Title	Application of Extreme V alue Distribution in Hy drologic Frequency A nalysis Part I. Extreme (Largest) V alue Distribution and Method of Fitting
Author(s)	KA DOY A, Mutsumi
Citation	Bulletins- Disaster Prevention Research Institute, Ky oto University (1964), 66: 1-32
Issue Date	1964-03-25
URL	http:/hdl.handle.net/2433/123739
Right	Departmental Bulletin Paper
Type	Textversion
publisher	

DISASTER PREVENTION RESEARCH INSTITUTE KYOTO UNIVERSITY BULLETINS

Application of Extreme Value Distribution in Hydrologic Frequency Analysis

By
Mutsumi Kadoya

Contents

Synopsis

Part I. Extreme (Largest) Value Distribution and Method of Fitting
l. Introduction
2. Extreme (largest) value distributions and their fundamental properties
3. Estimation of population parameters by method of moment
4. Selection of applicable type of asymptotes from view point of hydrologic frequency analysis
5. Concept of plotting value
6. Plotting values for first and second asymptotes
7. Practical method of estimation of population parameters
8. Expected value for given return period
9. Conclusion

Part. II. Singular Hydrologic Amount and Rejection Test

1. Introduction
2. Definition of singular hydrologic amount
3. Estimation of singular hydrologic amount based on extremes
4. Method of rejection test
5. Conclusion

Application of Extreme Value Distribution in Hydrologic Frequency Analysis

By
Mutsumi Kadoya

Synopsis

It is well known that there are three types of asymptotes for the distribution of the extremes or largest values, which are expressed as follows:

$$
\begin{array}{rlrl}
F(y) & =\exp \left(-e^{-v}\right) ; & & \text { for the first asymtote or the Gumbel's dis- } \\
y & =a(x-u), & & \text { tribution, } \\
y & =a \log (x+b) /(u+b), & \text { for the second asymptote or the type A of } \\
& \begin{array}{ll}
\text { log-extreme value distribution, }
\end{array} \\
y & =a \log (g-u) /(g-x) & \begin{array}{l}
\text { for the third asymptote or the type B of } \\
\\
\end{array} & \text { log-extreme value distribution, }
\end{array}
$$

in which a, u, b and g are population parameters.
Several problems have remained unsolved in practical analysis of hydrologic frequency by the use of these asymptotes.
(I) In Prat I, first of all, the statistical characters of the three asymptotic distributions are discussed theoretically and it.is shown that they should be applicable in limited range of the value of coefficient of skew, C_{s}, that is

$$
C_{s}=\left\{\begin{array}{l}
> \\
\\
<
\end{array}\right\} 1.1395 \cdots ; \text { for }\left\{\begin{array}{l}
\text { the second asymptote }, \\
\text { the first asymptote }, \\
\text { the third asymptote. }
\end{array}\right.
$$

Next, although methods of estimation of the parameters included in the asymptotic equations have been proposed by Gumbel and others by the help of method of moment, the results obtained by such methods seem to be not so good in fitness to hydrologic data. Then, a method of estimation based on the concept of plotting value instead of ploting position, proposed by the author is succesfully developed for the first and the second asymptotes from a view point of practical application.
(II) Generally, very large or sniall data are to be contained in a sample,
which is called the singular value. In estimating the population parameters of asymptotes, the rejection test of such data is essential in the sense of stochastics. Moreover, evaluation of the singular value is important in the sense of engineering.

In Part II, first, applying the concept of two-sample theory on normals the method of evaluation of a singular value is proposed. Next, on the basis of the binomial distribution, the criterion for rejection of singular data is defined.

Part I. Extreme (Largest) Value Distribution and Method of Fitting

I. Introduction

The extreme value distributions are defined generally as asymptotic forms of the distribution for the largest or smallest value in a sample. The practical methods of application of these distributions to various engineering problems have been considered by several investigators. But the introduction of statistics in this field to hydrologic forecasting seems to owe much to Gumbel, who showed the usefulness of the first asymptote of the distribution for largest value to the frequency analysis of floods in 1941^{11}. Moreover, he showed that the third asymptote of the distribution for smallest value is successfully applicable to the frequency analysis of droughts in 1954 ${ }^{2 \text { 2 }}$.

In estimating the parameters included in these asymptotes, the classical method of moment and the method based on the concept of plotting position were adopted by Gumbel ${ }^{11-3)}$. As methods of estimation of the parameters in such asymptotes, besides the above methods, there are useful ones proposed by Thom ${ }^{1)}$ (1954), Lieblein ${ }^{5)}$ (1954) and Jenkinson ${ }^{6)}$ (1955).

Since 1952, the statistics for the largest values of the hydrologic data have been studied by the author, who investigated (1) the statistical properties of three asymptotes for the largest value (1955) ${ }^{7 \text { }}$, (2) the method of estimation of their parameters by the classical method of moment (1955) ${ }^{7}$, and (3) the one based on the concept of plotting position (1953, 1954) ${ }^{8,9}$. As a result, it was clear that the first and the second asymptotes were available to the frequency analysis of the hydrologic amount. But the
results of estimation of their theoretical distribution by the classical method of moment did not prove very good in fitness to hydrologic data.

Afterwards, a reasonable method ${ }^{10,111}$ of fitting based on the concept of plotting value, which was proposed by the author ${ }^{12)}$ instead of plotting position, was developed for these asymptotes.

In this part, the statistical properties of the extreme (largest) value distributions and the method of estimation of their parameters and so on, obtained by these studies are summarily presented.

2. Extreme (largest) value distributions and their fundamental properties

It is well known that there are three types of the asymptote for the distributions of the extreme (largest) value in a sample, which are practically expressed as follows :
$F(y)=\exp \left(-e^{-y}\right) ;$
1 st $; y=a(x-u), \quad-\infty<x<\infty$
2 nd ; $y=a \log (x+b) /(u+b)=k \lg (x+b) /(u+b), \quad-b<x<\infty$
$3 \mathrm{rd} ; y=a \log (g-u) /(g-x)=k \lg (g-u) /(g-x), \quad-\infty<x<g$
In the above equations, $k \equiv a \log e=0.4343 a, u, b$ and g are population parameters, y is the reduced variate of actual extreme x and is called the reduced extreme, $F(y)$ is the asymptotic probability in which the extreme variate will not exceed a certain fixed variate, and \log and $l g$ stand for the common and natural logarithms, respectively.

In the field of hydrologic statistics in Japan, the first asymptotic distribution is usually called as the Gumbel's distribution in honour of his pioneering and fruitful work, and the second and third asymptotic distributions are called the type A and B of logarithmic extreme value distributions, respectively, since the author's proposal in 19557), these three asymptotes are generally called the extreme (largest) value distribution.

