in 1847, including very high order solutions and computer applications,
the methods of derivation are not unified and some basic problems remain. To
explain this, besides the clearness of the Stokes definition of wave celerity, differences
exist in treating the time-dependent term associated with the Bernoulli constant
and in the perturbed solution of the velocity potential. Table 2 summarizes the
major difierences in various Stokes wave theories to third order approximation, in
which 2 is the small parameter #H/L and H the wave height,

It is beneficial to discuss in length the physical significance of the Bernoulli
constant, as also revealed in Table 2. From the theoretical ground of hydrodynamics,
the Bernoulli constant may well be included in the expression of the velocity potential,
as pointed out by Stoker'®; and other researchers. However, Skjelbreial®> has
treated the Bernoulli constant @ alone without relating it to the velocity potential,
hence resulting in an approximate solution to Q by perturbation. The reason why
the constant @ has been so perturbed then requires a justifiable explanation, as often
is the case in the field of applied mathematics. The unknown functions of ¢ and 7
may legitimately be perturbed, because the governing equations are nonlinear with
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respect to these two quantities, and more over, the perturbation is necessary to linearize
the equations and to evaluate successively the nonlinear effect at each order of ap-
proximation. On the other hand, the Bernoulli constant @ is contained within
the governing equation simply as a linear quantity, hence the constant () can be
determined without being perturbed. As a matter of fact, Stokes did not perturb
the Bernoulli constant. It appears therefore that the reason why the Bernoulli cons-
tant was perturbed by Skjelbreia'® can not clearly be understood. In order to try
explaining the reason, it is guessed that the additional constant is needed to eliminate
some existing constant terms resulting from solving the free water surface boundary
conditions. As the velocity potential is expressed in terms of the harmonic function
in sinusoidal terms and the coefficients are then decided by using Egs.(5) and (6),
a constant term arises from the squared terms contained in Eq.(5) at least at the
second order approximation and higher. And, consequently, a constant referred
to the Bernoulli constant is required to eliminate this term. Laitone® assumed
the relations n(x,t)=n(x—ct) and @(x,z2,t)=9¢(x—ct,z), but didn’t take the Bernoulli
constant and the time-dependent term associated with ¢ into consideration. So
the constant term resulting from solving Egs.(5) and (6) could not properly be managed
and was included in 5. As a result, the continuity equation of the wave profile
represented by Eq.(11) is not satisfied and the mean water level disagrees with the
still water level. Including the Bernoulli constant Q within the velocity potential
¢, Goda et al.’® assumed a zero value for ( so that the time-dependent term pertained
to ¢. The latter method has been judged as adequate, yielding the final expressions
of velocity potential at each order of approximation which are composed of the harmo-
nic functions in sinusoidal forms and a linear time-dependent function. It can be
inferred implicitly that the first definition of wave celerity was used in the derivations,
as no use had been made of the component of averaged horizontal water particle
velocity. Following Skjelbreia’s treatment of Bernoulli constant in the governing
equation, Tsuchiya & Yamaguchi'® have included a nonperiodic term into the
velocity potential and adopted a second definition of wave celerity. The averaged
water-particle velocity distribution through the depth for the horizontal component
was accordingly defined in the Eulerian description, rendering the Stokes drift in
the reverse direction of wave propagation. It is felt that the above treatment is
not complete, and a question remained on the point that the unknown Bernoulli
constant is left in the governing equation, while the time dependent term was delib-
erately absorbed in ¢.

Whitham!® assumed the Bernoulli constant a zero value and let 7(x,t) =7n(x—ct)
and ¢(x,z,t)=¢(x—ct,z}, although the solution was not given in Table 2. Whitham
has stated that the mean value ¢, should not become zero, while ¢ must at least have
a time-dependent term in its solution (i.e. terms proportional to ¢ or x are acceptable
in ¢). He has further proposed that a term proportional to x can be normalized
to zero, as it represents a nonzero mean in the horizontal velocity. However, the
resulting velocity potential has failed in satisfying the relation of ¢(x,2,t) =¢(x—ct,2)
and is inconsistent with the initial assumption with respect to ¢.
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Secondly, there are differences between the derived expressions of perturbation
solutions, as shown in Table 2. In the third order approximation calculated by
Skjelbreia!®, both ¢3 and #; include only the third harmonics, While, in a fifth
order solution of Skjelbreial® and fourth order by Tsuchiya & Yamaguchil®, ¢,
has a first order component as well as a third harmonic, and 73 contains only a third
harmonic. In the solution of Laitone® and Goda et al.!®, a third order harmonic
is observed in the expressions of ¢; and 73, an additional term in linear order is also
seen in 73. 'The differences briefly mentioned above might be resulted from different
approaches used in derivation. In all the examples above, the relations of ¢(x,z,t)
=¢(x—ct,z) and 7(x,t)=n(x—ct) have fundamentally been assumed. Hence, upon
the variable transformation x—ct=X and the elimination of 7 from Egs.(5) and (6),
it yields a combined free water surface boundary condition with respect to ¢,

