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Incorporating movement in species distribution models: how do 

simulations of dispersal affect the accuracy and uncertainty of projections?  

Species distribution models (SDMs) are one of the most important GIScience 

research areas in biogeography and are the primary means by which the 

potential effects of climate change on species’ distributions and ranges are 

investigated. Dispersal is an important ecological process for species responding 

to changing climates, however, SDMs and their subsequent spatial products 

rarely reflect accessibility to any future suitable environment. Dispersal-related 

movement can be confounded by factors that vary across landscapes and 

climates, as well as within and among species, and it has therefore remained 

difficult to parametrise in SDMs. Here we compared 20 models that have 

previously been used (or have the potential to be used) to represent dispersal 

processes in SDM to predict future range shifts in response to climate change. 

We assessed the different dispersal models in terms of their accuracy at 

predicting future distributions, as well as the uncertainty associated with their 

predictions. Atlas data for 50 bird species from 1988–1991 in Great Britain 

were treated as base distributions (t1), with the species-environment 

relationships extrapolated (using three commonly used statistical methods) to 

2008–2011 (t2). Dispersal (in the form of the 20 different models) was 

simulated from the base distribution (t1) to 2008-2011 (t2). The results were 

then combined and used to identify locations that were both abiotically suitable 

(obtained from the statistical methods) and accessible (obtained from the 

dispersal models). The accuracy of these coupled projections was assessed with 

the 2008–2011 atlas data (the observed t2 distribution). There was substantial 

variation in the accuracy of the different dispersal models, and in general, the 

more restrictive dispersal models (e.g. fixed rate dispersal) resulted in lower 

accuracy for the metrics which reward correct prediction of presences. 

Ensemble models of the dispersal methods (generated by combining multiple 

projection outcomes) were created for each species, and a new Ensemble 

Agreement Index (EAI), which ranges from 0 (no agreement among models) to 

1 (full agreement among models) was developed to quantify uncertainty among 

the projections. EAI values ranged from 0.634 (some areas of disagreement and 
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therefore medium uncertainty among dispersal models) to 0.999 (large areas of 

agreement and low uncertainty among dispersal models). The results of this 

research highlight the importance of incorporating dispersal and also illustrate 

that the method with which dispersal is simulated greatly impacts the projected 

future distribution. This has important implications for studies aimed at 

predicting the effects of changing environmental conditions on species’ 

distributions.  

Keywords: species distribution modelling; uncertainty; dispersal; climate change; birds 

Introduction: 

Climate change and concomitant urbanization have led to many species shifting to higher 

latitudes and altitudes across Europe and North America, while many other species have 

simply gone extinct (Smith et al. 1993, Chen et al. 2011). In order to mitigate these 

potentially devastating scenarios for biodiversity, it is imperative to better understand current 

and future patterns of species’ distributions. Species distribution models (SDMs) are a 

powerful spatial ecological tool for studying the geographic distribution of plants, animals, 

and other biogeographic phenomena such as vector-borne diseases (Franklin 2009). This 

modelling framework provides a robust methodology for researchers and practitioners 

seeking to quantitatively assess the relationship between species’ distributions and 

environmental factors, and they have been used across an array of disciplines in order to test 

biogeographical hypotheses (Bolker et al. 2009), support nature reserve network design 

(Araújo et al. 2004), identify areas of rare species occurrence (Engler et al. 2004), assess 

species invasion risk (Medley 2010), explore the spatial scale of species-environment 

relationships (Miller and Hanham 2011), and assess the impact of climate change on species 

(Wiens et al. 2011). 

An increasingly important application area for SDMs is to study the effects of climate 

change on species’ distributions. The extrapolation of species-environment relationships 
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across space or time involves several conceptual and methodological issues that introduce 

uncertainty, such as novel environmental combinations, species interactions, unpredictable 

feedbacks related to land cover change, as well as the dispersal capacity of the species. The 

‘BAM’ framework (Figure 1) was developed by Soberón and Peterson (2005) and illustrates 

the individual and joint effects of the three most important factors in determining species’ 

distributions: biotic (B), abiotic (A), and movement (M). Biotic factors represent interactions 

with other species (i.e. competition, herbivory), abiotic factors represent the physiological 

tolerances of a species (i.e. temperature, precipitation) and movement factors refer to the 

processes that lead to an area being  accessible to a species within a relevant timeframe (e.g., 

via dispersal or migration). While the importance of all three factors (abiotic, biotic and 

movement) is now well recognized, the majority of SDM studies have not incorporated 

movement, and those that do often rely on overly simplistic conceptualizations of movement 

(Franklin 2010, Peterson et al. 2011). 

When movement has been incorporated in SDM research, it has often been to address 

questions related to range shifts in response to the changing climate or to track the spread of 

invasive species. Terms such as ‘dispersal limitations’, ‘dispersal capacities’, ‘migration 

rates’, and ‘spread rates’ have been used interchangeably by SDM researchers to refer to the 

cumulative movement of a species or a population across a broad time scale and often across 

multiple generations (Miller and Holloway 2015). It is this temporally-broad, species-level 

type of movement which we herein refer to as dispersal and subsequently address. 

When dispersal has been implemented in SDM research, it has often taken one of two 

extreme facile approaches: unlimited dispersal or no dispersal (e.g. Araújo et al. 2006, 

Lawler et al. 2006, Araújo and Luoto 2007). Unlimited dispersal can be considered the best 

case scenario representation of movement under climate change as it assumes that all future 

suitable habitat is accessible, while no dispersal can be considered the pessimistic worst case 
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scenario as it assumes that only future suitable habitat that matches currently suitable habitat 

is accessible. Using both of these approaches together was an improvement on studies that 

overlooked dispersal (and thus implicitly assumed unlimited dispersal). However, these two 

approaches overly simplify movement and as a result of their extreme variation, can be used 

to represent the uncertainty associated with the effects of climate change. In reality, the actual 

dispersal capacity would most likely be found somewhere in the middle of those two 

predictions. For example, Engler and Gusian (2009) found a 95% areal difference in the 

projected distributions of two virtual plant species between their model incorporating 

dispersal and their model that ignored it. Similarly, in a study of the spread of the non-native 

common waxbill (Estrilda astrild) in the Iberian Peninsula, Sullivan et al. (2012) found 

differences in the accuracy of predictions when a distance weight was incorporated into the 

SDM compared to one that assumed unlimited dispersal. Likewise, Cunze et al. (2013) found 

differences in the predicted 2080 distributions of European flora between unlimited dispersal 

and a measure of ‘realistic’ dispersal, which took into account a combination of discrete 

dispersal kernels fit for different dispersal vectors (e.g., dispersal by wind, animals, etc.).  

