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Application of Extreme Value Distribution 

   in Hydrologic Frequency Analysis

By

 Mutsumi KADOYA

Synopsis

   It is well known that there are three types of asymptotes for the dis-

  tribution of the extremes or largest values, which are expressed as follows  : 

   F(y) = exp (—  a-u)  ; 

 y=a(x—u), for the first asymtote or the Gumbel's dis-

                              tribution, 

      y=a log (x+b)/(u+b), for the second asymptote or the type A of 

                              log-extreme value distribution, 

      y=a log (g—u)/(g—x) for the third asymptote or the type B of 
                              log-extreme value distribution, 

in which a, u, b and g are population parameters. 

   Several problems have remained unsolved in practical analysis of hy-

drologic frequency by the use of these asymptotes. 

   (I) In Prat I, first of all, the statistical characters of the three asymptotic 

distributions are discussed theoretically and  it.  is shown that they should be 

applicable in limited range of the value of coefficient of skew,  Cs, that is 

 ' the second asymptote , 
 Cs  =  1.1395•••; for the first asymptote, 

 \ the third asymptote. 

   Next, although methods of estimation of the parameters included in the 

asymptotic equations have been proposed by Gumbel and others by the help 

of method of moment, the results obtained by such methods seem to be not 

so good in fitness to hydrologic data. Then , a method of estimation based on 
the concept of plotting value instead of plotting position , proposed by the 
author is succesfully developed for the first and the second asymptotes from 

a view point of practical application. 

   (II) Generally, very large or small data are to be contained in a sample ,
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which is called the singular value. In estimating the population parameters 

of asymptotes, the rejection test of such data is essential in the sense of 

stochastics. Moreover, evaluation of the singular value is important in the 

sense of engineering. 

   In Part II, first, applying the concept of two-sample theory on normals 

the method of evaluation of a singular value is proposed. Next, on the basis 

of the binomial distribution, the criterion for rejection of singular data is 

defined.

Part I. Extreme (Largest) Value Distribution 

        and Method of Fitting

I. Introduction

   The extreme value distributions are defined generally as asymptotic 

forms of the distribution for the largest or smallest value in a sample. 

The practical methods of application of these distributions to various engi-

neering problems have been considered by several investigators. But the 

introduction of statistics in this field to hydrologic forecasting seems to owe 

much to Gumbel, who showed the usefulness of the first asymptote of the 

distribution for largest value to the frequency analysis of floods in  1941". 

Moreover, he showed that the third asymptote of the distribution for smallest 

value is successfully applicable to the frequency analysis of droughts in 

 19542'. 

   In estimating the parameters included in these asymptotes, the classical 

method of moment and the method based on the concept of plotting position 

were adopted by  Gumbel"-3). As methods of estimation of the parameters in 

such asymptotes, besides the above methods, there are useful ones proposed 

by  Thom" (1954),  Lieblein5) (1954) and  Jenkinsona (1955). 

   Since 1952, the statistics for the  largest values of the hydrologic data 

have been studied by the author, who investigated (1) the statistical proper-

ties of three asymptotes for the largest value  (1955)7', (2) the method of 

estimation of their parameters by the classical method of moment  (1955)7', 

and (3) the one based on the concept of plotting position (1953,  1954)8'9'. 

As a result, it was clear that the first and the second asymptotes were 

available to the frequency analysis of the hydrologic amount. But the
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results of estimation of their theoretical distribution by the classical method 

of moment did not prove very good in fitness to hydrologic data. 

   Afterwards, a reasonable  method",ss' of fitting based on the concept of 

plotting value, which was proposed by the  authors' instead of plotting 

position, was developed for these asymptotes. 
   In this part, the statistical properties of the extreme (largest) value 

distributions and the method of estimation of their parameters and so on, 

obtained by these studies are summarily presented. 

       2. Extreme (largest) value distributions and 

               their fundamental properties 

   It is well known that there are three types of the asymptote for the 

distributions of the extreme (largest) value in a sample, which are practically 

expressed as follows  : 

 F(y)  =  exp  (—e-u) ; (1.1) 

  1 st  ; y=a(x—u),  —00<x<  00 (1.2) 

   2  nd  ;  y=a log  (x+b)/(u+b)=k  lg (x+b)/(u+b),  —b<x<  00 (1.3) 

   3 rd  ; y=a log  (g—u)/(g—  x)=  k  1g (g—u)/(g—x),  —00<x<g (1.4) 

In the above equations,  k=a  log  e=0.4343a, u, b and g are population 

parameters, y is the reduced variate of actual extreme x and is called the 
reduced extreme, F(y) is the asymptotic probability in which the extreme 

variate will not exceed a certain fixed variate, and log and  lg stand for the 

common and natural logarithms, respectively. 

