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Abstract

Softsensors or virtual sensors are key technologies in industry because important

variables such as product quality are not always measured on-line. In the present

work, two-stage subspace identification (SSID) is proposed to develop highly accu-

rate softsensors that can take into account the influence of unmeasured disturbances

on estimated key variables explicitly. The proposed two-stage SSID method can es-

timate unmeasured disturbances without the assumptions that the conventional

Kalman filtering technique must make. Therefore, it can outperform the Kalman

filtering technique when innovations are not Gaussian white noises or the char-

acteristics of disturbances do not stay constant with time. The superiority of the

proposed method over the conventional methods is demonstrated through numerical

examples and application to an industrial ethylene fractionator.
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1 Introduction

Product quality is not always measured on-line and its estimates are useful for

realizing feedback control; thus softsensors play an important role in achiev-

ing better industrial productivity. To build softsensors, statistical methods

or data-driven approaches have been widely used although physical model-

based approaches are preferrable in principle. A research trend in the field of

data-driven softsensor design was briefly surveyed by Kano and Nakagawa [1].

They showed that artificial neural network (ANN) had been dominant in the

literature since the middle 90’s, while partial least squares (PLS) regression

was popular in industry. As for nonlinear methods, support vector machine

(SVM) and support vector regression (SVR) have attracted researchers’ and

engineers’ attention in the last few years. Another method for developing soft-

sensors is subspace identification (SSID), which can build a state space model

from input-output data. SSID is a useful tool to build a dynamic inferential

model of a multivariable process, but SSID-based softsensor design seems to

have received relatively little attention so far.

PLS-based softsensors have been investigated by many researchers since early

90’s [2,3]. They are very popular in industry because of the simplicity and

ability to cope with a collinearity problem. When many process variables are

used as input variables of a statistical model, the highly correlated nature of

process data must be taken into account. Kano et al. [4] investigated PLS-

based inferential models, compared steady-state, static, and dynamic inferen-

tial models, and found that the estimation accuracy could be greatly improved

by using dynamic models. More recently, Lin et al. [5] implemented a dynamic

PLS model to a cement kiln system for providing smoother estimation than
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a static regression model. PLS has been applied not only to continuous pro-

cesses but also batch processes, in which process dynamics are often modeled

via multiway PLS [6] that is similar to dynamic PLS for continuous processes.

Flores-Cerrillo and MacGregor [7] investigated adaptive PLS to update models

from batch to batch. They also proposed an inferential strategy for controlling

end-product quality properties of a batch process by adjusting the complete

trajectories of the manipulated variables [8]. Aguado et al. [9] compared prin-

cipal component regression (PCR), PLS, and ANN for nutrient estimation in

a sequencing batch reactor (SBR) and showed that batch-wise unfolding PLS

models outperformed the other approaches. Another extension of PLS to cope

with multirate dynamic systems was proposed by Lu et al. [10]. In addition,

recursive PLS has been investigated because the maintenance of inferential

models is crucial from the practical viewpoint [11,12]. Another important is-

sue in practice is to check the reliability of prediction. Kamohara et al. [13]

investigated the integration of a dynamic PLS-based softsensor with multi-

variate statistical process control (MSPC) to check the reliability of both the

softsensor and an analyzer.

As mentioned above, PLS has been widely accepted as a useful technique

for softsensor design. However, it might not be the best approach for model-

ing dynamics of multivariable processes. Amirthalingam and Lee [14] investi-

gated SSID to develop an inferential control model for a continuous pulp di-

gester, because the state estimation-based approach is preferred to the output

estimation-based approach if a dynamic estimator for a multivariable process

is to be designed. Amirthalingam et al. [15] developed a two-step procedure

to build SSID-based inferential control models, in which the stochastic part

was idetified from historical data and the deterministic part was identified
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from plant test data. Similar to dynamic PLS, SSID is also used for model-

ing batch processes [16,17]. Although SSID is useful for modeling maltivariable

processes, the performance of the conventional softsensor design method based

on SSID and Kalman filter is limited due to the assumption that innovations

are Gaussian white noises and the characteristics of disturbances stay constant

with time. In other words, the conventional method does not use measured

variables effectively, while measured variables contain valuable information on

the process including unmeasured disturbances that have serious influence on

key variables.