Recent reviews (Franklin 2010, Miller and Holloway 2015) have identified several 

ways in which dispersal has been incorporated in SDM studies. Within these 

conceptualizations of dispersal, there are several different types of methods and subsequent 

variations of these methods that can be implemented, but to date, they remain untested. With 

such wide variation in the way that dispersal is represented in these methods, it is likely that 

resulting predictions will vary markedly. Limited comparisons have been made (see Engler 

and Guisan 2009, Sullivan et al. 2012, Cunze et al. 2013), but there is a need for more 

extensive testing across all implementations of dispersal models.  

One of the challenges associated with comparing methods for projecting the effects of 

climate change on species’ distributions has been the lack of appropriate data with which to 
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validate. The British Trust for Ornithology (BTO) has led the production of breeding bird 

atlases offering complete coverage of Great Britain at a 10km resolution in three periods 

spanning 40 years, in 1968–72, 1988–91, and 2008–11. These datasets can be used to test the 

accuracy of the dispersal models implemented in SDM research, as we can take the earliest 

known distribution (t1) and project the species-environment relationships alongside dispersal 

to the latest time period (t2), and compare the results with the observed atlas data from the 

same period (Araújo et al. 2005). This will provide researchers with a framework to compare 

the differences between the dispersal models currently implemented and will subsequently 

allow discussions about future distributions, extinction rates and dispersal patterns to be made 

with a better understanding of the accuracy and inherent uncertainty associated with the 

simulation of dispersal. 

Methodology 

Data Collection: 

Distribution data for 50 breeding species were extracted from bird atlases for 1988-91 (herein 

1990) (Gibbons et al. 1993) and 2008-2011 (herein 2010) (Balmer et al. 2013). Species were 

chosen based on a positive distribution expansion between 1990 and 2010 and visual 

inspection of distributions (see Balmer et al. 2013), thus reducing any limitation in discussing 

the accuracy of the dispersal models from using species whose distributions did not change 

over the course of the time period (and thus would have no variation in dispersal models). 

Consequently, the species span a range of attributes, such as their ubiquity, migration 

strategy, and whether they are native or introduced to Great Britain. Twelve birds are 

classified as migrant breeders, ten are classified as migrant resident breeders, 21 as resident 

breeders and seven as introduced breeders. The 1990 distribution was chosen instead of the 

1968–1972 atlas as the earliest known distribution (t1) due to the lack of available land cover 
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data pre-1990. British bird distributions vary among land cover types (Fuller et al. 2007), and 

land cover has changed significantly over the period (Carey et al. 2008), so must be 

incorporated into a dynamic model if we are to ascribe model errors to dispersal rather than a 

poorly constructed static model. Corresponding climate data for the 12 UK Climate 

Projection 2009 annual variables (Perry and Hollis 2005a, 2005b, UKCP09 © Crown 

Copyright 2009) were averaged to match the temporal range of the atlas data, as well as the 

five years around 2000 (see Dispersal Modelling). The climate variables included, 

temperature ranges, degree days, seasonal heat- and cold-waves, dry days, precipitation 

intensity and maximum precipitation. Land cover data for 1990 (Fuller et al. 1993), 2000 

(Fuller et al. 2002), and 2007 (Morton et al. 2014) was obtained from the Centre for Ecology 

and Hydrology, with percentage coverage of arable land, coniferous forest, deciduous forest, 

freshwater, saltwater and urban included. Finally, a 90m Shuttle Radar Topography Mission 

digital elevation model from the U.S. Geologically Survey was acquired, with the mean and 

maximum values recorded to a 10km resolution.  

Species Distribution Modelling: 

Figure 2 is a conceptual diagram which highlights the main steps involved within this SDM 

framework. The abiotic suitability was determined by three statistical models, and 

accessibility  across the temporal extent from 1990 to 2010 was determined with 20 dispersal 

models. The statistical models were used to identify abiotically suitable habitat, from which a 

binary surface of presence or absence was created. The dispersal models were used to 

identify accessible habitat, from which a binary surface of accessible or inaccessible was 

generated. Both of these outputs were coupled to identify habitat that was both abiotically 

suitable and accessible.  

Although the ‘BAM’ framework considers biotic factors as one of the three main drivers of 
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species’ distributions, interactions can vary from species to species, and are also unknown for 

a large number of organisms. Additionally, these interactions often occur at a spatial scale 

that is much finer than abiotic and movement factors (e.g. climate and dispersal – Guisan and 

Thuiller 2005). Habitat factors (which have been included in this research) have been 

suggested as a proxy for biotic interactions such as food resources (see Wisz et al. 2013), 

however in order to ease interpretation of the dispersal models (the main focus of this 

manuscript), explicit biotic interactions were not included in the analysis. For future research, 

biotic interactions could be incorporated as an environmental layer in the statistical modelling 

(e.g. presence or absence of a competing species, Guisan and Thuiller 2005).   

