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        On the Flood Waves in a Prismatic 

                Open Channel 

                       By Tamotsu TAKAHASHI 

                       (Manuscript received January 19, 1970) 

                                Abstract 

     The unsteady flows in a prismatic open channel are treated by the theoretical 
    analysis of one-dimensional equations of motion and continuity. The author has shown 

    that unsteady flows in a prismatic channel can be classified by an index  2, where  2 
    has the value of the order of the ratio of water stage variation velocity to the vertical 

    component of long wave celerity. The critical value of  2, above which the wave breaks 
    into a bore at the wave front has obtained. Below the critical value, the bore foma-
    tion is prevented, and in the case where the value of Ai is of the order of unity or 

    larger the wave is propagated as  "  dynamic  " and Saint-Venant's equation must be 
    modified for the effects of vertical acceleration, and if  Ai  <<1 the wave  is  "  kinematic." 

      The author has obtained the second approximation of the kinematic wave in cases 
    where  A<<1 and  Ai  K1 and has compared the results with those obtained directly by 

    the computer. 
      Then the flood characteristics, such as the variation of wave profile, propagation 

    speed and stage-discharge relationship, are discussed in connection with the appropriate 
    theoretical considerations and experiments. 

 1. Introduction 

    A hydraulic analysis of flood waves must find the simultaneous solution of the 

   one-dimensional system of equations of continuity and energy, but these equa-
   tions are non-linear and it is difficult to solve them analytically without any ab-

   breviations. So the theoretical analyses which have been conducted since the 
   last century have omitted the secondary important terms in the equations and 

   linearized them so as to solve the equations with some assumptions. For example, 
 Seddon" adapted the equation of uniform flow to the dynamical equation and 

   derived the so-called Kleitz-Seddon's law. This daring abbreviation is most  sug-

   gestive for predicting the behavior of flood flow that propagates itself through 
   a prismatic channel. Lighthill and  Whitham2' have pointed out that the wave 

   phenomena characterized by the characteristic theory of the first order partial 
   differential equation as it is derived by Seddon explains flood flows well and 

   have named this type of  wave  "  kinematic  ", distinguishing it from the "dynamic 

 wave" which is characterized by the second order wave equation. The equation 

   for uniform flow omits the terms of local derivative, convective and water 
   surface slope, but the surface slope varies considerably during the period of 

   inundation compared to the bed slope. 

     To take these surface slope effects into consideration,  Forchheimer, Hayami,  4) 
 Yanos) and etc. have adopted the equation of motion abbreviating the terms of
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acceleration. The fundamental equation of flood which was derived using these 
equations of motion and continuity is a  diffusion equation with convection, which 

can explain the attenuation of the peak depth with propagation. Among these 
theories, Hayami considered that flows in a river channel are transported at the 
same time by the average  flow and the large scale turbulence produced by the 

irregularity of the channel. This theory considers the original character of flood 

flow to be diffusional, and it is different in this respect from others. The 
effects of the large scale turbulence can be included in the fundamental equation 

by an additional term to the diffusion coefficient, but now the relationship be-
tween the value of the additional  diffusion  coefficient and the channel character-

istics is not clear, and it is presumed that the additional coefficient will be small 
in a prismatic channel. 

 The diffusion analogy of a flood wave is a prominent procedure for predicting 

the whole wave profile and it may be the only single method which enables a 
theoretical analysis of a flood wave in an irregular channel to be made.  ,) But 
when we discuss a flood only in a uniform channel other analytical methods will 

be possible.  Hayashi') has discussed the peak propagation considering that the 
curvature of the wave is important for propagation character, and has clarified 

the attenuation characteristics of the peak by a succesive approximation without 
neglecting the acceleration terms.  Tanaka') has also proposed a new procedure 

which calculates the acceleration terms from the steady flow equation. By this 
method the whole wave profile can be routed and the peak attenuation is the 

same as  Hayashi's. 

  In addition to the above mentioned theories, there is a method which solves 
the linearized equation by the small amplitude theory. These theories can also 

explain the qualitative characteristics of flood waves, but in discussing the quanti-

tative characteristics the assumptions on which the theories are based includes a 

physical inconsistency. 
 Considering the above mentioned state of knowledge, few problems are left in 

analysing the so-called Saint-Venant's equation. But Saint-Venant's equation is 

derived from Navier-Stokes' equation by omitting the vertical and horizontal ac-
celeration and assuming the flow to be unidirectional, so this equation can not 

stand  for all flow phenomena even in a prismatic channel. 
 Therefore the author will first discuss the validity of Saint-Venant's equation 

for the unsteady open channel flow and try to classify the flow characteristics 

represented by this equation. Then he will try to obtain the solution for flood 
flow by succesive approximation and clarify the characteristcis of the flood wave 
that are still not yet clear using the appropriate theoretical considerations and 
experimental verifications. 

