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Development of Correlation-based Clustering Method and Its Application to
Software Sensing

Koichi Fujiwarda, Manabu Kano, Shinji Hasebe
Department of Chemical Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan

Abstract

The individuality of production devices should be taken into account when soft-sensors are designed for parallelized
devices. Since it is expressed as#feliences of the correlation among measured variables, it is useful to cluster
samples on the basis of the correlation among variables for adopting a multi-model approach. In addition, changes
in process characteristics can be coped with in the same way. In the present work, a new clustering method, referred
to as NC-spectral clustering, is proposed by integrating the nearest correlation (NC) method and spectral clustering.
Spectral clustering is a graph partitioning method that can be used for sample classification wifi@ityamatrix of

a weighted graph is given. The NC method can detect samples that are similar to the query from the viewpoint of the
correlation without a teacher signal. In the proposed method, the NC method is used for constructing the weighted
graph that expresses the correlation-based similarities between samples and the constructed graph is partitioned by
using spectral clustering. In addition, a new soft-sensor design method is proposed on the basis of the proposed NC-
spectral clustering. The usefulness of the proposed methods is demonstrated through a numerical example and a case
study of parallelized batch processes. The performance of the proposed correlation-based method is better than that
of the conventional distance-based methods.

Key words: Spectral clustering, Nearest correlation method, Soft-sensor, Batch process, Correlation, Graph Theory

1. Introduction process characteristics change. However, repeated and

] .. manual construction of them should be avoided due to
Soft-sensors have been widely used for estimating heavy workload [8].

product quality or other key variables. Partial least
squares (PLS) and artificial neural network (ANN) have
been widely accepted as useful techniques for soft-
sensor design [1-5]. In addition, the application of
subspace identification (SSID) to soft-sensor design has

been reported [6, 7]. neighbor samples around the query only when an esti-

L P . P models to new operating conditions, they cannot always
acteristics change. In chemical processes, process char-

L L achieve high estimation performance.
acteristics are changed by catalyst deactivation, scale i
adhesion and so on. In semiconductor manufacturing Recently, a new JIT modeling method, referred to as

processes, periodic cleaning of equipment changes theCorrelation-based JIT (CoJIT) modeling, has been pro-

process characteristics dramatically. Therefore, main- PoS€d [13]. Since changes in process characteristics are
tenance of soft-sensors is very important to keep their €XPressed as fierences of the correlation among vari-

estimation performance. They should be updated as the2P!€S, CoJIT modeling builds a local model from sam-
ples whose correlation can properly describe the query.

In addition, the individuality of production devices
should be taken into account. In semiconductor pro-

To cope with changes in process characteristics and
to update statistical models automatically, recursive
PLS [9] and Just-In-Time (JIT) modeling [10-12] have
been proposed. Recursive PLS updates a PLS model re-
cursively, and JIT modeling builds a local model from
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even if their catalog specifications are the same. In such  Given a weighted grapt and its adjacency matrix
a case, a soft-sensor developed for one device is not al-(affinity matrix) W, G is partitioned into two subgraphs
ways applicable to another device, and it is very labori- A andB. The dfinity betweenA andB is defined as

ous to construct soft-sensors for each device. Therefore,

a practical soft-sensor design method that can cope with Cut(A.B) = WI(AB) (1)
the individuality of production devices should be devel- W(AB) = Z Wiy 2
ODEd. ueAveB

If there are some devices whose characteristics are W(A) = WAA). 3

similar to each other, the same soft-sensor may be ap-
plicable to them. That is, to construct soft-sensors that

can cope with the |nd|V|du§I|ty of production Qewces, Cut(A, B) is the sum of the weights of the arcs between
it is useful to cluster operation data of parallelized pro-
cesses into a few classes according to their characteris-SUbgraphS' The Mcut method searches subgrAatred