uit ghim (B BE) F@0Balicr coorerrerveererics v (14)

Eq.(14) can successively be solved by a perturbation method and its basic solution,
which represents the small amplitude waves, can easily be obtained at the lowest
order. At the second order and higher, a particular solution which reflects the
correction term at each order of approximation to the basic solution should be derived
together with the complementary solution. As far as the progressive waves of perma-
nent type are concerned, it is reasonable that the desired solution be not a comple-
mentary solution, similar to the basic one, but a particular solution representing
nonlinear correction. Functions which satisfy the governing equations together
with the ¢ function so obtained may be used to determine the solution of 7. Thus,
as 7 is derived directly from ¢ at each order of approximation, the nature of a particular
solution has inherently included in the solution of 7. Accordingly, it might be said
that the approximate solutions of Laitone and Goda et al. are appropriate, but the
solutions of Skjelbreia!® and Tsuchiya & Yamaguchil® are inadequate, as the latter
cases contain a complementary solution of the first order component.

It may, therefore, be concluded that the lack of unity in various Stokes wave
theories examined previously has resulted from diverse opinions on what the wave
motion is and how the solution should be derived.

4. Perturbation Method

A third-order approximation to Stokes waves is derived herein by using the
conditions and assumptions presented already, referring also to the consideration
mentioned previously. First, in order to eliminate the secular term resulting from
deriving the approximate solution, as done by Stokes, a change of variable for the
time f is introduced as

in which ¢ is the angular frequency which is assumed to be expanded as a power
series with respect to the small parameter ¢ as

0':0'Q+€0'1—|-£20'2+ ............................................................... (16)
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In addition, the velocity potential ¢ at the free surface z=% may be expressed in
terms of the Taylor expansion at z=0 as

b(x, 7, 1) =S en 30 ”V’T(a""'b" )1 ............................................. (17)

n=1 m=1M: azm ‘2:0
Upon introducing Egs.(12), (13), (15), (16) and (17) into Egs.(4), {3), (6) and
{7) and collecting terms of each order in e yields the necessary equations to each
order of approximation for constant at z=0. The terms in O(¢) are given by

Pibi=0, gni+0opic|:m0=0 } (18)
F T B B
and those in O(s?) are
Pp=0
g +0obac = — 0191 — oo b1 — (1,24 1.2} /2|20 (19)
Boe— 002 =011 FN2Pro—NPrazleme | T
¢z|2:=—h=
The governing equations in O(e?) are as follows,
72$3=0
g3t 00P3= — 011912 —00N2P1::— 071 P2er— 007 21110/ 2 1
_7]l(¢11¢lrz+¢]z¢lzz)—¢lz¢21—¢lz¢22|z:0 ............... (20)

$3.— 0013 = 0172: + 0o 71— N1 P12s— 117P1222/2
= 1P2ee+1712P1 22 NPz +T22P12] 20
Pazle=—n=0
A general solution for ¢, which satisfies both the Laplace equation, Eq.(4) and
bottom boundary condition, Eq.(7), is assumed:

¢,=§ {427 (7) sin nkx+ B, () cos nkx} cosh nk(h+2) +Cx ......... (21)

n=0

in which the subscript r indicates the order of approximation, 4.(¢) is a periodic
function of time with the condition of Eq.(10}, B, (r) is composed of periodic and
non-periodic functions, and G’ represents the existence of a uniform fiow component

in the wave field.

