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Application of Extreme Value Distribution
in Hydrologic Frequency Analysis

By

Mutsumi Kapova
Synopsis

It is well known that there are three types of asymptotes for the dis-
tribution of the extremes or largest values, which are expressed as follows :
F(y)=exp (—e?) ;
v=a(x—u), for the first asymtote or the Gumbel’s dis-
tribution,
y=alog (x+b)/(u+b), for the second asymptote or the type A of
log-extreme value distribution,
y=alog (g—u)/(g—x) for the third asymptote or the type B of

log-extreme value distribution,

in which @, #, b and g are population parameters.

Several problems have remained unsolved in practical analysis of hy-
drologic frequency by the use of these asymptotes.

(ID) In Prat I, first of all, the statistical characters of the three asymptotic
distributions are discussed theoretically and it-is shown that they should be
applicable in limited range of the value of coefficient of skew, Cs, that is

> the second asymptote,

Cs 1.1395---; for { the first asymptote,

< the third asymptote.

Next, although methods of estimation of the parameters included in the
asymptotic equations have been proposed by Gumbel and others by the help
of method of moment, the results obtained by such methods seem to be not
so good in fitness to hydrologic data. Then, a method of estimation based on
the concept of plotting value instead of plotting position, proposed by the
author is succesfully developed for the first and the second asymptotes [rom
a view point of practical application.

(II)  Generally, very large or small data are to be contained in a sample,



which is called the singular value. In estimating the population parameters
of asymptotes, the rejection test of such data is essential in the sense of
stochastics. Moreover, evaluation of the singular value is Important in the
sense of engineering.

In Part II, first, applying the concept of two-sample theory on normals
the method of evaluation of a singular value is proposed. Next, on the basis
of the binomial distribution, the criterion for rejection of singular data is

defined.

Part 1. Extreme (Largest) Value Distribution
and Method of Fitting

I. Introduction

The extreme value distributions are defined generally as asymptotic
forms of the distribution for the largest or smallest value in a sample.
The practical methods of application of these distributions to various engi-
neering problems have been considered by several investigators. But the
introduction of statistics in this field to hydrologic forecasting seems to owe
much to Gumbel, who showed the usefulness of the first asymptote of the
distribution for largest value to the frequency analysis of floods in 1941%.
Moreover, he showed that the third asymptote of the distribution for smallest
value is successfully applicable to the frequency analysis of droughts in
19542,

In estimating the parameters included in these asymptotes, the classical
method of moment and the method based on the concept of plotting position
were adopted by Gumbel?~%.  As methods of estimation of the parameters in
such asymptotes, besides the above methods, there are useful ones proposed
by Thom? (1954), Lieblein® (1954) and Jenkinson® (1955).

Since 1952, the statistics for the largest values of the hydrologic data
have been studied by the author, who investigated (1) the statistical proper-
ties of three asymptotes for the largest value (1955)”, (2) the method of
estimation of their parameters by the classical method of moment (1955)7,
and (3) the one based on the concept of plotting position (1953, 1954089,
As a result, it was clear that the first and the second asymptotes were

available to the frequency analysis of the hydrologic amount. But the
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results of estimation of their theoretical distribution by the classical method
of moment did not prove very good in fitness to hydrologic data.
Afterwards, a reasonable methodi®™ of fitting based on the concept of
plotting value, which was proposed by the author!? instead of plotting
position, was developed for these asymptotes.
In this part, the statistical properties of the extreme (largest) value
distributions and the method of estimation of their parameters and so on,

obtained by these studies are summarily presented.

2. Extreme (largest) value distributjons and
their fundamental properties

It is well known that there are three types of the asymptote for the
distributions of the extreme (largest) value in a sample, which are practically
expressed as follows :

F(y)=exp(—e?); a.n

1st;y=alx—w)), —coLx<oo (1.2)

2 nd; y=alog (x+b)/(u+b)=klg (x+b)/(u+b), —b<x<oco (1.3)

3rd; y=alog (g-w/(g-0=klg(g-w/(g—x), —ce<x<lg QA4
In the above equations, k=aloge=0.4343a, u, b and g are population
parameters, ¥ is the reduced variate of actual extreme x and is called the
reduced extreme, F'(¥) is the asymptotic probability in which the extreme
variate will not exceed a certain fixed variate, and log and lg stand for the
common and natural logarithms, respectively.

In the field of hydrologic statistics in Japan, the first asymptotic dis-
tribution is usually called as the Gumbel’s distribution in honour of his
pioneering and fruitful work, and the second and third asymptotic distribu-
tions are called the type A and B of logarithmic extreme value distributions,
respectively, since the author’s proposal in 19557, these three asymptotes
are generally called the extreme (largest) value distribution.

Since the mathematical or statistical properties of these asymptotic
distributions have been studied by a number of investigators and are dis-
cussed in detail in the masterpiece ‘‘Statistics of Extremes’” by -Gumbel'®,
it is not necessary to discuss them again here. But the following proper-
ties, among which several unpublished ones are included, should be noticed.