In the present work, two-stage SSID is proposed to develop highly accurate

softsensors that can take into account the influence of unmeasured distur-

bances on key variables explicitly. The proposed method can estimate unmea-

sured disturbances without assumptions that the conventional Kalman filter-

ing technique must make. The usefulness of the proposed method is demon-

strated through numerical examples and their application to an industrial

ethylene fractionator.

The remainder of this paper is organized as follows. In section 2, a conventional

softsensor design method is explained in brief. In section 3, the proposed two-

stage SSID method is described in detail. Validation results are provided in

sections 4 and 5, where the conventional methods and the proposed two-stage

SSID method are compared in prediction performance. Finally, conclusions

are given in section 6.
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2 Conventional SSID-based Method

In this section, a conventional softsensor design method based on SSID is

briefly explained.

2.1 Subspace Identification

SSID is a method for identifying the following state space model directly from

input-output data by using QR decomposition and singular value decomposi-

tion (SVD) [18].

x(t + 1) = Ax(t) + Bu(t) + Ke(t) (1)

y(t) = Cx(t) + Du(t) + e(t) (2)

where, x, u, y, and e denote state, input, output, and innovation vectors,

respectively, and K is the Kalman gain.

Although various algorithms for SSID have been proposed and they use dif-

ferent algorithms for estimating coefficient matrices, all algorithms adopt fun-

damentally the same approach: derive a subspace spanned by state variables

from a part of input-output data, and then estimate coefficient matrices by

using the derived subspace from the other part of input-output data.

2.2 Conventional SSID-based Method

In the conventional SSID-based softsensor design method, a state space model

is identified through SSID, state variables are estimated with the Kalman fil-

tering technique, and finally key variables such as product quality are esti-
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mated [14].

To build a softsensor, state variables x need to be estimated from measured

output variables ym and measured input variables u, because key variables yq

are not measured on-line. The process model is given by:

x(t + 1) = Ax(t) + Bu(t) + Kmem(t) (3)
⎡
⎢⎢⎢⎢⎢⎢⎣

yq(t)

ym(t)

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

Cq

Cm

⎤
⎥⎥⎥⎥⎥⎥⎦

x(t) +

⎡
⎢⎢⎢⎢⎢⎢⎣

Dq

Dm

⎤
⎥⎥⎥⎥⎥⎥⎦

u(t) +

⎡
⎢⎢⎢⎢⎢⎢⎣

eq(t)

em(t)

⎤
⎥⎥⎥⎥⎥⎥⎦

(4)

On the basis of this model, estimates of state variables x̂ are derived through

the following filtering equations:

x̂(t+1 | t) = Ax̂(t | t) + Bu(t) (5)

x̂(t | t) = x̂(t | t−1)

+Km {ym(t)−Cmx̂(t | t−1)−Dmu(t)} (6)

where x̂(t+i | t) denotes i step ahead prediction of x on data up to time t.

Finally, yq is estimated.

ŷq(t) = Cqx̂(t | t) + Dqu(t) (7)

Stochastic effects including disturbances and noises can be taken into account

with the Kalman filter. For the effective functioning of the Kalman filter,

disturbances should be generated from Gaussian white noises, and dynamics

from the white noises to the output variables should stay constant with time.

However, in actual processes, such assumptions are not always valid.
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3 Two-Stage Subspace Identification

The procedure for two-stage SSID is as follows: 1) identify a state space model

by using measured input and output variables, 2) estimate unmeasured dis-

turbance variables from residual variables, and 3) identify a state space model

to estimate key variables from the estimated disturbance variables and the

other measured input variables.

It is assumed that a process is described by a linear state space model of the

form:

x(t + 1) = Arealx(t) + Breal

⎡
⎢⎢⎢⎢⎢⎢⎣

ud(t)

us(t)

⎤
⎥⎥⎥⎥⎥⎥⎦

+ w(t) (8)

⎡
⎢⎢⎢⎢⎢⎢⎣

yq(t)

ym(t)

⎤
⎥⎥⎥⎥⎥⎥⎦

= Crealx(t) + Dreal

⎡
⎢⎢⎢⎢⎢⎢⎣

ud(t)

us(t)

⎤
⎥⎥⎥⎥⎥⎥⎦

+ v(t) (9)

where ud ∈ �d,us ∈ �s,yq ∈ �q,ym ∈ �m are measured input variables,

unmeasured disturbance variables, quality variables to be estimated, and mea-

sured output variables, respectively. In addition, w ∈ �n and v ∈ �q+m are

white noises. Unmeasured disturbance variables us and noises w,v have com-

mon characteristics with respect to being unmeasured, but us are not limited

to white noises.

