

FPGA Based Arbiter Physical

Unclonable Function Implementation

with Reduced Hardware Overhead

Alexander A. Ivaniuk and Siarhei S. Zalivaka(B)

Belarusian State University of Informatics and Radioelectronics,
220013 Minsk, Belarus

{ivaniuk,zalivako}@bsuir.by

Abstract. The existing implementations of the arbiter physical unclon-
able function (PUF) are based on synthesis of configurable symmetric
paths, each link of which is a pair of two-input multiplexers providing two
configurations of test signal translation: straight and exchange. To build
a single link on FPGA, it is necessary to use two built-in LUT blocks,
providing the implementation of two multiplexers, and the hardware
resources of the LUT blocks are not fully utilized. The paper presents
a new architecture of symmetric paths of the arbiter PUF, providing
efficient use of the hardware resources of LUT blocks for various Xilinx
Artix-7 FPGA family.

Keywords: Physical Unclonable Function · Arbiter · FPGA · LUT ·
Symmetrical path

1 Introduction

Protection of digital devices against unauthorized use, copying and modifica-
tion can be achieved by various methods, algorithms and technical means (e.g.
encryption, watermarking and fingerprinting, active and passive metering, formal
verification, etc.). Relatively novel scientific area named physical cryptography
can be highlighted among many mentioned above methods. This direction is
mainly based on so called Physical Unclonable Functions (PUFs) [1]. The main
idea of PUFs is in extraction of unique physical characteristics from a fabricated
digital device. Manufacturing process variations of integrated circuits bring a
lot of random, unpredictable changes to its structure. Therefore, each instance
of a manufactured integrated circuit becomes unique and irreproducible with
unpredictable physical characteristics. These unique changes can be extracted
by designing special digital circuits which can produce unique digital responses
as a result of applying specific digital challenges to the device. In general, cir-
cuit implementation of a PUF can be represented as a block with n digital

inputs getting n-bit challenge C from all possible 2n combinations and produc-
ing one single-bit output value R (Response). The behaviour of such circuit

Oc Springer Nature Switzerland AG 2019

S. V. Ablameyko et al. (Eds.): PRIP 2019, CCIS 1055, pp. 216–227, 2019.

https://doi.org/10.1007/978-3-030-35430-5_18

https://doi.org/10.1007/978-3-030-35430-5_18

FPGA Based Arbiter Physical Unclonable Function Implementation 217

}

α0
= R

R∗

−

α1

can be represented as a boolean function mapping {0, 1 n → {0, 1}. The ran-
domness of this function can be explained by the fact that the exact mapping
of the set of challenges to the set of responses is unknown until the device is
fabricated. This property also depends on uncontrollable variations of all manu-
facturing stages. Thus, the set of all possible challenge-response pairs of a PUF
CRα = {c0 r0 , c1 r1 , . . . , c2n −1 r2n −1 } determines the uniqueness of an instance α
of the digital device and ri = PUFα (ci), i = {0, 1, . . . , 2n−1 } determines unique
dependency between a response ri and a challenge ci .

PUF should meet the following criteria to be utilized in physical cryptogra-
phy [1, 2].

1. Hardware overhead for PUF implementation should not exceed the hardware
cost of a protected device.

2. Collection, storage and analysis of the set CRα should be physically infeasible
using modern equipment within reasonable time. The PUF, which matches
this criterion, is called a strong PUF for parameter n ≥ 64. To store the
whole set of Rα , the 16 exabyte memory device is required. At the same
time, collection of all possible values of Rα takes approximately 580 years if
the response time of a memory device is 1 ns.

3. Knowing information about the challenge-response pair ci ri for a particular
instance of a device α it is impossible to calculate, simulate or design a math-
ematical model to predict value of a pair cj rj , i = j , or any other subset
of such pairs. If a PUF satisfies mentioned condition, it can be considered
random and unpredictable.

4. For a particular device α the set of responses R∗ , |R∗ | < |Rα |, can be
α α

extracted many times with a high degree of reliability by applying corre-
sponding set of challenges C ∗ , |C ∗ | < |Cα | to the inputs of a PUF. The PUF α α

which has this property can be considered stable (reliable).
5. The set D = {α0 , α1 , . . . , αm−1 }, |D| = m, for different instances of a digital

device with embedded PUF circuit and fabricated using the same technology,
should match the following condition CRα0

= CRα1
= . . . = CRαm

1
. This

condition can be strengthened by additional condition R∗ ∗ = . . . =

αm−1
for a corresponding set of challenges Cα0

= Cα0
= . . . = Cαm−1

,
|Cα0

| = |Cα1
| = . . . = |Cαm−1

| = plog2 ml. The PUF which has this property
can be considered unique.