2. Fundamental Equation of One-Dimensional Unsteady Prismatic Open Chan-
   nel Flow and Introduction of a Parameter 2 

 Strictly speaking, unsteady open channel flows which are a kind of fluid 
motion have to be analyzed by using the system of three-dimensional equation 

of energy and continuity. But in the fields of hydraulics or river engineering 

it is preferable to  clarify the macro behavior of flows in the average cross-
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section, and usually the flow is treated by the one-dimensional method of analysis. 
 Recently Iwasa and the  author') have derived a special system of equations 

for open channel flow in a rectangular channel through theoretical considerations 
upon the exact formulation of a one-dimensional system of equations of continuity, 
energy and linear momentum in the curvilinear orthogonal coordinate. According 
to this investigation, the newly derived systems of continuity and energy are as 
follows :— 

   DAaQi   =o   ( 1) 
   atax 

 Dv  us2  aA  ay.  av  D—  a  V  DA 1 c230:2\  ax  
    g  at 2gAV  atg ax2g A at + gAV slol 2atdzs 

        ra Jib   
    +  cos°  sini9— ( 2  )  ax

pgR V 
     1C(u2) 

 15Q'J\V2dA  
(  3  ) 

 a/U 
 (( u2c/A 

 A  J\  V  I 

where, A is the area of cross-section, Q' is the discharge, V is the cross-section-
al mean velocity, u is the velocity and suffix  s means surface and suffix b 
means bottom, B is the channel width, II is the depth, 0 is the bed slope,  zb is 
the shear on the bed, R is the hydraulic radius, g is the acceleration of gravity, 

p is the density of fluid, t is the time, x is the distance along the channel axis 
and z is the distance perpendicular to the x axis. 

 On the left hand side of Eq. (2), the second term comes from the local  deriva-
tive term, and the fifth term comes from the convective term, and these are 
supplemental terms to the classical equation. If the surface velocity is the 
same as the average velocity and the lateral water stage variation is horizontal, 
the two terms are cancelled out by one other. But in the actual channel the 
surface velocity has a lateral distribution, and it is not the same as the average 
velocity  ; and also the water stage variation in the lateral direction is not 
horizontal but has the upward convex curve at the rising stage and the concave 
one at the falling stage,  so the supplemental terms have finite values. 

 Careful experiments made in a laboratory flume reveal that the order effects of 
additional terms are ordinarily smaller than those of the local derivative  term, 

 (1/g)(av  /at), but when the channel width is very small, or the side walls have 
a rough surface, the additional terms have the value of the order comparable to 
the local derivative term. 

 This fact suggests that attention must be paid to the fulfillment of the classical 
equation. The classical equation represents the flow in the prismatic channel 
well only when the flow is unidirectional and the acceleration to the vertical and 
lateral direction can be neglected and the channel width is wide enough to neglect 
the three-dimensional distribution of velocity. 

 When the last assumption is satisfied, the coefficients a and  IS will be unity 
and the  classical  system  of  equations  will  be  as  follows  :- 

1  av  v  av  pH  7221/2                                             (4) 
 g at +-g axax=EH5a
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 aAaQ' 0   
at ax( 5 ) 

where  i is the channel slope and n is Manning's roughness. 
 Eq. (4) is sometimes called Saint-Venant's equation and we will discuss the 

physical behavior of this system of equations in the following, considering the 
above mentioned restrictions. 

 On analyzing the flood wave in a prismatic channel,  Hayashi?' has introduced 

a non-dimensional parameter  of=d—'E  (o)/  gi, where  F(o) is the curvature of the 
peak of the H—t curve), which characterizes the flow, and he obtained the suc-
cessive solution of the peak attenuation with propagation in the case where  a<1. 
This procedure explains the characteristics of flood peak attenuation well, but we 
can not calculate the value of a at each point except at the gaging station be-
cause this procedure does not predict the whole wave profile, so we can not 
actually know the peak attenuation by this method. 

 On the other hand, the author considers that the speed of the water stage 
variation is most important for the mechanism of wave propagation and deforma-
tion because the curvature of the hydrographs is similar when the average speed 
of the water stage variation is about the same. 

 Now, we will rewrite Eqs. (4) and (5), taking the unit width discharge to be 
 Q, as follows 

         622  a  H 1  acd±2Q aci n2Q2 
 ax  gH atgH2  ax111% ( 6 ) 

   aH aQ 
    at   (7)           ax 

We will take the linear transformation as shown below  :  — 

  H 

 Q  =  &EP.  q 

   t=( (  ) 
        H. — Ho 

   x—gH.3(H.1so)TD e 
 Hm 

where, h,  q,  r,  e are the non-dimension-
al quantities of H, Q, t, x respectively 

and  Tn is the duration time of  inunda-
tion at the upstream end. These  nota-

tions are shown schematically in Fig. 1. 

 The results of transformations are :— Fig.  1 Schematic diagram of H—a curve 
                                                       at  x-0. 

  (iq2(1 _gih                         +1aq2qOff        Fr2h'%)t,haaeh arh2at;(  9  ) 
and 

   an    =0  (10)    a
z-aae 

where, 

 F  r2  =  Hrniffilln2g  (11)
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is the square of the Froude number corresponding to the maximum depth and 

 H,..-Ho                                                (12) 
      kgH. TD 

is the newly introduced non-dimensional parameter. 
 As is evident from Fig. 1,  (H„,-110)/TD has the value of the order of the speed 

of the water stage variation and i  VgH,,, is the vertical component of long wave 
celerity corresponding to the maximum depth. Therefore the ratio of the two 
values  d will control the physical characteristics of the unsteady flow, while for 
a quasi-steady flow  d will  be much smaller than unity and for a  bored will be 
much larger than unity. In view of this point, we will try to investigate the 
behavior of Saint-Venant's equation with respect to the value of  A. 