   In the field of hydrologic statistics in Japan, the first asymptotic dis-

tribution is usually called as the Gumbel's distribution in honour of his 

pioneering and fruitful work, and the second and third asymptotic distribu-
tions are called the type A and B of logarithmic extreme value distributions, 

 respectively, since the author's proposal in  19557', these three asymptotes 

are generally called the extreme (largest) value distribution. 

    Since the mathematical or statistical properties of these asymptotic 

distributions have been studied by a number of investigators and are dis-

cussed in detail in the masterpiece "Statistics of Extremes" by  Gumbel"), 

it is  not necessary to discuss them again here. But the following proper-

ties, among which several unpublished ones are included, should be noticed. 

   (1) The first asymptote : There are simple relations between the
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population moments  vi(x—u) and  vi(y) about origin of order i, and between 
the population central moments  gi(x) and  pi(y) of order i, that is 

 Vi(x  —U)  =14(y)  /  al 1  (1.5) 
                   Pi (X)  =  Pi(Y)/ai 

The population moments  vi(y) and  pi(y) are easily calculated by using the 

moment generating function Q(t) and the  semi-Invariant as  follows'  : 

 1g  Q(t)-=1g  F(1—t), 111<1 

 =rt+ES(r)tr/r 
 r=2 
    where 

 Y  =  0.5772.- is the Euler's constant, 
 S(r)=  lim  (1+2-T-F3-r±•••+n-'), 

                                          n—>co 

Therefore, the mean  my and  mz, the variance  6,2 and  o-.2, and the other 

moment  Pet(y) and  Pi(x) are expressed, respectively, as follows  : 

 MY  =  V1(Y)  mz=u+r/a 

 0-52=P2(1)  =S(2)  =n2/6,  o-x2=S(2)/a2=  7r2/6a2 (1.6) 

 Ili(y) =2S(3),  P8(x)=2S(3)/a3 

   It should be noticed that the coefficient of skew of the extremes 

themselves, equal to that of the reduced extremes, becomes 

 Cs  = PO-123/2 =  2S(3)/S(2)  3/2  =  1.1395... (1.7) 

   (2) The second  asymptote  : The population moment  vi(x+b) about 

origin of order i is expressed by 

              vi(x+b)=S:(x+b)idF(x) 
After several calculations, 

 vi(x+b)=(u+b)ir(1—i/k) (1.8) 

   The mean and the variance and the other moments are easily obtained 

by putting  i=1, 2,  3,-- in above equation. And the coefficient of skew  Cs 

becomes 

        /23 7'(1  —3/k) — 3T'(1-2/k)r(1 —1/k) +27-'3(1 —1/k)  Cs=(1.9)  P
23/2 Cr  (1  —  2/k)  —  [2  (1  —  1/k)  3/5 

It becomes clear after some examinations that 

 dCs  
 d(l/k) >0 

and
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 lira  G=2S(3)/S(2)8/2=1.1395••• 
 1/k—A 

That is, the second asymptote is the extremely skewed distribution as its 

coefficient of skew  Cs is greater than  1.1395•••. 

   (3) The third asymptote  : The population characters of the third 

asymptote can also be easily examined as well as is done for the second 

asymptote, and the following relations are obtained, 

 vi(g  —  x) = (g t)''1r (i±i / k) (1.10) 

          r (1 ± 3/k) — 3P (1 + 2/k)/' (1 +1/k) +2r3(1 + 1/k)                                                 (1.11)            — — 

     G 

                 cr (1+2/ k) —T2(1+1/k)D3ia  
f  oo Moreover, it can be 

 o.8    let  Asymptote,  de1.1395 made clear that the 

 I\0.6    2nd Asymptote, 1/k=0.2, Os.3.535 coefficient of skew  Cs        `
\ of this asymptotic 

 ..4  3rd  Asymptote,  1/k.0.5,                                              di
stribution is less 

                                                       than  1.1395•••. 

