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     On the Propagation of Flood Waves 

                      By 

 ShOitirO HAYAMI 

                         Synopsis 

    In natural rivers, the forms of the channels,  --,the bed slopes, the 

breadth, the forms of cross sections,  etc.--are all very irregular and inces-

santly changing. It is impossible to grasp them definitely. Yet the flow 
in rivers is steady and nearly uniform in the broad means. The distur-

bances on the flow caused by these irregularities damp away within a few 

kilometres and have certain limited dimensions and durations. The 

stochastic character of the collective of these elementary disturbances causes 

a large scale longitudinal mixing. The order of magnitude of the diffusion 

coefficient may be estimated to be  106-.-108 c. g. s. according to the scale 

of a river. Introducing the effect of longitudinal diffusion caused by the 

mixing into the equation of continuity and assuming the mean flow taken 

over a suitable range to be steady and uniform, the differential equation 

of flood waves was derived. It is an equation of diffusion containing a term 

of advection. As the equation is non-linear, an approximate method of 

solution was discussed and solutions were obtained under several conditions. 

They well explain the properties of flood waves. The approximate equation 

of flood waves is linear, a flood of any form is, therefore, supposed to be 

composed of many elementary flood waves of simple  character,— unit 

graph, or unit flood. A method of computing the unit graph was described 
and some numerical examples were shown. In the last, some of the results 

of observations made on an artificial unit flood in the Yedo River were 

compared with the theoretical  computations. Their agreement is excellent,
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   The 

equation 

where

with the boundary conditions : 

         at  x=0,  u(0,  t)  =uo  , 

 z  =0, au                              22
az= —T , 

                      au             z =H,  
az = _rob, 

where  ub is the bottom velocity and T is the wind 
initial condition  : 

             at  t=0,  u  (x,  0)  =_-  ui  . 

   Integrating the eq.  (1) with respect to z from  tl 
and dividing by H, we get 

           au+_iffau,__flu,+ ge_aH) 
 at2 a,ax 

where 

 U= 1 .1illi                     udz, alP.fddz        H o Ho 
and 

 9U2=  Tug  

   So far as the vertical profile of the velocity 
the factors a,  /3 change with time and position.

   1. Longitudinal Mixing in Rivers 

      (1) Nature of the flow in rivers 

flow in rivers is usually treated as one dimensional flow. The 
of motion is approximately given by 

     au1 au,_  a auH  
 at+2 a, az)—gaaza,+ (1) 

  g acceleration of gravity 
  u velocity of flow 

  H depth of the river 

 i slope of the river bed 

   )2 turbulent coefficient 

  t time 

  x coordinate axis taken along the river and positive down-

       stream 

   z coordinate axis taken vertically and positive downward, 

boundary conditions :

)city and T is the wind  stress, if any, and the 

 u(x,  . 

with respect to z from the  surface to the bottom 

 U='  (3) 
)x\8x 

.1ft"  udz, al12..1u'dz ,  oHo 

 19U°= .  (4) 

profile of the velocity distribution is variable, 
 th time and position. In the river hydraulics

 tr( 

 su

 .. (2)

theand
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they are, however, treated usually as certain constants which means the 

flow is practically steady and nearly uniform in ordinary channels.  Permity 

ing this assumption to hold, we divide the mean velocity U into two parts 

such as 

                U=U„-i- 8U,  U0>  8U,  8U=0 

where  Uo is the mean steady and uniform velocity and  au is the fluctua-

ting velocity. They satisfy the differential  equations 

                       aH             — pul+ g(to—0)n  (5) 
                              ax 

and 

   asuaau. T           +au
° — —2,8U08U+  +—  (6)    ata x a, H 

respectively, where 

 i=io+  i„  H=  Ho  ±  H,  . 

It will be reasonably assumed that the irregularities  i„  H, and T are 
composed of steady part and non-steady part. We assume

    steady part of g
(ii—A--  )1.-1.=0, x,  ax  H 

 —Di(x)  0,  x>  0, 

   non-steady part of g(ii—a H1)—T=0, x, t 0, 
               a, H 

 =.02(x,  t)0, x,  t>  0. 