 If the value  ofd is great enough, a shock will be made at the wave front. 
We will find this critical condition for bore formation according to the method of 
Lighthill and Whitham. 

 Taking the transformations corresponding to the downstream propagating wave 
front as 

 X=r  (13) 
 Y=  (vo  +co)r  -  e 

to Eqs. (9) and(10),we obtain 

  \ 
    (i_ Fr°1 2/221_1_v2 + vvo+hvco\ an_Eyahav                           )  aYh ax  ax 

 +  (vo  +  co  -  2v)  adyv  (14) 

and 
  an ananav    +(v

,a+v,,)—v h =0  (15)  axaY8YaY 

where, 
       Ho36  v

o  (16) 
        nsIgH,„ 

 co  1110-  (17) 
 H. 

Here the expansions are 
 v=vo+  vi  (X)  Y+v2(X)Y2+•••  (18) 

        h=ho+h,(X)Y+h2(X) Y2 j 
and considering that the equations are satisfied individually to the zero and first 
order, we obtain from the zero order 

 h,  v,co   (19) 
and from the first order 

   an,13h
i,_ 1(i2Ah  (20)     dryh o'`' 1 2AF,231°) 

where Jo means the Froude number for the base flow. The positive value of 
 dh,/dr means bore formation and this condition will be satisfied when 

  hi (7),,2 fo1_2co)                                                (21)       " 32F
r2hol‘  k3
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Now, considering the monoclinal wave and defining the angle between the wave 
front surface and the base flow surface to be 0, 

  0 _H.—Ho  (  dh—=Ailz, (7)   (22)  \ dx/
frontVgH. Tn \  aE )r.o 

then inequality (21) will be 

   1.,  2i foil 2  (23)            huh\3 J° 
On the other hand 

        al-/) 
 \  atif Font  (24) 

 V0+,IgH, 

then inequality (23) can be rewritten as 

    a 
   (aH)

front          ,> 3n2g%Ho1/23(1+ F0)(1— 2 Foy,  (25)  t,  

If we write 

 H.=  aHo  (26) 

inequality (25) can be approximately transformed as 

  A>()14    3\a F0 + F0)(1 —2F,)  (27) 
                   3 This indicates the condition for bore formation at the wave front, where  Fo is 

the Froude number of the base flow and is written as

gib110%  F
o— (28)  g11  n 

Using the relation 

  2= tzs7'gDalei(1a)F03  (29)       TD 

 

3   3  • ^ 
                fln1.3/ 

 M 

     •/  
2010002 b—n                                                                                                       l000 

 3.3// 

 

n  0  02 

        CY'V 
1 ACt 1/ . 80033 

 0  0 

0 1.005 1.0 I5 20 
 F. 

   Fig. 2 (1) Critical value of 2 and Fig. 2 (2) Critical value of 2 and 
           F5 for bore formation  Fo for bore formation. 

we can obtain the critical values of  F0 and  2 above which the bore will be formed 
with propagation on a graph like Fig. 2. In the figure the full line shows the 
border line of inequality (27) and the broken line shows Eq. (29), so the cross 

point of each pair of curves indicates the critical value of  2 and  F,, and if  A is 
greater than this value at the time when this critical base flow Froude number
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is maintained the bore will be formed, and if F0 is greater than this value at the 
time when this critical value of  A is maintained the bore will again be formed. 
The full line corresponding to  a  =1 coincides with the F0 axis. This case cor-
responds to steady uniform flow and if  Fo>  3/2 and some small perturbation have 
added to the flow, the flow will be unstable. The critical value of  Fo for re-
sistance laws of the  Chezy type is 2. These are the most simple conditions for 
instability of steady uniform flow, which Keulegan and  Patterson"' have intro-
duced. 

 On the other hand, when inequality (27) is not satisfied,  dhildr is smaller 
than zero and bore formation is prevented. Then Eq. (20) will be solved as 

           2  
            3AF,2110;ih,(0)e-B* fo (I —if°)                          3 h, (r= (30)            2f

o   
 3/1P2ho1/4\3)(i_2fo\_ hi (0) (1_e_a.) 

where 
 2     B = 2

,2F,12ho%fo (1 —3./o) (31) 

From this solution we can find that the decay of the wave front, which propa-
gates itself with the characteristic velocity, is exponential and considering that 
we are discussing the case where 

     2   fo (1 _2 fo\    h'Er)< 
3Aho43)(32) 

the decay of the wave front will be approximately 

 h,(r)th,  (0)  e-B' (33) 

 If we think about the wave tip of mono-declining type which propagates up-
stream with upward characteristic velocity, it will be clarified by a similar proce-
dure that the wave tip always decays exponentially as 

 131(r):::  hi  (0)e-8"  (34) 
where 

  B'  1+2    22F,, hosi3') (35) 
From the above mentioned discussion, it is clear that the parameter  A classifies 
the physical behavior of Saint-Venant's equation, so we will proceed to analyze 
the equations in each region  ofd values in the next chapter. 