                       • ,                                                    From the facts 

  -3 -2 -,0  I2 3  4  X mentioned above, the 

  Fig. 1.1 Shapes of asymptotis distribution, provided conclusion is obtained 

 m,=0 and  6,=1. that the three as-

                             ymptotic distributions of the largest value 

       „ are characterized by the coefficient of  a 

                           skew, or that they should be applicable 
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                            in limited range of the value of coefficient 

                            of skew  Cs, that is 
 4                                                  f

or the second 
                                                    asyptote, 

  2 1st Asymptote 
 Cs  =1.1395  b  Cs =  1.1395•••; for the first one, 

 g—co 
              0  o.5 1.0for the third one. 

       3rd
s'Lk— 
 -2j'inPtoteFigures 1.1 and 1.2 show this relation. 

 -4 3. Estimation of population 

                               parameters by method   Fi
g. 1.2 Relation between 

 Cs and 1/k. of moment 

   A method of estimation of the population parameters included in these 

asymptotes by a method of moment is easily derived from the results in the
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preceding section. 

   (1) The first  asymptote  : Using Eq. (1.6), two parameters a and u, 
which are scale and location parameters of the first asymptotic distribution, 

respectively, can be obtained by 

 cry/ax 

 =  7/  ^  6  ex  -t-  1/0.7797a. 
                                                (1.12)  u=mx—  mu/a 

 =mx—r/atmx—  0.45000. 

   A so-called classical method of  moment has been adopted by Gumbel in 

his earliest  work'', in which the population values  crx and  mx in Eq. (1.12) 

are directly replaced by the sample values  S. and  _I", respectively. 

   (2) The second  asymptote  : Three parameters  1/k, b and u, which 

are skewness, location and scale parameters of the second asymptotic dis-

tribution,  respectively, can lead to the following expressions after several 

calculations based on Eq. (1.8), 

 Cs=          F(1 — 3/k) — 3P (1 — 2/k)P (1 — 1/k) + 2P3 (1 — 1/k)   Cr  (1 —  2/k)  —  F2(1  —  l/k)  D372 (1.9)' 

 1/a= 0.4343/k 

                                                  (1.13) 
 u=mx—Biax 

 u+b—Ciax 

    where 

     .417.---1"' (1 — 1/ / (1 — 2/k) — P2(1 — 1/ k)1/2 

    B1------CT  (1  —1/k)  —  1)/CP(1— 2/k) —  r2(1  —1/k))112 (1.14) 
 —  B1—=1/CP  (1— 2/k) —  r2  (1  -  1/k))1/2 

   In the above equations, it will be noticed that the values of  Cs,  Al,  B1 

and C1 depend only upon the value of parameter 1/k. In Table 1.1, those 

values as a function of  1/k are shown for the practical facilities, which are 

originally prepared with six decimal  places'. If an adequate method of 

estimation of the population values  Cs,  ax and  mx from the sample values is 

found out, the parameters may by easily estimated from Eq. (1.13) by using 

Table 1.1. 

   (3) The third asymptote : Three parameters  1/k, g and u, which are 

skewness, location and scale parameters of the third asymptotic distribution, 

respectively, are also obtained from Eq. (1.10), as follows  :
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 Table 1.1 Population values of  Cs,  A1,  B1 and  Ci for 1/k in second asymptote. 

 b=Aia-nvx,  xo=mx-Biax,  xo+b=Cui., 

1/k  Cs  Al B1 Ci 

0.001  1.1455 779.13 0.450 2 778.68 

 2 1515 389.28 4 388.83 
 3 1576 259.33 6 258.88 

 4 1636 194.35 8 193.90 

 5 1697 155.37 9 154.92 

0.006 1.1758 129.38 0.451 1 128.92 

 7 1819 110.81 3 110.36 
 8 1881 96.89 5 96.44 

 9 1943 86.06 6 85.61 

 10  j 2005 77.39 8 76.94 

0.011  F 1.2067 70.30 0.452 0 69.85 
 2 2130 64.40 1 63.94 

 3 2193 59.40  3 58.95 

 4 2256 55.11 5 54.66 

 5 2319 51.40 6 50.95 

0.016 1.2383 48.15 0.452 8 47.70 

 7 2447 45.28  , 9 44.83 
  8 2512 42.74 0 .453 1 42.28 
 9 2576 40.46 2 40 .00 

 20 2641 38.40 4 37.95 

0.021 1.2706 36.54 0.453 5 36.09 

 2 2772 34.86 7 34 .40 
 3 2837 33.32 8 32 .86 
  4 2904 31.90 0 .454 0 31.45 

 5 2970 30.60 1 30.15 

0.026 1.3037 29.40 0 .454 3 28.95 
 7  3604 28.29 4 27.84 

 8 3171 27.26 6 26.80 
 9 3239 26.30 7 25.84 
 30 3307 25.40 8 24.95
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         r (1+ 3 / k) — 3ra +2/ k)r (1+1/k) + 2r3a+ 1/ k)   C
s= (1.11)'                  Cr (1+2/ k) -rza+1/k) .Dzn 