Statistical Modelling - Abiotic Suitability: 

To predict the abiotically suitable habitat, we considered three commonly used statistical 

methods known for generating accurate results: Generalized Linear Models (GLM), 

Maximum Entropy (MaxEnt), and Random Forest (RF).We fit the 1990 atlas data to the 1990 

climate, habitat and topography data using biomod2 (Thuiller et al. 2013). For each species, 

stepwise selection of environmental variables based on minimizing the Akaike Information 

Criterion (AIC) was used to select one final GLM, classification random forest was used to 

generate a RF model, and one MaxEnt model using default settings (with the exception of 

5000 maximum iterations) was created (see Phillips and Dudik 2008). Final models will 

therefore differ among the 50 species, with the climate, topography and habitat variables each 

varying in their importance and contribution to the model.  

A threshold was used to convert the suitability index into a binary measure of presence or 

absence. The threshold was determined based on prevalence of presences in the 1990 atlas 

data for GLM and RF, and the maximum training sensitivity plus specificity threshold was 

used for MaxEnt. The differences in threshold selection between the models were due to 
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GLM and RF using presence/absence data in their specification and MaxEnt using presence-

only data. Thresholds were selected based on guidelines recommended by similar studies 

(Liu et al. 2005, Hu and Jiang 2011).  

Once the final statistical models had been selected, we extrapolated the relationships to the 

topography, climate conditions, and land cover present in 2010. Each of the three statistical 

methods deals with extrapolation (predicting in future, and sometimes novel or non-analogue, 

climate conditions) differently; GLM extrapolates by continuing the fitted trend beyond the 

last observation, MaxEnt acts consistently and is ‘clamped’ so it extrapolates in a horizontal 

line from the fit at the most extreme environmental value in the training data, and random 

forest extrapolates at a constant value from the last ‘known’ site (Elith and Graham 2009). 

These models can be considered as models with unlimited dispersal, and the dispersal models 

we consider essentially constrain these model predictions according to different 

conceptualizations of dispersal. 

Dispersal Modelling – Movement Suitability:  

The predominant conceptualization of dispersal beyond an all or nothing approach in 

SDM has been to apply a parameterized constraint of dispersal to the species’ distribution 

(Franklin 2010, Miller and Holloway 2015). Within this conceptualization there are four 

further sub-conceptualizations: fixed rate dispersal, dispersal kernels, landscape-derived 

metrics and demographic models. We identified a total of 20 dispersal models within the all 

or nothing, fixed rate dispersal and dispersal kernel conceptualizations (Table 1). The 1990 

atlas data was taken as the base distribution for which the 20 dispersal models were simulated 

from. The decision to simulate dispersal from this observed distribution rather than a 

distribution generated by an SDM was taken so that discussion could centre on the accuracy 

and uncertainty of the dispersal models rather than the different distributions that the three 
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statistical methods would have generated.  All dispersal models were implemented using 

original R functions written by the authors in R 3.1.2 (R Development Core Team 2008), 

with the exception of the probabilistic dispersal kernel which used the kernel function in the 

MigClim package (Engler et al. 2013). See Supplementary Information for computational 

details on the dispersal models. The total 20 dispersal models and a reference code (for use in 

results) are provided in Table 1.  

All or Nothing. Unlimited dispersal (UD) represents an overly optimistic scenario, and 

assumes that all suitable habitat in future geographic space is accessible. No dispersal (XD) is 

a pessimistic scenario, and assumes that only currently suitable habitat is accessible in future 

projections. A variant of this, limited dispersal assumes that only contiguous areas of suitable 

habitat in future geographic space that overlap with the areas of suitable habitat in current 

geographic space become suitable. This method can be varied by using both rook’s (L1) and 

Queen’s (L2) cases of connectivity. 

Fixed Rate Dispersal. Fixed rate (FR) involves using a rate of dispersal and applying this as a 

time-based distance buffer around the current distribution. This has previously been 

implemented using different measures of dispersal distances. For example, Gallardo et al. 

(2012) used the mean recorded dispersal rate of the killer shrimp (Dikerogammarus villosus) 

in the Rhine River to predict future distributions in the River Great Ouse in the UK, while 

Hsu et al. (2012) used the maximum recorded dispersal distance of tropical plants in East 

Asia to predict the fixed dispersal rates of forests in Taiwan. Paradis et al. (1998) published 

both the arithmetic and geometric means of natal dispersal distances for 75 birds in the UK 

from the BTO ringing scheme, and identified that dispersal distance scaled with body size 

with the ¼ exponent (a common feature of ecological variables, see Peters 1983). As the 

species between our study and Paradis et al. (1998) differed, we ran linear regression between 
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natal dispersal distances and average body mass of these 75 birds (Robinson 2005) 

(Supplementary Information 2). Based on the AIC score, the model with birds grouped by 

breeding status was selected and used to calculate both the arithmetic and geometric means of 

natal dispersal distance for the birds in our study. The geometric mean restricts the impact of 

outliers on the mean value, which for dispersal may be representative of infrequent long-

distance dispersal events and so could restrict dispersal rates.  

Whether this projection is based on a fixed rate for one time step (i.e. from current [t1] 

to future [t2]), or using a number of time steps (i.e. from current [t1], to an intermediate 

period [t1.5], to future [t2]) has also been shown to produce different results (Midgley et al. 

2006). The multiple time step model does not assume homogenous abiotic  suitability across 

the entire temporal extent, and couples the dispersal model with a statistical model at each 

time step. As this has been known to have a potential impact on the dispersal rates, we 

included fixed rates for one time step (1990-2010) and two time steps (1990-2000 and 2000-

2010), using corresponding climate and habitat data from that time period.  

Dispersal Kernels: Dispersal kernels extend these fixed rates of movement by 

calculating the probability density function (PDF) describing the number of dispersal units as 

a function of distance from the source, with an advantage being that they can incorporate 

long-distance dispersal events, something that is thought to play an important role in 

determining broad-scale processes of population spread (Nathan et al. 2008). Dispersal 

kernels can be fit with a variety of shapes. This shape is often theoretical as recorded 

dispersal distances for a large number of species are rare. The shape of this theoretical curve 

could have important consequences regarding what is considered accessible, with 

implementations in SDMs to date including a Gaussian distribution, an inverse exponential 

distribution and a fat-tailed Cauchy distribution (e.g. Conlisk et al. 2012).  