The PUF design which matches criteria described above can be efficiently
used as a cryptographic primitive for following tasks.

– unclonable identification of digital devices;
– reliable authentication of digital devices;
– irreproducible random number sequences generation;
– hardware implementation of hash functions;
– hardware implementation of watermarks and fingerprints;
– protection digital devices against illegal cloning and modifying.

There are many circuit implementation of PUFs for digital device [1, 2]:
arbiter PUF, ring oscillator PUF, butterfly PUF, memory based PUFs, etc.

28 A. A. Ivaniuk and S. S. Zalivaka

α

α

i

i

cj

Almost all of mentioned PUF designs are based on measuring delay differences
between signals propagated by symmetrical paths formed by a set of sequentially
connected digital elements.

One of the most widely used methods of a PUF implementation for digital
devices based on measuring delay differences is called Arbiter PUF (A-PUF)
[3–6]. In contrast to the other mentioned PUFs, this type can be classi-
fied as a strong PUF and involves acceptable hardware overhead. However,
practical implementation of this PUF has some disadvantages, which are under
investigation of many developers and researchers in physical cryptography area.
One main issue of A-PUF design is its low reliability of challenge-response pairs
set and a vulnerability to an accurate modeling using known subset of pairs CR∗ ,
|CR∗ | « |CRα | as circuit structure has linear dependency between challenge and
response values.

2 Classical Arbiter PUF Design

Classical Arbiter PUF (A-PUF) implementation usually contains three blocks,
namely Test Pulse Generator (TPG), Symmetrical Paths Block (SPB) and
Arbiter Block (AB). This structure is shown in Fig. 1.

SPB

SW0 SW1 SWj SWn-1

TPG

a0 x0

b0 y0

a1 x1

b1 y1

... aj xj

bj yj

... xn-1

AB ri

yn-1

ci
0

 ci
1 ci

j ci
n-1

Fig. 1. Classical Arbiter PUF block level design.

SPB usually embeds n paths switching blocks (SWj) controlled by external

signals c
j ∈ {0, 1}, j = {0, 1, 2, . . . , n − 1}, which correspond to the input chal-

lenge bits. Each switch SWj has two inputs aj , bj and two outputs xj , yj . If

i = 0 paths are configured in a straight mode, i.e. signal goes from input aj to

output xj and from bj to yj , correspondingly. Otherwise (c
j

= 1), switch SWj

has an exchanging configuration, so input aj is now connected to yj and bj to xj .
Thus, n switching blocks provide 2n possible path configurations for propagation
of two test pulses generated by TPG block. Arbiter block determines which of
two signals arrives earlier, i.e. if signal from output xn−1 came faster than the
one from output yn−1 AB produces response value ri = 1. Otherwise, it outputs
ri = 0.

AB of classical A-PUF design usually triggered by rising edge of a test
pulse produced by TPG. Therefore, synchronous D Flip-Flop (DFF) is used

FPGA Based Arbiter Physical Unclonable Function Implementation 219

c

i

O

for response generation. Signal from xn−1 is propagated to the clock input of
DFF and yn−1 – to the data input. One main problem of this circuit is metasta-
bility state of the DFF, which degrade overall stability of the A-PUF design.
This issue can be resolved by implementing AB as latches (e.g. RS latch) or
multiple flip-flops [4].

Ma jor hardware overhead in A-PUF design with n ≥ 8 switches is located in
SPB. Consider a detailed implementation of SW components. Basic approach to
implement one switching block usually utilizes a two-multiplexers circuit shown
in Fig. 2a.

SW j

aj 0

1

bj 0

1

ci
j

aj

bj

j
i

xj '0'
'0'

'0'

yj

'0'

'0'

'0'

SWj

I0

I1

I2
LUT6 (A) O

xj

I3

I4

I5

I0

I1

I2
LUT6 (B)

yj

I3

I4

I5

(a) RTL level diagram (b) LUT-block level diagram

Fig. 2. Circuit implementation of SW block.