7



3.1 Identification (1st stage)

First, a state space model from measured input variables ud to measured

output variables ym is identified through SSID.

x1(t + 1) = A1x1(t) + B1ud(t) (10)

ym(t) = C1x1(t) (11)

where the subscript 1 denotes the 1st stage of identification. At this stage, it

is assumed that ud satisfy the persistently exciting condition.

3.2 Estimation of disturbance variables

The influence of the measured input variables ud on the measured output vari-

ables ym was modeled in the previous step. However, there must be residuals

because ym are affected not only by the measured input variables but also

by unmeasured factors including us. In other words, residual variables Δym

defined as

Δym = ym − ŷm (12)

have valuable information about the unmeasured disturbance variables us. To

estimate yq with accuracy, it is worth estimating us from Δym and using the

estimated disturbances ûs as input variables together with ud. However, it

is possible that the residual variables Δym are linearly dependent and not

persistently exciting. Therefore, it is necessary to derive ûs that satisfy the

persistently exciting condition.

The first step to estimate us is to define block Hankel matrices U 1|k,s ∈ �ks×N
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and ΔY 1|k,m ∈ �km×N .

U 1|k,s =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

us(1) us(2) · · · us(N)

us(2) us(3) · · · us(N+1)

...
...

. . .
...

us(k)us(k+1)· · ·us(N+k−1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(13)

ΔY 1|k,m =
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Δym(1) Δym(2) · · · Δym(N)

Δym(2) Δym(3) · · · Δym(N+1)

...
...

. . .
...

Δym(k)Δym(k+1)· · ·Δym(N+k−1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(14)

where k is a parameter and N must be large enough in comparison with km.

These block Hankel matrices satisfy the following equation derived through

LQ decomposition.

⎡
⎢⎢⎢⎢⎢⎢⎣

U 1|k,s

ΔY 1|k,m

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

Ls
11

Ls
21 Ls

22

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

QT
1

QT
2

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

Ls
11

Ls
21

⎤
⎥⎥⎥⎥⎥⎥⎦

QT
1 (15)

where Ls
ij and Qi are matrices derived as a result of the LQ decomposition.

The equality is always fulfilled under the assumption that Δym is affected by

only us. By using Eq. (15), us can be estimated from Ls
11 and Q1, both of

which can be derived from ΔY 1|k,m.
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The matrix Q1 ∈ �N×ks can be generated from the orthogonal matrix V that

is derived from SVD of the block Hankel matrix ΔY 1|k,m.

ΔY 1|k,m = USV T (16)

S =

⎡
⎢⎣diag

⎧⎨
⎩σ1, σ2, · · · , σkm

⎫⎬
⎭ 0(km)×(N−km)

⎤
⎥⎦ (17)

V =

⎡
⎣
v1 v2 · · · vN

⎤
⎦ (18)

where the singular values σj are in descending order. All row vectors of ΔY 1|k,m

are mean centered and their standard deviations are scaled to be unity. Q1 is

generated from V by selecting ks column vectors corresponding to significant

(non-zero) singular values.

Q1 =

⎡
⎣
q1 q2 · · · qks

⎤
⎦ =

⎡
⎣
v1 v2 · · · vks

⎤
⎦ (19)

qi =

⎡
⎣
q1i q2i · · · qNi

⎤
⎦

T

(20)

where s is the number of significant singular values, and it is the same as the

number of the estimated disturbance variables ûs.

The next step is to determine the lower triangular matrix Ls
11 ∈ �ks×ks, but

there is no information about Ls
11. Therefore, ΔY 1|k,m is used to determine
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Ls
11. It is assumed here that

Ls
11 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

L11

L21 L22

...
...

. . .

Lk1 Lk2 · · · Lkk

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(21)

Lii = diag

⎧⎨
⎩σs(i−1)+1, σs(i−1)+2, · · · , σsi

⎫⎬
⎭ (22)

where σj is singular values of ΔY 1|k,m. This assumption ensures that the

estimated disturbance variables ûs are persistently exciting of order k, because

Ls
11 is a regular matrix and Q1 has full column rank.