B that can minimize cuf, B) and maximizeN(A) and

tics and to construct a model for each class. In addition, W(B), simultaneously. The objective function of the
the number of developed soft-sensors can be reduced by ' . - ] )
Mcut method is as follows:

comparison with the case where soft-sensors are con-

structed for each device. min J = CUUA.B) cutA B) @)
Thek-means method has been used for sample classi- W(A) W(B)

fication. Although it can cluster samples on the basis of  gjnce indexes of nodes are interchangeable, fiive a

the dlstanc_e, it does not take into accognt the correlation ity matrix W can be defined as follows:

among variables. Recently, self-organizing map (SOM)

has been proposed [14]. SOM is a machine learning W = [ Wa  Wag

process that imitates the brain learning process, and it Wga Ws

can visualize high dimensional data as a map on the

basis of similarities between samples. However, SOM

doe;f] not alw?ys 33/? cleir boundar;]gshbetweerl ctl_ustelrsWB’A are the &inity matrix betweenA and B. In
on the map. In addition, it requires high computational ,qiion  the vectorsx = [1,---.1,0,---,0]" and

load, and its parameter tuning and data preprocessingy ~[0,---,0,1,--- ,1]" that express partition into sub-

are complicated. . graphs are satisfied as follows:
In the present work, a new clustering method, re-
x'(D-W)x =y (D-W)y (6)

ferred to as NC-spectral clustering, is proposed. In W(A, B)

the proposed method, the nearest correlation (NC) W(A) xTW X )
method [15] that can detect samples whose correlation W(B) yTWy (®)
is similar to the query and spectral clustering [16, 17]

that can partition a weighted graph are integrated. The whereD = diagWe) ande = [1,--- ,1]". Using these
proposed NC-spectral clustering can classify samples equations, Eq. (4) can be rewritten as

according to their correlation among variables without T

teacher signals. In addition, a new soft-sensor design  min J = (P =W)X ¥(D-Wy ©)
method based on NC-spectral clustering is developed. x.y XTWx y'Wy

The usefulness of the proposed methods is demon-Qnly the first term of Eq. (9) needs to be analyzed.
strated through a case study of parallelized batch pro-  The minimization problem of Eq. (9) is hard to solve,

where u and v denote nodes of subgrapls and B,
respectively. That is, theffanity between subgraphs

(5)

whereW, and Wg are the adjacency matrices within
the subgraphsA and B, respectively, andVag and

cesses. since the optimizing variables andy are binary vari-
ables. Therefore, these binary variables should be re-
2. Spectral clustering laxed. The new index vectay = {a,—b}, (a,b > 0) is

introduced as follows:
Spectral clustering is a clustering method on the basis

of the graph theory. It can partition a weighted graph, Qu = {a, (ueA) . (10)
whose weights expresdfaities between nodes, into -b, (ueB)
subgraphs through cutting some of their arcs.
Although some spectral clustering algorithms have
been proposed, the Max-Min Cut (Mcut) method [16] ) q"(D-W)q
is described in this section. mq - T q'Wgq
2

Finally, the problem can be written as follows:

(11)



This minimization problem results in the eigenvalue
problem.

(Il - D YWD Y?)z=az (12)

The solutiong* is expressed ag' = D™Y/22, wherez
is the eigenvector corresponding to the second largest
eigenvaluel,; 2, and z, are called Fiedler value and
Fiedler vector, respectively [18]. Through the above
procedure, the Mcut method does not need parameter
tuning and its calculation is fast.

