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ABSTRACT 

A novel luminescent compound, bis((E)-2-pyren-1-yl-vinyl)-2,4,6-triisopropylphenylborane 

(3) was synthesized by hydroboration reaction and fully characterized. The obtained 

compound was further investigated by single-crystal X-ray diffraction analysis and DFT 

calculations. The extended structure tells us their herringbone structures with closely faced 

pairs of the molecules. Comparing the photoluminescent spectra between solution-state and 

solid-state, the solid-state of the compound 3 exhibited dramatically red-shifted fluorescent 

emission. This change also supported the effcient π-stacking behavior of the compound 3. 
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Introduction 

Organic field-effect transistors (OFETs) have attracted a considerable interest for 

electronic applications, and even light-emitting OFETs have recently been developed. 

Air-stable n-type organic semiconducting materials are quite important for the p-n junction 

diodes. Fluorinated fused aromatics,1 heterocyclics2–5 and diimide derivatives6–9 are 

promising n-type materials. The design strategy of these n-type semiconductive materials has 

been based on the modification of the π-extended p-type semiconductive materials by 

electron-withdrawing groups. There have been some attempts to incorporate pyrene into 

conjugated oligomers for the generation of semiconducting layers in OFETs.10,11 Furthermore 

pyrene derivatives are chemically and photochemically stable comparing with linear 

polyacenes such as anthracene, tetracene and pentacene. 

On the other hand, we have synthesized a wide variety of organoboron polymers including 

boron atoms in the polymer backbone by means of hydroboration polymerization.12–14 These 

polymers exhibited strong fluorescence emission and n-type electronic conductivity15,16 due to 

the high electron affinity of boron atoms. Especially, the extension of π-conjugation by 

hydroboration reaction has some inherit advantages. For example, this method does not 

require any transition metal catalyst which is usually used to prepare π-extended molecules. 

Therefore, metal catalysts that sometimes cause adverse affect for electronic properties cannot 

be in the obtained products in principle. We report here on the synthesis and the properties of 

the first example of the 2-pyren-1-ylethenyl-substituted-substituted trivalent organoborane. 
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The crystal structure and the packing diagrams were determined by single-crystal X-ray 

diffraction analysis. 
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Results and Discussion 

Synthesis 

(Insert here Scheme 1) 

First, the reaction between 1-ethynylpyrene 2 and 2,4,6-triisopropylphenylborane 

(tripylborane, 1) [tripyl = 2,4,6-triisopropylphenyl] was carried out as shown in Scheme 1. To 

a dehydrated and degassed THF solution of 2 was added a half equivalent of 1 in THF 

dropwise at room temperature in dry argon atmosphere. After 24 h of stirring, the solvent 

THF was removed under vacuum. The orange residue was purified by recrystallization from 

hot hexane to give orange crystals in 25% isolated yield. The structure of compound 3 was 

confirmed by 1H, 11B and 13C NMR, elemental analysis and single-crystal Xray diffraction 

analysis. The 1H NMR spectrum of compound 3 showed the peaks assignable to the protons 

of two pyrenyl groups, a tripyl group and vinyl groups. The high value of the coupling 

constant (J = 17.54 Hz) shows that the vinyl protons are in the trans configuration. The 

integral ratios of the peaks for compound 3 were in good agreement with the theoretical 

values. In the 11B NMR spectrum, a peak around 63 ppm corresponding to the typical 

three-coordinated boron atom was observed. 

Crystal Structure 

The crystal structure of compound 3 was determined by single-crystal X-ray diffraction 

analysis. The boron center displays a plane geometry, as shown in Figure 1 and Table 1. Two 

pyrenyl groups were found to be in the same plane and the tripyl group was perpendicular to 

the pyrenyl groups. The extended structure illustrates herringbone structures with closely 
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faced pairs of the molecules as shown in Figure 2. The π-stacking distance is a critical 

parameter for effcient charge hopping in the solid state material. The distance between a pair 

of the pyrenyl groups was approximately 2.8 Å. According to the previous study,17 the crystal 

packing of the non-substituted pyrene was similar to that of compound 3 and the distance 

between a pair of pyrene molecules was about 3.5 Å. Therefore, compound 3 seems to be 

promising as an organic electronic material. 