(1) The first asymptote : There are simple relations between the
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population moments vi(x—2%) and v:(y) about origin of order Z, and between

the population central moments #;,(x) and #(¥) of order i, that is
x| .
() =p(y)/al

The population moments v¢(y) and #:(y) are easily calculated by using the

moment generating function () and the semi-lnvariant as follows!? :
lgQ®O=1gI'A-0, [t|<1
=Tt+§25<r>tr/r
where
y=0.5772--- is the Euler’s constant,
S =lim A+27"+3"+-+n"), r=2

n—roo
Therefore, the mean #2, and ., the variance ¢,2 and o.% and the other

moment #;(¥) and #,(x) are expressed, respectively, as follows:

my=v1(Y) =7, mz=u+r/a
o =t(v) =S(2) =n2/6, 02=S Q) /a?=n%/6a> 1.6)
©i(y) =25(3), (%) =25@3)/a?

It should be noticed that the coefficient of skew of the extremes

themselves, equal to that of the reduced extremes, becomes
Cs=13/13/2=25(3) /S (2)3/2=1.1395--- a.mn
(2) The second asymptote : The population moment w:(x+5) about
origin of order 7 is expressed by
vi(x+8) =" (x+B)dF
After several calculations,
vi(x+8) =(u+b)I'(1—-i/k) 1.8)

The mean and the variance and the other moments are easily obtained

by putting =1, 2, 3,--- in above equalion. And the coefficient of skew Cs

becomes
Cm #s  I'Q=-3/B-3IA-2/I'A-1/B+2I"1-1/k) (1.9)
S gl = TA-2/B) - EA-1/BY" :
Jt becomes clear after some examinations that
acs
aam 0

and



lim C;=25(3)/S(2)8/4=1.1395---

1/k—0
That is, the second asymptote is the extremely skewed distribution as its

coefficient of skew C; is greater than 1.1395---.
(3) The third asymptote : The population characters of the third

asymptote can also be easily examined as well as is done for the second

asvmptote, and the following relations are obtained,

vi(g—%)=(g-w'(A+i/k 1.10)

Co— '+3/k-3ra+2/Bra+1/k+2r:A+1/k (11D
* (r(+2/k)—I*(1+1/k)J32 ’

f () Moreover, it can be

o8 made clear that the

1st Asywptote, Cg=1.1395

o coefficient of skew Cs
0.6 2nd Asymptote, 1/k=0.2, Cg=3.535

of this asymptotic
—————— 3rd Asymptote, 1/k=0,5, Cg=-0.563
distribution is less

than 1.1395---.

From the facts

mentioned above, the

2 x
Fig. 1.1 Shapes of asymptotis distribution, provided conclusion is obtained
mz=0 and o,=1. that the three as-

ymptotic distributions of the largest value

are characterized by the coefficient of

[+:]
—
e

L 2 skew, or that they should be applicable
£
s ? in limited range of the value of coefficient
. B t‘é’ of skew Cs, that is
3| > ( for the second
2t Ist Asymplote asyptote,
...... Cs=lI395. _b—m __ G = 1.1395+; for the first one,
) > _
; R for the third one.

F Srq 1
L M Figures 1.1 and 1.2 show this relation.

3. Estimation of population
parameters by method

Fig. 1.2 Relation between
Cs and 1/k. of moment

A method of estimation of the population parameters included in these

asymptotes by a method of moment is easily derived from the results in the



preceding section.
(1) The first asymptote : Using Eq. (1.6), two parameters @ and #,
which are scale and location parameters of the first asymptotic distribution,

respectively, can be obtained by

a=0y,/0: '\‘
=71/ 6 02=1/0.77970 } (1.12)
U=Me—My/a
=MWe—7/a8=ms—0.45000, j
A so-called classical method of moment has been adopted by Gumbel in
his earliest work®, in which the population values ¢z and m. in Eq. (1.12)
are directly replaced by the sample values S. and X, respectively.
(2) The second asymptote: Three parameters 1/k, b and %, which
are skewness, location and scale parameters of the second asymptotic dis-
tribution, respeciively, can lead to the following expressions after several

calculations based on Eq. (1.8),
ra-3/p-3r-2/)rad-1/p+2r<1-1/k)

Ce= (ra-2/k)—-I1=(1-1/k)J%* 1.9’
1/a=0.4343/%
b=A10:—m=Ci0-—u .
U=mqs— B10z
u+b=Ci0z
where
A=IA-1/B/(rA-2/k)-TI*Q-1/k)]J'2
B=(I'(1-1/k) -1/ A-2/k) -1 -1/k)JV* (114

C=A,-B=1/I"'A-2/k) —-I*Q-1/k)]J12

In the above equations, it will be noticed that the values of Cs, A4, B;
and C; depend only upon the value of parameter 1/k. In Table 1.1, those
values as a function of 1/% are shown for the practical facilities, which are
originally prepared with six decimal places”. If an adequate method of
estimation of the population values Cs, 0- and #, from the sample values is
found out, the parameters may by easily estimated from Eq. (1.13) by using
Table 1.1.