Since the mathematical or statistical properties of these asymptotic distributions have been studied by a number of investigators and are discussed in detail in the masterpiece "Statistics of Extremes" by Gumbel ${ }^{13)}$, it is not necessary to discuss them again here. But the following properties, among which several unpublished ones are included, should be noticed.
(1) The first asymptote: There are simple relations between the
population moments $\nu_{t}(x-u)$ and $\nu_{t}(y)$ about origin of order i, and between the population central moments $\mu_{i}(x)$ and $\mu_{i}(y)$ of order i, that is

$$
\left.\begin{array}{l}
\nu_{i}(x-u)=\nu_{i}(y) / a^{i} \tag{1.5}\\
\mu_{i}(x)=\mu_{i}(y) / a^{i}
\end{array}\right\}
$$

The population moments $\nu_{i}(y)$ and $\mu_{i}(y)$ are easily calculated by using the moment generating function $Q(t)$ and the semi-lnvariant as follows ${ }^{14)}$:

$$
\begin{aligned}
\lg Q(t) & =\lg \Gamma(1-t), \quad|t|<1 \\
& =r t+\sum_{r=2}^{\infty} S(r) t^{r} / r
\end{aligned}
$$

where

$$
\begin{aligned}
r & =0.5772 \cdots \quad \text { is the Euler's constant } \\
S(r) & =\lim _{n \rightarrow \infty}\left(1+2^{-r}+3^{-r}+\cdots+n^{-r}\right), \quad r \geqq 2
\end{aligned}
$$

Therefore, the mean m_{y} and m_{x}, the variance $\sigma_{y}{ }^{2}$ and σ_{x}^{2}, and the other moment $\mu_{l}(y)$ and $\mu_{t}(x)$ are expressed, respectively, as follows:

$$
\left.\begin{array}{ll}
m_{y}=\nu_{1}(y)=\gamma, & m_{x}=u+\gamma / a \tag{1.6}\\
\sigma_{y}^{2}=\mu_{2}(y)=S(2)=\pi^{2} / 6, & \sigma_{x}^{2}=S(2) / a^{2}=\pi^{2} / 6 a^{2} \\
\mu_{i}(y)=2 S(3), & \mu_{3}(x)=2 S(3) / a^{3}
\end{array}\right\}
$$

It should be noticed that the coefficient of skew of the extremes themselves, equal to that of the reduced extremes, lecomes

$$
\begin{equation*}
C_{s}=\mu_{3} / \mu_{2}^{3 / 2}=2 S(3) / S(2)^{3 / 2}=1.1395 \cdots \tag{1.7}
\end{equation*}
$$

(2) The second asymptote: The population moment $\nu_{i}(x+b)$ about origin of order i is expressed by

$$
\nu_{i}(x+b)=\int_{-b}^{\infty}(x+b)^{i} d F(x)
$$

After several calculations,

$$
\begin{equation*}
\nu_{i}(x+b)=(u+b)^{i} \Gamma(1-i / k) \tag{1.8}
\end{equation*}
$$

The mean and the variance and the other moments are easily obtained by putting $i=1,2,3, \cdots$ in above equalion. And the coefficient of skew C_{s} becomes

$$
\begin{equation*}
C_{s}=\frac{\mu_{3}}{\mu_{2}^{3 / 2}}=\frac{\Gamma(1-3 / k)-3 \Gamma(1-2 / k) \Gamma(1-1 / k)+2 \Gamma^{3}(1-1 / k)}{\left[\Gamma(1-2 / k)-\Gamma^{2}(1-1 / k)\right]^{3 / 2}} \tag{1.9}
\end{equation*}
$$

It becomes clear after some examinations that

$$
\frac{d C_{s}}{d(1 / k)}>0
$$

and

$$
\lim _{1 / k \rightarrow 0} C_{s}=2 S(3) / S(2)^{3 / 2}=1.1395 \cdots
$$

That is, the second asymptote is the extremely skewed distribution as its coefficient of skew C_{8} is greater than $1.1395 \cdots$.
(3) The third asymptote: The population characters of the third asymptote can also be easily examined as well as is done for the second asymptote, and the following relations are obtained,

$$
\begin{gather*}
\nu_{\imath}(g-x)=(g-u)^{i} \Gamma(1+i / k) \tag{1.10}\\
C_{s}=-\frac{\Gamma(1+3 / k)-3 \Gamma(1+2 / k) \Gamma(1+1 / k)+2 \Gamma^{3}(1+1 / k)}{\left[\Gamma(1+2 / k)-\Gamma^{2}(1+1 / k)\right]^{3 / 2}} \tag{1.11}
\end{gather*}
$$

Fig. 1.1 Shapes of asymptotis distribution, provided $m_{x}=0$ and $\sigma_{x}=1$.

Fig. 1.2 Relation between C_{s} and $1 / k$.

Moreover, it can be made clear that the coefficient of skew C_{s} of this asymptotic distribution is less than $1.1395 \cdots$.

From the facts mentioned above, the conclusion is obtained that the three asymptotic distributions of the largest value are characterized by the coefficient of skew, or that they should be applicable in limited range of the value of coefficient of skew C_{8}, that is
$C_{s}=\left\{\begin{array}{l}> \\ >\end{array}\right\} .1395 \cdots ; \quad\left\{\begin{array}{l}\text { for the second } \\ \text { asyptote, } \\ \text { for the first one }, \\ \text { for the third one. }\end{array}\right.$
Figures 1.1 and 1.2 show this relation.

3. Estimation of population parameters by method of moment

A method of estimation of the population parameters included in these asymptotes by a method of moment is easily derived from the results in the
preceding section.
(1) The first asymptote: Using Eq. (1.6), two parameters a and u, which are scale and location parameters of the first asymptotic distribution, respectively, can be obtained by

$$
\begin{align*}
a & =\sigma_{y} / \sigma_{x} \\
& =\pi / \sqrt{ } \overline{6} \sigma_{x} \doteqdot 1 / 0.7797 \sigma_{x} \\
u & =m_{x}-m_{y} / a \tag{1.12}\\
& =m_{x}-\gamma / a \doteqdot m_{x}-0.4500 \sigma_{x}
\end{align*}
$$