   Then the solution of the eq. (6) under the conditions 

 8U(x, 0)  =0 and  8U(0,  t)=0  , 

is given by 

 8U.  1Di($)e-7(=-t3c1;=-1-fiD,Ix—ulio(t-1-..),e-2I'L'°(t-7)d7 
 a  U0x-ccUot 0 

   When the irregularities  i,,  Hi and T are localized at  s, and 
effects upon  8U are given by 

           DO)           8U— e -1-Da„71)e-2:'["0-70   
 u.U, 

   Since it has damping factors exp  —2X0(t—z-) and exp

(7)

 

•  •  • (8) 

 7„ their 

 (9) 

  2/9  
(  u.
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x (x—.`-)1• for t and  x respectively, any elementary disturbance damps 
away within finite time interval and distance, in other words, it has finite 
dimension and duration. In rivers of a few metres depth with the bed of 
sand or gravel, the elementary disturbance will damp within a few kilo-
metres and several ten minutes. 

       (2) Statistical effect of elementary disturbances. 
   As is shown in the formula (8), the effect of the irregularities upon 

 SU is the superposition of those of the elementary irregularities localized 
at any time and position. In actual rivers of movable bed,  i„  H, and T 
fluctuate very irregularly with respect to t and x and we can not definitely 
grasp the true picture of them not only  practically, but also in principle, 
because some stochastic process underlies the phenomena. It will be, 
therefore, reasonably inferred that the collective of  SU constitutes a sort 
of turbulence, the  elements of which are given by (9). The most impor-
tant statistical effect of turbulence is the phenomena of diffusion. By the 
analogous reasoning with the ordinary eddy diffusion, the diffusion coefficient 
in our case will be given by the expression 

 8U.  R  ,  (10) 

where R is the dimension of an elementary disturbance. If we take  dU 
to be several ten centimetres per second and R a few kilometres, then the 
diffusion  cofficient will assume the value of the order of  106-10" c. g. s.. 
In large rivers such as the Yangtzekiang, the Mississippi it will be of the 
order of  108 c. g. s.. By this process of longitudinal diffusion, any physical 
quantity 0 of conservative character, if its mean value is taken over a few 
kilometres or over several ten minutes, will be transported downstream per 
unit time through unit cross section of a river by the amount 

 —8U  •  R°  (11) 

   The diffusion phenomena described here constitute the basis of the 
following discussions. 

      2. Differential Equation of Flood Waves 

          (1) Formulation of differential equation 
   We assume, for the simplicity sake, that in the mean the channel of 

a river is uniform and has a rectangular cross section. Further, we assume
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the mean motion is uniform and steady and the collective of fluctuating 

disturbances due to all irregularities constitute a sort of longitudinal tur-

bulence resulting in a phenomena of horizontal diffusion. A vertical column 

of water is then transported downstream not only by the mean stream, 

but also by the action of diffusion. The equation of motion now becomes

 cis/H  (i_ axl
(12)

where U denotes the mean velocity and

and the equation of

 C-=---

continuity is gi 

 aQ

g  
illpH

is given

 +

by

  „ , 

ax-
(13)

where

   Putting 

waves

the eq. (12)

 Q  =U.  H,

into the

 all +3U 

at2

 =8U•R 

eq. (13), we get

aH  aui"

 a,P  ax-

the equation of flood

(14)

where

2(
HU  -F)2. 

  ax

(15)

   The boundary conditions for  t> 0 are as follow  : 

     at the upper end  x=0,  H-=H0-1-  ho+F(t),  

where  Ho and  ho are numerical constants and 

 F(t)  =  0  

(16)

either

at the lower end  X-=  Xi,

  =0  , 
 ax

(17)

(18)

which is the 

or a dam,

 Or

case where  xi is very

 H(x1,  t)  =

large or the river

 Ho+H(t)  ,

empties into a lake

which is the case where at the lower end the river stage

(19)

is regulated
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artificially or the river enters into the tidal estuary. As 

condition, we assume simply 

 H  (x,  0)=110  ,   

 i. e., before the flood the river has a uniform depth. 