             1/a--=0.4343/k 

 g=mzd-A2az                                                 (1.15) 
 u=  mx  — 

 g—u—C2az 
    where 

 (1  +1/k)/Cr  (1+2/k)  —  r2  +  k))112 

 B2=  (1  (1+  1/  k)  )/cr(1  +2/k)  —  P2  (1  +I/k)]1/2                                                 (1.16) 

 C2-=-A2  -PB2  =1/Cr(1  +2/  k)  —  r2(1+1/k)Din 

   The values of  G,  A2, B2 and C2 can be tabulated as a function of 1/k 

as well as that for the second asymptote. These values, however, correspond 

to the ones for the third asymptote of the smallest value prepared by Gumbel 

in his book, as follows  : 

     For the third asymptote of For the third asymptote of 
      largest value (the  author)" smallest value  (Gumbel)1c' 

 —  pi  (k) 

        A2  B(k)  —  A  (k) 

     B2  A  (k) 

       C2  Em7 B(k) 

Since there is no difference between the two values in essence, it will be 

unnecessary to show such a table in this paper. 

     4. Selection of applicable type of asymptote from 

        view point of hydrologic frequency analysis 

   It has been shown above that the three types of asymptote for the 

largest value should be applicable in limited range of the value of coefficient 

of skew  G. But such a discussion for the  population value is not always 

realistic for the sample value. The reason is that, for example, the value 

of the coefficient of skew  C's of the first asymptote sample, which means a 

sample taken from the population of the first asymptote, is not always equal 

to  Cs=1.1395-• for the population, but there are various cases where it will 

be larger or smaller than  Cs=1.1395-• from a view point of sample theory. 

   Otherwise, one of the most important problems in relation to the 

hydrologic largest variates is how to estimate a bigger future value. In 

estimation of such a value by basing on a sample of small size obtained by 

hydrologic observation, it may be often happen that the third asymptote is
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wrongly applied to the first or the second asymptote sample , or that either 

the first or the second asymptote is wrongly applied to the third asymptote 

sample. However, from the view point of the prevention of disasters , the 

former mistake seems to be more serious than the latter. 

   Under the above considerations, 
                                               y-Rsia the following course of treatment in--9r 

                                                                                  .9 the hydrologic frequency analysiss9.I 

                                                                      . should be adopted.... 
                                                                       -99.5                                           5    i) If the series of plotted points _99. 

of hydrologic data on the extremal 4- guier12aignium                                 -  1.
probability paper is scatterd about a3- 95."3"WAB 
straight line or a curve, denoted as 2 -111W11111111                                    amL

IFAUMMEM 
G or B in Fig.1.3, the first asymptoteEL9111111111                              ' miroz

ellmm                                     -=MAO.=MENEM must be applied.                          o -5rah=2 - A 
                           _ iz•,•••m• •  B    ii) If the series of points is 10  otan-E, 

scattered about a curve, denoted as  -  _2_  0.1   
Ain Fig. 1.3, the second asymptote Hydrologic Amount 

is usefully applicable. Fig. 1.3 Condition of application for 
                                                         three asymptotes. 

   iii) The third asymptote must 

not be applied, except for a family of data of which the plotted points are 

arranged about the curve B with extremely large curvature. 

   Therefore, a discussion of the third asymptote will be omitted in the 

following sections. 

              5. Concept of plotting value 

   The simplest method of estimation of the parameters of asymptotes for 

the distribution of the largest value is the so-called classical mothod of 

moment in which the population moments described in section 3 are directly 

replaced by the sample moments. The population moments are obtained by 

integration over the whole domain of variation, while the sample moments 

are based on the sample of limited and small size N, generally. The results 

obtained by the classical method of moment seem to be not so good in 

fitness to hydrologic data, because of the bias between two moments, 

although it may not be a sufficient reason. In order to eliminate this bias, 

an approximate method is required, by which the population moments may
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be evaluated as a function of sample size N. 

   In the field of hydrologic statistics, the population moments are often 

calculated by using the plotting position. However, the concept of the 

plotting position must be more fully considered in applying to calculation of 
the population moments, because it may be originally used for construction 

of the empirical distribution function. 