The probability density function of a Gaussian distribution can be defined as: 
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𝑓𝑓(𝑥𝑥, 𝜇𝜇,𝜎𝜎) =  
1

𝜎𝜎√2𝜋𝜋
𝑒𝑒−

(𝑥𝑥−𝜇𝜇)2
2𝜎𝜎2  

  (1.0)  

where 𝜇𝜇 is the mean, 𝜎𝜎 is the standard deviation.  

The probability density function of an exponential distribution is: 

 𝑓𝑓(𝑥𝑥) =  1
λ
𝑒𝑒−

𝑥𝑥− 𝜇𝜇
λ        𝑥𝑥 ≥  𝜇𝜇;  λ > 0 (2.0) 

where λ is the rate parameter, which can be defined as 1/ 𝜇𝜇. With the inverse of this function 

used for the inverse exponential PDF.  

Finally, the probability density function of a Cauchy distribution is: 

 𝑓𝑓(𝑥𝑥; 𝜇𝜇,𝑦𝑦) =  1

𝜋𝜋𝜋𝜋�1+ �𝑥𝑥−𝑥𝑥0𝑦𝑦 �
2
�

=  1
𝜋𝜋𝜋𝜋
� 𝜋𝜋2

(𝑥𝑥−𝑥𝑥0)2+ 𝜋𝜋2
�  (3.0) 

where 𝜇𝜇 is the location parameter specifying the location of the peak of the distribution, and 

𝑦𝑦 is the scale parameter. 

There are two current methodologies to implement a dispersal kernel within an SDM 

framework. The first is to use a discrete dispersal kernel (DK), and estimate a fixed dispersal 

rate according to the maximum value drawn from the kernel based on a random sample size 

equal to the net reproductive rate (R0), multiplied by the temporal period (T) divided by the 

age at which the species first breeds (A) (Clark et al. 2001, Cunze et al. 2013). R0 was set to 

the maximum population density recorded for a species in an observation (Massimino et al. 

2015) multiplied by the average clutch size of the species (Baillie et al. 2014), T was set to 

the time period (e.g. 20 years), and A was set to the breeding age  for each species (Robinson 

and Clark 2014) (n.b. if there was no information regarding a specific species in these 

products, then the maximum values from another species with the same breeding status were 
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used). The second methodology is to use a probabilistic dispersal kernel (PK) which assigns 

each grid a conditional probability to be colonized and generates presence based on these 

values. This method is currently available in the MigClim package (Engler et al. 2013). 

Model Evaluation: 

Model evaluation in SDM has focused on quantifying prediction accuracy as a measure of 

model performance or validity, such that it is known that the model has produced empirically 

correct predictions to a degree of accuracy that is acceptable for the models proposed 

application (Franklin 2009). The primary aim of this study is to assess the accuracy of SDMs 

projected to 2010 which are fit on 1990 environmental data and then coupled with the 

dispersal models. As such, the training data consists of every 1990 atlas observation, and the 

testing data consists of every 2010 atlas observation.  

Beforehand though, it was important to evaluate the species-environment relationship 

fit between the 1990 atlas data and the 1990 environmental data, as without model evaluation, 

any judgement of the performance of the dispersal models when coupled with the 2010 

statistical model cannot be excluded from the possibility of poor model fit in general. Our 

final SDMs were built with every observation; however, we did explore alternative strategies 

(e.g. partitioning the data into 80% training and 20% testing, Fielding and Bell 1997) and 

found that the accuracy was equally high if we used independent test data, or resubstituted 

test data (data not shown). The species used in this study were deemed to have sufficiently 

high accuracy scores for data trained and tested on the 1990 observations (e.g. sensitivity of 

0.7 or higher).  

Similarly, it is important to assess the performance of the 2010 base models, which 

are also the models of unlimited dispersal. As unlimited dispersal is the most optimistic 

scenario, any dispersal models coupled with this prediction will either result in the same 
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number of predicted presences or fewer. If the base model contains only a few presences, 

then the dispersal models will fail to restrain the projections and the results will suggest that 

the models have little impact on the results when in fact this would be based on a poorly 

specified statistical model. Finally, we want to evaluate the performance of the 2010 

statistical models coupled with all the of the dispersal models.  All three stages can be 

evaluated using threshold-dependent accuracy metrics, while threshold-independent metrics 

will also be used to assess the 1990 and 2010 base models.  

The conversion of the probability surface into a binary (presence/absence) product 

allows the model to be evaluated by a two-by-two contingency table which cross-tabulates 

true and false positives (presences) and true and false negatives (absences) (Franklin 2009). 

Table 2 identifies the five threshold-dependent metrics used to evaluate our models. 

Threshold-independent metrics have also been used in recent studies due to the potential 

uncertainty and subjectivity related to the selection of thresholds (see Liu et al. 2005 for a 

discussion). The receiver operating characteristic (ROC) plot, the most commonly used 

threshold-independent metric, is a graph of the false-positive error rate on the x-axis plotted 

against the true positive rate on the y-axis, with the area under the curve (AUC) calculated by 

summing the area under the ROC curve. However, as the process of coupling the abiotic 

suitability models with the dispersal models requires the use of a presence/absence product, 

AUC can only be used to evaluate the original 1990 SDM and the 2010 SDM with unlimited 

dispersal. 