Since the Mcut method partitions a weighted graph
into two subgraphs, the procedure described above is Next, a line connecting each sample and the origin is
repeated when three or more subgraphs are needed. drawn. Suppose another sample can be found on this

Original space Translated space

Figure 1: An example of the procedure of the NC method

In spectral clustering, the definition of affiaity is line. In this casex,-Xs and x3-X4 satisfy such a re-
arbitrary and fects results. Ngt al. defined the fiin- lationship as shown in Fig. 1 (right). The correlation
ity between samples ands; by using the Gaussian ker- ~ codficients of these pairs must be 1-6t. On the other
nel [17]. hand,xs and x; that are not the elements of cannot

(s, s) make such pairs. Therefore, the pairs whose correlation
- 9 codficients arer1 are thought to have the same corre-
Wi = exp( 202 ) (13) lation asx.
whered(., ) is a distance function and is a tuning pa- In practice, the threshold of the correlation ffasent

v (0 < y < 1) has to be used, since there are no pairs
whose correlation cdBcient is strictly+1. Therefore,
the pairs should be selected when the absolute values of
3. NC-spectral clustering their correlation coficients are larger than

Using the above procedure, the pairs whose correla-

In the present work, a new clustering method based tion is similar to the query can be detected.

on the correlation among variables is proposed. In the
proposed method, the correlation-basefindies be- 3.2. NC-spectral clustering
tween samples are calculated by using the nearest corre- The correlation-based fiiity matrix for spectral
lation (NC) method to construct a weighted graph, and cjystering can be constructed by using the NC method.

rameter.

the constructed weighted graph is partitioned by spec- aossume that samples, € RM (n = 1,---,N) are
tral clustering. This method is referred to as NC-spectral stored in the database. The procedure of the proposed
clustering. NC-spectral clustering is as follows:
NxN <

3.1. Nearest correlation method Step 1.ai3tl_trlelzero matrte REEy 0 <y <1

The NC method can detect samples whose correlation Step 2. Set the zero matr$ € RN<N,
is similar to the query without any teacher signals [15]. Step3.x, = xn—x forn=1,2--- N (n#L).

The concept of the NC method is as follows: Sup- step 4. Calculate the correlation ¢eients Cy; be-
pose that the fine subspac® in Fig. 1 (left) shows tween all possible pairs od’k~andx|’ (k#1).

the correlation among variables and all the samples on Step 5. Select all the pairs &fandl satisfying|Cy| >
P have the same correlation. Although --- , X5 have y. '

the same correlatiorss and x; have a diferent corre- Step 6. BL)ir = (S)if = 1.
lation from the others. The NC method aims to detect Step7.S= S+S.

sa_mples whose correlation is similar to the queryIn Step 8. IfL = N, outputS as the &inity matrix. Other-
this examplexo, - - - , X5 on P should be detected. .
wise,L = L + 1 and return to 2.

At first, the whole space is translated so that the query .
becomes the origin as shown in Fig. 1 (right). That is, Step 9. Partition the graph expressed Bythrough
X1 is subtracted from all other samples(i = 2,--- , 7). spectral clustering.
Since the translatedfine subspace contains the origin, Inthe above procedure, steps3correspond to the NC
it becomes the linear subspaée method.
3



3.3. lllustrative example [

The detailed function of the proposed method is il- o
lustrated through a simple example. An objective data X, /
set consist of nine samples, - - , Xg € RZ; X1, -+, X4 7o, k
andxs, - -- , Xg are on the line$ andk, respectively, as / “\\®x9 /@’x
shown in Fig. 2. Onthe other hanx, is an outlier. That x6 / s 1
is, the data set consists of three classes:-- , X4}, p
{Xs,---, Xg} and{Xg}. In addition, samplex,, x; and X Jog
Xg are arranged in line by chance. 5 ﬁ <X

First, the zero matrixs € R is defined, and the r 7 X,
correlations of all possible pairs of samples are checked
by the NC method. For example, whgnpis the query,
X2-X3, X2-X4 and X3-X4 are detected as pairs whose
correlation is similar tox;, and §),3 = (S)32 = 1,
(924=(922=1,(34=(9a3=1.