(8) The third asymptote: Three parameters 1/£, g and #, which are
skewness, location and scale parameters of the third asymptotic distribution,

respectively, are also obtained from Eq. (1.10), as follows :



Table 1.1 Populalion values of Cs, Ai, By and C; for 1/k in second asymptote.
b=A10,— My, xo=mz—Bi10;, x0+b=Ci0,

|

1/k Cs A B Ci
0.001 1. 1455 779.13 0.450 2 778.68
2 1515 389.28 4 388. 83
3 1576 259,33 6 258.88
4 1636 194,35 8 193.90
5 1697 155.37 9 154. 92
1 0.006 1.1758 129,38 0.451 1 128.92
7 1819 110.81 3 110.36
8 1881 96.89 5 96. 44
9 1043 86.06 6 85.61
10 2005 77.39 8 76.94
0.011 1.2067 70.30 0.452 0 69.85
2 2130 64. 40 1 63.94
3 2103 59.40 3 58.95
4 2956 55.11 5 54. 66
5 2319 51.40 6 50.95
0.016 1.2383 48.15 0.452 8 47.70
7 2447 45.28 L9 44.83
8 2512 42.74 0.453 1 42.28
9 2576 40,46 2 40. 00
20 2641 38.40 4 37.95
0.021 1.2706 36.54 0.453 5 36.09
2 2772 34.86 7 34.40
3 2837 33.32 8 32.86
4 2004 31.90 0.454 0 31.45
5 2970 30.60 1 30.15
0.026 1.3037 29.40 0.454 3 28.95
7 3604 28.29 4 27. 84
8 3171 27.26 6 26. 80
9 3239 26.30 7 25.84
30 3307 25.40 8 24.95




1/k Cs A B % Ci
\
0.030 1,3307 25.40 0.454 8 ‘ 24.95
1 3375 24.56 0.455 0 24.11
2 3444 23.78 1 23,32
3 3513 23.04 2 22.58
4 3582 22,34 4 21.89
5 3652 21.69 5 21,23
0.036 1,3721 21.07 0.455 6 20.61
7 3792 20.48 7 20.02
8 3862 19.92 9 19,47
9 3933 19.40 0.456 0 18.94
40 4005 18,90 1 18. 44
0.041 1.4077 18,42 0.456 2 17.97
2 4149 17.97 3 17.51
3 4221 17.54 4 17.08
4 4294 17.12 6 16.67
5 4367 16.73 7 16.27
0.046 1.4441 16.35 0.456 8 15.89
7 4515 15.99 9 15.53
8 4589 15. 64 0.457 0 15.19
9 4664 15.31 1 14,85
50 4739 14.99 2 14,54
0.051 1.4814 14. 6867 0.457 3 14.2294
2 4890 3921 4 13.9347
3 4967 1085 5 6510
4 5043 13.8354 6 3778
5 5120 5722 7 1145
0.056 1.5198 13,3184 0.457 8 12. 8606
7 5276 0735 9 6156
8 5354 12,8370 0.458 0 3790
9 5433 6085 0 1505
60 5512 3876 1 11.9295
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1/k Cs Ay Bi C:

0. 060 .5512 12, 3876 0.458 1 11.9295
1 5592 1739 2 7157

2 5672 11,9671 3 5088

3 5753 7668 4 3084

4 5834 5728 4 1144

5 5916 3847 5 10. 9262

0. 066 .5997 11.2022 0.458 6 10. 7436
7 6080 0253 7 5666

8 6163 10.8534 7 3947

9 6246 6866 8 2278

70 6330 5245 9 0656
0.071 . 6415 10. 3669 0.458 9 9.9080
2 6499 2137 0.459 0 7547

3 6585 0647 1 6056

4 6671 9.9197 1 4606

5 6757 7785 2 3193
0.076 . 6844 9.6411 0.459 2 9.1819
7 6932 5072 3 0479

8 7020 3766 3 8.9173

9 7108 2494, 4 7900

80 7197 1254 4 6660
0.081 . 7287 9.0044 0.459 5 8.5449
2 7377 8,8863 5 4268

3 7468 7710 6 3114

4 7559 6585 6 1989

5 7651 5486 6 0890

0. 086 L7743 8.4413 0.459 7 7.9816
7 7836 3364 7 8767

8 7930 2338 7 7741

9 8024 1336 8 6738

90 8119 0355 8 5757
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1/k Cs 1 Ax B: Cy
]