Quantification of uncertainty: 

In order to effectively interpret the uncertainty associated with the 20 dispersal models, we 

developed an Ensemble Agreement Index (EAI) which ranks full agreement across every 

observation as 1, and no agreement across every observation as 0:  
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 𝐸𝐸𝐸𝐸𝐸𝐸 =  
� 𝐸𝐸−min (𝐸𝐸)
max(𝐸𝐸)−min (𝐸𝐸)�

𝑁𝑁
  (4.0) 

where 𝑁𝑁 is the total number of presence observations in the output, and 𝐸𝐸 is defined as: 

 𝐸𝐸 = �∑ e
𝑚𝑚
�  (5.0) 

where e is the ensemble score for one presence observation, defined as the number of coupled 

statistical and dispersal models that predicted occupancy at a particular location, and m is the 

total number of dispersal models used to generate the ensemble. The use of descriptive 

statistics can be used with categorical variables in order quantify the shape of the distribution 

of outcomes and be used as a measure of confidence to assess the index (Hill et al. 2005). A 

measure of kurtosis was calculated alongside the Ensemble Agreement Index, with a 

leptokurtic distribution suggesting a peaked distribution (or high agreement among dispersal 

models), and a platykurtic distribution suggesting a flat distribution (or low agreement among 

dispersal models). A kurtosis value twice the standard error was considered significantly 

different from a normal distribution, and recorded as such. 

Results 

Table 3 shows the mean and standard deviation of the accuracy scores for the three statistical 

methods fit on the 1990 environmental data and projected using the 2010 environmental data, 

with the assumption of unlimited dispersal across the 50 species.  No single statistical method 

reported consistently higher accuracy metrics when averaged across the 50 species. We found 

that GLM and RF reported high accuracy scores for the 2010 model for the more widespread 

species in 1990; however these methods seriously under-predicted the 2010 distributions for 

many of the species with sparser ranges in 1990 (data not shown). While under-prediction did 

occur for MaxEnt, it was only an issue for a few species, as is evident by the higher average 
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sensitivity score (Table 3).  

This is further supported by Figure 3, which illustrates the range of sensitivity scores for the 

20 dispersal models and the three statistical methods for the 50 species (separated based on 

UK breeding status). Boxplots are ordered so that XD is no dispersal (or worst case scenario) 

and UD is unlimited dispersal (or best case scenario), with intermediate conceptualizations of 

dispersal in between. (n.b. the six iterations of the discrete dispersal kernel are consolidated 

under DK, as there were no visible differences in sensitivity scores, but that these methods 

are treated separately for statistical analysis).  

The largest variability in sensitivity scores occurs for the MaxEnt models, then to a 

lesser extent GLM, but there is minimal variation in the RF models. The largest difference in 

accuracy measures occurs for the MaxEnt models of the introduced breeders. The two most 

extreme dispersal models (XD and UD) bound the other methods, which vary quite 

substantially in their sensitivity scores. The two limited dispersal models (L1 and L2) result 

in higher sensitivity than many of the dispersal models with parameterized constraints.  We 

also observe differences in the overall sensitivity score for the probabilistic dispersal kernels 

(PK) for birds with different breeding statuses.  

No dispersal model recorded the highest accuracy for all 50 species and five accuracy 

metrics (Figure 4). No dispersal (XD) achieved the most ‘successes’, obtaining the highest 

accuracy scores in 113 scenarios. In part this is because XD recorded the highest specificity 

for all 50 species, with only PK1 recording an equal specificity score for the great skua 

(Stercorarius skua). While XD resulted in the highest number of accuracy metrics, it 

achieved the fewest highest sensitivity scores. Several dispersal models recorded the highest 

sensitivity score for all 50 species (UD, PK3, DK1, DK3, DK5, DK6), and this was the most 

variable accuracy metric among dispersal models. 
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 In addition to differences in accuracy, these methods also resulted in quite variable 

areal extents of predicted presence. Table 4 shows a pairwise comparison of the performance 

of the different dispersal models when coupled with MaxEnt, which shows the difference in 

area (km2) predicted present among each of the 20 dispersal models averaged across the 50 

species. Whether this areal change was also accompanied by a significant change in the true 

skill statistic (TSS) is also highlighted. TSS was chosen as the accuracy metric, as it rewards 

both prediction for correctly predicted presences and absences. Paired sampled t-tests were 

used to identify significant differences in accuracy among the methods (α < 0.05). The use of 

no dispersal (XD) resulted in a decrease in predicted area compared to every other method, as 

well as a significant decrease in TSS compared to all the other methods, with the difference 

in area varying between values of 29,708km2 for FR4 and 36,640km2 for UD.  Unlimited 

dispersal (UD) differed in TSS when compared to only six methods, including  four of the 

probabilistic dispersal kernels, however,  the limited dispersal models (L1 and L2) and one 

step fixed rate dispersal models (FR1 and FR2) did not differ significantly.  

Differences in performance of methods using geometric and arithmetic means were 

minimal, suggesting that the restriction of the geometric average did not constrain the models 

as expected. However, the one-step fixed rate methods (FR1 and FR2) resulted in an increase 

in accuracy compared to the geometric two-step method (FR4), but not the arithmetic two-

step method (FR3).  There were no significant differences between the different iterations of 

the discrete dispersal kernels.  The two discrete kernels with Cauchy PDFs (DK5 and DK6) 

and the inverse exponential using arithmetic values (DK3) were the only methods which did 

not result in any change in predicted area compared to each other or unlimited dispersal (UD) 

for all 50 species. 

Figure 5 shows the ensemble maps for nine species varying in breeding status and 

model uncertainty. The ensemble scores for the three medium uncertainty species (Figures 
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4(a-c)) and the three introduced species (Figures 4(d-f)) all identify a core area of low 

uncertainty (approximate score of 16-20), but then as distance from this core increases, the 

ensemble score decreases. Likewise, the more fragmented a predicted distribution, the greater 

variability and uncertainty of accessibility increases.  

Table 5 presents the Ensemble Agreement Index (EAI) developed in order to quantify 

the uncertainty related to the dispersal models for all 50 species. The EAI score ranges from 0 

(high uncertainty, low agreement) to 1 (low uncertainty, high agreement). When all 20 

dispersal models are incorporated in the EAI, the scores range from 0.740 for the Dartford 

warbler (a resident breeder) to 0.999 for the Blackcap (a migrant breeder). Several species 

have EAI scores over 0.990, suggesting a very high number of observations with full 

agreement. When the six discrete kernel methods were removed, the species with medium to 

low uncertainty dropped to medium uncertainty (e.g. Dartford warbler and wood duck). 