   As the equation (14) is non-linear, we must content 
approximation. In order to get an approximate solution, 
solution is expressible by the functional  series"

to the initial

(20)

ourselves 

we assume

with 

the

 H.  (Ho+  ho)  +  C°2  ,  ..  ,   (21)  H
o  +ho  (Ho+  ho) 

where  v„  502,   satisfy the condition 

     at  x  =  0,  vi=1,-;  v  2_  v.,—  504—  =0 

   Putting (21) into (14) and collecting the terms of the first order with 
respect to  1  /  (Ho  ho) we get for the first approximate solution an equation 

                  aSo,0 aso,a*,             +3U  =/-10 (22) 
 at 2  ax  ax2, 

 w  here 
                      (Hoho)U0            Po=+72/,  (23)                        2i 

and 
 U0-=c  (Ho+  ho)  i  (24) 

with the boundary conditions for t >  0  :

 Or

and

at x=0.

at  x-=-x„

the initial

at

   In the 

an equation

condition  :

 t  0,

same manner,

 so,  (o, 

aso,

t)  =  F  (t),

—0,

(25)

 3x

11(t)  —ho,

(26)

for the

0)  =  —  h  0. 

second

(27)

 3402 

 at

 3u0acoo a212 +

2 ax--Ilo—ax2

approximate

 P(x, t),

(28)

solution  v 2 we get

 (29)
where

with the boundary

F(x ,    3uo( aco, -1=
4i \ axy

conditions for  t  7>  0  :

 3  U, 

 4H0
So,(  91), (30)
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 Or

and

at  x  =  0,

at  x=x„

the initial

at

 condition  :

t  =0,

 P2(0,  t)=0,

 aC92=  0  , 
 OX

(31)

 Sot  (x„  t)=0 ,

(32)

 992(X,  0)  =0  .

(33)

(34)

         (2) Solution of the diffferential equation 

   In the following we shall mainly concern with the first approximation. 
The first approximation is given by 

 H=Ho±h0+  49,(x, t),  (35) 

where  50, is the solution of the eq. (22). The coefficient  p0 is composed 

of two terms. The value of the one may be greater than the other, but 
they will probably be of the same order, so that the either of the two will 

not be negligible. 
   So far as the form of the diffusion coefficient  -1 is not known, it will 

be wise to treat the coefficient  p, as a certain numerical constant to be 
determined by observation. This procedure is frequently used in meteorolo-

gy and oceanography giving results of sufficient approximation. In the 
following we shall simply denote p for p0. 

   The solution  co, under the boundary conditions (25), (26) and initial 
condition (28) is then given by

 --h ,

fl 

X

 An{(w 
 2P

 2 

) $2n

 {F(2)  -Fho}expl—
} it  sin :=',„x

 +   L2ite)21 p(t  —2)}dA, (36)

where

   3Tr 
(u=–u     2°, (37)

A
 2;„

and   is the

 1{(  2,u(1) 
equation

 \  2  }+  LIt

 -p

roots of the

tan

 .. (38)

When   tends

 -  

 CO

to  infinity, we have

(39)
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 —  ho  +  x  

2Vzi4e21,-

 t

oi  F(A)  hol

 exp{—  4t°2  (t  2) — 
         ,u

    x,' 

 1  t(t  —  A)

 2  1°-. 

 —

 1

 (t-2)312

i(0   ) 
 2/1  1

 2  
.

 }dpi

 z  
 2v

{F(t—  x2 )4-hol exp{—$2—     4/42 4E2  }d;
(40)

   In the case 

 F(t)=0  , 

we get from the formulae (35), (40), 

 )2x2        H=H0+2hof°'                  exp{  —e2— 2P 1*. 
         VirJ 2,u4;2 

                                  2^i.o 

                                             \2x2 

        =Ho-Fho2h f2v'Ti-exp tux2/1 de',  (41) 
            V7/-0  2p 

 Or 

 H—H   1_  (2vexp  mx—e2—   2P    (41)'  h
o  Va.  0  2p  4E2  ) 

This is a very useful formula for the later discussions. 
   When the function F(t) is made of the sum of harmonic terms such 

as 

 Fn(t)  =H. sin  rat  ,  (42) 

then assuming 

 t  —>co,  x1—>co, 

we get from (40) the solution of elementary flood waves as  follows  : 

                exp{((L' —pas)x}  sinunt—qnx) ,  (43) 
                              21.1 

where

For the waves

 qn 

 of  forlong

   (0- -  2 012 

   )"    4it  +7-.±  4,u

 2/2 

period such as

(44)
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 4p, 

it will be easily seen from the expression (44), 

 In  
 (45)  2

/2 
so that 

 coin=1/". sin  (1,t—  x)  ,  (46) 
in other words, the flood wave propagates with the velocity w and does 

not damp, which is the case treated in the classical theory of flood waves. 