Since only diagonal blocks are assumed in Eqs. (21) and (22), the lower tri-

angular blocks Lij(i > j) need to be determined. For preparation, the block

Hankel matrix U 1|k,s is rewritten by

U 1|k,s = Ls
11Q

T
1

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

L11

L21 L22

...
...

. . .

Lk1 Lk2 · · · Lkk

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q1,1 q2,1 · · · qN,1

q1,2 q2,2 · · · qN,2

...
...

. . .
...

q1,k q2,k · · · qN,k

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(23)

where

qi,j =

⎡
⎣
qi((j−1)s+1) qi((j−1)s+2) · · · qi(js)

⎤
⎦

T

(24)
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Considering the characteristics of block Hankel matrices, the following equa-

tions are derived from Eq. (23):

us(2) = L21q1,1 + L22q1,2 = L11q2,1 (25)

us(3) = L21q2,1 + L22q2,2 = L11q3,1 (26)

Similar equations are derived regarding us(t)(t = 2, 3, · · · , N), and they result

in

⎡
⎣
L21 L22

⎤
⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

q1,1 q2,1 · · · qN−1,1

q1,2 q2,2 · · · qN−1,2

⎤
⎥⎥⎥⎥⎥⎥⎦

= L11

⎡
⎣
q2,1 q3,1 · · · qN,1

⎤
⎦ (27)

This equation can be rewritten as

L21

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

qT
1

...

qT
s

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

− L21

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q̃T
1

...

q̃T
s

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ L22

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

qT
s+1

...

qT
2s

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

− L22

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q̃T
s+1

...

q̃T
2s

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= L11

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

qT
1

...

qT
s

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Ξ1 − L11

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q̄T
1

...

q̄T
s

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(28)
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where

q̃i ≡
⎡
⎣
0 0 · · · 0 qNi

⎤
⎦

T

(29)

q̄i ≡
⎡
⎣
0 0 · · · 0 qi1

⎤
⎦

T

(30)

Ξi ≡

⎡
⎢⎢⎢⎢⎢⎢⎣

0i×(N−i) I i

IN−i 0(N−i)×i

⎤
⎥⎥⎥⎥⎥⎥⎦

(31)

and I i denotes a unit matrix. Eq. (28) post-multiplied by Qs becomes

L21

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Is −

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q̃T
1

...

q̃T
s

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Qs

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

L22

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q̃T
s+1

...

q̃T
2s

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+L11

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q̃T
1

...

q̃T
s

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Ξ1−L11

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q̄T
1

...

q̄T
s

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Qs (32)

where

Qs =

⎡
⎣
q1 q2 · · · qs

⎤
⎦ (33)

In Eq. (32), only the matrix L21 is unknown. Thus, L21 can be determined by
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solving Eq. (32). In the same way, a more general equation can be derived.

⎡
⎣
Li1· · ·Li(i−1)

⎤
⎦

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Is(i−1)−

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q̃T
1

...

q̃T
s(i−1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Qs(i−1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Lii

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q̃T
s(i−1)+1

...

q̃T
si

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎣
L(i−1)1· · ·L(i−1)(i−1)

⎤
⎦ ×

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

qT
1

...

qT
s(i−1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Ξ1 −

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q̄T
1

...

q̄T
s(i−1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Qs(i−1) (34)

By solving Eq. (34) in sequence, Ls
11 is derived. Finally, the estimated distur-

bance variables ûs are calculated by using Q1 and Ls
11.

Û 1|k,s ≡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ûs(1) ûs(2) · · · ûs(N)

ûs(2) ûs(3) · · · ûs(N + 1)

...
...

. . .
...

ûs(k) ûs(k + 1) · · · ûs(N + k − 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= Ls
11Q

T
1 (35)

It is possible to derive ûs, which is sufficiently excited to build a statistical
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model through SSID, by using sufficiently large k. In addition, ûs at k = 1

are persistently exciting when Δym are generated through an ARMA (autore-

gressive moving-average) process, because the ARMA process is persistently

exciting of infinite order. In such a case, ûs can be derived directly from Δym

by using principal component analysis (PCA), and ûs are the same as principal

component scores.