In the same way, SiNCR;-X3, X1-X4, X3-X4 and Xz-
Xg are detected whexy is the query, one is added to the
elements oS corresponding to these pairs. At this time,
(934 = (943 = 2 because the paits-x4 is detected
again. This procedure is repeated so that all samples
become the query. Finally, th&aity matrix Sbecomes
as follows:

Figure 2: An objective data set

(0 2 2 2 0 0 0 0 0
2 02 2 0 0101 Figure 3: A weighted graph expressing thférity matrix S
2 2 02 00O0O00O0
222000000 3.4.1. Two-dimensional case
S=|0 0 0 OO 2 2 2 0. (14) o
The discrimination performances are compared
0 00020220 . X T
through two-dimensional examples. The objective data
01 00220 21 : .
000022200 set consists of three classes that haviedint correla-
' 010000 10 O tion and intersect at the origin. 100 samples in each of

three classes are generated by the following equation.
NS, (827 = (972 = 1, (S29 = (992 = 1 and Cen .
(S)79 = (S)97 = 1 since samples,, x7 andxg are ar- Xx=sx+n(i=123) (15)
ranged in line by chance and the pairs of these sampleswheres ~ N(0, 1), measurement noise = [ny ny]",

are detected by the NC method. However, the weights n; ~ N(0,0.01), andN(m, o) is a random number fol-

of these pairs it are smaller than those of the pairs that lowing the normal distribution whose meanris and

have the true correlation. standard deviation is. The codficient matricesy; €
Figure 3 shows an example of the graph expression R2area; =[1 2]",ap=[2 2] andazg=[2 1] .
of the calculated fanity matrix S. In Fig. 3, the length In the conventional spectral clustering, th@raties

of each arc is inversely proportional to their weights. between samples are defined using the Gaussian kernel
By partitioning this graph using spectral clustering, the in Eq. (13), the Euclidean distance is used as a distance
nodes are classified infoy, - - - , X4}, {Xs,--- , Xg} and functiond(-,-) ando- = 1. In the proposed method,
{Xg}. This example clearly shows that the proposed NC- the parameter of the NC methodyis= 0.999. These
spectral clustering can classify samples on the basis of parameters are determined by trial and error.

the correlation among variables. The generated samples and the clustering results of
_ the k-means method, spectral clustering and the pro-
3.4. Numerical examples posed NC-spectral clustering are shown in Fig. 4.

The discrimination performance of the proposed NC- The conventional distance-based methods cannot clas-
spectral clustering is compared with that of tameans sify samples correctly. On the other hand, the proposed
method and spectral clustering through numerical ex- method can classify samples accurately in most regions
amples. except around the origin.

4
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Figure 5: Classification results of NC-spectral clustering with dif-
ferent parametery: y = 0.998 (top-left), 0995 (top-right), (99
(bottom-left) and M8 (bottom-right)

Figure 4: Classification results of the 2-dimentional example when
three classes intersect at the origin: true classes (top-leff;ieans
method (top-right), spectral clustering (bottom-left) and NC-spectral
clustering (bottom-right)

that the proposed NC-spectral clustering also functions
successfully as well as the conventional distance-based

methods even when classes are located separately from
each other .

To evaluate thefect of the parameter on the clus-
tering results, samples are classified using NC-spectral
clustering with diferenty. Fig. 5 show the clustering
results withy = 0.998, 0995, Q99 and 098. The clus- i . _
tering performance deterioratesyasecomes small, and ~ 5-4-2. Five-dimensional case
the clustering result does not change much whésa The discrimination performances are compared
less than 0.99. This example shows the paramgter through gflve-dlmen5|onal example. The.objectlve data
should be close to one although the optimal value de- Set consists of three classes that hatedént correla-
tion and intersect at the origin. 100 samples in each of

pends on the variance of measurement noise. . ‘
three classes are generated by the following equation.