(1) First order solution

From Eq.(18), the combined free water surface boundary condition of ¢, after
eliminating 7 is obtained as
0681 g120a=0=0 ooii (22}
Substituting Eq.(21) with r=1 into £q.(22) yields the following ordinary differential
equation with respect to 4.7 and B.'V,

S[ {ngk A< sinh nkh 4o Ape > cosh nkh} sin nkx

n=0
+ [ngkB.'V sinh nkh+6¢2By.. "’ cosh nkh} cosnkx] =0 ............... (23)
in which both 4, and B, with n==1 satisfy the condition of periodicity derived
from Eq.(10),
AV (r427) = AV (1)
Ba 9 (t4-21) =BV (1) }
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When 7 equals zero, B> =0, and
By =g B e e (25)
When 7 equals 1,

A B0
AD B

The next solutions can be derived as
A1©=P; cos 1t Q;8in 4T
B, =R, cos 117+ sin 41T }
in which Py, Q:, R, and S, are integral constants. Applying Eq.(24) into Eq.{26)
yields the dispersion relation,
=1, of=gktanhkh . ... (28)
For n=2, an equation identical to Eq.(26) is rendered,
Anee’?  Bpe 0 ntanh nkh

4, = B.O = tanhkk =—Aa?2=—1 e
No suitable solution to Eq.(29) can be found for satisfying Eq.{24), for 4, and
B:D when ,2¢1. However, 4, and B,V which satisfy Eq.(29) in the case of
n=2 are obtained as

AxP=0, BaD=0 (30)

To derive the expression of 7, corresponding to ¢; in this case, it may be assumed
that

_ —5,:; S N SRR (26)

M= CoS RAX—T) oottt (31)
Inserting Eq.(31) into the second equation of Eq.(18) and determining the unknown
constants yields

ay=0, Py=ga,'V/oqcoshkh

Q=R=0, a,=0 (n=2), =P }
Hence, the solutions of ¢, and 7 which satisfy the necessary boundary conditions can

be easily written as
pr= Gy 20D COSMEIEL) G ) (33)

M= cos (AX—T) i (34)

(2) Second order solution

In the same manner as for Eq.(22) the combined free surface boundary condition
for ¢, is given from Eq.(19) by
002¢2rr+g¢2;:g017)1r—0001¢rr—0027}1r¢1r;
*0027]1951?:2‘—00¢11¢12r—JO¢lz¢lzr*g771¢lzz+grhr¢lz ------------------ (35)
Applying ¢, from Eq.(21) at r=2 together with ¢, and 7 from Eqs.(33) and (34) into
Eq.(35), an ordinary differential equation in terms of 4,® and B,® is arrived at

iomgkAn<2> sinh nkh+ 02 An.. cosh nkh) sin nkx

+ {ngkB.® sinh nkh+0¢2Bn..® cosh nkh} cos nkx
=2ga,‘V(o1—ke) (sin kx cos r—cos kx sin )

+(3/2){@1?)20¢3(1 —coth? k) (sin 2kx cos 2r—cos 2kx sin 27) ...... (36)
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For n=0, the relations of B, =0 and

BQ(Z)=d1T+ﬁ1 ..................................................................... (37)
are produced similar to Eq.(25) previously. When n=1, the use of Eq.(28) results in
A rr(Z) A 2) a (8D cos
(fa)+ [ Bl =52~ (1—KCD) (Lsech ki) | 57} (38)

As explained earlier, ¢, should not contain a complementary solution, hence, the
secular terms included in the expressions of 42 and B,®,

[42) _goi>

B~ g2
must vanish in order to satisfy the condition of permanent waves. Upon employing
the following relationship,

COS T

(01—kC)(1+4sech kh)r[Sin T] ........................... (39)

FIm k) i (40)
it is found that
A1 = B =0 (41)

Thus, the secular terms r have successfully been eliminated. For n=2, the following
equation is found,

(A2 @) | ntanhnkh [A®) [ cost
IA?,"(Z)] +W [32‘2’] =72 —sin I'] ................................. (4‘2)
in which
72=(3/2)0o(a1P)2sech 2kA(1 —coth2 kk) ......cooiviiiiiiii (43)
Expressions of 4,2 and B,® which satisfy Eq.(10) are deduced from Eq.(42), rendering
A 3 1 cos 2r
[32(2’] = —gﬂ'o(al(m)zm [—-Sin 22_] ................................ (4‘4‘)
Another differential equation for =3 is given as,
Ane®) | ntanhnkh (4,2 (0
(o) + 2 2m [ =1 0] s (45)
The solutions of Eq.(45) which satisfy Eq.(10) are
AP =By =0 i, (46)
Taking 7, which corresponds to ¢; as
ngzia,ﬁz’ COST(AX—T) ottt s (47)
n=1

and substituting this into the second equation of Eq.(20) yields the following relation-
ships,
a=—(C1D)2[200—ao(@ V)24 sinh? kh, a,'P=0,
k(a;V)?  coth kA
4 sinh? kA
Therefore, the complete solutions for the second order approximation can now be

ap® =

(cosh 2kh+4-2), a,®=0 (n=3)

written as
. (0(1))2 ao(al(l))z
¢2__[ 99, T dsink? kh]“LCm"
3 h 2k(k )
+§ao(m<“)2—c°sﬁnhf ka)rsm QUEE—T) oo (49)
_ k{a1V)2 coth kh
="T"47 sinhikh