The parameters to determine in this step for estimating unmeasured distur-

bances are k and s. The parameter k is related to the persistently exciting

condition, and it depends on the characteristics of the process and unmea-

sured disturbances. In practice, it should be larger than the settling time of

the process. On the other hand, the parameter s is the number of unmeasured

disturbances. In practice, s is unknown a priori and the estimation perfor-

mance is affected by the selection of s. The influence of unmeasured distur-

bances cannot be modeled accurately when s is too small, and over-fitting will

occur when s is too large. The derivation of ûs from Δym is just like feature

extraction or dimensionality reduction through PCA, in which the number

of principal components should be determined. The significance of singular

values of ΔY 1|k,m would be a good indicator. Negligible singular values and

their corresponding right singular vectors should not be used.

3.3 Identification (2nd stage)

The two-stage SSID-based softsensor is developed by using measured input

variables ud and the estimated disturbance variables ûs as inputs in the state
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space model of the form:

x2(t + 1) = A2x2(t) + B2

⎡
⎢⎢⎢⎢⎢⎢⎣

ud(t)

ûs(t)

⎤
⎥⎥⎥⎥⎥⎥⎦

(36)

yq(t) = C2x2(t) +

⎡
⎣
0q×d D2

⎤
⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

ud(t)

ûs(t)

⎤
⎥⎥⎥⎥⎥⎥⎦

(37)

where the subscript 2 denotes the 2nd stage of identification. This state space

model is identified through SSID.

The accuracy of the softsensor does not deteriorate even when unmeasured

disturbances are significant, because the two-stage SSID-based softsensor can

take into account the influence of unmeasured disturbances on the measured

output variables ym and the key variables yq. In addition, the dynamics from

ud to yq can be modeled accurately, because the estimated disturbance vari-

ables ûs do not correlate to ud.

3.4 On-line estimation

On-line estimation is executed by the following procedure.

Step 1: Calculate the estimates of the measured output variables at the

present time l, ŷm(l), through the first state space model (Eqs. (10) and (11)).

Step 2: Derive the residual Δym(l).

Step 3: Generate matrices Q1,new and Ls
11,new by using the left singular matrix

U (Eq. (16)) of the block Hankel matrix ΔY 1|k,m. First, derive a principal
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component score matrix T ∈ �w×ks by multiplying the block Hankel matrix

ΔY l ∈ �km×w, which is generated from residuals, by the loading matrix U ks.

U =

⎡
⎣
u1 u2 · · · ukm

⎤
⎦ ∈ �km×km (38)

U ks ≡
⎡
⎣
u1 u2 · · · uks

⎤
⎦ ∈ �km×ks (39)

ΔY l ≡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Δym(l−w−k+2) · · · Δym(l−k+1)

...
...

...

Δym(l−w+1) · · · Δym(l)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(40)

T = ΔY T
l U ks (41)

where w is the number of data points used for disturbance estimation. Each

row of ΔY l is scaled by the corresponding means and standard deviations of

ΔY 1|k,m. Next, define a matrix Snew, which corresponds to S in the off-line

disturbance estimation step, by using the standard deviation si of each column

of the score matrix T .

Snew =
√

w − 1 diag

⎧⎨
⎩s1, s2, · · · , sks

⎫⎬
⎭ (42)

Then, calculate Q1,new through

Q1,new = TS−1
new (43)

Finally, calculate the matrix Ls
11,new by using Snew and Q1,new in the same

way as the off-line disturbance estimation.

Step 4: Derive estimates of unmeasured disturbances ûs(l) by using Q1,new

and Ls
11,new.
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Step 5: Calculate the estimates of the key variables at the present time l,

ŷq(l), through the second state space model (Eqs. (36) and (37)).

Through this procedure, the key variables yq can be estimated from measured

variables ym and ud.

4 Numerical Example

To demonstrate the superiority of the proposed two-stage SSID method over

the conventional method, their performance is evaluated through a numerical

example. The performance of the conventional method based on the Kalman

filtering technique is limited due to the assumption that innovations are Gaus-

sian white noises and the properties of disturbances stay constant with time.

Therefore, in this section, the estimation performance of both the conventional

SSID and the two-stage SSID is compared through their applications to the

linear system, to which various disturbances are added.