A so-called classical method of moment has been adopted by Gumbel in his earliest work ${ }^{11}$, in which the population values σ_{x} and m_{x} in Eq. (1.12) are directly replaced by the sample values s_{x} and \bar{x}, respectively.
(2) The second asymptote: Three parameters $1 / k, b$ and u, which are skewness, location and scale parameters of the second asymptotic distribution, respeciively, can lead to the following expressions after several calculations based on Eq. (1.8),

$$
\begin{equation*}
C_{s}=\frac{\Gamma(1-3 / k)-3 \Gamma(1-2 / k) \Gamma(1-1 / k)+2 \Gamma^{3}(1-1 / k)}{\left[\Gamma(1-2 / k)-\Gamma^{2}(1-1 / k)\right]^{3 / 2}} \tag{1.9}
\end{equation*}
$$

where

$$
\left.\begin{array}{l}
A_{1} \equiv \Gamma(1-1 / k) /\left[\Gamma(1-2 / k)-\Gamma^{2}(1-1 / k)\right]^{1 / 2} \tag{1.14}\\
B_{1} \equiv[\Gamma(1-1 / k)-1] /\left[\Gamma(1-2 / k)-\Gamma^{2}(1-1 / k)\right]^{1 / 2} \\
C_{1} \equiv A_{1}-B_{1} \equiv 1 /\left[\Gamma(1-2 / k)-\Gamma^{2}(1-1 / k)\right]^{1 / 2}
\end{array}\right\}
$$

In the above equations, it will be noticed that the values of C_{s}, A_{1}, B_{1} and C_{1} depend only upon the value of parameter $1 / k$. In Table 1.1, those values as a function of $1 / k$ are shown for the practical facilities, which are originally prepared with six decimal places ${ }^{77}$. If an adequate method of estimation of the population values C_{s}, σ_{x} and m_{x} from the sample values is found out, the parameters may by easily estimated from Eq. (1.13) by using Table 1.1.
(3) The third asymptote: Three parameters $1 / k, g$ and u, which are skewness, location and scale parameters of the third asymptotic distribution, respectively, are also obtained from Eq. (1.10), as follows:

Table 1.1 Population values of C_{s}, A_{1}, B_{1} and C_{1} for $1 / k$ in second asymptote.

$1 / k$	C_{8}	A_{1}	B_{1}	C_{1}
0.001	1. 1455	779.13	0.4502	778.68
2	1515	389.28	4	388.83
3	1576	259.33	6	258.88
4	1636	194.35	8	193.90
5	1697	155.37	9	154.92
0.006	1.1758	129.38	0.4511	128.92
7	1819	110.81	3	110.36
8	1881	96.89	5	96.44
9	1943	86.06	6	85.61
10	2005	77.39	8	76.94
0.011	1.2067	70.30	0.4520	69.85
2	2130	64.40	1	63.94
3	2193	59.40	3	58.95
4	2256	55.11	5	54.66
5	2319	51.40	6	50.95
0.016	1.2383	48.15	0.4528	47.70
7	2447	45.28	- 9	44.83
8	2512	42.74	0.4531	42.28
9	2576	40.46	2	40.00
20	2641	38.40	4	37.95
0.021	1.2706	36.54	0.4535	36.09
2	2772	34.86	7	34.40
3	2837	33.32	8	32.86
4	2904	31.90	0.4540	31.45
5	2970	30.60	1	30.15
0.026	1. 3037	29.40	0.4543	28.95
7	3604.	28.29	4	27.84
8	3171	27.26	6	26.80
9	3239	26.30	7	25.84
30	3307	25.40	8	24.95

$1 / k$	C_{s}	A_{1}	B_{1}	C_{1}
0.030	1. 3307	25.40	0.4548	24.95
1	3375	24.56	0.4550	24.11
2	3444	23.78	1	23.32
3	3513	23.04	2	22.58
4	3582	22.34	4	21.89
5	3652	21.69	5	21.23
0.036	1. 3721	21.07	0.4556	20.61
7	3792	20.48	7	20.02
8	3862	19.92	9	19.47
9	3933	19.40	0.4560	18.94
40	4005	18.90	1	18.44
0.041	1. 4077	18.42	0.4562	17.97
2	4149	17.97	3	17.51
3	4221	17.54	4	17.08
4	4294	17.12	6	16.67
5	4367	16.73	7	16.27
0.046	1.4441	16.35	0.4568	15.89
7	4515	15.99	9	15.53
8	4589	15.64	0.4570	15.19
9	4664	15.31	1	14.85
50	4739	14.99	2	14. 54
0.051	1.4814	14.6867	0.4573	14. 2294
2	4890	3921	4	13.9347
3	4967	1085	5	6510
4	5043	13.8354	6	3778
5	5120	5722	7	1145
0.056	1. 5198	13.3184	0.4578	12.8606
7	5276	0735	9	6156
8	5354	12.8370	0.4580	3790
9	5433	6085	0	1505
60	5512	3876	1	11. 9295

$1 / k$	Cs	A_{1}	B_{1}	C_{1}
0.060	1. 5512	12.3876	0.4581	11.9295
1	5592	1739	2	7157
2	5672	11.9671	3	5088
3	5753	7668	4	3084
4	5834	5728	4	1144
5	5916	3847	5	10.9262
0.066	1. 5997	11. 2022	0.4586	10.7436
7	6080	0253	7	5666
8	6163	10.8534	7	3947
9	6246	6866	8	2278
70	6330	5245	9	0656
0.071	1. 64115	10.3669	0.4589	9. 9080
2	6499	2137	0. 4590	7547
3	6585	0647	1	6056
4.	6671	9.9197	1	4606
5	6757	7785	2	3193
0.076	1. 6844	9.6411	0.4592	9.1819
7	6932	5072	3	0479
8	7020	3766	3	8. 9173
9	7108	2494	4	7900
80	7197	1254	4	6660
0.081	1.7287	9.0044	0.4595	8. 5449
2	7377	8. 8863	5	4268
3	7468	7710	6	3114
4	7559	6585	6	1989
5	7651	5486	6	0890
0.086	1.7743	8. 4414	0.4597	7. 9816
7	7836	3364	7	8767
8	7930	2338	7	7741
9	8024	1336	8	6738
90	8119	0355	8	5757

$1 / k$	C_{s}	A_{1}	B_{1}	C_{1}
0.090	1.8119	8.0355	0.4598	7.5757
1	8215	7.9396	8	4798
2	8311	84.58	8	3860
3	8408	7539	9	2940
4	8505	6640	9	2041
5	8603	5760	9	1161
0.096	1. 8702	7.4898	0.4599	7.0299
7	8801	4054	9	6.9455
8	8901	3227	9	8628
9	9002	2416	9	7817
100	9103	1621	0.4600	7021
0.101	1. 9205	7.0842	0.4600	6.6242
2	9308	0078	0	5478
3	9412	6.9328	0	4728
4	9516	8593	0	3993
5	9621	7872	0	3272
0.106	1.9727	6.7164	0.4600	6. 2564
7	9833	6469	0	1869
8	9941	5788	0.4599	1189
9	2.0049	5118	9	0519
10	0158	4461	9	5. 9862
0.111	2.0267	6.3815	0.4599	5.9216
2	0378	3180	9	8581
3	0489	2557	9	7958
4	0601	1944	8	7346
5	0714	1342	8	6744
0.116	2.0828	6.0750	0.4598	5. 6152
7	0943	0168	8	5570
8	1058	5.9596		4999
9	1175	9033		4436
20	1292	8480		3883