(cosh 2kA-+2) €08 2(k%—7) woveeereeeeeeeenn. (50)
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(3) Third order solution

Upon eliminating 7; from the second and the third equations in Eq.(20), the
combined free water surface boundary equation is obtained. Inserting Egs.(33),
(40), (34), (49) and (50) for @, 71, 01, $2 and 7 into its right hand side, a governing
equation is given as

08+ g = — koo ()3 SRER (8 coshe ki

8 cosh? kh+-9) —2ga1‘1’(ag~C‘2’k)] sin (kx—r)

— 2 ko (a0 SR i 9 ()
h .
+ o ko (@ D)? COULRR (4 cosh? kh—18) sin 3(kx—¢) ~oovooionns (51)

Inserting ¢, of Eq.(21) with r=3 into the left hand side of Eq.(51) and processing
it in the same way as for the second-order approximation, the results are B,..®=0 and
B T - B e e (52)
for n=0.
Now, for n=1, it is found that

ArPY (AP 1 coth kh
[B:,Jﬂ)} + [B:(m} =— [@kaoa(ax‘l’)a?l;m ih (8 cosh4 kh

—8 cosh? kh-+9) —2ga (e — C2k)} { %5 | (53)

—sint
Excluding the complementary solution to ¢; and the secular terms, the following
relations are detcrmined,

ay=CDk+ flczao( 1)z sinli" khf(8 cosh? khi—8 cosh? kh+9) ......... (54)
A1‘3)=B1‘3>=0 .................................................................. (55)
For n=>2, it is observed that
A 3 2 cosh? kh—1 [ cos2¢
[.Az(a)} —@kC(D (d1(1))2m [—sin 21_] ........................ (56)
A3 1 1 cos 3r
[B:(S)} — g hoola ) (13— 4 coshekh){ T} (57)
AP =B, D=0 (n224) ...ccoeiiiii (58)
Similarly, it is assumed that
7)3=§}an(3> COSM{EX—T) it (59)
n=1
To determine all unknown constants, the substitution of Eq.(59) into Eq.(21) yields
= CDOCM GG et e (60)
a1(3>=1—16k2(a1‘ sin h4 77 (2 cosh? kh+-10 cosh? kh— 9), e (61)
5 :%%C‘Dkz(al“))z%(?} cosh? kh—1) tanh kA, .ovovvvoeon (62)

and

(3)_ik2(a1 1))

hﬁ (8 coshs kht-1), 4. ®=0 (n=4) ........... (63)
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Finally, ¢3 and »; can be expressed as

2 _ 2
By —-%zdr Pt T (g 0)p 134 COMERR (o 444 2) sin 3(ks—)
.............................. (64)
=¥ cos (kx—7) +ax™® cos 2(kx—7) +-as® cos 3(kx—1) ............ (65)

(4) Determining the unknown constants

As mentioned above, the third order approximation to Stokes waves was derived
on the basis of some clear assumptions. So far, however, the unknown constants of
CO @ C® and 4,V await to be determined. First of all, ¢,‘"> can be found directly
from the equation describing the maximum wave height H of the Stokes waves to
the third order,

H="7nex—7m1n

=25a1‘1)+%2k253(a1(1))3m(32 coshS kh+32 cosh# kh— 76 cosh? kh-39)
.............................. (66)
Only the unique real solution of Eq.(63) will be used for 4;>. Upon applying the
first definition of wave celerity (see Skjelbreia and Goda et al.), C can be calculated,
having
CP=0 (r=1,2,3) it (67)
If the second definition of wave celerity is used (see Tsuchiya & Yamaguchi'®),

values of C?, showing different forms when compared with Eq.(64), are given as
CO=C®=(, }

O — _%aoez(alm)z coth kh<0

However, there is no reason why C> must be zero. And, it is not clear how the
uniform current is opposite the direction of wave propagation in the wave field where
geometrical restriction is imposed at both ends of a wave flume. An explanation
is herein presented. The governing equations consisting of ¢ and 7 both closely
related to each other would propose a complete agreement in phase relationship
between that of ¢ and » through the following assumption,