In addition, another case where three classes are lo-
cated separately from each other and contaminated by x=As+n (i=123) (17)
large measurement noise is considered. 100 samples
in each of three classes are generated by the followingwheres = [s; 5], s ~ N(0,1) andn = [n; n] "0 nj ~

equation. N(0,0.01). The cofficient matricesA; € R° x 2 are as
follows:
x=sag+b+n (i=123 16
a; + by + 1y ( ) (16) 1 2 3 3 2 1
wheres and a are the same as Eq. (15). The biases 14 2 1 3 4
b € R2areb, = [0 04]", b, = [-05 0]" and Ar=|1 1| A=|3 1|As=|1 3
bs = [0.5 04]", and the measurement noisenis= 2 3 3 2 0 4
[m o], nj ~ N(O,07), whereo; = 0.02, 07 = 0.03 13 2 0 31
andos = 0.04. ) The discrimination rate is defined as
The generated samples and the clustering results of
the k-means method, spectral clustering and the pro- Discrimination rate[%]= % x 100 (18)

posed NC-spectral clustering are shown in Fig. 6. The

settings of spectral clustering is the same as the previouswhereK is the number of detected samples &ne 100
example and the parameter of NC-spectral clustering is in this example.L (L < K) is the number of samples
v =0.999. that belong to the true class, outldfdetected samples.

In Fig. 6, every clustering method can discriminate The settings of spectral clustering is the same as Sec.
samples accurately in most regions and the clustering 3.4.1 and the parameter of NC-spectral clustering4s
results are similar to each other. This example shows 0.999 and (®9.

5



The k-means method

08 NC-spectral clustering can cluster the operation data ac-
cording to their characteristics.

In the present work, a new soft-sensor design method
based on NC-spectral clustering is proposed. In the pro-

0.8

* %,

L . *’:‘w posed method, the operation data are clustered by using
NC-spectral clustering and models are constructed for
each class.

Assume that the input samples and output samples
NC-spectral lustering (7 =0.999) are stored in the databagg ¢ ®RM andy, € R- (n =

s

0.8 -0.8 ‘

Spectral clustering
0.8 %

0.8

1,2,---,N). The proposed soft-sensor design proce-
dure is as follows:

+ ¥,

e - e 1. _Classify the input sarn_ple);n to P classes us-

ﬁéﬁ%@wﬁ* %*f;@rﬁ" ing N_C-spectral clustering, an@; = {n| x, €

T M Ki), =12---,P).

2. Construct model$; : X — Y from x; andy; (i €
Q;) for K;, whereX is the set of input and is that

Figure 6: Classification results of the 2-dimentional example when of output.

three classes are located separately from each other: true classes (top- [ i new sam I - = h(%) whenX

left), thek-means method (top-right), spectral clustering (bottom-left) 3. .C aSSfya N ia p.b“eto ¢ aSSI.(J |( ) if €

and NC-spectral clustering (bottom-right) 1S _measured, whetle: X — K is a classifier and
K is the set of class.

4. Calculate an estimafe= f;(X).

+

-0.8 0.8 ‘
-1 0 1 -1 0 1

Table 1 shows the discrimination performances of the
k-means method, spectral clustering and NC-spectral In the above algorithm, any modeling method can be
clustering. The proposed NC-spectral clustering with used for building a local modéf. In the present work,

y = 0.999 can achieve higher discrimination perfor- PLS is used to cope with the collinearity problem.
mance than the other methods although the discrim- The Q statistic can be used as the evaluation func-
ination performance deteriorates in the caseyoft tion of a classifieth. The Q statistic is derived from
0.99. These results clearly show that the proposed principal component analysis (PCA), which is a tool for
NC-spectral clustering can discriminate the correlation data compression and information extraction [19]. PCA
among variables when the parametés approximately ~ finds linear combinations of variables that describe ma-
selected. jor trends in a data set.