   Suppose that  x1,  x2,•  •  •  x.67 are a set of observations of size N, and 

 xi<x2�  •  <  xN. And let them be a sample of size N from a population, 

having the continuous cdf F(x) of which only the type and, therefore, the 

value of coefficient of skew  Cs, is known. Then, as is well known, the 

probability element  dp(xt)dxt for the i-th order statistics  xi in such a 
sample is given by 

 dP(xt)dxi=r (N+ 1)P(i)r (N F(xi)N-Y.(x i)d x (1.17) 

   If the parameters included in  F(x)=z f(x)dx are not larger than 

three in number, and if the distribution functions of such asymmetrical 

types as are applicable to the hydrologic frequency analysis are supposed, 

the unknown parameters included in Eq. (1.17) must be two in number, 

since the value of coefficient of skew is known. Now, let the linear reduced 

variate z be defined as 

 z=  a(x  —b) (1.18) 

   where, a and b are numerical constants. 

Then, the probability element  dP(zi)dzi for the  i-th order statistics  zi is 

given by 

   dp(zi)dzi=(N +1) (F(zi)Di-1(1—F(zi)PN-tf(ZOdzi (1.19)  P  (i)P  (N  —i+1) 

and the unknown parameter must be not included in this equation. 

   Since the unknown parameters a and b should be estimated as follows, 

 E  Czi  —  a(xi—  b)D  =  m  i  nim  um (1.20) 

under the condition 

 E(zi)=  aCE(x  I)  —b), (1.21) 

the problem of estimation of the parameters is reduced to estimating the 

value  zi corresponding to  xt. 

   A schematic figure of the distribution of  zi corresponding to  xi is shown 

in Fig.  1.4, where  xi are regarded as the fixed  variate. Since the probability
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element of  zt is  given. by Eq. 

(1.19) as  the functions of order 

i and sample size N, the  de-                                            
: • / : termination of  zt is almost 

equivalent to estimating the                                              •. . 

value of  Zt satisfying the  follow-  •  •  :  : • 

ing condition                                ..•                                             • : 
 E  (Zij—  202=  minimum. (1.22)                                     •.•0; Expectation of 

                                      The solution of Eq. (1.22) is,•P.•                                                                      Plotting Value 

• 

 clearly,  •  •  :M
ode of Plotting 

•  

  zt—E(zt)  (1.23)Value ( max. spot  ) 

    The line connecting eachSample  Value X( attend to order ) 
                                   Fig. 1.4 Schematic figure for distribution 

value of  E(z1) is not always of plotting value. 
equivalent to the one which 

satisfies the condition of Eq. (1.20) in a theoretical sense, but the difference 

between the two lines seems to  be so small that it may be ignored in a 

practical sense. 
   In this paper, the value of  E(zt) obtained from this idea is named 

the (expected) plotting value, to distinguish it from the plotting position. 

   In addition, if the discussion of the plotting position is made, the dis-

tribution of the value of  Ft instead of the value of  xt should be considered 

in Eq. (1.17). 
                 P(N+1)   dp(F

i)dFi=(1.24)                r (or - +1) 

   This equation is originally parameter-free, differing from Eq. (1.17), 

and the function of i and N. The polotting position  fri must satisfy the 

following condition, 

 E  (F1j—ft)=minimum. (1.25) 

And its solution is, evidently, 
            -P

,=E(F1)=i/(N+1) (1.26) 

   This result differs in no way from the plotting position adopted by 

 Thomasi8),  Gumbel2'3) and the others. 

      6. Plotting values for first and second asymptotes 

   Although the plotting position is distribution-free, the plotting value is
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neither distribution-free nor parameter-free, except the special type of dis-
tribution with two parameters. In this section, the plotting values for the 
first and the second asymptote samples will be discussed. 

