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Abstract. Product codes have large minimum Hamming distance and their complexity might be 

compared with Turbo codes. Conventional algorithms for decoding product codes have low 

decoding performances and very high complexities. In order to ensure the applicability of product 

codes in practice, this article proposes a method for decoding product codes which provide good 

decoding performance and acceptable complexity. Simulation results of the proposed algorithm 

show that, a signal-to-noise ratio of about only 4,1 dB is required in order to produce a bit error 

ratio (BER) not to exceed10–6 with rate code at 0,7034. 
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Introduction 

Recently, coding theory has made great progress and has found good codes that be capable 

of closely approaching the Shannon capacity limit [1]. The Turbo code based on concatenation of small 

length component codes is one of mostly used codes. Although structure of the first concatenated code 

introduced was the block turbo codes (BTC), in practice, researchers mainly focus on turbo codes under 

the convolutional turbo codes (CTC) [2]. The reason that not much attention is paid to the BTC 

is the decoding performance is poor. If the same decoding performance to both the CTC and BTC 

to be achieved, the BTC has greater complexity. 

Product codes are serial concatenated codes, and constituted of component codes which are short 

length block codes, firstly introduced by Elias in 1954 [3]. Product codes have large error-correction 

capability due to large minimum Hamming distance, however, decoding algorithms are complicated. 

The iterative (turbo) decoding can be applied to product codes, using the maximum a posterior 

probability (MAP) to component codes. If the turbo decoding is applied to product codes, in block codes, 

the maximum number of vertices at each time in the trellis will be equivalent (use the famous Wolf 

bound [4]) to the total code words of linear code or dual code of a linear code. This is a major obstacle 

to the use of good block codes instead of convolutional codes in the turbo decoding concatenated codes. 

Obviously, the reduction in the complexity of the MAP decoding of block codes really decreases the 

total complexity of turbo decoding for product codes. One of the possible solutions is to increase the 

number of iterations in the turbo decoding to compensate for the use of the non-optimum MAP decoder 

for the component codes. However, as the number of iterations increases, the decoding delay increases 

as well. Many proposals have been implemented in order to solve the complex problem of MAP 

decoding for component codes. 

In 1996, Hagenauer studied the turbo decoding for product codes with the MAP decoder 

for component codes [5]. Hagenauer proposed an optimum decoding algorithm, named soft output 

viterbi algorithm (SOVA), which was similar to the MAP decoding using dual codes. Although this 

decoding method is optimal, but it is only suitable for codes with high coding rate. Meanwhile, for linear 

block codes with high coding rate, it is difficult to achieve a sufficient minimum Hamming distance 

for modern communication applications. Moreover, the use of nonlinear functions results in very high 
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complexity, making this method is useful for the theoretical research but difficult for practical 

applications [5, 6]. 

Later, further researches tried to reduce the complexity of the turbo decoding method for product 

codes, by trading off decoding time against performance [7, 8]. In 1998, Pyndiah suggested another 

approximation for the MAP decoding of the component codes. In this algorithm decoding a Chase type 

II decoder was used to obtain a list of codewords, those are the closest to the received sequence, 

then the MAP decoder is implemented using only a subset of those codewords instead of the whole 

codewords [9, 10]. This algorithm produces a decoding performance equivalent to turbo decoding 

with Hagenauer's MAP decoding for component codes. However, Pyndiah's approximation 

cannot always be explained or presented with a theoretical basis. This makes his algorithm difficult 

to analyze, and therefore, it is not feasible to be neither improved nor applied to other codes.  

One of the new effective decoding methods is to scan all the decoding message in the dual code 

set of the original code set. Derived from this research direction, the article proposes a new decoding 

method for product codes. This method is based on soft-decision decoding of dual codes 

of the component codes, which are block codes with small redundancy. For codes with small 

redundancy, the decoding will reduce the complexity while the decoding messageremains the same as 

the original code. This is because the number of codewords in the dual code of the high-speed codes is 

much less than that of the original code [11]. This suggestion can avoid the MAP decoding of component 

codes, which may contribute to exploitthe capacity of error control of product code in new generation 

communication systems. The remainder of this article is organized as follows: Section II reviews 

encoding of communication system using product codes and proposes a novel algorithm with sufficient 

theoretical basis. Section III presents a simulation results of the proposed algorithm on a binary input 

additive white Gaussian noise (AWGN) channel. Finally, the conclusion is given in section IV. 

The soft-decision of dual codes decoding algorithm of the component codes of product codes 

1. Encoding product codes. Let 
1 1 1 1( , , )C n d k and 

2 2 2 2( , , )C n d k  
are linear block codes 

with the generator matrices 
1,G  

2 ,G  and with the parity check matrices 
1,H  

2 ,H  respectively. 