The system is described by Eqs. (8) and (9), where x ∈ �7,ud ∈ �3,us ∈
�3,yq ∈ �3,ym ∈ �7,w ∈ �7, and v ∈ �10. The unmeasured disturbance

variables us are Gaussian signals in case 1, stepwise signals in case 2, and

a combination of random, stepwise, and ramp-wise signals in case 3. The

covariances of w and v are assumed to be unknown.

With the conventional method, a state space model was identified via SSID,

states were estimated by using the Kalman filter, then unmeasured output

variables were estimated. The number of state variables was determined to

be 7, and the covariances of noises were tuned by trial and error so that the

estimation performance was maximized. In both methods, 1000 data points
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were used for modeling and other 500 data points were used for validation, and

N4SID (numerical algorithms for subspace state space system identification)

[19] was used as an algorithm for SSID.

In case 1, where us was Gaussian white noises, both the conventional method

and the proposed method were able to estimate unmeasured output variables

with great accuracy. The estimation results are summarized in Table 1. The

estimation accuracy was evaluated by using the correlation coefficient R be-

tween measurements and estimates and RMSE (Root Mean Squared Error).

In the two-stage SSID, the parameter was set as k = 15 by taking into account

the process dynamics, the numbers of state variables in the 1st model and the

2nd model were 7 and 6, respectively, and the number of estimated distur-

bance variables was 3. These parameters were determined by trial and error.

The estimation performance of the conventional SSID method was slightly

better than the two-stage SSID method, because innovations were Gaussian

white noises and the properties of disturbances stayed constant with time in

this case. Thus, the assumption of the Kalman filtering technique was satisfied

and the conventional SSID method formed an optimal estimation.

In case 2, where us was changed stepwise as shown in Fig. 1, the number of

state variables in the conventional SSID method was 8. In the two-stage SSID

method, on the other hand, the number of state variables in the 1st model and

the 2nd model was 6, the number of estimated disturbance variables was 3,

and the parameter k = 15. The estimation results are summarized in Table 1

and Fig. 2. The results clearly demonstrate the superiority of the proposed

two-stage SSID method over the conventional SSID method.

In case 3, us was a combination of random, stepwise, and ramp-wise signals
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as shown in Fig. 3. The models were the same as those in case 2. That is,

the softsensors were developed by using operation data, in which unmeasured

disturbances were changed stepwise. The estimation results are summarized in

Table 1 and Fig. 4. In addition, the estimated unmeasured disturbances ûs are

shown in Fig. 5. The two-stage SSID method can outperform the conventional

SSID method significantly in estimation performance. In a real production

process, various disturbances enter the process and their characteristics change

with time. Therefore, the proposed two-stage SSID method will be extremely

useful for developing a softsensor.

5 Industrial Case Study

In this section, the usefulness of the proposed two-stage SSID-based softsensor

is demonstrated through its application to an industrial ethylene fractionator

at Showa Denko K.K. in Japan.

5.1 Ethylene fractionator

A schematic diagram of the industrial ethylene fractionator is shown in Fig. 6.

This ethylene fractionator consists of two columns: the bottom column T431

and the top column T432. The feed stream enters the bottom column, and

the product ethylene is drawn from the top column. The main specification

is the ethane concentration in the ethylene product (16). This fractionator is

controlled by multivariable model predictive control. The number of controlled

variables, manipulated variables, and disturbance variables is seven, four, and

three, respectively. The controlled variables are the ethane concentration and
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methane concentration in the ethylene product, T431 tray #29 temperature

(1), T431 differential pressure, T342 differential pressure, condenser pot level,

and reboiler pot level. Manipulated variables are the T431 reboiler flow rate

(7), T432 internal reflux flow rate (9), T432 purge flow rate (10), and T432 top

pressure (12). The disturbance variables are the T431 feed flow rate, T431 feed

ethane concentration (13), and C351 #4 suction pressure (14). Here, C351 is

a propylene refrigerant. Its #4 suction pressure affects propylene refrigerant

temperature and reboiler heat duty. The numbers in parentheses correspond

to those shown in Fig. 6 and Table 2.

5.2 Softsensor Design

Softsensor design is one of the key technologies for reducing off-specification

products and enhancing productivity when on-line analyzers are not avail-

able. In this study, softsensors that estimate the ethane concentration in the

ethylene product are developed through dynamic PLS, SSID, and two-stage

SSID.