In PCA, the loading matri¥/r € RM*R is derived as
the right singular matrix of a data matrix € RNM,
ing and the column space df is the subspace spanned by

principal components. Herd), N, andR(< M) denote

The operation data need to be clustered according tothe numbers of variables, samples, and principal com-
their characteristics to construct soft-sensors that canponents retained in the PCA model, respectively. All
cope with the individuality of production devices. Since Variables are mean-centered and appropriately scaled.
the individuality of production devicesffacts difer- The score is a projection of a samples R onto the

ences of the correlation among variables, the proposedsubspace spanned by principal components. The score
tr € RRis given by

4. Soft-sensor design based on NC-spectral cluster-

T
Table 1: Discrimination performances of the 5-dimentional example tr = VRX' (19)
Discrimination rate [%)] x can be reconstructed or estimated fragwith linear

Thek-means method 43 19 75
Spectral clustering 40 35 31 X = VRrtr = VRVE X (20)
NC-spectral clustering 85 84 93 . ) ) , ,
(y = 0.999) The information lost by the dimensional compression,
NC-spectral clustering 45 51 85 that is, errors, is written as
(v = 0.99) e=x-%=( - VRV)X. (21)




Using the errors, th@ statistic is defined as

Q = e'e (22)
X" (I = VRVRE)X. (23)

The Q statistic is the distance between the sample and
the subspace spanned by principal components. In other
words, theQ statistic is a measure of dissimilarity be-
tween the sample and the modeling data from the view-
point of the correlation among variables. Therefore, the
class that minimizes th® statistic ofx should be se-
lected as the class of. The classifieh is described

Figure 7: Schematic diagram of the batch reactor with control systems

as
h(x) = argminQ; (24) the reactor temperature and the jacket temperature are
- controlled through the multivariable control system.
Q = x'(1-vIvihx (25) The jacket temperatur€; and the reactor tempera-

s ) ) ) ~ tureT, are measured every one minute and the termi-
whereVy' is the loading matrix derived from the matrix  pation time of operation is 120 minutes. The operation

XU whose rows are samples belonging to cléigs data of the batch process is shown are Fig. 8.
In this case study, five reactoRs, - - - , Rs are oper-
5. Case study ated in parallel. In addition, their heat transfer coef-

ficients are unchanged during the batch operation, and
In this section, the proposed NC-spectral clustering is they change every batch operation as the random num-
compared with th&means method through their appli- ber. The heat transfer cfieientsU; (i = 1,--- ,5) are
cation to operation data of parallelized batch processes.
In addition, soft-sensors for product composition are de- U(40.60,4062), i = 1,2
signed on the basis of their clustering results. The de- ’ ’ ’

tailed batch process model used in this case study is de- Ui = 1U(4057,4059), ' =34 (27)
scribed in Appendix A. U(4054,4056), i =5
5.1. Problem setting whereU (a, b) denotes the uniform random numbers on

A schematic diagram of the batch reactor is shown the closed intervald, b]. Therefore, there are three
in Fig. 7. In this process, a well-mixed, liquid-phase YPES of the correlation among variables although there

reaction system is considered, in which two reactions &€ five reactors. In this case study, the operation data

take place: of 20 batches of each reactor are stored in the database.
. The objective of this case study is to construct soft-
reactonl A+B— C (26) sensors that can estimate the amount of the product C
reaction2 A+C—D accurate|y_

The component C is the desired product while D is the

byproduct, and the objective is to achieve a good con- 120

version of product C. The initial reactor temperature is

20°C and the initial amount of the row materisisand

B changes as the random numbers follow(@O0, 0.1).
Since reaction 1 proceeds at 90 or higher, the re-

actor temperature should be raised as soon as possible

after operation starts. As reaction 1 proceeds, the reac-

tor temperature increases due to reaction heat. However,

reaction 2 proceeds at the reactor temperature exceed-

ing 100°C and produc€ is converted to byproduct D. 0 o 120

Therefore, a rise in the reaction temperature has to be

controlled after it reaches around 90. In this process, Figure 8: Batch process operation data

7
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Clustering result by the k-means method
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Figure 9: Classfication results: ttkemeans method (left) and NC-
spectral clustering (right)

5.2. Clustering

Before constructing soft-sensors, the operation data
of all 100 batches stored in the database are clustere
into three classes using tkeneans method and the pro-
posed NC-spectral clustering. As preprocessing of the
operation data, its dimension is reduced by Multiway
PCA [20, 21] and the number of the retained principal
components is two. Therefore, the input variables of
these clustering methods are the scdgesndt,. The
parameter of NC-spectral clusteringyis= 0.99.