0.090 . 8119 8.0355 0.459 8 7.5757
1 8215 7.9396 8 4798
2 8311 84,58 8 3860
3 8408 7539 9 2940
4 8505 6640 9 2041
5 8603 5760 9 1161
0.096 . 8702 7.4898 0.459 9 7.0299
7 8801 4054 9 6.9455
8 8901 3227 9 8628
9 9002 2416 9 7817
100 9103 1621 0.460 0 7021
0.101 . 9205 7.0842 0.460 0 6.6242
2 9308 0078 0 5478
3 9412 6.9328 0 4728
4 9516 8593 0 3993
5 9621 7872 0 3272
0.106 L9727 6. 7164 0.460 0 6. 2564
7 9833 6469 0 1869
8 9941 5788 0.459 9 1189
9 . 0049 5118 9 0519
10 0158 4461 9 5.9862
0.111 . 0267 6.3815 0.459 9 5.9216
2 0378 3180 9 8581
3 0489 2557 9 7958
4 0601 1944 8 7346
5 0714 1342 8 6744
0.116 . 0828 6.0750 0.459 8 5.6152
7 0943 0168 8 5570
8 1058 5.9596 7 4999
9 1175 9033 7 4436
20 1292 8480 7 3883
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1/k Cs Ay B Cy
0.120 2.1292 5, 8480 0.459 7 5.3883
1410 7935 6 3339
2 1529 7400 6 2804
3 1649 6873 5 2278
4 1771 6354 5 1759
5 1893 5843 5 1248
0.126 2.2016 5.5341 0.459 4 5.0747
7 2140 4846 4 0252
8 2265 4359 3 4, 9766
9 2391 3879 2 9287
30 2518 3406 2 8814
0.131 2,2646 5.2941 0.459 1 4, 8350
2 2775 2482 1 7891
3 2905 2030 0 7440
4 3037 1585 0.458 9 6996
5 3169 1146 9 6557
0.136 2.3303 5.0714 0.458 8 4.6126
7 3438 0288 7 5701
8 3574 4.9868 6 5282
9 3711 9453 6 4867
40 3849 9045 5 4460
0.141 2, 3989 4. 8642 0.458 4 4. 4058
2 4129 8245 3 3662
3 4271 7853 2 3271
4 4415 7467 1 2886
5 4559 7085 0 2505
0.146 2.4705 4.6709 0.457 9 4.2130
7 4852 6338 9 1759
8 5001 5971 8 1393
9 5151 5610 7 1033
50 5303 5253 6 0677
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1/k Cs Ay B; Cy
0.150 2.5303 4.5253 0.457 6 0677
1 5455 4901 5 0326
2 5610 4553 3 .9980
3 5765 4210 2 9638
4 5923 3871 1 9300
5 6081 3536 0 8966
0.156 2.6142 4. 3206 0.456 9 8637
7 6404 2879 8 8311
8 6567 2557 6 7991
9 6732 2238 5 7673
60 6899 1923 4 7359
0.161 2.7068 4.1613 0.456 3 7050
2 7238 1305 1 6744
3 7410 1002 0 6442
4 7583 0702 0.455 8 6144
5 7758 0406 7 5849
0.166 2.7936 4,0113 0.455 6 .5557
7 8116 3.9823 4 5269
8 8298 9537 3 4984
9 8480 9254 1 4703
70 8665 8974 0 4424
0.171 2.8852 3.8697 0.454 8 L4149
2 9041 8424 6 3878
3 9232 8153 5 3608
4 9426 7886 3 3343
5 9621 7622 1 3081
0.176 2.9819 3.7360 0.454 0 2820
7 3.0019 7101 0.453 8 2563
8 0221 6845 6 2309
9 0425 6592 4 2058
80 0632 6341 3 1808
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1/k Cs A B: Ci
10.180 . 0632 .6341 0.453 3 3.1808
1 0842 6093 1 1562
2 1053 5848 0.452 9 1319
3 1268 5605 7 1078
4 1485 5365 5 0840
5 1704 5127 3 0604
0.186 .1926 .4892 0.452 1 3.0371
7 2151 4659 0.451 9 0140
8 2379 4428 7 2.9911
9 2609 4200 5 9685
90 2843 3974 3 9461
0.191 .3079 .3750 0.451 1 2.9239
2 3319 3529 0.450 9 9020
3 3561 3310 7 8803
4 3807 3092 4 8588
5 4056 2877 2 8375
0.196 .4308 . 2664 0.450 0 2.8164
7 4563 2453 0.449 8 7955
8 4822 2245 5 7750
9 5085 2038 3 7545
200 5351 1833 0 7343
0.201 .5620 .1630 0.448 8 2. 7142
2 5894 1429 6 6943
3 6171 1229 3 6746
4 6453 1032 1 6551
5 6738 0836 0.447 8 6358
0.206 . 7027 . 0642 0.447 6 2. 6166
7 7321 0450 3 5977
8 7619 0260 0 5790
9 7921 0071 0.446 8 5603
10 8228 .9884 5 5419
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1/k Cs Ar B C:

0.210 .8228 2.9884 0.446 5 . 5419
1 8539 9699 2 5237

2 8855 9515 0 5055

3 9176 9333 0.445 7 4876

4 9503 9153 4 4699

5 9834 8974 1 4523
0.216 .0170 2.8797 0.444 8 . 4349
7 0511 8621 5 4176

8 0858 8446 3 4003

9 1211 8273 0 3833

20 1570 8102 0.443 7 3665
0.221 .1935 2.7932 0,443 4 . 3498
2 2305 7764 1 3333

3 2682 7596 0.442 8 3168

4 3066 7431 4 3007

5 3456 7266 1 2845
0.226 . 3853 2.7103 0.441 8 . 2685
7 4257 6941 5 2526

8 4668 6781 2 2369

9 5086 6622 0.440 8 2214

30 5512 6464 5 2059
0.231 . 5946 2.6307 0.440 2 .1905
2 6388 6152 0.439 8 1754

3 6839 5998 5 1603

4 7298 5845 1 1454

5 7765 5693 0.438 8 1305
0.236 . 8242 2.5542 0.438 5 L1157
7 8728 5393 1 1012

8 9223 5244 0.437 7 0867

9 9729 5097 4 0723

40 . 0245 4951 0 0581
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1/k Cs Ay B Cy

0.240 . 0245 2.4951 0.43 70 2. 0581
1 0772 4806 66 0440

2 1310 4662 63 0299

3 1859 4519 59 0160

4 2420 4377 55 0022

5 2993 4237 51 1.9886

0. 246 .3578 2. 4097 0.43 48 1.9749
7 4176 3958 44 9614

8 4787 3820 40 9480

9 5412 3684 36 9348

50 6051 3548 32 9216
0.251 .6706 2.3413 0.43 28 1.9085
2 7376 3279 24 8955

3 8062 3146 20 8826

4 8765 3014 15 8699

5 9485 2884 11 8573
0.256 . 0223 2.2753 0.43 07 1.8446
7 0979 2624 03 8321

8 1756 2496 0.42 98 8196

9 2552 2368 84 8074

60 3369 2242 90 7952

0. 261 .4208 2,2116 0.42 85 1.7831
2 5069 1991 81 7710

3 5954 1867 76 7591

4 6864 1744 72 7472

5 7800 1621 67 7354
0.266 .8763 2.1499 0.42 63 1.7236
7 9754 1378 58 7120

8 .0775 1258 53 7005

9 1827 1139 49 6890

70 2911 1020 44 6776
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1/k Cs Ay B Cy
0.270 7.2911 .1020 0.42 44 L6776
1 4028 0903 39 6664
2 5180 0786 34 6552
3 6369 0669 29 6440
4 7598 0554 25 6329
5 8868 0439 20 6219
0.276 8.0182 L0325 0.42 15 .6110
7 1542 0211 10 6001
8 2950 0098 04 5894
9 4410 .9986 0.41 99 5787
80 5924 9875 94 5681
0.281 8.749 . 9764 0.41 89 . 5575
2 912 9654 84 5470
3 9.081 9544 78 5366
4 257 9436 73 5263
5 440 9327 68 5159
0.286 9.631 .9220 0.41 62 .5058
7 830 9713 57 4956
8 10.037 9007 51 4856
9 254 8901 46 4755
90 481 8796 40 4656
0.291 10.717 .8691 0.41 35 . 4556
2 965 8587 29 4458
3 11.226 8484 23 4361
4 499 8381 17 4264
786 8279 12 4167
0.296 12.089 .8177 0.41 06 4071
7 409 8016 00 3976
8 747 7976 0.40 %4 3882
9 13,104 7876 88 3788
0.300 484 7716 82 3694
0.31 . 6810 0.40 18 L2792
0.32 5890 0.39 51 1939
0.33 5012 0.38 77 1135
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Coz r(+3/k) -3rQ+2/BrQ+1/k +2r:QA+1/k 1.1’
= TA+2/B -T=Q+1/k)]%* '
1/a=0.4343/k
g=Mz+A20: 1.15)
u=m:z—B2az
g—u=Cs0z
where
A= Q+1/B/T QA+2/k) - T*(1+1/R]*
Bi=(1-I'(1+1/B))/( A+2/k) —T*A+1/B))/2 (116

Co=A:+B,=1/(I"1+2/k) —I"*(1+1/k)IV2
The values of Cs, Az, B: and Cz can be tabulated as a function of 1/Z
as well as that for the second asymptote. These values, however, correspond
to the ones for the third asymptote of the smallest value prepared by Gumbel

in his book, as follows:

For the third asymptote of For the third asymptote of
largest value (the author)” smallest value (Gumbel)®
Cs = "'ﬂl(k)
A = B(k) - A(k)
B; = AR
C. = Bk)

Since there is no difference between the two values in essence, it will be

unnecessary to show such a table in this paper.

4. Selection of applicable type of asymptote from
view point of hydrologic frequency analysis

It has been shown above that the three types of asymptote for the
largest value should be applicable in limited range of the value of coefficient
of skew Cs. But such a discussion for the population value is not always
realistic for the sample value. The reason is that, for example, the value
of the coefficient of skew C’s of the first asymptote sample, which means a
sample taken from the population of the first asymptote, is not always equal
to Cs=1.1395--- for the population, but there are various cases where it will
be larger or smaller than Cs=1.1395--- from a view point of sample theory.