The circuit in Fig. 2a can be synthesized as two LUT6 blocks as shown in
Fig. 2b, which correspond to the combinational circuit of 6-input multiplexer
and configurable memory. Input signals aj and bj are fed into the corresponding
input ports I0 and I1 of the upper LUT6 (A) block and to the I1 and I0 ports
of the bottom LUT6 (B) block, respectively. The challenge signal c

j
is passed to

the I2 input ports of both LUT6 blocks. The other input ports (I3, I4, I5) are
not utilized if the standard synthesis configuration is used. The output signals
xj and yj correspond to the output port O of the LUT6 block.

FPGA chips fabricated by Xilinx usually have 4- to 6-input LUT blocks. The
number of inputs in hardware blocks depends on the FPGA architecture [7]. LUT
block contains a configuration memory and a set of multiplexers for translation
values stored in this memory. Address for the memory is formed by signals from

210 A. A. Ivaniuk and S. S. Zalivaka

i

i

i i

multiplexer select inputs. Redundant inputs are usually fed with constant ‘0’
value.

There are four types of LUT6 blocks in Xilinx Artix-7 FPGA, LUT6 (general
output), LUT6 D (general and local output), LUT6 L (local output), LUT6 2
(two outputs). Figure 3 shows the structure of LUT6 L block which is configured
as a multiplexer xj from block SWj (see Fig. 2). As shown in Fig. 3, only 12.5% of

LUT6 block resources are utilized. Therefore, if number of switches is significant,
it will lead to a substantial LUT overhead to implement A-PUF circuit.

63

...

Configuration m em ory

8 7

1

1 0 0 1

0

0 1 0

...

7 6 5

4 3 2

‘0’

1 0

1 0 I0
I1
I2

I3

aj

bj

ci
j

‘0’

‘0’

1 0

I4 ‘0’

1 0

I5

‘0’

xj

Fig. 3. Circuit implementation of a multiplexer using LUT6 L.

For example, for n = 128 implementation of the SPB requires 256 LUT
blocks of Xilinx Artix-7 FPGA, which is around 1% of all resources available in
XC7A100T chip [7].

3 Proposed Symmetrical Path Design

Classical implementation of A-PUF in FPGA provides SPB with unique param-
eters, e.g. delays of internal multiplexers providing translation of a chosen signal
to an output port [8].

Assume time required for rising edge of a test signal to reach output xj

from input aj (cj = 0) be denoted as δ(xj , aj) and as δ(xj , bj) for input

bj , output xj (cj = 1), respectively. Similarly denote these characteristics for

a second multiplexer, δ(yj , aj) (cj = 1) and δ(yj , bj) (cj = 0). To estimate
these parameters the post place-route modeling of SWj has been performed for

221
1

A. A. Ivaniuk and S. S. Zalivaka

i

c

O

aj 0

1

SW j

0

aj

bj

xj c
j

SWj

I0

I1

I2 xj

bj 0 1

1

aj+1

bj+1

j+1
i

I3
LUT6 O

I4
I5

aj+1 0

1 0

yj

bj+1 0 1

1

I0

I1

I2
LUT6

yj

I3

I4

I5

ci
j

ci
j+1

(a) RTL level diagram (b) LUT-block level diagram

Fig. 4. Circuit implementation of SW block based on full utilization of LUT6 FPGA
block.

XC7A100T FPGA platform. As a result, following values for SW0 block have
been obtained, δ(x0 , a0) = 0.809 ns, δ(x0 , b0) = 0.309 ns, δ(y0 , a0) = 1.022 ns,
δ(y0 , b0) = 1.022 ns. For the neighbour block SW1 these values differ signifi-
cantly, δ(x1 , a1) = 0.719 ns, δ(x1 , b1) = 0.506 ns, δ(y1 , a1) = 0.296 ns, δ(y1 , b1) =
0.083 ns. These results can be explained by uniqueness of utilized LUT blocks
and asymmetrical configuration of its connections. Unique values of the delays
prove that the second copy of the switching block can be implemented using
unutilized resources of a LUT block. Therefore, all unused inputs (I3, I4 and
I5) can be reconfigured for an additional switching block. Figure 4 shows both,
circuit implementation of the block containing SWj (see Fig. 4a) and the syn-

thesized scheme on LUT6 blocks (see Fig. 4b).
This circuit provides four configurations of inputs aj , bj , aj+1 , bj+1 to outputs

xj , yj : two straight connections when cj = 0, c
j+1 = 0 and cj = 1, c

j+1 = 1, and
i i i i

two exchanging connections when cj = 1, c
j+1 = 0 and cj = 0, cj+1 = 1. i i i i

FPGA Based Arbiter Physical Unclonable Function Implementation 221

Table 1 presents the rising edge delays for test signal for different combi-
nations of inputs and outputs depending on c

j
, c

j+1
. These values have been i i

obtained using post place-route modeling for n = 16 A-PUF implemented in
Xilinx Artix-7 XC7A100T FPGA.