In the encoding process, 
1 2k k  bits of message are coded to codeword with 

1 2n n  bits, the code 

rate is 
1 1( / ),k n  

2 2( / )k n  and minimum Hamming distance is 
1 2( ),d d  in which 

1d  and 
2d  are minimum 

Hamming distance of 
1C  and 

2C  respectively. Fig. 1 illustrates the structure of product code, 

1 2.C C C   

1n

1k

2k

2n

1 2 bits

checks on rows

r k

2 1 bits

checks on columns

r k
1 2 bits 

checks

on checks

r r

 

Fig. 1. Construction of product codes 

At the input of the coder message u  (size
1 2k k ) is coded by product code C  with generator 

matrix G  to produce codeword c (size 
1 2n n ). A codeword c in the product code can either 

be generated by multiplying a 
1 2k k  long binary vector with generator matrix for C  or by using 

the following equation: 

2 1

Tc u  G G  (1) 

in which 2

T
G  is the transposed of the matrix 

2;G    is the Kronecker product. 
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Codeword c is then modulated BPSK. Suppose this codeword is modulated to binary signal 1  

with rule 1 2x c 
 
and is transmitted over the Gaussian channel with zero mean and variance 

22 .  The 

received signal is: 

,y x w 
 (2) 

in which 
1 2 3( , , ,..., )nw w w w w  is the noise vector and ,  1 .m m my x w m n     

2. Theoretical basis of the soft-decision decoding algorithm of dual codes. This section poposes 

the theoretical basis of the soft-decision decoding algorithm for dual codes of the component codes 

of product codes.  

Let *C  is the dual code of ,C  and 
1 2

* * * *( , , ..., )
j j jnjc c c c  is its j-th codeword. Denote 

( | ),  {0,1}mP y i i  as the conditional probability of the event obtaining 
my when bit node 

mc i   is sent 

and denote ( |1) / ( | 0)m m mP y P y   as the likelihood ratio of m-th bit. It is possible to deduce 
2exp( 2 / ).m my     Let following equations: 

*
1 2 1

( )

0 1 01

(0) ( 1) ( | ),

n k

jl ml

n
i c t

m m

t j il

A P y i



 

  

    (3) 

*
1 2 1

( )

0 1 01

(1) ( 1) ( 1) ( | ),

n k

jl ml

n
i c tt

m m

t j il

A P y i



 

  

      (4) 

In [5] it was proved that (0) (0 | )mA P y   and (1) (1| ),mA P y  with    is a positive constant. 

It's possible to obtain: 

(1) (1| ) ( | ) ( |1) (1) ( |1)(1| )
,

(0) (0 | ) (0 | ) ( | ) ( | 0) (0) ( | 0)

m m m m m
m

m m m m m

A P y P y y P y P P yP y

A P y P y P y y P y P P y
       (5) 

with an assumption that bit 0 and 1 are sent with a same probability. 

Therefore, according to equation (5), proposed decoder can decide output message based 

on the value of the likelihood ratio of posterior probability 

1 1

1 0

m m

m m

c

c

   

   

 

and the value of m can be the decoding message for the next decoder. 

On the other hand: 

(1) [ (0) (1)] [ (0) (1)]

(0) [ (0) (1)] [ (0) (1)]

m m m m m

m m m m m

A A A A A

A A A A A

  


  
 

And from [5]: 

*

*
2 1 2

( )

1 0 11 1

1
(0) (1) 2 ( 1) ( | ) .

1

n k n k jl ml

jl ml

c
n n

i c l
m m m

j i jl l l

A A P y i

  



   

 
      

  
     (6) 

From equation (3) and (4) it's possible to deduce: 
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* *

* *

*

2 1 2 1
( ) ( )

1 0 1 01 1

2 1 2 1
( ) ( )

1 0 1 01 1

1
( )

01
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*

2 2

1 1 1

1
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n

l

j l l

 
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 (7) 

Therefore, the value of m  can be calculated as: 

* *

* *

2 2

1 11 1

2 2

1 11 1

1 1

1 1(1)
.

(0) 1 1

1 1

n k n kjl jl ml

n k n kjl jl ml
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n n

l l
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m c c
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l l
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A

A
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   

      
  

      
   

      

  

  

 (8) 

3. Decoding product codes based on the soft-decision decoding of dual codesof the component codes. 

Fig. 2 illustrates the decoding process of the soft-decision decoding of dual codes of the component 

codes for product codes. 



|
|   






|

|C C

 

Fig. 2. Soft-decision decoding of dual codes for product codes 

The decoder receives the signal matrix  1 2,1 ,1uvy y u n v n      and calculate a matrix of the 

likelihood ratio for each corresponding bit node  1 2,1 ,1 ,uv u n v n         
2exp( 2 / ).uv uvy     

Set thematrix   as input of the proposed decoding algorithm (the Soft Decision Decoding of Dual 

Codes iterative Algorithm for Product Codes (SDDDCA-PC)). A decoder for product codes consists of 

two decoders: vertical 
|C   and horizontal C


  in series. The SDDDCA-PC works as follows: 

First, vertical (horizontal) decoder receives input message which is a matrix φ  and implement 

first iteration. 