$1 / k$	C_{8}	A_{1}	B_{1}	C_{1}
0.120	2. 1292	5. 8480	0.4597	5. 3883
1	1410	7935	6	3339
2	1529	7400	6	2804
3	1649	6873	5	2278
4	1771	6354	5	1759
5	1893	5843	5	1248
0.126	2. 2016	5.5341	0.4594	5.0747
7	2140	4846	4	0252
8	2265	4359	3	4. 9766
9	2391	3879	2	9887
30	2518	3406	2	8814
0.131	2. 2646	5. 2941	0.4591	4. 8350
2	2775	2482	1	7891
3	2905	2030	0	7440
4	3037	1585	0.4589	6996
5	3169	1146	9	6557
0.136	2. 3303	5.0714	0.4588	4.6126
7	3438	0288	7	5701
8	3574	4. 9868	6	5282
9	3711	9453	6	4867
40	3849	9045	5	4460
0.141	2. 3989	4.8642	0.4584	4.4058
2	4129	8245	3	3662
3	4271	7853	2	3271
4	44.15	7467	1	2886
5	4559	7085	0	2505
0.146	2.4705	4. 6709	0.4579	4. 2130
7	4852	6338	9	1759
8	5001	5971	8	1393
9	5151	5610	7	1033
50	5303	5253	6	0677

$1 / k$	C_{s}	A_{1}	B_{1}	C_{1}
0.150	2. 5303	4.5253	0.4576	4. 0677
1	5455	4901	5	0326
2	5610	4553	3	3.9980
3	5765	4210	2	9638
4	5923	3871	1	9300
5	6081	3536	0	8966
0.156	2. 6142	4. 3206	0.4569	3. 8637
7	6404	2879	8	8311
8	6567	2557	6	7991
9	6732	2238	5	7673
60	6899	1923	4.	7359
0.161	2.7068	4. 1613	0.4563	3.7050
2	7238	1305	1	6744
3	7410	1002	0	6442
4	7583	0702	0.4558	6144
5	7758	0406	7	5849
0.166	2. 7936	4.0113	0.4556	3. 5557
7	8116	3.9823	4	5269
8	8298	9537	3	4984
9	8480	9254	1	4703
70	8665	8974	0	4424
0.171	2. 8852	3.8697	0.4548	3.4149
2	9041	8424	6	3878
3	9232	8153	5	3608
4	9426	7886	3	3343
5	9621	7622	1	3081
0,176	2.9819	3.7360	0.4540	3.2820
7	3.0019	7101	0.4538	2563
8	0221	6845	6	2309
9	0425	6592	4	2058
80	0632	6341	3	1808

$1 / k$	$C_{\text {s }}$	A_{1}	B.	C_{1}
0.180	3.0632	3.6341	0.4533	3. 1808
1	0842	6093	1	1562
2	1053	5848	0.4529	1319
3	1268	5605	7	1078
4	1485	5365	5	0840
5	1704	5127	3	0604
0.186	3. 1926	3.4892	0.4521	3.0371
7	2151	4659	0.4519	0140
8	2379	4428	7	2. 9911
9	2609	4200	5	9685
90	2843	3974	3	9461
0.191	3. 3079	3.3750	0.4511	2. 9239
2	3319	3529	0.4509	9020
3	3561	3310	7	8803
4	3807	3092	4	8588
5	4056	2877	2	8375
0.196	3.4308	3.2664	0.4500	2. 8164
7	4563	2453	0.4498	7955
8	4822	2245	5	7750
9	5085	2038	3	7545
200	5351	1833	0	7343
0.201	3. 5620	3.1630	0.4488	2. 7142
2	5894	1429	6	6943
3	6171	1229	3	6746
4	6453	1032	1	6551
5	6738	0836	0.4478	6358
0.206	3.7027	3. 0642	0.4476	2.6166
7	7321	0450	3	5977
8	7619	0260	0	5790
9	7921	0071	0.4468	5603
10	8228	2. 9884	5	5419

$1 / k$	C_{s}	A_{1}	B_{1}	C_{1}
0.210	3.8228	2. 9884	0.4465	2. 54119
1	8539	9699	2	5237
2	8855	9515	0	5055
3	9176	9333	0.4457	4876
4	9503	9153	4	4699
5	9834	8974	1	4523
0.216	4. 0170	2.8797	0.4448	2.4349
7	0511	8621	5	4176
8	0858	8446	3	4003
9	1211	8273	0	3833
20	1570	8102	0.4437	3665
0.221	4. 1935	2. 7932	0.4434	2. 34.98
2	2305	7764	1	3333
3	2682	7596	0.4428	3168
4	3066	7431	4	3007
5	3456	7266	1	2845
0.226	4. 3853	2.7103	0.4418	2. 2685
7	4257	6941	5	2526
8	4668	6781	2	2369
9	5086	6622	0.4408	2214
30	5512	6464	5	2059
0.231	4.5946	2. 6307	0.4402	2. 1905
2	6388	6152	0.4398	1754
3	6839	5998	5	1603
4	7298	5845	1	1454
5	7765	5693	0.4388	1305
0.236	4.8242	2. 5542	0.4385	2. 1157
7	8728	5393	1	1012
8	9223	5244	0.4377	0867
9	9729	5097	4	0723
40	5.0245	4951	0	0581

$1 / k$	C_{8}	A_{1}	B_{1}	C_{1}
0.240	5.0245	2.4951	0.4370	2.0581
1	0772	4806	66	0440
2	1310	4662	63	0299
3	1859	4519	59	0160
4	2420	4377	55	0022
5	2993	4237	51	1. 9886
0.246	5. 3578	2.4097	0.4348	1.9749
7	4176	3958	44	9614
8	4787	3820	40	9480
9	5412	3684	36	9348
50	6051	3548	32	9216
0.251	5.6706	2. 3413	0.4328	1. 9085
2	7376	3279	24	8955
3	8062	3146	20	8826
4	8765	3014	15	8699
5	9485	2884	11	8573
0.256	6.0223	2. 2753	0.4307	1.8446
7	0979	2624	03	8321
8	1756	2496	0.4298	8196
9	2552	2368	84	8074
60	3369	2242	90	7952
0.261	6.4208	2.2116	0.4285	1.7831
2	5069	1991	81	7710
3	5954	1867	76	7591
4	6864	1744	72	7472
5	7800	1621	67	7354
0.266	6.8763	2.1499	0.4263	1.7236
7	9754	1378	58	7120
8	7.0775	1258	53	7005
9	1827	1139	49	6890
70	2911	1020	44	6776