3. Analysis of One-Dimensional Unsteady Flow in a Prismatic Open Channel 
   by Use of the Parameter  A. 

1) When  d is much greater than 1 and the wave is dynamic. 
  When the value of  A is greater than  I, we are no longer generally justified in 

neglecting the vertical acceleration, but in the case of the bore, where there is a 
transition from one base flow depth to another, it may be discussed by Saint-
Venant's equation. This corresponds to the case of a comparatively large base 
flow Froude number which is derived from the critical condition in Fig. 2. 

  The friction term, which is on the left hand side of Eq. (9) has the value of 
 1, so that when  A is much greater than 1, the whole of the left hand side of
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Eq. (9) can be safely neglected. 
 Hence, Eq. (9) will be 

  (i_    +0 1  au 2q  6q   ^ 
deh drh, DE (36) 

  If we consider the case where the wave is of infinite amplitude , Eq. (36) will 
be linearized as 

 (1_  902  \  82h1 d'h  2q2  32n0— \ /
43 352  h2  dr'hp,agar (37) 

The solution of this equation under the boundary conditions 

 h  (0,  r)  =  1  for  r>0 
 =0 for  rfC0 

 (38)  h(e ,  0)=0 
 hp  (5,  0)  =0 

is obtained on the characteristic velocity 
 cd=u0-Filh0  (39) 

as 
 h(E,r)=  1 for r>0   (40) 

          =0 for  rs-0 

This result shows an ideal bore of unit step which propagates itself with the 
velocity of 

 12=170+  gH0  (41) 

 For the finite amplitude bore,  Saint-Venantm has treated under the assumption 
that the velocity is a single valued function of depth and the result is 

 S2=  II0+3  gH-2  d  gH0  (42) 

2) When  d is much smaller than I and the  wave is kinematic. 

 If we consider a wave whose height is much greater than the depth of the base 
flow and where the value  ofd is much smaller than 1, it is clear from the dis-
cussion in 2. that shock does not occur at the wave front, and the wave front 
which propagates itself with the velocity of a long wave decays exponentially 
with distance and the main part of the wave propagates as kinematic. This is 
the case generally called flood wave or flood flow. 

 We can obtain the solution of the fundamental Eqs. (9) and (10) by the ex-

pansion of h and q as 
 h=h0(E,r)+hi(e,  r)2+  h2(E,  7)22+  •••    (43) 

 q  =  40(e,  r)  +  qi(e,  r)2+  q2  (F,  r)22  +  ••• 
The initial and boundary conditions are 

    r=0 ,  h=h0(e)  =  const 

 e  =  0 ,  h=ho(r)=f(r)  (44) 
 E=0  ,  hi=  h2=---  =0 

We substitute the expansions (43) in Eq. (9) and obtain an equation from the 
zero order term of  A as 

 1—   I  q°'  —0  (45)  F
,'  ho'9i
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Hence, 

 40=  Frho%  (46) 

Substitution of Eq. (46) into Eq. (10) will be 

  (a                    or3a+5Frito% as )h0=0  (47) 
and the general solution of (47) which satisfies the conditions (44) will be 

   ho=f1
3 

    — 
5e    —F,h03iI (48) 

This solution shows that on the characteristics 

  de F rh033  (49)       ar35 

 h0 will be held constant. This means a kinematic wave of velocity  w which pro-

pagates without attenuation. 
 Next, from the first order term of  2 we obtain 

    

1   q02  /10  h, 2 q (.  )  an+15q0+2q0 5q0   
     /z01%q°—hp' ae no acno2 ae (50) 

considering Eq. (47), it is derived from Eq. (50) that 

  51     4
1=—3Frho%h,—2Fazpae                i d° (1— 4Fr2h045) (51) 

                    d and substituting this into the equation of  continuity 

 an, 
ar±ae0                                                (52) 

we obtain the equation 

   are +5FT/0an'P;"i(ah°)2(4-F,2130“)    dr3aeno;ide69 

       (.7/20)h2,,,92 Frqz0,4)190h,dahe0} (53) 
 The solution of Eq. (53) will be obtained on the characteristics 

 de 5  ==-
3-  F,h036  (54) 

considering Eq. (48) as 

    ni=10       9  f°12,13 _194F,Ty± spv%(92±94Fry 1/4) j,         h2e_5Frf,„ 
     — Ft!'%(3 2— FrY“  )71  la  —  exp(  .  2e  )1  (55) 

 ze  f-5F,1% 

And the second approximation of depth will be 

 h  =  hod  -n1,7  (56) 

Hence the second approximation of q will be 

 q=q°±1/Fr f"12f"3ff CI49Fr2f"))2  (57)                             2ef — SF,1-96 
The third approximation will be obtained in the same manner considering the
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second order of in the expansions (43) by neglecting small terms, but for the 
ordinary flood in a river channel, the second approximation will be a pretty good 
approximation. 
 At the peak of the flood wave f equals zero and the discussion above can not 
be adopted for the peak. 
At the peak 

   f = 1 
   j-= o 
 d'ho 9 (58) 

 ae2 25F,2(peak 
and on the characteristics 

de5 F                                                (59) 
    dr 

   h1—Sr91        3o  50(.4F,2)  f„airDr  =const (60) 
The solution of Eq. (60) which satisfies the conditions (58) is 