Otherwise, one of the most important problems in relation to the
hydrologic largest variates is how to estimate a bigger future value. In
estimation of such a value by basing on a sample of small size obtained by

hydrologic observation, it may be often happen that the third asymptote is
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wrongly applied to the first or the second asymptote sample, or that either
the first or the second asymptote is wrongly applied to the third asymptote
sample. However, from the view point of the prevention of disasters, the
former mistake seems to be more serious than the latter.

Under the above considerations,

Y Foo
h ing i 9995 o T
the following course of treatment in s .9 ESEIN Amif‘é’
the hydrologic frequenc analysis 998 L
Y g q Yy analy o[08 19 ]
should be adopted. L H '
995 :
i) If the series of plotted points %o, /
of hydrologic data on the extremal afb | v
probability paper is scatterd about a 3| 95 SR aame
straight line or a curve, denoted as 2| ° K It
L /
G or B in Fig. 1.3, the first asymptote . 7
must be applied. o—— 50 Eor v A
. . . . K *B
ii) If the series of points is AL obgAE
scattered about a curve, denoted as [ o T
>2~ .

Hydrologic Amount

A in Fig. 1.3, the second asymptote
Fig. 1.3 Condition of application for

three asymptotes.

is usefully applicable.

i11) The third asymptote must
not be applied, except for a family of data of which the plotted points are
arranged about the curve B with extremely large curvature.

Therefore, a discussion of the third asymptote will be omitted in the

following sections.
5. Concept of plotting value

The simplest method of estimation of the parameters of asymptotes for
the distribution of the largest value is the so-called classical mothod of
moment in which the population moments described in section 3 are directly
replaced by the sample moments. The population moments are obtained by
integration over the whole domain of variation, while the sample moments
are based on the sample of limited and small size IV, generally. The results
obtained by the classical method of moment seem to be not so good in
fitness to hydrologic data, because of the bias bétween two moments,
although it may not be a sufficient reason. In order to eliminate this bias,

an approximate method is required, by which the population moments may



20

be evaluated as a function of sample size V.

In the field of hydrologic statistics, the population moments are often
calculated by using the plotting position. However, the concept of the
plotting position must be more fully considered in applying to calculation of
the population moments, because it may be originally used for construction
of the empirical distribution function.

Suppose that xi, #z,--%x are a set of observations of size N, and
#1<x:<---<xy. And let them be a sample of size N from a population,
having the continuous c¢df F'(x) of which only the type and, therefore, the
value of coefficient of skew Cs, is known. Then, as is well known, the
probability element dp(x,)dx; for the i-th order statistics #; in such a
sample is given by

I'(N+1D
rOrN-i+1)
If the parameters included in F(x)=gz f(x)dx are not larger than

—co

dp(x)dxs= (Fx) Y A-Fx )t (xpdx;, (117

three in number, and if the distribution functions of such asymmetrical
types as are applicable to the hydrologic frequency analysis are supposed,
the unknown parameters included in Eq. (1.17) must be two in number,
since the value of coefficient of skew is known. Now, let the linear reduced
variate 2z be defined as

z=a(x—b) (1.18)

where, @ and b are numerical constants.

Then, the probability element dp(2;)dz; for the i-th order statistics z; is
given by

apGOdz= 1o on s F @OV - P4 fodze (119)

and the unknown parameter must be not included in this equation.
Since the unknown parameters @ and & should be estimated as follows,
;[zt —a(x;—b))?=minimum 1.20)
under the condition
E(z,) =alE(x) — 0], 1.2D
the problem of estimation of the parameters is reduced to estimating the
value 2; corresponding to x;.
A schematic figure of the distribution of 2; corresponding to #; is shown

in Fig. 1.4, where x; are regarded as the fixed variate. Since the probability
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element of z; is given by Eq.
(1.19) as the functions of order
¢ and sample size N, the de-

termination of z; is almost

<
equivalent to estimating the »
~ [0
value of z, satisfying the follow- E
=
ing condition ®
2
S (z—2)* =minimum. (1.22) & Ny
J : ’?/ . O, Expectation of
The solution of Eq. (1.22) is, <P Plotting Value

1 -
¢ eally’ ® | Mode of Plotting

Value ( max. spot )

Zi=FE(z) (1.23)

The line connecting each

Sample Value Xi' ( attend to order i )
Fig. 1.4 Schematic figure for distribution

value of E(z:;) is not always of plotting value.

equivalent to the one which
satisfies the condition of Eq. (1.20) in a theoretical sense, but the difference
between the two lines seems to be so small that it may be ignored in a
practical sense.
In this paper, the value of E(z) obtained from this idea is named
the (expected) plotting value, to distinguish it from the plotting position.
In addition, if the discussion of the plotting position is made, the dis-
tribution of the value of F; instead of the value of x; should be considered
m Eq. (1.17).
dp(F)dF,=

PNHY it oy

This equation is originally parameter-free, differing from Eq. (1.17),
and the function of ¢ and N. The polotting position ﬁi must satisfy the

following condition,
SV(Fy;— Fy) = minimum. (1.25)