The clustering results of thk=means method and
NC-spectral clustering are shown in Fig. 9. In this fig-
ure, the sample distribution on tiet, plane is shown.

In the result of th&k-means method, the center of each
classc; (j = 1,2,3) is designated by a circle, and sam-

ples are certainly classified based on the distance. On

the other hand, in the case of the proposed method, sam
ples are classified regardless of the distance.

5.3. Soft-sensor design

A soft-sensor is constructed to estimate the amount
of productMc [kmol] at the end of the batch. Three

models are built for each of three classes clustered by

NC-spectral clustering in Sec. 5.2. The input variables
of soft-sensors are the time serieslpandT;, and PLS
is used for model construction.

In addition, another soft-sensor is designed on the ba-
sis of the clustering result of themeans method. In
this case, the distance from the class cewojes used
for sample discrimination when an output is requested.

8

Estimation resluts by PLS with the k-means method

RMSE =7.0x10-3
r2=0.50 )
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Estimation results by PLS with NC-spectral clustering

RMSE =4.1x10-3
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Figure 10: Estimation results by PLS with tkeneans method (top)
and NC-spectral clustering (bottom)

That is, the classifigg is described as

o(x) = arg n]]in [IX = c;ll2. (28)

In this case studyMc of the new reactoRs is es-
timated for performance validation. The heat transfer
codficient of Rs changes as the random number follow-

49 U(40.60,40.62), which is the same as that®f and

R,. The number of the validation batches is 20.

The estimation results of soft-sensors are shown in
Fig. 10. In these figures, the horizontal line and the ver-
tical line express the measurement and the estimates, re-
spectively. RMSE is the root-mean-squared errorr@nd
denotes the determination d¢heient between measure-
ments and estimates. These results clearly show that the
proposed method can achieve higher estimation perfor-
mance than th&-means method-based soft-sensor and
RMSE is improved by 43%.

6. Conclusion

A new clustering method is proposed by integrating
the NC method and spectral clustering. The proposed
NC-spectral clustering can accurately discriminate the
correlation among variables. In addition, a new soft-
sensor design method based on NC-spectral clustering
is proposed. Since NC-spectral clustering can discrim-
inate the individuality of production devices, the pro-
posed soft-sensor design method can improve the esti-
mation performance. The usefulness of the proposed
methods is demonstrated through numerical examples
and a case study of parallelized batch processes.
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Table A.2: Model parameters for the batch process

Mw, = 30 kg/kmol
Mwg = 100 kg/kmol
Mwc = 130 kg/kmol
Mwp = 160 kg’kmol
k) = 1.20x 10°[-]

ké = 7.88x 10%[-]
Ei1/R=1.00x 10°[-]
E»/R=1.70x 10%[-]
r=050m

F; = 0.38 m*/min

U = 40842 kJmin - m? - K

Cpa = 7531 kJkmol - K

Cps = 167.31 kJkmol - K
Cpc = 21757 kykmol - K
Cpp = 33473 kJkmol - K

AH; = —41,840 kykmol
AH, = -25,105 kJkmol
p =100x 10° kg/m3

pj = 1.00x 10° kg/m?®
Cp; = 1.88 kJkg - K

V| = 0.69 n?

Table A.3: Initial operating condition for the batch process

MA,O = 12 kmol
Mc’o = 0 kmol

MB,O =12 kmol
MD,O = 0 kmol

T0=29315K T;p=29315K

10