   (1) The first  asymptote  : 

 F(y)  =  exp(-e--20 

 f(y)=  exp(-  y  -  e-v) 
 y=-=  z = a(x-u) 

    Since the reduced extreme y itself is linear to the actual variate x, 
the value of  E(yt) has only to be estimated, that is, the plotting value for 
the first asymptote is parameter-free. In this case, Eq. (1.19) becomes 

           rov+1)   dp(YOd
yt=(i)T (N - + 1) Cexp{-(i-1)e-VIDC1 - exp( -YODN-1 x 

 Cexp  ( - 
Therefore,  E(yt) is 

    E(Yi) = (N+1)  -             r(i)r(N -i+1)3 _y exp(-y-ie-v)C1 -exp(-e-Y)Div-idy 

                  71) 1;-,-'(          =riorcAr-i+1)to•1)riv-zC,  y  exp{  -  y  -  (i+  r)e-Y}dy 

After several calculations, it becomes 

     (N+1)1     E( .30=E( 1)riv-tC,{r+1g(i+ r)).(1.27)          r(orcAr -i+1)r =oi+r 

where, r is a so-called Euler's constant and C means the symbol of combi-
nation. 

   (2) The second  asymptote  : 

                     F(y)  =  exp(-e-20,--exp(-z-9 

 y=klgz 
 z=  (x+b)/(u+b) 

   The plotting value  E(zt) in the case of the second asymptote is 

     ( -  E(zt)  = N +1) .1z  T(i)r(N -i+1)oexp(- iz-19Cl-exp(-z-9j1v-'dz 

 r(v+1)   -i 
                                         exp{ - (i+r)z-}clz             (i)r(AT-i+.1)  kE_0(-1)''N-2Cro 

Then, it is expressed as follows : 

       (N+ 1)N  E(zi)= r(or,(N _i+1)r(1-k)E(--N-LC,(i+r)--1+1/1G (1.28) 

 

r  =0
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   (3)  A practical method of computation of the plotting  values  : The 

plotting value  E(.311) or  E(zi) of the  i-th order statistics in the first or 
the second asymptote sample must be able to be calculated strictly by Eq. 

(1.27) or Eq. (1.28) as a functions of the order i and the sample size  N. 

But in solving these equations for the various values of i and  /V, it may be 

seen that the smaller i is, and  y  F9) 
                                               7 -99.9 the larger N, the more difficultIIM.ra^IN

EMOM:=21ENNME...„.1,e--NS the calculation becomes. There-  99.8 ^updimmil.opor....g 
                  6-.ipprop .FmEssad fore, the following method of  gimm ,a17,miiii,li,o,.a.-E                                 99.5 nimmez,,, ....1reha \i*mem computation may be used in a

5-MS121.;2111110--mi'l,. 
practical  sense. 99.mm                                          .r........„..^MallINCAMM                                          egw^Ems.n...^.:ASMEN NEASM•Ilamil                              INIMMINWA'AMMENNIGMMENS. 

   0i= N : Thelottin                                    wolurdomumvxmom•,wirm^^Iim                pgvaluesInma74^00.11. ,"=^•••ni 
                          NCIW,"Affiri• 3"4-te.:.= for the two  asymptotes are ob-NwT-41.linc.?jiAmiI                       wilm.trmori 

 tained by puttingi= N inEqs.^3 _ 95friAmt,sm.....g....                           ^stramaasTioll (1.27) and (1.28), respectively.maimmoomini                     =mramponhuiIII 
 90a^ipimmeitMailME  For the first asymptote  ;  2  - 6-E'smilleII                   ik"   E ( yIv) =r+lgN (1.29)90 pwasilma141i,r,',0,.3H  i)                                                   I-   For the second asymptote ; 

 E (z.67) = N1m l' (1 — 1/k) (1.30)  so  o  
 o-  i=i 

   ii)  i=  1 ; The plotting values    jiq  0  1 
                           20 MIEIIIIIIII - 9-2- for the two asymptotes are cal- 

                                              I--I °----==.7.---g-S.REInI. PI/.k - 0 
culated by a method of numerical  5Wa",AM                                           ..5ti°M-7Edel,,,,AZk0 3                                               #111MIEM111111....gra •                                                                                                   0.2 

 integration. Several results  oh- I IIIIMMIIIMMELLMIlliii ','o.1111=1111111111MMEN*..:  -2  -  10 20 30 50 70 100 200 300 500 
 tained by such calculation are Sample Size N 

shown in Fig. 1.5, where the Fig. 1.5 Plotting values for  i=N and 1.                                         Wh
ere  T.P.  =Thomas  Plot  =i/(N+1), 

confidence  limit121 defined by Eq.  H.P.  =Hazen  Plot=  (2i-1)/2N and 
                                           G.P. means Gumbel Plot proposed in 

(1.31) is also shown. Ref. 19). 