J
And its solution is, evidently,

F=EF)=i/(N+D) (1.26)
This result differs in no way from the plotting position adopted by
Thomas'®, Gumbel®® and the others.
6. Plotting values for first and second asymptotes

Although the plotting position is distribution-free, the plotting value is
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neither distribution-free nor parameter-free, except the special type of dis-
tribution with two parameters. In this section, the plotting values for the
first and the second asymptote samples will be discussed.
(1) The first asymptote :
F(y)=exp(—e™)
f(¥) =exp(—y—e™)
y=2z=alx—u)
Since the reduced extreme ¥ itself is linear to the actual variate x,
the value of E(y;) has only to be estimated, that is, the plotting value for
the first asymptote is parameter-free. In this case, Eq. (1.19) becomes

dp(yDdy,= I“(zjl%(gv_l-_lz)rﬁ Cexp{—(—De Y}I(1—exp(—e~ ¥)IN-ix

EexP(—yt—e ”)]dyi
Therefore, E(y;) is

r = .
EGo = r(i)ﬁé\zfvtlﬂn S,,,yexp( —y—ie)(1-exp(—e)IV"'dy

rN+1) A - .
= PO AT SV G yexp(—y= G ey

After several calculations, it becomes

I'(N+1) et

EGO = py p N1y S, (- D - s r g0} 12D

where, 7 is a so-called Euler’s constant and C means the symbol of combi-
nation.
(2) The second asymptote :
F(y) =exp(—e=exp(—2z7")
y=*klgz
z=(x+b)/(u+b)
The plotting value E(z;) in the case of the second asymptote is

(N - .
EGo= r(z)r((z\;—lz)ﬂ) S z" exp(—iz7) (1 -exp(—27)¥-'dz

I'(N+1 -
W)ﬁ D kE (=7 n-4Cr So z-e exp{_ (7:"'7’)2—’“}(12

Then, it is expressed as follows :

I'(N+1D

Nt
E(z) = TOIN=i+D ra-1/g Tgﬂ (= D7y-iCrG+p) 1418 (] .98)
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(3) ‘A practical method of computation of the plotting values: The
plotting value E(y;) or E(z;) of the i~th order stalistics in the first or
the second asymptote sample must be able to be calculated strictly by Eq.
(1.27) or Eq. (1.28) as a functions of the order Z and the sample size V.
But in solving these equations for the various values of 7 and N, it may be

seen that the smaller z is, and y Feo

the larger IV, the more difficult 7[o99
the calculation becomes. There- 99,8
6 o) == L
fore, the following method of T ” ~o)
) X
computation may be used in a 5‘99'5 % 6_99‘
practical sense. 99 ,‘Qf‘
i) =N : The plotting values Al 0'7;,
for the two asymptotes are ob- —F ?/;'0‘
X A
tained by putting i=N in Eqs. | os
(1.27) and (1.28), respectively. -
%0
For the first asymptote ; 2r
E(yy»)=r+IgN (1.29) 80 5
1/k=0.
For the second asymptote ; T g('f(w By
EG@w)=NvwrEr1-1/  (1.30) [ 50 —
ol =
i1) i=1; The plotting values ol _prot
: : T} 0z
for the two asymptotes are cal- L |§~ = Lo TR
culated by a method of numerical —— SR - L2k=03
ro = = S ,-0.2
integration. Several results ob- ol R - e 0.1
. i 2= "o 20 30 50 70 100 200 300 500
tained by such calculation are Sample Size N

Fig. 1.5 Plotting values for =N and 1.

shown in Fig. 1.5, where the Where T.P.=Thomas Plot=:/(N+1),

confidence limit'® defined by Eq. H.P.=Hazen Plot=(2/—1)/2N and
. G.P. means Gumbel Plot proposed in
(1.31) is also shown. Ref. 19).

_ IWNHD (e pmes
P(3<9p, or 20<25) <P ="F) FON =711 SO Fi-i(1 — FYN-idF,

(1.3D)

_ TWNHD Y ywe
P(yizvﬂz or 2122ﬂz)s,@z— T (N=itD SFﬂF 11— F)P-idF,

2

i) 1<i<N: The plotting values for the two asymptotes are not easily
obtained as long as the troublesome calculation of numerical integration is

not performed. So, the values which satisfy the following equation will be
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adopted as the approximations of plotting value, after a model of the method
proposed by Gumbel® in his paper ‘‘Simplified Plotting of Statistical

Qbservations’’.
By=Fyt At e FD (1.32)

where
F=F{E(y)} or F{E(z)}
Fy=F{E(yx)} or F{E(zx)}

Then, the estimates of plotting value are obtained by

for the first asymptote ; 31/:5= —lg(—/-\lg ﬁi) } (1.33)
for the second asymptote ; z,=(—lg Fy)-1/*