However, this did not alter the EAI scores of the low uncertainty species (e.g. blackcap and 

green woodpecker), showing that this method proves robust in identifying low uncertainty 

among methods.  

The use of kurtosis added confidence to the EAI as it illustrated whether all the 

observations were in one category or spread across several. Many of the species have 

leptokurtic distributions and are accompanied by a high EAI (Table 5), suggesting that there 

is high agreement among all of the methods. Some species (Cetti’s warbler, firecrest) have a 

relatively low EAI score, but leptokurtic dispersion. This suggests that many of the methods 

do in fact agree, but the distribution of observations is most likely grouped into two peaks, 

one containing the expansive methods of dispersal, and another containing the more 

restrictive methods. Platykurtic dispersion suggests a flatter than usual distribution, and these 

are found for the more sparse species (e.g. Dartford warbler) and a surprisingly large number 

of raptors (e.g. osprey, goshawk, and hobby).  
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Discussion 

The aim of this study was to explore how incorporating concepts of dispersal in SDM affects 

the accuracy and uncertainty of projected distributions. As it is impossible to assess accuracy 

of future projections, we assessed the accuracy of models calibrated with past data and 

projected to the current time period in an attempt to simulate many of the issues such as 

interactions, feedbacks, and novel climates that are problematic in modelling future species’ 

distributions. Due to these added uncertainties, our expectations of accuracy were lower than 

they would have been for other modelling scenarios (e.g. modelling distributions in current 

time), and we did observe this difference in our results, recording higher accuracies for the 

SDMs fit and projected in 1990 (t1) than compared to 2010 (t2). However, this result is not 

uncommon (Araújo et al. 2005; Veloz et al. 2012), and moreover, perfect validation of SDMs 

fit in future time could be conceptually impossible due to the added uncertainties and the fact 

that the modelled system is not closed (Araújo et al. 2005). However, as species and 

environmental data collection and management are improving dramatically, we are now 

beginning to have available data at a relevant temporal extent needed to conduct more 

rigorous validation of this type of study. Therefore, this research should foster subsequent 

studies which explicitly address both the uncertainty and accuracy associated with methods of 

simulating dispersal alongside species’ future distributions.  

The selection of a statistical method was one of the most variable aspects of this 

research. The difference in outputs derived from the statistical methods used has long been 

noted as being important (Guisan and Zimmermann 2000), and several studies have identified 

the uncertainty in the results of different statistical methods (Reese et al. 2005, Graham et al. 

2008, Elith and Graham 2009). MaxEnt better predicts the fundamental distribution of a 

species (Gi) than the actual distribution (Go) (Figure 1), due to the fact that the algorithm 

uses presence-only data. GLM and RF incorporate absence data, and often constrain their 
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predictions accordingly, meaning MaxEnt was the most likely statistical method to over-

predict the distribution (as it essentially models Gi).  Subsequently, under-prediction of the 

distribution was an issue with GLM and in particular RF, and was the primary reason the 

accuracy metrics did not change when the 20 dispersal models were coupled with RF and to a 

lesser extent GLM (Figure 3). This was because results were based on coupling a restrictive 

model of dispersal with an already under-predicted distribution. When this occurred, 

geographically widespread species remained relatively widespread, while the accuracy for 

under-predicted species couldn’t be improved as the new suitable locations were either 

similar or exactly the same as the previous locations. This issue highlights the importance of 

testing several statistical models, as if we used only GLM or RF in this analysis, the results 

would suggest that differences in dispersal models were minimal, whereas when we coupled 

the dispersal models with MaxEnt, our results varied greatly and we had a number of 

significant differences.  

When the dispersal models were compared with each other (Figure 3, Table 4), in 

general, the more restrictive methods decreased accuracy when measured as sensitivity and 

TSS, as the unrealistic lack of accessibility impacted the accuracy. TSS was higher for the 

one-step fixed rate methods (FR1 and FR2) compared with the two-step methods (FR3 and 

FR4), and the probabilistic kernels with the inverse exponential PDF (PK3 and PK4) also had 

higher TSS and sensitivity scores compared with the other PDFs (PK1, PK2, PK5, and PK6). 

Surprisingly, in many instances, the limited dispersal models (L1 and L2) did not have a 

significantly lower accuracy than many of the other parameterized constraints (Figure 3, 

Table 4). These methods only penalize fragmentation in the distribution, so as long as the 

predicted future distribution is continuous, this method assumes that the species can reach 

these locations. With the SDMs generated at a 10km resolution, much of the species’ 

distributions are connected.  If these dispersal models were implemented at a finer resolution, 
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then they would most likely have much lower sensitivity and TSS scores, as any gap in the 

distribution (e.g. urban area or slight change in habitat) could heavily fragment the factors 

that define the suitable habitat. In these instances, the choice of connectivity (rook’s or 

Queen’s) may have an important role in determining future distributions. Some differences 

between rook’s and Queen’s cases of connectivity were found in this study, particularly in the 

southwest of Great Britain, where islands are only connected to the mainland if Queen’s case 

of connectivity was considered. However, with only 3 islands connected to the mainland in 

this manner, any change in accuracy was minimal. Subsequently, in this study, due to the 

spatial resolution, limited dispersal models often reported similar accuracies to unlimited 

dispersal, however these results are unlikely to replicate at finer resolutions and across larger 

extents. 