(%, £) =7n(x—ct),

d(x, 2, 1) =0 (x—ct, 2) }
The above assumption is inevitable, for determining the unknown constant G
while employing no additional condition physically. Laitone and Whitham have
deduced an approximation by using Eq.(69). And two theories!®1? of finite amp-
litude waves in shallow water, cnoidal wave theory and Quasi-Stokes wave theory,
have already been developed by the authors based on this assumption. Deciding
C™ through Eq.(69) yields

CHO=CD =0,

C(z):_}l__kaosz(alm)zm }
This suggests that a time-averaged horizontal water particle velocity accompanying
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the wave motion exists in the direction of wave propagation, thus, a mass transport
velocity can be defined also in the Eulerian description. As a result, it is evident
that mass transport phenomena depend upon the nonlinearity of velocity field within
the waves itself, in addition to the so-called Stokes drift, usually a Lagrangian formula-
tion.

Since all the unknown constants have been decided, expressions for both ¢ and
7 to third order approximation can finally be written respectively as

¢  coshk(ht2z) 3ka {cosh 2k{h-t z) sin 2(kx—z)

at = sinhkh P BT T Gk
2 ka)2(13—4 cosh®kh .
—I—m(kx—r)}—l- (ka)? (64 sinh? kh ) cosh 3k(h+x) sin 3(kx—r)
.............................. (71)
2= (14 15 Ea (2 cosh kh-+10 cosh? kh—9) cos (kx—7)
ka coth kh
+ oot 77 (cosh 2kh+2) cos 2(kx—r)
(k
+57 smi)ﬁ T (Bcoshf kh+1) cos 3(kx—17) ..ovvevvnvernirneninninnns (72)
in which « is the wave amplitude to first order being related to ;' by
B=6@1D e (73)
The wave celerity to first order, ¢, is expressed as
co?={glk)tanh kh ... ... (74)

5. Mathematical Expressions of Stokes Waves

Having derived the solutions for Stokes waves to each order of approximation,
mathematical formulations for some pertinent wave variables can now be written
to a third-order. These include the wave profile, wave celerity, water particle velo-
cities, wave pressure, mass transport velocities in the Eulerian and Lagrangian
descriptions respectively, and momentum flux. Appropriate expressions of some
of these wave variables are also derived on the basis of the first and second definition
of wave celerity, and compared with the mathematical formulations.

The wave profile 7 to third-ordcr is expressed as

2 {14 (k)L (2 coshd kh+ 10 cosh? kh— 9)} cos k(x—a)

1, coth
ke SO0 KR cosh 2kh+9) cos 2k(x—et)
3 1

+51 (ka)zm(B cosh*kh+1) cos Bk(x—ct) ..coocoinieniinil, (75)

in which the wave celerity is given as

4 e 1 2 1 4 2
o=(8 tanh kh) {14 s (ka)? ;Lo (8 cosht kh—4 cosh? kh+5) ...(76)
Eq.(75) is seen to be different from the solution of the usual Stokes wave theories.

Moreover, the relationships between the wave celerity from Eq.(753) and that by
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the first and second definition are presented respectively as

_ . Colka)?

c1=¢ IR fy  CtTtTTIeTererItresresiasesiessiiiiiii (77)
. co(ka)? sinh 2kh

ero— g (TSRS (78)

in which the subscripts I and II stand for the first and the second definition respectively.
The water particle velocities in the horizontal and vertical directions can be
derived respectively as

&, cosh k(h+2)

¢ sinhkr % (ke —et)

3 cosh 2k(h4x) i
g (ko[ SRR cos 2(kx —t) + g g |

3 13—4 cosh? kh
+51 (ka)? sinﬁ?;ch ' cosh 3k(h+2) cos 3(kx—ct) ............ (79)

w _, sinhk(h+2)
¢o =ka sinh kA
3 inh 2k(k .
—{—?(ka)zw sin 2(kx—ct)

3 13—4 cosh2kh .
—Q—ﬁ(kaﬁﬁ sin S(kx—ct) .............................. (80)

With regard to the horizontal water particle velocity #, a difference exists between
the above expression and the one by the Stokes definitions of wave celerity. The
expressions of the horizontal water particle velocities derived from the first and second
definition of wave celerity can also be related to u/cy from Eq.(79) as

uy _u (ka)?