                          c 

   250 Fr2 9 )nesk e  (61)1 
Then the second approximation of the peak is 

 h_ 1 ±25027A(\ F
r4idipeaxe                                                (62)                 29 

Putting back to the original dimensions, 

  H—H.11+ 27['Peak(  14x  (63) 
        250 igH.9 

is derived. This result is the same as those of Hayashi and Tanaka. The dis-

charge at this timewill be 

  q =Fr9+( F12924)e (64)    50 

This will be written by the original dimensions 

 Q 1Thn1/4 11/4ri+/14,Ppem,  

 n 

         50Fr29)eta (65) 
Putting  Q. corresponding to the uniform flow discharge of which the depth is  H. 

 _Qm—Q/H 5    (66) 
    Q„,/  H. 3 

will be derived from the Eqs. (63) and (65). 
This relation shows that Kleitz-Seddon's law can be adopted for the second ap-
proximation. 
 To show the applicability of this approximation to the actual flood, we will 
calculate the case where the boundary condition at the upstream end is 

 F(0=  (H.—  Ho)  sin  —77  t  Ho,  0  �t�TD  (67) 
 =H, ,  t>Tn 

and  H„, equals  10m,  HD equals 2m, n equals  0.  03m-1/4sec, i equals  0.001 and 
 TD equals 4 hours.  In-  this case  2 equals  0.056 and is much smaller than unity.
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The non-dimensional expression of (67) is 

      452r1    f(r) =sin r+ ,0<r<-4      545——5 
 (68)      -5- , r>5 

and calculation can be carried out on the  (s—e)-plane along the characteristics 

 s  r—   (69)  5 
 —
3  Fr{f(s)}4, 

 Fig.  3 shows the results of calculation  io 
on a one kilometer pitch and compares 
these with the results obtained by use 

 (m) of Stoker's121 method with  KDC-II e- \ 
lectronic computer. The errors around  5 

the wave front and tip are comparative-                                                                  —Equation(56) 

 Troalcukted 
ly large because the wave has the Ikmfm equa- 

property of a dynamic wave there, buttions(6)(7)  by  MDC11  
except for the wave front and tip the  oo 

5000  10000 15000 
errors are not so large and it proves  t(sec) 
that the procedure shown above is a Fig. 3  Comparison of results between 

good approximation of flood  flow. theoretical and direct computa-
                                            tions by KDC II. 

3) When  2 is of the order of  1 or larger. 

 When the value of  1 is large, the effect of the vertical acceleration must be 
considered. The equation of motion in which the vertical acceleration is taken 
into account is derived by  Iwasa.  13) This equation can be written in the non-
dimensional form  neglecting the small terms as 

        142  
 (1Fri h'92)h2I42.) an  +h asq1aqaq             deh2  ae 

           42aan2q32 hdah            +(202 —+(202+(202 (70) 
             3hde,3ae2ar3aear21 

In this equation it is known that when  Ai is much smaller than 1, the 4th, 5th 
and 6th terms are negligible in comparison to the other terms and the effect of 
the vertical acceleration is small. 

 In this case, in place of expansions (43) the following expansions will be 
adopted to obtain the approximate solution with the similar method. Here the 

expansions are 

 h=  120(e  ,  s)  +ni(e,  r)Al  +  h2(e,  r)22i2  +  •  1    (71) 
     = o(e r)  +41(E,  r)2i  +  42(e, r)22i2 +• 

and the second approximation except for the peak is 
 dho  

  h=h0+10 Oho9j(--11—exp ( 2 d3 hoe\elAi  (72) 
 ae 

where
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   Kal7°I^6V15°9h—4F,4/43")+(aae211°)(142 F,210) (73) 
  ae22 

and  ho is shown in Eq. (63). 
 When the value in the parentheses of the exponential term in Eq. (72) is much 

smaller than 1, Eq. (72) is approximately the same as Eq. (55). For the peak 
Eq. (62) is established. 

 In a case where the value of  Ai is larger and the terms of the third order 
derivatives in Eq. (70) can not be neglected, Keulegan and  Patterson's") method 
is applicable, and the case where the left hand side is neglected in Eq. (70) has 
been discussed by Iwasa.  '3> 

4. Characteristics of Flood Waves in a Prismatic Open Channel 

1) Experiments  for floods in a prismatic channel 

(1) Test flume 
 As shown in Fig. 4, the experimental equipment consisted of the flume, the 

supporting screw jacks, the reservoirs upstream and downstream, the returning 

pipe, the head tank, the gaging tank, the flood wave generator and the water 
stage controller downstream, etc. 