The variation in area predicted present was notable. For almost every method, some 

difference in area was observed, and while these differences were not always significant 

when averaged across all 50 species, small variations in area for a specific species could have 

large implications on any conservation strategies for individual species.  Only three methods 

did not vary in area predicted present by unlimited dispersal. These were three of the discrete 

dispersal kernels with fat-tail PDFs (DK3, DK5 and DK6). The discrete kernels are a 

combination of a dispersal kernel and the fixed rate method, with the maximum value drawn 

from a PDF used as the fixed rate of dispersal. With the fat-tailed kernels (inverse 

exponential and Cauchy), a value greater than the length of the country was often generated 

due to the relatively large number of iterations, regardless as to whether the other 99% of 

dispersal distances drawn from the PDF were within a 10km radius. Subsequently, every 

suitable location between the maximum value was considered equal (something which is 

most likely not realistic of long distance dispersal events). The fact that no differences with 

unlimited dispersal were found for the inverse exponential and Cauchy PDFs, along with the 
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expensive computing time and resources needed to generate these models, implies that the 

use of this method may be redundant (particularly for birds which are capable of travelling 

extensive distances). This method has been used in plant studies across much larger spatial 

and temporal timescales (Clark et al. 2001, Cunze et al. 2013), so future research should 

focus on if differences between the implementations of discrete dispersal kernels and 

unlimited dispersal exist for different taxa and spatio-temporal scales.  

In contrast, the probabilistic kernels often resulted in less predicted area to unlimited 

dispersal and significantly lower TSS scores for the Gaussian and Cauchy PDFs. However, 

the probabilistic kernels with inverse exponential PDFs varied in area predicted present 

compared to unlimited dispersal, but did not differ significantly in accuracy, suggesting that 

this may be a more realistic method of simulating dispersal for birds compared to the discrete 

kernel implementation as long distance dispersal events are controlled by probabilities. In 

contrast to the discrete kernels, almost all of the comparisons among the probabilistic kernels 

resulted in a significant change in accuracy and in predicted area. The choice of PDF (and in 

particular the presence or absence of a fat-tail) when using a probabilistic kernel can 

substantially impact the accuracy of the final model. More resources should be expended for 

the collection of empirical data to fit a dispersal kernel, so that the choice of PDF (and any 

uncertainty in the user decisions) is negated. However, if empirical data collection is not an 

option, effort should be directed to identifying a general framework for PDF generation (e.g., 

see Vittoz and Engler 2007 for a detailed discussion on the creation of dispersal kernels for 

European flora).   

From the comparison, no dispersal (XD) appeared to outperform the other dispersal 

models in terms of achieving the highest accuracy scores (Figure 4), and this was consistent 

across all the accuracy metrics except for sensitivity. This was due to XD’s ability to 

correctly predict absences, recording the highest specificity for all 50 species, as well as the 
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highest Kappa, TSS and PCC scores for the same reasons (Figure 4). However, the ability to 

correctly predict absences may not be as important when projecting the distribution of rare 

species, as a disproportionately high number of absences can exert too much influence in the 

metrics that consider both (Araújo et al. 2005). This issue is particularly pertinent when the 

test dataset used to validate the SDMs is representative of every observation across the entire 

study area, meaning that for sparse species, the accuracy metrics would effectively favour 

correctly predicting absences. This explains why XD scored so highly across many of the 

accuracy metrics, and why there were relatively lower Kappa and TSS scores for MaxEnt 

compared to GLM and RF (Table 3).  

The rationale behind ensemble modelling in SDM is that by calculating the ensemble 

score, the ‘signal’ that one is concerned with emerges from the ‘noise’ associated with 

individual model errors and uncertainties (Araújo and New 2007). A lot of the current work 

with ensemble models in SDM is ‘pre-thresholding’, whereby suitability indices are averaged 

across various models and these values are used in the generation of presence/absence models 

(Thuiller et al. 2013, Barbet-Massin et al. 2012). For many scenarios, this type of ensemble 

forecast is desirable; however, many of the dispersal models used in this study require a 

binary presence/absence output from the statistical model in their input, and produce only a 

binary output. Therefore, we developed the Ensemble Agreement Index (EAI) with which to 

analyse these ensemble models. This index ranks full agreement for every observation (i.e. an 

ensemble score of 20 out of 20 in every presence observation) as 1, and full disagreement for 

every observation (i.e. an ensemble score of 1 out of 20 in every presence observation) as 0. 

Each species is now associated with an EAI score, and researchers can discuss dispersal 

potential with a greater understanding of the uncertainty of how the dispersal models align 

with each other.  
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Many of the introduced species (e.g., wood duck, ring-necked parakeet) have a 

relatively lower EAI score than the native species (Table 5). In part, this is because these 

species tended to have smaller original distributions, and the fact that they are not in 

equilibrium with the environment in 1990 due to their recent establishment. Therefore, the 

potential area with which they can disperse is greater than those native to the country and 

subsequently already occupying their niche. Raptors such as the hobby, osprey and goshawk 

all have platykurtic dispersion of EAI scores, suggesting that their dispersal capability varied. 

Similar to the introduced species, these species were most likely not in equilibrium with their 

environment in 1990 due to persecution (e.g. Marquiss et al. 2003), and so their predicted 

distribution is more fragmented, causing the slight differences in dispersal models to be 

exaggerated, particularly differences between the restrictive and expansive methods. For 

example, the areal difference between limited dispersal with rook’s connectivity (L1) and 

Queen’s connectivity (L2) for the osprey was 3,800km2, which was 1,000km2 greater than the 

average of all 50 species (Table 4).  

There are no really low EAI scores for any of the 50 birds. In part this could be due to 

a relatively low uncertainty surrounding these methods, although more likely this is due to 

the inclusion of very similarly defined methods and possibly inflated ensemble scores (e.g., 

the six discrete dispersal kernel methods). When the six discrete kernel values were removed, 

we observed lower scores for the species with moderate uncertainty (e.g. wood duck), 

whereas the species with low uncertainty (e.g. blackcap) did not change. Likewise, the 

inclusion of unlimited dispersal at this spatial extent almost negates the opportunity for an 

EAI score of 0, as it is relatively unlikely that no other dispersal method will predict all the 

observations as absent. In practice, research will not compare as many different dispersal 

models with slight differences in implementation as we did in this extensive study.  
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It should be noted that low uncertainty measured by the EAI does not mean that the 

future projections have a high accuracy. For example, Figure 3 shows high agreement among 

the 20 dispersal models when coupled with RF, but the accuracy is substantially lower than 

GLM or MaxEnt. However, for projections into the future (e.g. 2100) researchers will have to 

evaluate the uncertainty of their projections because there is no test data with which to 

validate. In these instances, agreement among dispersal models and other decisions in the 

SDM framework (e.g. statistical models) should be considered within the EAI, so that a better 

understanding of the output is achieved. Therefore, when generating ensemble models, 

different methods of implementing dispersal (or any other user-defined aspect which can be 

ensembled) should be selected carefully and specifically, rather than simply inputting every 

possible implementation.  