 P(yi�vor zi�z).�131=r(N+1) F131P-1(1— F)N-IdFi  0, Pi T(i)r(N—i+1)50 
                                                (1.31)  P(N+1)  1 

P(Yt>31or zi>z )<132=5Fi-l(1—F)iv-ic/Fi      fiz    ——132  r(i)P(N—i-F1)F
g2 

   iii) 1<i<N: The plotting values for the two asymptotes are not easily 

obtained as long as the troublesome calculation of numerical integration is 

not performed. So, the values which satisfy the following equation will be
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adopted as the approximations of plotting value, after a model of the method 

proposed by  Gumbe119) in his paper "Simplified  Plotting of Statistical 
Observations". 

      i-1 F)(1 .32)          Pt=F(—                           1iv _F.1171 

    where 
                  F1=-=-F{E(y1)1  or  F{E(zi)} 

 Fiv—=-F{E(y1,7)} or  F{.E(ziv)} 

Then, the estimates of plotting value are obtained by 

          for the first asymptote  ;  yi=  —  Ig  ( —  ig                                                 (1.33) 
          for the second asymptote ; zi=(-1g FL) -1/k 

Therefore the plotting value  yi is expressed as a function of the sample 

size N and the order i, and  z as a function of the skewness parameter 1/k 

and N and i. 

  7. Practical method of estimation of population parameters 

   (1) The first  asymptote  : It has already been explained that the 
fundamental equations for estimation of the parameters in the first asymptote 

are expressed as follows  : 
                            a =  ay/ax 

 u=mz—my/a 

   If the sample size N is very large, the classical method of moment 

must be valid, in which the following values are adopted as already shown 

by Eq. (1.12). 
                         ay=7r/ ,/ 6 

But, since the number of hydrologic observations is usually 101 in order, it 

cannot but be considered that  m„�r,  a5_-.2r/  -V  6  . Therefore, the population 

values  y and  Sy as a function of sample size N should be adopted instead 

of the values of which  m5=1- and  au=  ir/  's/  6  , although some difficult points 

remain to be discussed.  In this case, the parameters a and u are rewritten 

as follows  : 
 1/a  =  sx/s, 

             u=36-- (1/a)3)(1.34) 

    where
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Tablel.2PopulationvaluesofラandSyfor/Vi豆firstasymptote.

1/a=s出/Sy,%=-x一 夕/α

2VラSy

__..____一 一__「_______「_1

200.56921,1825

296895

499956

60.57021.2009

805055

1

1300・57071・2095
209130

411162[1 ・
i6i13'192

815219

400.57171,2244

218266

420287
　

621306L

823323

500.57241.2338

225352

4263661 」
627379

828391

600.57291.24021 1

230413!
ミ

4314231

632433

833442

700,57341、2451

7536472

8037490i

8539506

9040520

9541532
10042542
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           1—1                   7x.=Nx2=NEx2 

        12(1.35)  Se
x=NE (x —79)2 = 

 The population values  ij and  sy calculated by basing on the plotting value 

 as a function of sample size N are presented in Table 1.2. 

    (2) The second asymptote  : In estimation of the parameters of the 

 second asymptote, the problem of bias between the population values arises 

as well as in the first one. Speaking generally, this bias seems to become 

large with the increase of the order of moment, because it must be caused 

by the difference between the domains of variate under consideration. 

Therefore, if the bias of moment of the highest order which is needed at 

least in the calculation is satisfactorily settled, the ones of the other moment 

of lower order may be so small that they can be ignored in a practical 

sense. That is, if the skewness parameter 1/k has only to be evaluated 

successfully, Eq. (1.13) must be usefully available. The theory of plotting 

value described in section 6 will be utilized for such a purpose. 

    Now, since the plotting value  z is linear reduced variate of actual 

variate x, the sample value of the coefficient of skew  C's(z) about z must 

be equal to  C's(x) about x, 

 C's  (z)  =  C'  s(x) (1.35) 

   The calculated values of  C's are shown in Fig. 1.6 as a function of the 

skewness parameter 1/k and the sample size N. Moreover, if the relation 

between the population value  G given by Eq. (1.9) and the sample value 

C's is expressed by 
 Cs=  C's(1-Fgs) (1.37) 

   where  g,  ; the additional coefficient of skewness 

the values of  ,Qs are shown in Fig. 1.7. 

   Therefore, if the sample value of the coefficient of skew  C's is calculated 

from a sample of size N by 

 3 

                C's=             1  E (x —3-+  N  
sx3  Sz 

   2 (1.38) 

                         = 

                    .32x="i2 

the value of skewness parameter 1/k must be able to be estimated from 

Fig. 1.6, or from Table 1.1 by using the value of  G presumed by Eq . (1.37)
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     Fig. 1.6  Relation between  C's and 1/k for given N. 