 The flume 60cm wide, 60cm deep and 150m long is made of steel. Its bed is 
coated with cement mortar to eliminate the unevenness at the joints and is sup-

ported by the screw jacks at 6m intervals. By  adjusting these jacks the inclina-
tion of the flume can be changed from zero to 1/150. A flood wave up to  100.e/ 
sec is generated by the pneumatic automatic control which opens and closes the 
air valve inserted between the head tank and the gaging tank. 

 a)       (3) e  
 1 

 —Ial     a.) (10 

               .0 Flume ® Returning Pipe  0 Movable Weir 
 ®  Reservoir  0  Flood Generator  @ Pump 

 0 Head  Tonk  C) Hand Valve 
 ®  GagingTank  0 Stage Controller 

 0 Pool 

                            Fig. 4 Experimental flume. 

(2) Experimental procedure 
 The kinds of experiment are shown in Table 1. The shapes of the  h—t curves 

on the steady base flow discharge were parabolic or triangular where h meant 
the wave height on the base flow discharge. 

 h—.t curves at all measuring stations were measured by the resistive wave 
meters and recorded by the electromagnetic  oscillographs. The arrangement of 
ten measuring stations was decided in the manner of trial to remove the effects
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                      Table 1 The kinds of experiment. 

     Run Base discharge Max. Discharge Duration Time 
 /sec)  E  /sec) (sec) 

  1 5  31.5 450  0.  71 
  2 5  28.7 140  2.15 

  3 5  36.5 160  2.  17 
  4 5  15.5 400  0.47 

  5 5  25.5 420  0.67 
  6 5  31.0 400  0.79 
  7 5  35.0 420  0.81 
  8 5  40.0 450  0.82 
  9 10  26.0 390  0.51 
  10 10  30.7 450  0.52 
  11 10  36.0 470  0.57 
  12 10  40.0 430  0.69 

of flume joint irregularity and were set at points 18, 34, 50, 60, 65, 70, 88, 98, 
118 and  137meters apart from the upsteam end. 

 The slope of the flume was set at 1/500 and the average Manning roughness 
was  n=  0.  0116m-lfi sec. 

 The velocity was not measured. 
 The similarity of these hydrographs to actual river floods are described  by the 

following relationships,  9) 

 itx=0-10'); 
 av--0111, 

 

t  =6-1  crizlii   (74) 
 CR  =5 

• 

 an=556crie34".-5 

where a means the reduced scale of that represented by the suffix and  e means 

the skewness of the model. If we assume that the width of the channel 60cm 
corresponds to  100m and  e  =  1, the duration time of 5 minutes corresponds to 65 

minutes and the discharge of  30f  /sec corresponds to  1089ml/sec. These results 

show that the hydrographs adopted in the experiments are very sharp ones 
compared with those which generally occur in an actual river. But they have 

been adopted to facilitate an understanding of the effects of the acceleration terms. 

 2) Experimental results and consider-

                                                          

1.0 ations. // i 
(1) On the transformation of the floodh/hm 

 wave 

 Fig. 5 shows an example of wave0
.5gem

transformation with propagation. In 

the figure the depth above the base Rising Recessing 

 flow  surface  at  an  arbitrary  time  at 

 each  station is divided by the wave0 I• 

                                             

180 120  60  0 601
5eo 120 180 240  300 height there, so that the maximum 

value of the ordinate is 1, and the Fig . 5 Wave transformation with 
times of peak attainment at each mea- propagation (Run 1).
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suring station are superposed one over another. By this manipulation the figure 
shows well the characteristics of transformation, such as the less deformability 

at the rising stage and the contrary at the recessing stage. the circumstaces are 
the same for the other runs. This means that the nonlinearity effects are impor-

tant for the wave transformation. 

  These characteristics are explained qualitatively as follows  :— 
The fundamental Eqs. (6) and (7) will be transformed as 

 (1  (1—K)           9 at +v3                  {5  F2 (3223 a2)thiaff                       (1—k)Va,1. ax 

   {1  — (1-Fa3a,—2a4)F3}   (75)    2 (1—K)iax2 
where 

 {a2  —  1  /  al  —  (2—  1/al  )F}0 
 0=  (iglo(a/I/at) 

 F2—  (22/gH3 
 a, V= —  (amat)t  (01116x)  (76) 

   a2V— (aQtaow            t(aat) 
    a3V =  (02H/  at2)/  (a2Q/  a  x2) 

 a,  V  =  (a2Q/axs.)/(a2Max2) 

As discussed in the last chapter, except at the beginning of the rising stage, the 
characteristics of the kinematic wave are prominent and we can put  al  =  a2=  a, 

 —a,  =  5/3 as the first approximation and then , 

   [1F21 as5 19 F2al/        (1-0 Y"1 at +V13  15  (1—K)A1  ax 

    Q  (a4F2)6211   (77) 
 2  (1—x)i9 ax2 

Dividing both sides of Eq. (77) by  aH/dx and remembering that  at  V represents 
the propagation speed of the same depth, we obtain the second approximation of 
the propagation speed of the same depth  w neglecting the small terms, such as 
r and  F20, as follows  :— 

                        a2 H 

   (0,,  3 v11+509nI11/4(1_49l  f                       F2\at2   (78) 

                          at 
In Eq. (78), (5/3) V shows the kinematic wave and the socond term in the 

parentheses is its modification. The first term of the right hand side acts to 
make the wave acute and if  azwat2<0 when  amat>o, the second term acts to 
flatten the wave. Accordingly, the curvature and the slope of the tangent line 
of the  h—t curve controls the transformation characters and the flood propagates 
itself in a channel like unifomly translation wave at the rising stage as the result 
of rapid deformation, if it had not the pattern of a uniform translation wave at 
the upstream end. 