    On the other hand, for the waves of short period such as 

                                   W2 

                       4In, 
                                     i we get the relations 

 rn  (47) 
 2p 

In this case, the flood wave propagates with greater velocity  than  co and 
damps quickly. These relations explain the reason why flood wave steepens 
at the foreside and flattens gradually as it proceeds downstream. 

   In this place we shall touch on the second approximation. Using the 
value of the first approximation  soi, we can calculate the function  r(x,  t). 
The solution of the second approximate function  so, under the conditions 

(31), (32) (34) and in the case  co is then given by 

      f,°'asin {a(x—E)}   fexp  (x—e)jj02du  92—-7rJoax,[ 2p a2   
 2p 

    x Jo",exp— [a22wp(t—7.-)} dr}cl (48)                        p21 
   Because of the character of the function  ax, t), over harmonic and 

combined harmonic flood waves appear in the second approximation. But 
owing to their short periods, they damp away quickly. This is probably 
the main reason why the second and higher approximate functions  co„  co, 

  do not sensibly affect the propagation of flood waves —a fact which 
will be shown in the next chapter. 

         (3) Effects of tributaries and distributaries 
                     on the flood waves 

    The effects of tributaries and branching rivers upon the flood waves in
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the main stream are one of problems of interest. They will be treated 
as the sources and sinks distributed along the main river. In this case, 
the equation of continuity is given by 

 3H                      aQ+7
,:- +.9(x, t),  (49)           ata x ax-

where S(x, t) represents the amount of discharge into or out of the main 
stream per unit length along the channel and per unit time divided by the 
breadth of the channel, and the equation of the first approximate solution 

 so, takes the form 

               aco,,i„_                   ±„ atTmei "a,"- S (x,  t),  (50)         a
tax, 

with the same boundary conditions as before. As the eq. (50) is linear, 
the effect of the function  S  (x, t) which we shall denote  5o; will be 
simply additive to the solution  co,  already mentioned. The equation of  co', 
is, therefore, given by 

             asof                 + (1) 7It 7+ S(X, t),  (50)' 
           at  ax ax, 

with the boundary conditions for t > 0  : 

             at  x=  0,  co',  (0,  t) 

             359'n (51)       at00 9= 
                             ax 

and the initial  condition  : 

         at  t  =0,  4°i  (x,  0)  =0   (51)' 

The form of the eq.  (50)' and the conditions (51),  (51)' are entirely same 
with those of  co, so that the effect  co', is given by the formula (48) where 
the function S (x, t) now stands for the function  r(x,  t). 

               3. Practical Examples 

               (1) Unit graph method 

   In order to calculate the first aporoximate solution it is necessary to 
know the form of the function  F(t). When the functional form is simple , 
it may be possible to evaluate the integral analytically, but in actual cases 
it  is desirable to device some practical method suitable for  numerical 
computation. For this purpose, we divide the time coordinate into many
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elementary parts of equal interval  to which is selected conveniently for 
respective cases and assume that the functian F(t) is constant in each 
elementary interval. Then the solution  yo, is expressed as the sum of 
elementary integrals calculated for each interval. The elementary integral 

is called the unit graph and the corresponding flood is called the unit flood. 
This method of evaluation is usually called the unit graph method and is 

proved to be very effective in the linear  problem(2). 
   For a solitary unit flood,  we have 

 H=Ho-Fh+F(t)—Ho for large t,  i. e.  ho-0  . 

   So, if we take

 t  4  0  , 

                   F=h,  0  <t  to, 

                     F=0,  to  <  t  , 

then h represents the height of the unit flood at 
river stage. Since the problem is linear, the s 

(52)  i. e. the unit graph, is equivalent to the  s 

 yo7 with respective conditions such that 

        at  x  0,  F.0, t 

 F.h,  0  < 

and at  x  0,  F=0, t 

 F.—h,  to< 

   The former solution is given by the  formal 
for  ho, and the latter is also given by the  sal 
the time origin is displaced by  to and —h stan 
unit graph is, therefore, reduced to the evalua 
easy task. A numerical example of the soli 
Fig. 1—A where the ratio of flood height  (H—L 
for various distances. This example is based 

 w=70  cm/sec,  li=107 c. g. s., 

 x=2.2, 14, 21 and 32 km. 