Step 1. Recalculate all values in each vertical (horizontal) in a matrix φ  to produce matrix 
|

2 1( , )n n , with the corresponding value of bit node number m in any vertical (horizontal): 

* *
2 22 2 2 2

2 2

* *
2 22 2 2 2

2 2

2 2

/
1 11 1|

2 2

1 11 1

1 1

1 1
.

1 1

1 1

n k n kjl jl ml

n k n kjl jl ml

c c
n n

l l

j jl ll l

m c c
n n

l l

j jl ll l

 

 



  



  

       
   

      
 

       
   

       

  

  

 (9) 

In which,   is the modul 2 addition; 1
ml
   if m l

 
and 0

ml
  for other cases; a ijc   is the 

l-th bit of j-th codeword in the dual code ( , )a a aC n r of the original code ( , ),a a aC n k

     1,2 ; 1 / 0 .
m m m

a P y P y     
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At the beginning of the vertical (horizontal) decoder, set the value of geometric average of matrix 
| and the initial input a message matrix ,  as the input of next horizontal (vertical) decoding step. 

Step 2. The horizontal (vertical) directly receives the decoding message calculated in step 1, which 

is thematrix | : 

| |     (10) 

Similar to step 1, recalculae all values in each vertical (horizontal) in a matrix | to produce 

the matrix ,  with value of bit node number m in each horizontal (vertical): 

* *
11 11 1 1

1 1

* *
1 11 1 1 1

1 1

2 2

1 11 1

2 2

1 11 1

1 1

1 1
.

1 1

1 1

n k n kjl jl ml

n k n kjl jl ml

c c
n n

l l

j jl ll l

m c c
n n

l l

j jl ll l

 

 



  



  

       
   

       
 

       
   

       

  

  

 (11) 

in which, 
*

1 jlc  is the l-th bit of j-th codeword in the dual code 
*

1 1 1( , )C n r  of the original code 1 1 1( , ).C n r  

At the output of the second decoder, recalculatethe value of geometric average of matrix m

  and the 

initial input message matrix   using equation (10) to get the matrix m

  as the input for the next 

iteration. The decoding process is carried on until the final iteration. 

Step 3. Decide the output codeword based on a matrix  taken from the final iteration. 

1 when 1

0 in other cases,

ij ij

ij

C

C

  



 

where 
ij

C  is corresponding bit node in the product codeword  1 2
1 ,1 .j n i n     

Evaluation of performance of proposed decoding algorithm 

The performance of the proposed algorithm for AWGN channel using Monte-Carlo simulation 

is conducted. The proposed algorithmis applied toproduct code, consistuted of Hamming codes (7,4); 

(15,11); (31,26), results are received after only two iteration as in Fig. 3. 

Simulation results show that when using the SDDDCA-PC for product code, the signal to noise 

ratio required is only about 4,1 dB to achieve 
610BER   with high coding ratio (0,7034). It is not 

necessary to increase number of iteration because this is optimal algorithms, so two iteration can provide 

reasonable decoding performance. The results also show that the product code with the longer distance 

of component codes and the higher code rate produces better the error control capacity. In order 

to evaluate the practical application for product codes when using the SDDDCA-PC decoding, we shall 

estimate number of calculations to be used in this algorithm. Table shows the number of calculations 

required for decoding one bit node through 2 iteration of the proposed algorithm. Evidently, 

the SDDDCA-PC has acceptable complexity which is linear function. Thus, this algorithm is very 

suitable with product codes whose component codes have small redundancy. 
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Fig. 3. Decoding performance of SDDDCA-PC for product code, consistuted of Hamming codes 

Complexity of SDDDCA-PC 

Algorithm Number of multiplication Number of addition 

SDDDCA-PC 1 2( ) ( )

1 2
2(( 1)2 ( 1)2 2)r rn n     1 2( ) ( )2(2 2 2)r r   

Conclusion 

In this article an algorithm for decoding product codes based on soft-decision decoding 

of component codes using dual code of the original code is proposed. The proposed decoding algorithm 

is based on strictly theoretical analysis and the Monte-Carlo simulation. Simulation results show 

that the algorithm is effective for product codes with component codes are codes with high coding rate. 

The proposed algorithm is applicable to modern communication systemswhereminimum processing 

latency is required. 
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