 Taking Run 1 as an example, we calculate Eq. (78) at station at  18m as in 
Table 2. This reult reveals that the celerity of each of the three stages is 
almost the same and that the wave deforms little with propagation. 

 At the stage maximum, Eq. (78) diverges to infinity and this fact explains
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            Table 2. Calculation of Eq. (78) (Run 1, Station at  18m). 

  h (cm) 0.5 3.0 5.0 

  H (cm) 3.1 5.6 7.6 
 argot  (cm/sec)  3.8  x  10-9  6.1  X  10'  3.  0  x  10' 

  a21-113t2  (cm  /sec')  1.6  X  10'  —5.7X10-4  —  7.3X  10' 
 5V/3 (cm/sec) 63.5 94.0 115.0 

  w  (cm/sec) 79 88 95 

the mechanism of peak attenuation.  7  •  RUN! 
The peak attenuation can be calculated  hank —  Calculation  bYE0 

along the characteristic curve on which6                  km)Elli 
mMali aH/at equals zero and the result is Eq.likinlItill. 

      n (63) in the last chapter. In Fig. 6, we5MIEN^ME 
compare the experimental results and  4M 
the calculation results from Eq. (63).17  32 56Distance  (m) 
Considering the accuracy in  graphcal-  Fig. 6 Attenuation of stage maximum l
y obtaining the value of  aqvat2  from (Run 1). 

the h—t curve and the irregularity of 
the channel at the welding joints, it can be said that the calculation has suf-
ficient accouracy. 
(2) On the propagation of peak and front 

  The validity of applying Kleitz-Seddon's law to the propagation of stage max-
imum has been discussed in the last chapter. To be confident of these results, 

150 4 ir 
    RUN Time 

s  
(Ut  Si'  612  7 (min)3ec.r,I      S  •  ..,6”  i2 

 2 ,--"--. •-•- 

       

•  z .,/,_,4-,-- 
 100e0-tz--'-,...ir  

 IFPrz  11 i   

 

1  •  •  • 

           • 00  19 34  50  60  70  88  98  118 137 
50 Distance (m) 

 Fig.  8 Propagation of front (Base 
                                              flow discharge  5E  /sec). 0  rd 150   

 0 5014             5/3V
m (cm00/secl Time 

 Si N3  
 Fig. 7 Validity of  Kleitz-Seddon's law RUN 

       to the peak propagation. 
 2 

we have measured the propagation-....;::.---siiir  
 i speed of the peak among the stations 

at 70m and 88m and have compared  olD  18 34  50  60 70  8098  118 137 
these with (5/3)  V. as in Fig. 7. The Distance  (m) 
experimental results are largely scat- Fig . 9 Propagation of front (Base 
tered around the theoretical results but flow discharge  10e/sec).
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it can be considered that propagation of the stage maximum follows Kleitz-

Seddon's law. 

  On the other hand, the arrival time of the front at each station is shown in 

Figs.  S and 9, in which Fig.  8 shows the cases where the base flow discharge are 
 52/sec and  Fig.  9 shows the cases where the base flow discharge is  10€/sec. 

Here the front does not mean the theoretical one but the actual one which can be 

observed by the wave meters. 

 From  Fig.  8 we can see that the speed of propagation of the wave front is 
larger in the run which has a larger value  ofd and in Fig. 9, which shows the 
results for the cases of about the same value of A, it is difficult to find the dif-

ference of speed. This fact reflects the  effects of acceleration on wave front 

celerity  and  the  qualitative  explanation  is  as  follows  :— 

 We  discussed  how  the  wave  front  which  propagates itself with long wave 

celerity decays exponentially as shown in Eq. (33). Here, we put back the 

dimensions of exponent

/B as  B—1  Fo(i_2Fo\                                                (79)      2,RF,2Ho I3) 

So the larger the base flow depth or the rate of water stage variation, the smaller 

 40   the value of B, becomes and the decay 
                                  of the front will be smaller and the 

 0' propagation speed will get nearer to 

  thee) Steadythe celerity of the long wave. 
                                (3) On the relationship between depth 

                                       and discharge 
   30   In the experiments , it was difficult 

                                  to observe the discharge at each  sta-

                       /tion directly. Hence, the discharge was 
                                  routed from the upstream hydrograph 

                                     using the storage equation between two 

 2 0                                      measuring stations. An example of 

                                  depth—discharge relationship thus calcu-

                                  lated is shown in Fig. 10. At the rising 

                                  stage, the dischrge is larger than the 

                                  steady flow for the same depth and at 

•    

I  0  the recessing stage it is less than the 
                                  steady flow, so that the relationship 

                                  draws a loop-line. This is the effect 

                                     of acceleration, and the loop is nearer 

                                  at the recessing than at the rising stage 

                                     to the steady  stage—discharge relation 
 0    0 5curve because the acceleration is smaller 

                      H (cm)at the recessing stage
.  In any case, 

 Fig.10  Depth—discharge relationship the loop is not so greatly separated 

         (Run 1, Station at  18m). from the curve for steady flow and 

this fact will indicate that the acceleration terms can be neglected in the case of 

a prismatic channel flood.
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 In fact, the equation of motion can be written as 

                           aH 

        1-( 11°)2(R0)"+2( y at   3Q'    aH•R\ H Vi gAi at  (80) 
 ax  1  H,\3 

 H 

and the order of the terms is shown in Table 3 for Run 1 at the station at 17m. 
In the equation  suffix 0 means for uniform flow and c means for critical flow. 