 13s 1..71.8 ." 2 •  
2.0  Cd=1..  

 

I  i 
 IIIIMMIWII 

       111=MILIIIMI        1111
=1111111E= 
 1.5 • 5^SILMEEMBM        11111111E=LIMill= 

 11111111E=WAILME  A
lLIMMMIll^en  IM

IMILIIIM=INIM 
      -3=MMIIIMMOIAM .  1  .  0IWIMIIMIMMAIL .        

. 41^.=11^11.^^^1=1111.        =MAIIIMINEMMOSII
.\.  . °W ,MI1NIMliniMIMI^      0 .9 ffIRMMM\MM=b11. — 0.5,wro jmwim,--_m___w..^ 

      E...mingsramm..=         immEMEINNE 

o  ME= 
 20  30  40  50  60  N 

      Fig. 1.7 Values of  Qs provided for  Cs=Cs'(1+0s).
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and Fig. 1.7. And the other parameters  tt and b can be easily estimated 

from Eq. (1.13) and Table 1.1, using the estimates 

 rx=  ^NAN-1) Sx 
               }(1.39)                             nzz=i- 

   Besides, there is a case where the location parameter b may be assumed 

to be zero, which happens when the series of points of log x on the extremal 

probability paper is scattered about a straight line. In this case, it is 
needless to say that the other parameters may be estimated by 

 1/a  =  S  zog  x/S, 
               }(1.40)                   logii= log x— (1 /a):y- 

in which 
 S„ and  .3  ; see Table 1.2 

 s2  ioa  z  = (log  x)2  —  log  x (1.41) 
                     1                 (log x) /=—NE (log  x)i 

         8. Expected value for given return period 

   If all parameters are reasonably estimated, the expected value of hy-

drologic amount for the desired return period T can be easily calculated by 

      y -  Fm) 1000  2  000 300010000 T 
 _99.95 

             MIPIIIIMPIEF4111111_,__,   7 -99 .91000 

    6-99.8111111111111111.11111111500 
                  PIO•MOVA11111111113                                                                        =MMII/=1=M1,1=M.                                                                                        

INIIONWARM=1.1.1=M 
 99.5    5-_WILEIREESE200                            _wagenra=---     99 .0:EMI...FM:GM100 

    4-111.WORIIIIP.1511'                                     4,50             .1.921^111°SU'zi 
  3 - 95orrifir         „..enn-a-::20 
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                  41-4411..     -90 ,-,17011-11to                    ,t,911                ,,,'4MEMh•MIIII 
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 Fig.  1.8-(1)  Frequency curves for annual maximum flow, 
                      Yahagi River and Miya River.
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 the following relations, as is well known, 

    for the first asymptote ;  x=u+  (1/a)y, 

 }(1.42)    for  the second asymptote ;  log  (x+b)  =  log  (u+b)  +  (1/a)y, 

where usually 

            y=  -1gClg  T/(T  -1)) (1.43) 

   Figure 1.8 shows several examples of  application of the proposed method 
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       Fig. 1.8-(2) Frequency curves for annual maximum flow, Yodo River. 
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   Fig. 1.8-(3) Frequency curves for annual maximum amount of rainfall, (1).
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to hydrologic data in Table 1.3, where the observed data are plotted as 

 F=i/(N+l). 

   From a stochastic viewpoint, however, various points remain to be 

discussed concerning the expected value of hydrologic amont for the desired 

return period as expressed by Eq. (1.43). These problems will be discussed 
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   Fig. 1.8-(4) Frequency curves for annual maximum amount of rainfall, (2). 
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   Fig. 1.8-(5) Frequency curves for annual maximum amount of rainfall, (3).
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   Fig.  1.846) Frequency curves for annual maximum amount of rainfall, (4). 

in Part II. 

                     9. Conclusion 

   In this part, first, the statistical properties of three types of extreme 

 (largest) value distribution were examined. As the result, it was disclosed 
that the applicable  range for them must be discriminated by the population 

value of the coefficient of skew. Next, a practical method of estimation of 

the parameters included in them was successfully developed by using the 

concept of the plotting value. 

   Since these studies were already made in 1954-4956 and 1959, this 

publication may seem to be too late. But the author believes that this 

paper is still useful in the field of hydrologic frequency analysis.