(Insert here Figures 1 and 2) 

Table 2. Selected Bond Lengths (Å) and Angles (deg) for 3 

3 (X-ray) 

B(1)-C(1) 1.531(4) C(1)-B(1)-C(19) 115.6(2) 

B(1)-C(19) 1.549(3) C(1)-B(1)-C(37) 124.2(2) 

B(1)-C(37) 1.579(4) C(19)-B(1)-C(37) 120.1(2) 

3 (DFT) 

B(1)-C(1) 1.5511 C(1)-B(1)-C(19) 118.3 

B(1)-C(19) 1.5512 C(1)-B(1)-C(37) 120.9 

B(1)-C(37) 1.5905 C(19)-B(1)-C(37) 120.9 

 

DFT Calculation 

(Insert here Figure 3) 

DFT calculation was carried out using Gaussian 03 suit of program18 for further 

understanding of the behavior of the luminescence. The structure of compound 3 was 

optimized using the B3LYP/6-31(d) method. The orbital diagrams were generated by using 
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the GaussView program19 as shown in Figure 3. There was good agreement between the 

geometry of the compound 3 optimized by DFT method and the structure determined by 

single-crystal X-ray diffraction as shown in Table 1. The lowest unoccupied molecular orbital 

(LUMO) is located on boron atom and the extension of the π-conjugation length via the boron 

atom was observed as pointed before. We carried out TD-DFT calculations to obtain further 

insight into the origin of the electronic transitions for compound 3. The calculation revealed 

that the lowest energy transition of compound 3 corresponds to promotion of electrons from 

the HOMO to the LUMO levels. The calculated excitation wavelength of compound 3 was 

492 nm with 1.4642 of the oscillator strength f. This wavelength was in approximately 

consistent with the result of UV-vis absorption spectroscopy. 

 

Optical Properties 

The optical properties of compound 3 were investigated by UV-vis absorption and 

fluorescence emission spectroscopy. The absorption of the compound 3 is shown in Figure 4. 

The compound 3 showed the strong absorption peak at 437 nm (ε = 49 800). This absorption 

peak should be caused by the HOMO-LUMO transition on the plate of the 

pyrenylvinylene-boranepyrenylvinylene from the DFT calculation. Figure 5 shows the 

fluorescence spectra of the compound 3 in dichloromethane and in the solid state. The sample 

of the solid state of the compound 3 was prepared by using chloroform as the solvent (10 

mg·ml-1) and by spinning the solution onto quartz substrates at 2000 rpm for 30 seconds. The 

excitation wavelength of 437 nm was set to the absorption maximum from the UV-vis 
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absorption spectrum. The fluorescence emission peak from the dichloromethane solution was 

490 nm. On the other hand, the solid state of the compound 3 showed dramatically red-shifted 

emission peak at 530 nm. This large red-shift should be due to an efficient π-stacking of the 

plane molecules of the compound 3. Photographs of photoluminescence of the solution and 

the solid state are shown in Figure 6. The dichloromethane solution exhibited a green 

emission and the spin-coated solid exhibited a yellow-green emission. 

(Insert here Figures 4, 5 and 6) 

 

Conclusion  

In conclusion, a pyrenylvinylene substituted tripylborane was successfully prepared by 

hydroboration of ethynylpyrene with tripylborane. The crystal structure was revealed by 

single-crystal X-ray diffraction analysis. The packing diagram displayed herringbone 

structures with closely faced pairs of the molecules. DFT calculation and UV-vis absorption 

spectroscopy indicated the delocalization of π-electron via the boron center. The fluorescence 

emission spectra reflected the strong π-stacking of the compound 3. Efforts are underway to 

fabricate and evaluate OFETs utilizing the compound 3. 
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Experimental Section 

General: 1H, 13C and 11B NMR spectra were recorded on a JEOL JNM-EX400 instrument. 