For building softsensors, operation data obtained from January 1 to February

20, 2002 were used. All variables used for modeling are listed in Table 2.

Variables #7, 9, 10, and 12 are classified into manipulated variables umv,

variables #8, 11, 13, and 14 are classified into other measured input variables

ud, variables #1, 2, 3, 4, 5, 6, and 15 are classified into measured output

variables ym, and variable #16 is the key quality variable yq to estimate.
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5.2.1 Dynamic PLS

Kano et al. [4], who investigated steady-state, static, and dynamic PLS-based

inferential models, found that the estimation accuracy could be greatly im-

proved by using dynamic PLS (DPLS) models. In addition, Kamohara et

al. [13] applied a DPLS-based softsensor to an industrial distillation process,

which was investigated in the present work. Therefore, DPLS is used here for

developing a softsensor.

All variables listed in Table 2 were used for DPLS modeling. In addition, the

operation data including current measurements and those 5, 10, 15, 20, 25,

30, 35, 40, 45 minutes before were used to build a softsensor. The number of

latent variables was adjusted to 20. Here, all input variables and an output

variable were mean-centered and their standard deviations were scaled to be

unity.

5.2.2 Conventional SSID

The advantage of using SSID for softsensor design is that the dynamics of a

multivariable process can be easily taken into account, whereas the number

of input variables drastically increases in a dynamic PLS approach and in-

put variables should be appropriately selected to achieve the good prediction

performance.

In the present work, two types of softsensors were built through conventional

SSID to evaluate the effect of using the measured input variables ud on the

estimation accuracy.

• softsensor C1 : [umv] → [yq,ym]
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• softsensor C2 : [umv,ud] → [yq,ym]

Here, ‘[a] → [b]’ represents a state space model from a to b. To identify state

space models, N4SID was used. The number of state variables x in C1 and

C2 was determined to be 15 on the basis of the estimation results for the

validation data. All input and output variables were mean-centered and their

standard deviations were scaled to be unity.

5.2.3 Two-stage SSID

In the same way as conventional SSID, two types of softsensors were built

through two-stage SSID.

• softsensor TS1

the first model : [umv] → [ym]

the second model : [umv, ûs] → [yq]

• softsensor TS2

the first model : [umv,ud] → [ym]

the second model : [umv,ud, ûs] → [yq].

To identify state space models, N4SID was used. The results of the past re-

search show that the settling time of this ethylene fractionator is about 50

minutes [13]. Consequently, the value of k is set to 10. The number of es-

timated disturbance variables ûs and the number of state variables x were

determined as shown in Table 3. The number of variables was selected by

trial and error. All input and output variables were mean-centered and their

standard deviations were scaled to be unity.
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5.3 Estimation results

The developed softsensors were validated by using operation data obtained

from the industrial ethylene fractionator from (a) December 9 through De-

cember 16, 2001 and (b) December 21 through December 31, 2001.

The estimation results are shown in Table 4. Here, measurements and es-

timates of ethane concentration in the ethylene product (Ethane conc.) are

scaled. The estimation accuracy of the softsensors was evaluated by both R

and RMSE.

In periods (a) and (b), the softsensors C2 and TS2, both of which use ud as

input variables, function better than the others. In addition, the softsensors

TS1 and TS2, both of which use ûs as input variables, function better than

the softsensors C1 and C2, respectively. The results show that the use of

measured input variables ud and estimated unmeasured disturbance variables

ûs is effective for improving the estimation accuracy of softsensors. In the same

period, the DPLS-based softsensor shows better estimation accuracy than the

softsensors C1 and TS1, both of which do not use ud as input variables.

In conclusion of this industrial case study, the proposed two-stage subspace

identification (SSID) was confirmed to be effective in designing softsensors.

6 Conclusions

In the present work, two-stage subspace identification (SSID) was proposed

to develop an accurate softsensor that could take into account the influence of

unmeasured disturbances on estimated key variables such as product quality.
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The two-stage SSID procedure is as follows: 1) identify a state space model

by using measured input and output variables, 2) estimate unmeasured dis-

turbance variables from residual variables, and 3) identify a state space model

to estimate key variables from the estimated disturbance variables and the

other measured input variables. The proposed two-stage SSID can estimate

unmeasured disturbances without assumptions that the conventional Kalman

filtering technique must make. Thus it can outperform the Kalman filtering

technique when innovations are not Gaussian white noises or the properties

of disturbances do not stay constant with time. The superiority of the pro-

posed method over the conventional methods, i.e., dynamic PLS and SSID,

was demonstrated on an industrial ethylene fractionator. It is expected that

the two-stage SSID will function successfully in various industrial processes.
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Figure Captions

Fig. 1 Unmeasured disturbance us for modeling in case 2.