$1 / k$	C_{s}	A_{1}	B_{1}	C_{1}
0.270	7.2911	2. 1020	0,42 44	1.6776
1	4028	0903	39	6664
2	5180	0786	34	6552
3	6369	0669	29	6440
4	7598	0554	25	6329
5	8868	0439	20	6219
0.276	8.0182	2.0325	0.4215	1.6110
7	1542	0211	10	6001
8	2950	0098	04	5894
9	4410	1. 9986	0.4199	5787
80	5924	9875	94	5681
0.281	8.749	1. 9764	0.4189	1. 5575
2	912	9654	84	5470
3	9. 081	9544	78	5366
4	257	9436	73	5263
5	440	9327	68	5159
0.286	9.631	1. 9220	0.4162	1.5058
7	830	9713	57	4956
8	10.037	9007	51	4856
9	254	8901	46	4755
90	481	8796	40	4656
0.291	10.717	1.8691	0.4135	1.4556
2	965	8587	29	4458
3	11. 226	8484	23	4361
4	499	8381	17	4264
5	786	8279	12	4167
0.296	12.089	1.8177	0.4106	1. 4071
7	409	8016	00	3976
8	747	7976	0.4094	3882
9	13.104	7876	88	3788
0.300	484	7776	82	3694
0.31		1. 6810	0.4018	1.2792
0.32		5890	0.3951	1939
0.33		5012	0.3877	1135

$$
\begin{equation*}
C_{s}=-\frac{\Gamma(1+3 / k)-3 \Gamma(1+2 / k) \Gamma(1+1 / k)+2 \Gamma^{3}(1+1 / k)}{\left.\Gamma \Gamma(1+2 / k)-\Gamma^{2}(1+1 / k)\right]^{3 / 2}} \tag{1.11}
\end{equation*}
$$

where

$$
\left.\begin{array}{l}
A_{2} \equiv \Gamma(1+1 / k) /\left[\Gamma^{\prime}(1+2 / k)-\Gamma^{2}(1+1 / k)\right]^{1 / 2} \tag{1.16}\\
B_{2} \equiv[1-\Gamma(1+1 / k)] /\left[\Gamma(1+2 / k)-\Gamma^{2}(1+1 / k)\right]^{1 / 2} \\
C_{2} \equiv A_{2}+B_{2} \equiv 1 /\left[\Gamma(1+2 / k)-\Gamma^{22}(1+1 / k)\right]^{1 / 2}
\end{array}\right\}
$$

The values of $C_{\varepsilon}, A_{2}, B_{2}$ and C_{2} can be tabulated as a function of $1 / k$ as well as that for the second asymptote. These values, however, correspond to the ones for the third asymptote of the smallest value prepared by Gumbel in his book, as follows:

For the third asymptote of largest value (the author) ${ }^{\text {n }}$

C_{s}	\equiv	$-\beta_{1}(k)$
A_{2}	\equiv	$B(k)-A(k)$
B_{2}	\equiv	$A(k)$
C_{2}	\equiv	$B(k)$

For the third asymptote of smallest value (Gumbel) ${ }^{15}$

Since there is no difference between the two values in essence, it will be unnecessary to show such a table in this paper.

4. Selection of applicable type of asymptote from view point of hydrologic frequency analysis

It has been shown above that the three types of asymptote for the largest value should be applicable in limited range of the value of coefficient of skew C_{s}. But such a discussion for the population value is not always realistic for the sample value. The reason is that, for example, the value of the coefficient of skew C^{\prime} s of the first asymptote sample, which means a sample taken from the population of the first asymptote, is not always equal to $C_{s}=1.1395 \cdots$ for the population, but there are various cases where it will be larger or smaller than $C_{s}=1.1395 \cdots$ from a view point of sample theory.

Otherwise, one of the most important problems in relation to the hydrologic largest variates is how to estimate a bigger future value. In estimation of such a value by basing on a sample of small size obtained by hydrologic observation, it may be often happen that the third asymptote is
wrongly applied to the first or the second asymptote sample, or that either the first or the second asymptote is wrongly applied to the third asymptote sample. However, from the view point of the prevention of disasters, the former mistake seems to be more serious than the latter.

Under the above considerations, the following course of treatment in the hydrologic frequency analysis should be adopted.
i) If the series of plotted points of hydrologic data on the extremal probability paper is scatterd about a straight line or a curve, denoted as G or B in Fig. 1.3, the first asymptote must be applied.
ii) If the series of points is scattered about a curve, denoted as A in Fig. 1.3, the second asymptote is usefully applicable.
iii) The third asymptote must

Fig. 1.3 Condition of application for three asymptotes. not be applied, except for a family of data of which the plotted points are arranged about the curve B with extremely large curvature.

Therefore, a discussion of the third asymptote will be omitted in the following sections.

5. Concept of plotting value

The simplest method of estimation of the parameters of asymptotes for the distribution of the largest value is the so-called classical mothod of moment in which the population moments described in section 3 are directly replaced by the sample moments. The population moments are obtained by integration over the whole domain of variation, while the sample moments are based on the sample of limited and small size N, generally. The results obtained by the classical method of moment seem to be not so good in fitness to hydrologic data, because of the bias between two moments, although it may not be a sufficient reason. In order to eliminate this bias, an approximate method is required, by which the population moments may
be evaluated as a function of sample size N.
In the field of hydrologic statistics, the population moments are often calculated by using the plotting position. However, the concept of the plotting position must be more fully considered in applying to calculation of the population moments, because it may be originally used for construction of the empirical distribution function.