Table 1. Delay values for two different switching blocks.

Challenge bits c

j
c
j+1

i i
Delay type Delay value for SW1 block, ns

00 δ(xj , aj) 0.443

δ(yj , bj) 0.481

01 δ(xj , aj+1) 0.392

δ(yj , bj+1) 0.497

10 δ(xj , aj) 0.609

δ(yj , bj) 0.654

11 δ(xj , aj+1) 0.660

δ(yj , bj+1) 0.565

Shown results proves the high potential of using proposed design as A-PUF

implemented in FPGA.

4 Hardware Overhead Analysis

As shown above, proposed structure of an SPB fully fits the LUT6 architecture.
This approach provides significant reduction of hardware resources in FPGA
chip. TPG and AB blocks bring negligible hardware overhead to the overall
design comparing to the SPB. Implementation of the TPG block usually requires
three LUT blocks and three flip-flops, AB uses only one flip-flop if implemented
as in [4]. The major hardware resources are required for SPB. Proposed architec-
ture requires double less LUT blocks comparing to the classical A-PUF design.

Table 2 presents a comparison for two implementations of A-PUF in
XC7A100T FPGA, namely classical A-PUF (G0) and a proposed one (G1). As

shown in table, proposed A-PUF switching blocks architecture requires double
less hardware for its implementation. This design can be implemented in FPGA
based on LUT blocks with more than 6 inputs [7].

Table 2. Hardware overhead for A-PUF implementation in Xilinx-7 FPGA (n = 128).

FPGA resource # Utilized blocks Total # of blocks % of hardware overhead

G0 G1 G0 G1

Slices 131 69 15,850 0.83 0.44

Flip-Flops 4 4 126,800 0.0003 0.0003

LUT6 259 131 15,850 1.63 0.83

FPGA Based Arbiter Physical Unclonable Function Implementation 223

5 Arbiter PUF Figures of Merit Analysis

The modeling of two approaches for A-PUF implementation for XC7A100T
FPGA have been conducted using Xilinx ISE 14.7 CAD [9]. These approaches
have been post place-route simulated as 16-bit A-PUFs. AB has been imple-
mented as synchronous D Flip-Flop (technological component FDC).

Fig. 5. Graph of Δ(xn−1 , yn−1) for two different A-PUF

implementations.

A-PUF design and testbenches have been designed using Verilog. Testbenches
provide feeding of all possible 2n challenges to the inputs, generation of a test
signal and response values analysis. Furthermore, testbenches have been designed
in order to analyse delay difference Δ(xn−1 , yn−1) between rising edges of two
copies of a test signal, propagated from the outputs xn−1 and yn−1 to the inputs
of AB.

As shown in Fig. 5, the curve of Δ(xn−1 , yn−1) values for A-PUF-16-N (pro-
posed design) is much more symmetric in both axes. Furthermore, nonlinear
dependency between coordinates makes challenge-response relation much more
complicated comparing to the classical A-PUF design. Asymmetry in A-PUF-16
(classical design) graph implies that the set of challenge-response pairs is unbal-
anced, i.e. probability of zero response bit is much bigger than the probability
of one.

Furthermore, the range of delay values Δ(xn−1 , yn−1) has shrunken. As a
result, the range for classical A-PUF design is [−3772; 3396] ns and for the
proposed architecture with the same n, this range has become much more narrow
[−832; 943] ns. This fact can be explained by decreasing length for symmetric
paths as number of LUT blocks is also decreased. Inter-chip uniqueness has been
estimated for both, A-PUF-16 and A-PUF-16-N circuits.

To calculate this metric eight identical components of A-PUF on each chip
have been simulated and compared on the same set of challenges. This metric
is estimated as 0.489 for A-PUF-16 and 0.473 for A-PUF-16-N, respectively.

224 A. A. Ivaniuk and S. S. Zalivaka

Fig. 6. Graph of Δ(xn−1 , yn−1) depending on challenge values for A-PUF-16 design.