The form of an unit flood flattens gradually 
It is asymmetric, the slope of the foreside bein 

the backside. 
    When two unit floods occur successively,

(52)

flood at the upper end above normal 
  the solution under the conditions 

to the sum of two solutions  95", and 

0,  t  <  0  , 
 (53) h

,  0  Kt  , 

0, t < to , 
 (54) 

—h,  to  <t  

 formula (41) where h now stands 
the same formula where, however, 

—h stands for  ho. The solution of 

 evaluation of (41) and this is an 
the solitary unit flood is shown in 

 (H—H0)/h is plotted against time 
 3 based on the following  data  : 

 g. s.,  to-5 hours, 

dually as it propagates downstream. 
 [cle being steeper than the slope of 

 ssively, they merge gradually into
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a single flood as they propagate downstream. An example is shown in 
Fig. 1—B where both unit floods are assumed to be same as that in Fig. 
1—A and the interval of the floods is 2.5 hours. 

   In the practical application of the unit graph method to the flood of 
any form, it will be a matter of concern how to choose the time interval 
of the unit flood. To see the degree of approximation, an example will 

be  shown  ; We assume, for the example, at the upper end 

 F(t)  =  sin  rt,  —  co  <  t  c  o  ,  (55) 

         A     ,00 
 Okin  I  I  I  I  Okm

 co 
 0) 

 Cs 1-- 
 C 
 Qo 
 C.) 
 L. 
cll

 ,C

---^ 

 1-, 
 -k, 

 0)

 9- 
 o

 cz. 

 ci

 100

 10

152o  73 

    2.2km

13  10   _1S

 50

 Jo

 Okm

 1C  Z0  73
 1DG

0
180

 S /0 5

1.2krn

 

0  

 Pkm 

 .50  

0   s  10  75  

Elapsed  Time  l  t)  in Hours 

        Fig. 1—A. Propagation 
        Fig. 1—B. Propagation

 /00  

IrS0 

no 

0

 .5  10

 10

13

 IS  

 laAm

 71km

 15 70 ~s_

of

 o
 /0  20

 31km

 1.5

     Elapsed Time  (t  )in 

of a solitary  unit flood. 
of two successive unit floods.

Hours
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then the flood wave at any point  x is given by the expression (43). 
   Putting 

           (0=70  cm/sec,p.107 c. g. s.,                                      27r =8 hours, 

we get at the station  x=14 km 

 co,=  0.32  sin{  r(t—  4.5)}, t in hrs.  (56) 

   The graphs of (55) and (56) are shown in Fig. 2 in full lines.  On 
the other hand, we take, in trial, 

 to=  1 hour, 

and take the mean value of sin  r t for each interval as shown in the same 
Figure. Assuming the same value of w we calculate the corresponding unit 

graphs successively at the same station by the procedure mentioned above. 
Then summing up these graphs, we get the flood wave at the station which 
is shown in the Figure as series of dots. The agreement is fairly good 
in spite of such a rough substitution. 

 100  Aik 411^ 
 1  1  0  km 

 50 

 I  110
 v) 

   -50 

 ..S?? -100 
 () 

 50

Analytical Calculation 

Unit Graph Calculation

 -50L Ti
me in Hours 

       Fig. 2. Comparison of analytical method with unit graph calculation. 

             (2) Comparison with observations 
   The merit of a physical theory is estimated by the degree of 

ment between theoretical consequences and observational evidences.
agree-

As the
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flood of any form is composed of a number of unit floods, it is best to 

compare the theory with observation on a single unit flood. In 1943 
Hideo Kikkawa made some observations on an unit flood in the  Yedo 

 River(3). The Yedo River is one of branch rivers of the Tone River, 
one of the largest rivers of Japan. It  branches from the main river near 
Sakai and taking the south south easterly course of about 60 km pours into 
the Bay of Tokyo. Near the head of the Yedo River, a lock is build for 
the ,regulation of its  discharge. Operating the lock, Kikkawa produced 
an unit flood artificially and pursued it downstream as far as 32 kilometres. 
Some of his results is shown in Table 1. 