Suppose that $x_{1}, x_{2}, \cdots x_{N}$ are a set of observations of size N, and $x_{1} \leq x_{2} \leq \cdots \leq x_{N}$. And let them be a sample of size N from a population, having the continuous $c d f F(x)$ of which only the type and, therefore, the value of coefficient of skew C_{s}, is known. Then, as is well known, the probability element $d p\left(x_{i}\right) d x_{i}$ for the i-th order statistics x_{i} in such a sample is given by

$$
\begin{equation*}
d p\left(x_{i}\right) d x_{i}=\frac{\Gamma(N+1)}{\Gamma(i) \Gamma(N-i+1)}\left[F\left(x_{i}\right)\right]^{i-1}\left[1-F\left(x_{i}\right)\right]^{N-i} f\left(x_{i}\right) d x_{i} \tag{1.17}
\end{equation*}
$$

If the parameters included in $F(x)=\int_{-\infty}^{x} f(x) d x$ are not larger than three in number, and if the distribution functions of such asymmetrical types as are applicable to the hydrologic frequency analysis are supposed, the unknown parameters included in Eq. (1.17) must be two in number, since the value of coefficient of skew is known. Now, let the linear reduced variate z be defined as

$$
\begin{equation*}
z=a(x-b) \tag{1.18}
\end{equation*}
$$

where, a and b are numerical constants.
Then, the probability element $d p\left(z_{i}\right) d z_{i}$ for the i-th order statistics z_{i} is given by

$$
\begin{equation*}
d p\left(z_{i}\right) d z_{i}=\frac{\Gamma(N+1)}{\Gamma(i) \Gamma(N-i+1)}\left[F\left(z_{i}\right)\right]^{i-1}\left[1-F\left(z_{i}\right)\right]^{N-i} f\left(z_{i}\right) d z_{i} \tag{1.19}
\end{equation*}
$$

and the unknown parameter must be not included in this equation.
Since the unknown parameters a and b should be estimated as follows,

$$
\begin{equation*}
\sum_{i}\left[z_{i}-a\left(x_{i}-b\right)\right]^{2}=\text { minimum } \tag{1.20}
\end{equation*}
$$

under the condition

$$
\begin{equation*}
E\left(z_{i}\right)=a\left\lceil E\left(x_{i}\right)-b\right\rceil, \tag{1.21}
\end{equation*}
$$

the problem of estimation of the parameters is reduced to estimating the value z_{i} corresponding to x_{i}.

A schematic figure of the distribution of z_{i} corresponding to x_{i} is shown in Fig. 1.4, where x_{i} are regarded as the fixed variate. Since the probability
element of z_{i} is given by Eq. (1.19) as the functions of order i and sample size N, the determination of z_{l} is almost equivalent to estimating the value of \hat{z}_{i} satisfying the following condition
$\sum_{j}\left(z_{i j}-\hat{z}_{\imath}\right)^{2}=$ minimum. (1.22) The solution of Eq. (1.22) is, clearly,

$$
\begin{equation*}
\hat{z}_{i}=E\left(z_{i}\right) \tag{1.23}
\end{equation*}
$$

The line connecting each value of $E\left(z_{i}\right)$ is not always

Sample Value Xi_{i} (attend to order i)
Fig. 1.4 Schematic figure for distribution of plotting value. equivalent to the one which satisfies the condition of Eq. (1.20) in a theoretical sense, but the difference between the two lines seems to be so small that it may be ignored in a practical sense.

In this paper, the value of $E\left(z_{i}\right)$ obtained from this idea is named the (expected) plotting value, to distinguish it from the plotting position.

In addition, if the discussion of the plotting position is made, the distribution of the value of F_{i} instead of the value of x_{t} should be considered in Eq. (1.17).

$$
\begin{equation*}
d p\left(F_{i}\right) d F_{i}=\frac{\Gamma(N+1)}{\Gamma(i) \Gamma(N-i+1)^{-}}\left[F_{i}\right]^{i-1}\left[1-F_{i}\right]^{N-i} d F_{i} \tag{1.24}
\end{equation*}
$$

This equation is originally parameter-free, differing from Eq. (1.17), and the function of i and N. The polotting position \widehat{F}_{i} must satisfy the following condition,

$$
\begin{equation*}
\sum_{j}\left(F_{i j}-\hat{F}_{i}\right)=\text { minimum } . \tag{1.25}
\end{equation*}
$$

And its solution is, evidently,

$$
\begin{equation*}
\widehat{F}_{l}=E\left(F_{t}\right)=i /(N+1) \tag{1.26}
\end{equation*}
$$

This result differs in no way from the plotting position adopted by Thomas ${ }^{18)}$, Gumbel ${ }^{2,3)}$ and the others.

6. Plotting values for first and second asymptotes

Although the plotting position is distribution-free, the plotting value is
neither distribution-free nor parameter-free, except the special type of distribution with two parameters. In this section, the plotting values for the first and the second asymptote samples will be discussed.
(1) The first asymptote:

$$
\begin{aligned}
F(y) & =\exp \left(-e^{-y}\right) \\
f(y) & =\exp \left(-y-e^{-y}\right) \\
y & \equiv z=a(x-u)
\end{aligned}
$$

Since the reduced extreme y itself is linear to the actual variate x, the value of $E\left(y_{i}\right)$ has only to be estimated, that is, the plotting value for the first asymptote is parameter-free. In this case, Eq. (1.19) becomes

$$
\begin{aligned}
d p\left(y_{i}\right) d y_{i}= & \frac{\Gamma(N+1)}{\Gamma(i) \Gamma(N-i+1)}\left[\exp \left\{-(i-1) e^{-y_{i}}\right\}\right\rfloor\left[1-\exp \left(-\epsilon^{-y_{t}}\right)\right]^{N-i} \times \\
& {\left[\exp \left(-y_{t}-e^{-y_{t}}\right)\right\rfloor d y_{i} }
\end{aligned}
$$

Therefore, $E\left(y_{i}\right)$ is

$$
\begin{aligned}
E\left(y_{i}\right) & =\frac{\Gamma(N+1)}{\Gamma(i) \Gamma(N-i+1)} \int_{-\infty}^{\infty} y \exp \left(-y-i e^{-y}\right)\left[1-\exp \left(-e^{-y}\right)\right]^{N-i} d y \\
& =\frac{\Gamma(N+1)}{\Gamma(i) \Gamma(N-i+1)} \sum_{r-0}^{N-\imath}(-1)^{r}{ }_{N-i} C_{r} \int_{-\infty}^{\infty} y \exp \left\{-y-(i+r) e^{-y}\right\} d y
\end{aligned}
$$

After several calculations, it becomes

$$
\begin{equation*}
E\left(y_{t}\right)=\frac{\Gamma(N+1)}{\Gamma(i) \Gamma(N-i+1)} \sum_{r=0}^{N-i}(-1)^{r_{N-i}} C_{r} \frac{1}{i+r}\{\gamma+\lg (i+r)\} \tag{1.27}
\end{equation*}
$$

where, r is a so-called Euler's constant and C means the symbol of combination.
(2) The second asymptote:

$$
\begin{aligned}
F(y) & =\exp \left(-e^{-y}\right) \equiv \exp \left(-z^{-k}\right) \\
y & =k \lg z \\
z & =(x+b) /(u+b)
\end{aligned}
$$