Fig. 7. Graph of Δ(xn−1 , yn−1) depending on challenge values for A-PUF-16-N design.

The ideal value for uniqueness figure of merit is 0.5. Real values of reliability
and uniqueness strongly depend on parameter n, AB implementation and can
be actually measured only on real hardware [10] by feeding the same challenges
multiple times.

Figures 6 and 7 show functional dependency of values Δ(xn−1 , yn−1) on chal-

lenge values, sorted in ascending order by the value of C for A-PUF-16 and
A-PUF-16-N circuits, respectively.

As shown in figures, circuit A-PUF-16-N has better randomness and values
of Δ(xn−1 , yn−1) are less correlated to the challenge values C . This fact can
increase the complexity of the machine learning modeling for an attacker [3].

6 Future Works

The proposed design still utilizes two LUT6 for implementation of SWj block.
Alternatively, this block can be synthesized based on two-output LUTs (LUT6 2

FPGA Based Arbiter Physical Unclonable Function Implementation 225

i

I1 I1

or CFGLUT5 in Xilinx 7 Series FPGAs [11]). Both of these LUT blocks utilize
one of the inputs to configure the outputs, i.e. if the passed value is ‘0’ then
both outputs produce the same value, otherwise the output values are different.
Since one of the inputs has to be used in order to provide two distinct outputs, 6
input values for SWj and SWj+1 cannot be fit to 5 available inputs. Therefore,

it is more promising to use CFGLUT5 block for a single-LUT SWj block imple-

mentation as it also provides dynamically reconfigurable memory. This feature
of the CFGLUT5 makes PUF reconfigurable and increases its uniqueness and
security [12].

The circuit implementation of the SWj block is shown in Fig. 8.

CFGLUT5
LUT4 LUT4

CDI
CLK

Configuration

0 mem ory 15

...

...

Configuration

16 mem ory 31

...

...

CDO
CLK

aj

bj

ci
j

‘0’

I0
0 ... 15

I2
I3

16 ... 31
I0

I2
I3

aj

bj

ci
j

‘0’

0 1

O5 O6

xj yj

I4
‘1’

Fig. 8. Circuit implementation of SW block using CFGLUT5.

The input values aj , bj and c
j
 are mapped to the inputs I0, I1 and I2,

respectively. The input I3 is fed with ‘0’ as it is not utilized for switching block
implementation. The input I4 gets the value of ‘1’ as LUT block should have two
different outputs O5 and O6 which are mapped to the output values xj and yj .

The CFGLUT5 can be also dynamically reconfigured using serial port CDI and
reconfiguration clock CLK. Thus, switch block can be reconfigured to different
paths increasing uniqueness and decreasing the vulnerability to machine learning
attacks.

7 Conclusion

This paper presents a new architecture for symmetrical paths block in arbiter
based physical unclonable function for efficient implementation in FPGA. Pro-
posed approach utilizes the internal configuration of embedded LUT blocks and

226 A. A. Ivaniuk and S. S. Zalivaka

saves valuable hardware resources as well as enhances uniqueness and random-
ness of a classical A-PUF design.

All experimental data described in this paper has been obtained using CAD
Xilinx ISE 14.7 [9] and Verilog hardware description language. The results are to
be verified on a real hardware implementation to compute true values of inter-
chip uniqueness and randomness. The proposed design has to be also verified on
vulnerabilities related to machine learning based modeling attacks. The circuit
is also highly configurable and can be used to design a logically reconfigurable
PUFs.

References

1. Zalivaka, S.S., Zhang, L., Klybik, V.P., Ivaniuk, A.A., Chang, C.-H.: Design and
implementation of high-quality physical unclonable functions for hardware-oriented
cryptography. In: Chang, C.-H., Potkonjak, M. (eds.) Secure System Design and
Trustable Computing, pp. 39–81. Springer, Cham (2016). https://doi.org/10.1007/
978- 3- 319- 14971- 4 2

2. Ivaniuk, A.A.: The design of embedded digital devices and systems, 337 p. Best-
print, Minsk (2012). (in Russian)

3. Zalivaka, S.S., Ivaniuk, A.A., Chang, C.-H.: Reliable and modeling attack resistant
authentication of arbiter PUF in FPGA implementation with trinary quadruple
response. IEEE Trans. Inf. Forensics Secur. 14(4), 1109–1123 (2018). https://doi.
org/10.1109/TIFS.2018.2870835