The chemical shift values were expressed relative to Me4Si (
1H and 13C NMR) as an internal 

standard and BF3·OEt2 (
11B NMR) as an external standard. UV-vis spectra were obtained on a 

SHIMADZU UV-3600 spectrophotometer, and samples were analyzed in CH2Cl2 at room 

temperature. Fluorescence spectra were recorded on a Perkin Elmer LS50B luminescence 

spectrometer, and samples were analyzed in CH2Cl2 at room temperature. The melting point 

(mp) of compound 3 was measured with a Yanaco Micro Melting Point apparatus (Model 

MP-S3). Elemental analysis was performed at the Microanalytical Center of Kyoto University. 

All procedures were performed under argon atmosphere. X-ray diffractions were collected on 

a Rigaku R-AXIS RAPID-F graphite-monochromated Mo Kα radiation diffractometer with 

imaging plate. A symmetry related absorption correction was carried out by using the 

program ABSCOR.20 The analysis was carried out with direct methods (SHELX-9721 or 

SIR9222) using Yadokari-XG.23 The program ORTEP324 was used to generate the X-ray 

structural diagrams. 

Materials: Tetrahydrofuran (THF) was purified using a two-column solid-state purification 

system (Glasscontour System, Joerg Meyer, Irvine, CA). Tripylborane 1 was prepared 

according to the literature.25 1-Ethynylpyrene was commercially available from Aldrich and 

purified by SiO2 column chromatography. All other reagents were commercially available and 

used as received. 
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Bis((E)-2-pyren-1-yl-vinyl)-2,4,6-triisopropylphenylborane (3): Tripylborane 1 (108 mg, 

0.50 mmol) in THF (1 ml) was slowly added to 1-ethynylpyrene (226 mg, 1.00 mmol) in THF 

(4 ml). After stirring the mixture for 24 h at room temperature, the solvent was evaporated 

and the crude product was purified by recrystallization from hexane. After the emerged 

crystals were dried under reduced pressure, the model compound 4 (83 mg, yield 25%) was 

obtained as an orange solid. m. p. 245 °C. 1H NMR (CDCl3, δ, ppm): 8.61 (2H, d, J=17.54 Hz, 

-CH=CH-B-), 8.55 (2H, d, J=8.04 Hz), 8.36 (2H, d, J=9.50 Hz), 8.22-8.16 (6H, m), 8.12-8.04 

(6H, m), 8.00 (2H, t, J=7.55 Hz, pyrene-7H), 7.80 (2H, d, J=17.54 Hz,-CH=CH-B-), 7.17 (2H, 

s, tripyl-H), 3.12-3.01 (1H, m, -CH-(CH3)2 on 4-position of tripyl), 2.87-2.77 (2H, m, 

-CH-(CH3)2 on 2 and 6-position of tripyl), 1.43 (6H, d, J=7.07 Hz, -CH-(CH3)2 on 4-position 

of tripyl), 1.28 (12H, d, J=6.58 Hz, -CH-(CH3)2 on 2 and 6-position of tripyl). 
13C NMR 

(CDCl3, δ ppm): 150.73, 149.75, 148.18, 139.90, 138.07, 132.21, 132.07, 131.40, 130.77, 

129.41, 128.14, 127.45, 126.09, 125.70, 125.46, 125.11, 124.98, 124.82, 124.54, 122.69, 

120.05, 35.31, 34.40, 24.60, 24.28. 11B NMR (CDCl3, δ, ppm): 63.67. Anal. Calcd for 

C51H45B: C, 91.60; H, 6.78; B, 1.62 Found: C, 91.35; H, 6.88. 
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Scheme 1. Synthesis of compound 3 
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Figure 1. Structure of compound 3 with thermal ellipsoids drawn to the 50% probability level. 



 15 

 

Figure 2. Plot illustrating the extended structure of compound 3. All hydrogen atoms and 

tripyl groups were omitted for clarity. 
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Figure 3. HOMO and LUMO diagrams of compound 3. Scaling radius is 75% and molecular 

orbital surface isovalue is 0.02. 
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Figure 4. UV-vis spectra of compound 3 in CH2Cl2 (5.0 × 10
-5 M). 
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Figure 5. Fluorescence spectra of compound 3 in CH2Cl2 (1.0 × 10
-7 M) and in the solid state 

excited at 437 nm. 
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Figure 6. Photographs of fluorescence of the compound 3 under UV light at 365 nm. Left: 

dichloromethane solution. Right: solid state. 
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