The plotting value $E\left(z_{i}\right)$ in the case of the second asymptote is

$$
\begin{aligned}
E\left(z_{i}\right) & =\frac{\Gamma(N+1)}{\Gamma(i) \Gamma(N-i+1)} k \int_{0}^{\infty} z^{-\kappa} \exp \left(-i z^{-\kappa}\right)\left[1-\exp \left(-z^{-k}\right)\right]^{N-\imath} d z \\
& =\frac{\Gamma(N+1)}{\Gamma(i) \Gamma(N-i+1)} k \sum_{\gamma=0}^{N-i}(-1)^{r}{ }_{N-i} C_{r} \int_{0}^{\infty} z^{-\epsilon} \exp \left\{-(i+\gamma) z^{-\kappa}\right\} d z
\end{aligned}
$$

Then, it is expressed as follows:

$$
\begin{equation*}
E\left(z_{i}\right)=\frac{\Gamma(N+1)}{\Gamma(i) \Gamma(N-i+1)} \Gamma(1-1 / k) \sum_{r=0}^{N-i}(-1)^{r}{ }_{N-i} C_{r}(i+\gamma)^{-1+1 / k} \tag{1.28}
\end{equation*}
$$

(3) A practical method of computation of the plotting values: The plotting value $E\left(y_{i}\right)$ or $E\left(z_{i}\right)$ of the i-th order statistics in the first or the second asymptote sample must be able to be calculated strictly by Eq. (1.27) or Eq. (1.28) as a functions of the order i and the sample size N. But in solving these equations for the various values of i and N, it may be seen that the smaller i is, and the larger N, the more difficult the calculation becomes. Therefore, the following method of computation may be used in a practical sense.
i) $i=N$: The plotting values for the two asymptotes are obtained by putting $i=N$ in Eqs. (1.27) and (1.28), respectively.

For the first asymptote ;

$$
\begin{equation*}
E\left(y_{N}\right)=\gamma+\lg N \tag{1.29}
\end{equation*}
$$

For the second asymptote ;

$$
\begin{equation*}
E\left(z_{N}\right)=N^{1 / k} \Gamma(1-1 / k) \tag{1.30}
\end{equation*}
$$

ii) $i=1$; The plotting values for the two asymptotes are calculated by a method of numerical integration. Several results obtained by such calculation are shown in Fig. 1.5, where the confidence limit ${ }^{(2)}$ defined by Eq. (1.31) is also shown.

Fig. 1.5 Plotting values for $i=N$ and 1 . Where T.P. $=$ Thomas Plot $=i /(N+1)$, H.P. $=$ Hazen Plot $=(2 i-1) / 2 N$ and G.P. means Gumbel Plot proposed in Ref. 19).
$\left.\begin{array}{l}P\left(y_{i} \leq y_{\beta_{1}} \text { or } z_{i} \leq z_{\beta_{1}}\right) \leq \beta_{1}=\frac{\Gamma(N+1)}{\Gamma(i) \Gamma(N-i+1)} \int_{0}^{F_{\beta_{1}}} F^{t-1}(1-F)^{N-i} d F_{i} \\ P\left(y_{i} \geq y_{\beta_{2}} \text { or } z_{i} \geq z_{\beta_{2}}\right) \leq \beta_{2}=\frac{\Gamma(N+1)}{\Gamma(i) \Gamma(N-i+1)} \int_{F_{\beta_{2}}}^{1} F^{i-1}(1-F)^{N-i} d F_{i}\end{array}\right\}$
iii) $1<i<N$: The plotting values for the two asymptotes are not easily obtained as long as the troublesome calculation of numerical integration is not performed. So, the values which satisfy the following equation will be
adopted as the approximations of plotting value, after a model of the method proposed by Gumbel ${ }^{19 \text {) }}$ in his paper "Simplified Plotting of Statistical Observations".

$$
\begin{equation*}
\widehat{F}_{t}=F_{1}+\frac{i-1}{N-1}\left(F_{N}-F_{1}\right) \tag{1.32}
\end{equation*}
$$

where

$$
\begin{aligned}
& F_{1} \equiv F\left\{E\left(y_{1}\right)\right\} \text { or } F\left\{E\left(z_{i}\right)\right\} \\
& F_{N} \equiv F\left\{E\left(y_{N}\right)\right\} \text { or } F\left\{E\left(z_{N}\right)\right\}
\end{aligned}
$$

Then, the estimates of plotting value are obtained by

$$
\left.\begin{array}{ll}
\begin{array}{l}
\text { for the first asymptote } ;
\end{array} \widehat{y}_{t}=-\lg \left(-\lg \widehat{F}_{t}\right) \tag{1.33}\\
\text { for the second asymptote } ; & \widehat{z}_{t}=\left(-\lg \widehat{F}_{t}\right)^{-1 / k}
\end{array}\right\}
$$

Therefore the plotting value \hat{y}_{b} is expressed as a function of the sample size N and the order i, and \hat{z} as a function of the skewness parameter $1 / k$ and N and i.

7. Practical method of estimation of population parameters

(1) The first asymptote: It has already been explained that the fundamental equations for estimation of the parameters in the first asymptote are expressed as follows :

$$
\begin{aligned}
& a=\sigma_{y} / \sigma_{x} \\
& u=m_{x}-m_{y} / a
\end{aligned}
$$

If the sample size N is very large, the classical method of moment must be valid, in which the following values are adopted as already shown by Eq. (1.12).

$$
\begin{aligned}
& \sigma_{\nu}=\pi / \sqrt{6} \\
& m_{y}=\gamma
\end{aligned}
$$

But, since the number of hydrologic observations is usually 10^{1} in order, it cannot but be considered that $m_{y} \leq r, \sigma_{y} \leq \pi / \sqrt{6}$. Therefore, the population values \bar{y} and s_{y} as a function of sample size N should be adopted instead of the values of which $m_{y}=\gamma$ and $\sigma_{y}=\pi / \sqrt{6}$, although some difficult points remain to be discussed. In this case, the parameters a and u are rewritten as follows:

$$
\left.\begin{array}{l}
1 / a=S_{x} / s_{y} \tag{1.34}\\
u=\bar{x}-(1 / a) \bar{y}
\end{array}\right\}
$$

where

Table 1.2 Population values of \bar{y} and s_{y} for N in first asymptote.