4. Zalivaka, S.S., Puchkov, A.V., Klybik, V.P., Ivaniuk, A.A., Chang, C.-H.: Multi-
valued arbiters for quality enhancement of PUF responses on FPGA implementa-
tion. In: Proceedings Asia and South Pacific Design Automation Conference (ASP-
DAC 2016), Macau, China, January 2016, pp. 533–538 (2016). (Invited paper).
https://doi.org/10.1109/ASPDAC.2016.7428066

5. Hori, Y., Yoshida, T., Katashita, T., Satoh, A.: Quantitative and statistical perfor-
mance evaluation of arbiter physical unclonable functions on FPGAs. In: Proceed-
ings International Conference “Reconfigurable Computing and FPGAs”, Mexico,
pp. 298–303 (2010). https://doi.org/10.1109/ReConFig.2010.24

6. Becker, G.T.: On the pitfalls of using Arbiter-PUFs as building blocks. IEEE Trans.
Comput.-Aided Des. Integr. Circuits Syst. 34(8), 1295–1307 (2015). https://doi.
org/10.1109/TCAD.2015.2427259

7. Series FPGAs Data Sheet: Overview. https://www.xilinx.com/supp ort/
documentation/data sheets/ds180 7Series Overview.pdf . Accessed 13 Feb 2019

8. Morozov, S., Maiti, A., Schaumont, P.: An analysis of delay based PUF implemen-
tations on FPGA. In: Sirisuk, P., Morgan, F., El-Ghazawi, T., Amano, H. (eds.)
ARC 2010. LNCS, vol. 5992, pp. 382–387. Springer, Heidelberg (2010). https://
doi.org/10.1007/978- 3- 642- 12133- 3 37

9. ISE Design Suite. https://www.xilinx.com/pro ducts/design- tools/ise- design- suite.
html. Accessed 20 Feb 2019

10. Nexys 4 Artix-7 FPGA Trainer Board: https://store.digilentinc.com/nexys- 4-
artix- 7- fpga- trainer- board- limited- time- see- nexys4- ddr. Accessed 20 Feb 2019

11. Xilinx 7 Series FPGA Libraries Guide for Schematic Designs: https://www.xilinx.
com/support/documentation/sw manuals/xilinx13 2/7series scm.pdf . Accessed
05 Sept 2019

https://doi.org/10.1007/978-3-319-14971-4_2
https://doi.org/10.1007/978-3-319-14971-4_2
https://doi.org/10.1109/TIFS.2018.2870835
https://doi.org/10.1109/TIFS.2018.2870835
https://doi.org/10.1109/TIFS.2018.2870835
https://doi.org/10.1109/ASPDAC.2016.7428066
https://doi.org/10.1109/ReConFig.2010.24
https://doi.org/10.1109/TCAD.2015.2427259
https://doi.org/10.1109/TCAD.2015.2427259
https://doi.org/10.1109/TCAD.2015.2427259
https://www.xilinx.com/support/documentation/data_sheets/ds180_7Series_Overview.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds180_7Series_Overview.pdf
https://doi.org/10.1007/978-3-642-12133-3_37
https://doi.org/10.1007/978-3-642-12133-3_37
https://doi.org/10.1007/978-3-642-12133-3_37
https://www.xilinx.com/products/design-tools/ise-design-suite.html
https://www.xilinx.com/products/design-tools/ise-design-suite.html
https://www.xilinx.com/products/design-tools/ise-design-suite.html
https://store.digilentinc.com/nexys-4-artix-7-fpga-trainer-board-limited-time-see-nexys4-ddr
https://store.digilentinc.com/nexys-4-artix-7-fpga-trainer-board-limited-time-see-nexys4-ddr
https://store.digilentinc.com/nexys-4-artix-7-fpga-trainer-board-limited-time-see-nexys4-ddr
https://www.xilinx.com/support/documentation/sw_manuals/xilinx13_2/7series_scm.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx13_2/7series_scm.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx13_2/7series_scm.pdf

FPGA Based Arbiter Physical Unclonable Function Implementation 227

12. Katzenbeisser, S., et al.: Recyclable PUFs: logically reconfigurable PUFs. In: Pre

neel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 374-389. Springer,

Heidelberg (2011). https:/ / doi.org/ 10.1007/978-3-642-23951-9_25

https://doi.org/10.1007/978-3-642-23951-9_25