sin (kx—ct)

e T RO @1)
AL 4s§fff1):kh (1+ Si“}:f’“"‘) ....................................... (82)
The pressure in the wave motion is obtained as
= i T Lt oy —cosh 24(h-2)
+ {aiokaﬂsﬁ Klhbe) L (ke L (2 sinhe kh cosh k(h-+-2)
-+3 cosh k(h+ z))] cos (kx—ai) —% [sinh2 kh
;3(»50 ) sinb kb cosh 2k(h+2)} cos 2(kx—ot)
— ke [ sinh2 h cosh K(-+2)
—-7_(13—4 cosh k) cosh 3k(h--2)  cos Bks—0t) | worrrrienn (83)

‘The mass transport velocity @ in the Eulerian description, U in the Lagrangian
description, and momentum flux M have taken the following forms respectively as
a_ 1 1

‘o = ?(ka) zm ............................................................ (84‘)
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U 1 1

1 , oo [2cosh 2k(h+2) 1

P U Ny 77 g (ka2 [ 2O sinh? kh] """ (85)
M, /tanhkR\"2 1 2 .

g = (07 aainmein gy STORAAHD) oo (86)

The above formulations are not identical to that by the Stokes definitions of wave
celerity. The mass transport velocities and the momentum flux derived from the
first definition of wave celerity are expressed respectively as

BLC00 oo 87)

U (ka)? co(ka)? . .

oo = Zsinh?ER + 42y sinhd kh {2sinh khcosh 2k(h+2)—1} ......... (88)
M; _ (ka)® /tanhkh\V2/2sinhkh

ph«/ﬁ*z}sinh%h( o ) ( o +1) ........................ (89)

And, those deduced from the second definition of wave celerity are given respectively
as
i (ka)?

6‘0:_2]5}! coth kh ......................................................... (90)
‘[Z; R ey - ﬁ% (2 sinh kk cosh 2k(h--2)—1] ...(91)

Finally the Kinethe s B epition
of wave celerity, are expressed respectively by O(ka)* as
TN

+ 4 c:s}ClC;:}:l s?rllcﬁ“ kh + 2 Sér;}llrzﬁllcf lj;tkk )}
L

+5 sinbe ki G2t 2 Eh)  3(cosh kit cosh 34

2
Ek: p‘ia

khtanh kk--sinh? kh
—+ - m ]} ................................................

On the other hand, the formulations for E; and W are derived from the first (I) and
second (II) definitions of wave celerity respectively as

(B 1= Ea— 8% (haye[ SRR RRLRR] (95)
(Ex) 1= Ba— O (kaye{ 2SN Wb R | (kacoth Ry ... (96)
(W) =W P (o RhtaRD KR SIORE kR (97)
(W) =W— ,ogQa'L’c (ka)z[ 2kh ta:?i:}/;{;;inhz kh COQt;Clhkh] ............ (98)

It is also observable that different expressions can be seen upon comparing Egs.

(95), (96), (97) and (98) with Eqs.(93) and (94) for E; and W.
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6. Conclusions

As explained already, numerous wave theories have ingeniously been developed
for the so-called “Stokes Waves” to a third-order approximation or higher, by a
perturbation method and even more systematically with a computer. However,
the theories available have revealed a variety of final expressions to all pertinent
wave variables.

To render a unified solution, it is necessary to examine rigorously all conditions
(and or assumptions) from which the usual Stokes wave theories are based. 'These
include the Stokes definitions of wave celerity and the Bernoulli constant in an equation
for free water surface boundary conditions. Some questionable aspects in the current
theories are discussed. Diverse formulations would have resulted from using the
first and the second definition of wave celerity respectively.

A new approach is herein developed to re-derive a third-order approximation
to Stokes waves, using no relationship from the Stokes definitions of wave celerity.
A complete agreement in phase is found for between the velocity potential and water
surface displacement. Mathematical formulations for some pertinent wave variables
are derived to the third-order. Differences in these expressions can be observed
when compared with the usual Stokes wave theories. A list of expressions in detail
and brief discussion are included. It is of particular interest that mass transport
velocity exists in the Eulerian description, in addition to the usual Stokes drift in
the Lagrangian description. The magnitude of the former (the mass transport
in the Eulerian description) is comparable with that of the latter. Of all the final
formulations presented for wave variables, the wave celerity in the new wave theory
can also be related to that under the first and the second definition respectively.
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