Therefore the plotting value yA¢ is expressed as a function of the sample
size N and the order i, and z as a function of the skewness parameter 1/%

and N and 7.
7. Practical method of estimation of population parameters

(1) The first asymptote: It has already been explained that the
fundamental equations for estimation of the parameters in the first asymptote
are expressed as follows:

a=0y/0:
U=m.—my,/a

If the sample size N is very large, the classical method of moment
must be valid, in which the following values are adopted as already shown
by Eq. (1.12).

oy=n/v6

my=rv
But, since the number of hydrologic observations is usually 10! in order, it
cannot but be considered that #, <y, oy<7/ v 6 . Therefore, the population
values ¥ and Sy as a function of sample size IV should be adopted instead
of the values of which m,=1 and 6,=7/v 6, although some difficult points
remain to be discussed. In this case, the parameters @ and # are rewritten

as follows :

1/a=sz/5 } (1.30)

u=x—(1/a)y
where



Table 1.2 Population values of ¥ and Sy for N in first asymptote.
1/a=Sw/S7, u=f—5’/ﬂ

N 3y Sy

20 0.56 92 1.1 825
96 895

99 956

6 0.57 02 1.2 009
8 05 055
30 0.57 07 1.2 095
09 130

11 162

13 192

15 219

40 0.57 17 1.2 244
2 18 266
4 20 287
21 306

23 323

50 0.57 24 1.2 338
2 25 352
26 366

6 27 379
28 391

60 0.57 29 1.2 402
2 30 413
31 423

6 32 433
8 33 442
70 0.57 34 1.2 451
75 36 472
80 37 490
85 39 506
90 40 520
95 41 532
100 42 542
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(1.35)

The population values ¥ and S, calculated by basing on the plotting value
as a function of sample size N are presented in Table 1.2.

(2) The second asymptote: In estimation of the parameters of the
second asymptote, the problem of bias between the population values arises
as well as in the first one. Speaking generally, this bias seems to become
large with the increase of the order of moment, because it must be caused
by the difference between the domains of variate under consideration.
Therefore, if the bias of moment of the highest order which is needed at
least in the calculation is satisfactorily settled, the ones of the other moment
of lower order may be so small that they can be ignored in a practical
sense. That is, if the skewness parameter 1/% has only to be evaluated
successfully, Eq. (1.13) must be usefully available. The theory of plotting
value described in section 6 will be utilized for such a purpose.

Now, since the plotting value z is linear reduced variate of actual
variate x, the sample value of the coefficient of skew C’:(z) about z must
be equal to C’s(x) about x,

C's(2)=C"s(x) 1.35)

The calculated values of C’s are shown in Fig. 1.6 as a function of the

skewness parameter 1/ and the sample size N. Moreover, if the relation
between the population value Cy given by Eq. (1.9) and the sample value

C’s is expressed by
Co=C's(1+ 85 .37

where fs; the additional coefficient of skewness
the values of 8s are shown in Fig. 1.7.
Therefore, if the sample value of the coefficient of skew C’s is calculated

from a sample of size IV by

3
C/:.‘:L 2(x—x)?% _ x-3%x+2%

N Sz8 Sy3

, . (1.38)
Se=F-%, F=4 D

the value of skewness parameter 1/ must be able 10 be estimated from
Fig. 1.6, or from Table 1.1 by using the value of Ci presumed by Eq. 1.37D
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and Fig. 1.7. And the other parameters % and & can be easily estimated
from Eq. (1.13) and Table 1.1, using the estimates

W= X

(1.39)

Besides, there is a case where the location parameter b may be assumed
to be zero, which happens when the series of points of log x on the extremal
probability paper is scattered about a straight line. In this case, it is

needless to say that the other parameters may be estimated by

1/a=S 109 2/S,
woe/S } (1.40)
log #=log x— (1/@)y
in which
Sy and ¥; see Table2 1.2
Sz logz = (10g x)z—_lno_g_x (141>

(log =% (log )’

8. Expected value for given return period

If all parameters are reasonably estimated, the expected value of hy-

drologic amount for the desired return period 7 can be easily calculated by
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Fig. 1.8-(1> Frequency curves for annual maximum flow,
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the following relations, as is well known,
for the first asymptote ; x=u+1/a)y, } (1.42)
for the second asymptote; log(x+d) =log(u+b)+ Q/a)y,

where usually

y=—1glg T/(T-1)) (1.43)
Figure 1.8 shows several examples of applicalion of the proposed method
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to hydrologic data in Table 1.3, where the observed data are plotted as
F=i/(N+1).

From a stochastic viewpoint, however, various points remain to be
discussed concerning the expected value of hydrologic amont for the desired

return period as expressed by Eq. (1.43). These probiems will be discussed
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in Part II.

9. Conclusion

In this part, first, the statistical properties of three types of extreme
(largest) value distribution were examined. As the result, it was disclosed
that the applicable range for them must be discriminated by the population
value of the coefficient of skew. Next, a practical method of estimation of
the parameters included in them was successfully developed by using the
concept of the plotting vafue.

Since these studies were already made in 1954~1956 and 1959, this
publication may seem to be too late. But the author believes that this

paper is still useful in the field of hydrologic frequency analysis.