Fig. 2 Estimation results through conventional SSID and two-stage SSID in

case 3. (solid line: measurements, dotted line: estimates with conventional

SSID, gray line: estimates with two-stage SSID)

Fig. 3 Unmeasured disturbance us for validation in case 3.

Fig. 4 Estimation results through conventional SSID and two-stage SSID in

case 3. (solid line: measurements, dotted line: estimates with conventional

SSID, gray line: estimates with two-stage SSID)

Fig. 5 Estimated unmeasured disturbance ûs in case 3.

Fig. 6 Schematic diagram of the industrial ethylene fractionator T431/2 (C351

is a propylene compressor. Propylene is used for heating or cooling at the

reboiler and the condensor.)

Fig. 7 Estimation results of the ethane concentration in the ethylene product

by using DPLS, SSID (C1 and C2), and two-stage SSID (TS1 and TS2).

(solid line: measurements, dotted line: estimates)

Fig. 8 Time series data of the industrial ethylene fractionator. Key variable to

estimate (top), one of manipulated variables (middle), and one of estimated

unmeasured disturbances (bottom).
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Table 1

Comparison of the estimation performance of softsensor design methods.

Conv-SSID TS-SSID

yq,1 yq,2 yq,3 yq,1 yq,2 yq,3

Case 1

R 0.96 0.98 0.95 0.95 0.92 0.95

RMSE 8.32 3.58 15.85 9.01 7.67 16.51

Case 2

R 0.90 0.96 0.96 0.96 0.96 0.94

RMSE 28.52 17.41 69.10 16.00 9.08 28.86

Case 3

R 0.38 0.88 0.47 0.97 0.92 0.94

RMSE 62.59 14.19 98.11 17.77 12.07 38.43
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Table 2

Variables used for modeling

No. Variable

1 T431 tray #29 temperature

2 T431 bottom temperature

3 T431 top temperature

4 T431 tray #37 temperature

5 T431 tray #129 temperature

6 Flow rate from T432 to T431

7 T431 reboiler flow rate

8 Product ethylene flow rate

9 T432 internal reflux flow rate

10 T432 purge flow rate

11 T432 reflux ratio

12 T432 top pressure

13 T431 feed ethane concentration

14 C351 #4 suction pressure

15 V359 level (cooling propylene)

16 Ethane concentration in the ethylene product
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Table 3

The number of variables used in two-stage SSID

TS1 TS2

State variables x First model 5 10

Second model 6 6

Estimated disturbance variables ûs 5 4
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Table 4

Comparison of softsensors developed through DPLS, SSID (C1 and C2), and two-

stage SSID (TS1 and TS2) by using validation data sets (a) December 9 through

December 16, 2001 and (b) December 21 through December 31, 2001.

R RMSE

(a) (b) (a) (b)

DPLS 0.75 0.74 5.34 4.18

Conventional SSID

C1 0.13 0.39 9.86 6.72

C2 0.88 0.85 6.79 3.69

Two-stage SSID

TS1 0.70 0.54 9.64 6.30

TS2 0.90 0.88 4.28 2.97
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Fig. 1. Unmeasured disturbance us for modeling in case 2.
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Fig. 2. Estimation results through conventional SSID and two-stage SSID in case 3.

(solid line: measurements, dotted line: estimates with conventional SSID, gray line:

estimates with two-stage SSID)
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Fig. 3. Unmeasured disturbance us for validation in case 3.
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Fig. 4. Estimation results through conventional SSID and two-stage SSID in case 3.

(solid line: measurements, dotted line: estimates with conventional SSID, gray line:

estimates with two-stage SSID)
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Fig. 5. Estimated unmeasured disturbance ûs in case 3.
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Fig. 6. Schematic diagram of the industrial ethylene fractionator T431/2 (C351 is a

propylene compressor. Propylene is used for heating or cooling at the reboiler and

the condensor.)
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