$$
1 / a=S_{x} / s_{y}, \quad u=\bar{x}-\bar{y} / a
$$

N	\bar{y}	s_{y}
20	0.5692	1.1825
2	96	895
4	99	956
6	0.5702	1.2009
8	05	055
30	0.5707	1.2095
2	09	130
4	11	162
6	13	192
8	15	219
40	0.5717	1.2244
2	18	266
4	20	287
6	21	306
8	23	323
50	0.5724	1.2338
2	25	352
4	26	366
6	27	379
8	28	391
60	0.5729	1.2402
2	30	413
4.	31	423
6	32	433
8	33	442
70	0.5734	1.2451
75	36	472
80	37	490
85	39	506
90	40	520
95	41	532
100	42	542

$$
\left.\begin{array}{l}
\bar{x}=\frac{1}{N} \Sigma x, \quad \bar{x}^{2}=-\frac{1}{N} \Sigma x^{2} \tag{1.35}\\
S_{x}^{2}=\frac{1}{N} \Sigma(x-\bar{x})^{2}=\bar{x}^{2}-\frac{2}{x}
\end{array}\right\}
$$

The population values \bar{y} and s_{y} calculated by basing on the plotting value as a function of sample size N are presented in Table 1.2.
(2) The second asymptote: In estimation of the parameters of the second asymptote, the problem of bias between the population values arises as well as in the first one. Speaking generally, this bias seems to become large with the increase of the order of moment, because it must be caused by the difference between the domains of variate under consideration. Therefore, if the bias of moment of the highest order which is needed at least in the calculation is satisfactorily settled, the ones of the other moment of lower order may be so small that they can be ignored in a practical sense. That is, if the skewness parameter l / k has only to be evaluated successfully, Eq. (1.13) must be usefully available. The theory of plotting value described in section 6 will be utilized for such a purpose.

Now, since the plotting value z is linear reduced variate of actual variate x, the sample value of the coefficient of skew $C^{\prime} s(z)$ about z must be equal to $C^{\prime}(x)$ about x,

$$
\begin{equation*}
C^{\prime}(z)=C^{\prime}(x) \tag{1.35}
\end{equation*}
$$

The calculated values of C^{\prime} s are shown in Fig. 1.6 as a function of the skewness parameter l / k and the sample size N. Moreover, if the relation between the population value C_{s} given by Eq. (1.9) and the sample value C^{\prime} s is expressed by

$$
\begin{equation*}
C_{s}=C^{\prime} s\left(1+\beta_{s}\right) \tag{1.37}
\end{equation*}
$$

where β_{s}; the additional coefficient of skewness the values of β_{s} are shown in Fig. 1.7.

Therefore, if the sample value of the coefficient of skew C^{\prime} s is calculated from a sample of size N by

$$
\left.\begin{array}{l}
C_{s}^{\prime}=\frac{1}{N} \frac{\sum(x-\bar{x})^{3}}{s_{x}^{3}}=\frac{\bar{x}^{3}-3 \bar{x}^{2} \bar{x}+2 \bar{x}^{3}}{s_{x^{3}}^{3}} \tag{1.38}\\
s_{x}^{2}=\bar{x}^{2}-\frac{2}{x}, \quad \bar{x}^{\jmath}=\frac{1}{N} \Sigma x^{\prime}
\end{array}\right\}
$$

the value of skewness parameter $1 / k$ must be able to be estimated from Fig. 1.6, or from Table 1.1 by using the value of C_{s} presumed by Eq. (1.37)

Fig. 1.6 Relation between $C^{\prime} s$ and $1 / k$ for given N.

Fig. 1.7 Values of β_{s} provided for $C_{s}=C_{s}^{\prime}\left(1+\beta_{s}\right)$.
and Fig. 1.7. And the other parameters u and b can be easily estimated from Eq. (1.13) and Table 1.1, using the estimates

$$
\left.\begin{array}{l}
\sigma_{x}=\sqrt{N /(N-1)} s_{x} \tag{1.39}\\
m_{x}=\bar{x}
\end{array}\right\}
$$

Besides, there is a case where the location parameter b may be assumed to be zero, which happens when the series of points of $\log x$ on the extremal probability paper is scattered about a straight line. In this case, it is needless to say that the other parameters may be estimated by

$$
\left.\begin{array}{l}
1 / a=S_{\log x} / s_{y} \tag{1.40}\\
\log \hat{u}=\overline{\log x}-(1 / a) \bar{y}
\end{array}\right\}
$$

in which

$$
\left.\begin{array}{l}
s_{y} \text { and } \bar{y} ; \quad \text { see Table } 1.2 \tag{1.41}\\
S^{2}{ }_{\operatorname{loq} x}=\overline{(\log x)^{2}}-\frac{2}{\log x} \\
\overline{(\log x)^{j}}=\frac{1}{N} \Sigma(\log x)^{j}
\end{array}\right\}
$$

8. Expected value for given return period

If all parameters are reasonably estimated, the expected value of hy. drologic amount for the desired return period T can be easily calculated by

Fig. 1.8-(1) Frequency curves for annual maximum flow, Yahagi River and Miya River.
Table 1.3 Characteristic values of observed hydrologic data.

the following relations, as is well known,
$\left.\begin{array}{lc}\text { for the first asymptote; } & x=u+(1 / a) y, \\ \text { for the second asymptote; } & \log (x+b)=\log (u+b)+(1 / a) y,\end{array}\right\}$
where usually

$$
\begin{equation*}
y=-\lg [\lg T /(T-1)] \tag{1.43}
\end{equation*}
$$

Figure 1.8 shows several examples of application of the proposed method

Fig. 1.8-(2) Frequency curves for annual maximum flow, Yodo River.

Fig. 1.8-(3) Frequency curves for annual maximum amount of rainfall, (1).
to hydrologic data in Table 1.3, where the observed data are plotted as $F=i /(N+1)$.

From a stochastic viewpoint, however, various points remain to be discussed concerning the expected value of hydrologic amont for the desired return period as expressed by Eq. (1.43). These probiems will be discussed

Fig. 1.8-(4) Frequency curves for annual maximum amount of rainfall, (2).

Fig. 1.8-(5) Frequency curves for annual maximum amount of rainfall, (3).

Fig. 1.8-(6) Frequency curves for annual maximum amount of rainfall, (4).
in Part II.

9. Conclusion

In this part, first, the statistical properties of three types of extreme (largest) value distribution were examined. As the result, it was disclosed that the applicable range for them must be discriminated by the population value of the coefficient of skew. Next, a practical method of estimation of the parameters included in them was successfully developed by using the concept of the plotting va[ue.

Since these studies were already made in 1954~1956 and 1959, this publication may seem to be too late. But the author believes that this paper is still useful in the field of hydrologic frequency analysis.