           Table 1. Observational results of solitary unit flood in the 
                    Yedo River.

Date of observation. Dec. 7, 1943

Normal river depth Height of flood at Slope of the bed i Duration of flood at
 Fin  ca.  60cm the lock h 90cm  ca.  2  x  10-4  the  lock  to  5  hours

Distance below
the lock x

in km

Height of the
crest avove

normal river
stage in cm

Duration of

flood in hours

Arrival time
of the crest

in hours

Arrival time
of the front

in hours

0 90 5 0
2.2 87 8  4.5 0.9

14 68 11  8.0 3
21 58  12.5 10.1 4.5
32 49 15  12.0 7.6

    From these materials we assume 

 (0=70  cm/sec,  It=  10' c. g. s.,  to=  5 hours, 

then the corresponding unit graphs at x=2 .2, 14, 21 and 32 km are  entirely 
same to those already shown in Fig. 1—A. From these graphs the heights 
of the flood crest above normal stage, durations of the flood and the 
arrival times of the crest and front were estimated . A comparison of these 
estimated values with those in Tab. 1 is shown in Fig. 3. In the estima-
tion of the duration and arrival time of the front (by the term front is 
meant the foremost part of the flood), some ambiguities may be expected 
as to the stage of the river at which the determination is made. For the 
theoretical values in Fig. 3 two stages were asssumed such as 

 H   °  —5% and 10% .
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As the Figure shows, the observed points mainly lie between them. Gener-

ally speaking the agreement is said to  be excellent. 

 NO  10 
 91   80&_.g,  0.  Observed  Values 
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                                                       , -1 1,                                                                                                                                                             -c

...                                                     'e 
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                               7151°                                                                               • 
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      Fig. 3. Comparison of observational  results with  theoretical computation 

            (solitary unit flood in the Yedo River). 

                  (3) More general cases 
   In the discussions so far developed the depth and the breadth of 

a river were assumed to be uniform in the mean value. Although this 
assumption is very practical, there are many cases where in the mean they 
must be rather regarded as some functions of x. In these cases the equation 
of flood waves assumes somewhat a complicated form. Since the physical 
nature of the propagation of flood waves does not change, it will be surely 
inferred that, in these cases also, the first approximation which of course 
of a linear character, gives a  sufficient approximation and flood of any form 
will be composed of a number of unit floods. The analytical solution of 
the unit graph is very troublesome to obtain and even if obtained, it will 
be of the form not suitable for the numerical computations. But, if we 

get by an observation the hydrograph of any flood at some downstream 
point together with the corresponding boundary condition at the upper end, 
we can obtain the unit graph at the point  numerically  ; We divide the 
time into constant intervals  to and assume the function F(t) given by the 
hydrograph at the upper end as such 

      for  0  < t  <  to,  to< t  <2to,  2t,  < t  -  3to,   

 I...(57)    F(t).--= F1'F„ F•3 9   

where  FI,  F„  F„   are numerical constants. Let the unit graph at any

 too  A
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point  9c=_xo under the condition 

 F=O,  t  ‘,0  , 

                  F=1,  0  <  t  4t„ 

 F=O,  to  <t  , 

be denoted by  0(t). By the assumption of t 

 (t)  =  0,  t,0. 

Then the flood wave at the pointx-0 will be 

        H=± F,0(t) F20(t — to)  +  F.,0 

   As the height of the flood  H  —  Ho is given 
is known for every value of t, so we get ma 

 taming the function  0(t) as unknown.  Solving 
we can construct the function  0(0. Once  0(1 
form will be predicted at the point  x  o by the h 
end. The writer is now preparing to obtain th 
main rivers of Japan from this point of view.

(58)

11(t) . By the assumption of the unit graph 

 (t)  =  0,  t,0.  (59) 

wave at the point  xo will be given by 

 ±  F,0  (t)  F2sh(t  —  to)  +  (t— +  (60) 

ht of the flood  H  —  Ho is given by the hydrograph, its value 
ery value of t, so we get many algebraic equations con-
ion  (t) as unknown. Solving these equations successively 

 t the function  cli  (t). Once  0(0 is known, the flood of any  
..dicted at the point  xo by the hydrograph F(t) at the upper 
r is now  nrenarinp- to obtain the flood characteristics of the
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