      Table 3 Comparison of order of terms in flood equation (Run 1). 

 0  0  0  C) ® @  ®  

                  axaH 1   aQ  1  OH 
   t H(cm)I s)at

i(110\2I120tt(1413 
                        kH)R\111126113 uvt gAi  at  i  am 

                     V 

 3'00"  I  3.05  7.0  0.359  1.18  0.516  0.370  0.410  -1.070 
  3'30"  4.60  13.5  0.578  1.12  0.520  0.600  0.468  -0.025 
 4'00"  '  6.40  21.0  0.486  1.00  0.410  0.298  0.359  -0.104 
  4'30"  7.  60  27.  5  0.  232  1.  025  0.492  0.  299  0.226  -0.  043 

 5'00"  8.  20  31.  0  0.198  1.  097  0.500  0.198  0.  093  -0.016 
  5'30"  1  8.70  31.5  -  0.  062  0.892  0.428  -0.053  -0.020  0.130 

 6'00"  8.40  30.5  -0.116   0.  940  0.444  -0.103  -0.076  0.060 
  6'30"  7.90  27.8  -  0.  183  0.928  0.440  -0.161  -0.135  0.082 
 7'00"  7.20  23.5  -  0.  253  0.908  0.410  -0.207  -0.231  0.196 
  7'30"   6.40  18.5  -0.363   0.  777  0.360  -  0.  262  -0.293  0.387 
 8'00"  4.90  12.2  -  0.  530  0.792  0.366  -0.388  -0.412  0.366 
  8'30"  4.00  7.0  -0.150   O.  561  0.230  -0.228  -0.281  0.634 
 9'00"  3.20  5.5  -  0.  306  0.615  0.265  -0.161  -0.093  0.430 

From this table we can conclude that for the first approximation of the equation 
of motion 

  18H   Q' =-
n  BHR61  i-  ax(1 -F2)  (81) 

is satisfactory. And for a comparatively small Froude number F2 can be neglected 
in comparison to 1, This confirms the equation of motion adopted in previous 
theories like diffusion analogy. 

 Discussions in the last section show that the water surface slope of a flood in 
a uniform channel can be approximately represented by 

 aH  1  ax  
 ax (.0  at 

This equation with Eq. (81) proves the validity of the well known John's formula . 

5. Conclusion 

 The author has studied the flood flow in a prismatic open channel theoretically 
and experimentally. The  main results obtained are as follows  : 

 1) The exact energy equation in the one-dimensional open channel flow must
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be supplemented into the classical equation by additional terms concerning three-
dimensional variations of transverse velocity and stage in the unsteady behavior, 
but for the ordinary flood in a river if the acceleration terms are small compared 
to the other terms in the classical equation, the additional terms are also small 
and can be  neglected. 

 2) The characteristics of open channel unsteady flow can be cassified by the 
index A, which has the order of ratio of stage variation to the vertical component 
of long wave celerity along the channel. 

 3) The critical condition to bore formation at the wave front is shown by Eq. 

(27) and for arbitrary bed slope and bed roughness the critical value  ofd can be 
obtained graphically as in Fig. 2. 

 4) In the case where the  A value is much greater than 1, the results are the 
same as when the term of roughness slope is considered to be equal to the bed 
slope in the fundamental equation. In this case the wave is dynamic and if the 

 Fronde number is large it is often the bore. 
 5) In the case where  A is much smaller than 1, the main part of the wave 

propagates as a kinematic wave. This is the case often called flood wave and 
is analyzed  by the successive method using the expansion of  A. 

 6) If the value of  Ai is much smaller than 1, a similar method of analysis as 
in the case where  A is much smaller than  1 is possible, and in this case the 
effect of vertical acceleration is not so evident. 

 7) Floods often propagate like uniform translation waves at the rising stage 
and these characteristics are explained as the results of the synthetic  effects of 
the nonlinear kinematic wave and the curvature of the wave profile. 

 8) The attenuation of the peak with propagation is shown by Eq. (63) and 
this is the same as the result obtained by Hayashi and Tanaka. 

 9) The peak propagation approximately obeys to Kleitz-Seddon's law and the 
actual front propagates with about the same speed to the peak because the 
theoretical front which propagates with long wave celerity decays exponentially. 
But the larger the value of  A, the faster the propagation velocity of the front. 

 10)  Stage—discharge relationship generally draws a  loop line reflecting the 
effects of acceleration. But in the prismatic channel the acceleration terms are 
ordinarily much smaller than the water surface term and the roughness loss term 
and can be safely neglected compared to these terms. 
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