The coarse resolution at which the land cover is generated (1km) compared to the 

resolution at which actual bird movements occur was insufficient to generate meaningful 

comparisons if we used landscape derived metrics. Similarly, demographic models are very 

rare in SDM studies due to the paucity of comparable abundance data, and subsequently have 

only been applied in a few studies (e.g. Midgley et al. 2010). As such, it was not practical to 

include these conceptualizations of dispersal in the analysis. However, for many terrestrial 

animals and plants, these notions of movement may be more suitable, and more research 

should be conducted to see how incorporating these methods alongside SDM impacts results. 

The variation in accuracy among dispersal models suggests that the choice of 

dispersal model should therefore reflect the underlying purpose of the research being 

conducted. No dispersal (which performs well for specificity) would therefore be 

recommended for studies trying to identify future suitable habitat for species which have low 

dispersal capabilities (e.g. reptiles), or for studies aiming to find definitive locations of future 

abiotic suitability (without introducing the uncertainty of dispersal). While many dispersal 
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methods scored high sensitivity (Figure 4), if the aim of the research is to find the potential 

future distribution of a species, then unlimited dispersal (UD) should be used due to its 

conceptual underpinnings and ability to identify every suitable location in the study area. We 

found the use of a probabilistic dispersal kernel and limited dispersal with rook’s connectivity 

(L1) resulted in higher TSS for five of the seven non-native species. These dispersal models 

also recorded sensitivity scores equal to or fractionally lower (<0.1 difference) than unlimited 

dispersal. From this, we can infer that the statistical models for invasive species are 

projecting inaccessible abiotically suitable areas, and that a dispersal model that removes or 

controls the possibility of long distance dispersal eliminates these false positives, and 

improves the accuracy of metrics such as TSS. Therefore, the use of a probabilistic dispersal 

kernel or limited dispersal model should be used when studying invasive spread under 

changing climates. The use of a probabilistic dispersal kernel with an inverse exponential 

PDF (PK3 and PK4) resulted in slightly smaller areal extents predicted as present compared 

to UD and DK implementations, but no significant changes in accuracy (Table 4). By 

controlling for long distance dispersal events through probabilities, rather than the 

assumption that every observation between the minimum and maximum dispersal distances is 

equally accessible (as UD and DK implementations do), the probabilistic dispersal kernel is 

perhaps the most accurate representation to how birds disperse with their projections resulting 

in equally high accuracies.  

Conclusion 

The use of the ‘BAM’ framework within the SDM discipline to identify the factors that drive 

the geographic distributions of species is becoming increasingly popular. Within this 

framework, movement factors that refer to the processes that lead to an area being accessible 

(e.g., via dispersal or migration) are an important yet understudied component. The 

importance of incorporating dispersal alongside SDMs projecting into the future cannot be 
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overstated, as the results of SDMs which ignore dispersal are subject to high levels of 

uncertainty. This is the first study that has extensively compared the accuracy and uncertainty 

of the methods of incorporating dispersal in SDM, and as such should serve as a foundation 

for studies projecting into future climates. Alongside the dispersal models, we also compared 

the statistical methods, evaluated the projected 2010 distributions using multiple accuracy 

metrics, deconstructed species indices by species traits and reported both the accuracy and 

uncertainty of the models. Many of the methods of dispersal differed greatly in terms of their 

accuracy, particularly between the restrictive and the expansive methods, while other 

methods of dispersal did not differ (e.g. discrete kernels and unlimited dispersal). The use of 

no dispersal yielded significantly lower accuracy (TSS) when averaged across the 50 species 

and compared to every other method of dispersal, while conversely also recording the highest 

scores for the accuracy metrics which favour correct prediction of absences. Subsequently 

XD should only be used if the researcher has a valid reason to do so, and even then other 

simulations of dispersal should be incorporated alongside this. The development of the 

Ensemble Agreement Index allowed for the quantification of uncertainty among the different 

dispersal models, but will also provide researchers with a quantitative tool to assess the 

variations between their inputs for other areas of uncertainty in SDM (e.g. use of statistical 

method, threshold classification) or any environmental or geographic research where the 

main output can be binary (e.g. flood risk, urban growth). For the first time in SDM research, 

we have been able to compare these dispersal models based on how well they predict future 

geographic distributions. Not only has this research provided practitioners with a product 

with which to select a dispersal model to use, saving their time, resources and research 

efforts, it has also resulted in a better understanding of the effects of both the accuracy and 

uncertainty on projected distributions, extinction rates and dispersal patterns. 
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Table 1. The 20 dispersal models used in this study and their reference code.  

Method Code 

No dispersal XD 

Limited dispersal (rook’s) L1 

Limited dispersal (Queen’s) L2 

Fixed rate 1 step (arithmetic mean) FR1 

Fixed rate 1 step (geometric mean) FR2 

Fixed rate 2 steps (arithmetic mean) FR3 

Fixed rate 2 steps (geometric mean) FR4 

Discrete dispersal kernel (Gaussian arithmetic) DK1 

Discrete dispersal kernel (Gaussian geometric) DK2 

Discrete dispersal kernel (inverse exponential arithmetic) DK3 

Discrete dispersal kernel (inverse exponential geometric) DK4 

Discrete dispersal kernel (Cauchy arithmetic) DK5 

Discrete dispersal kernel (Cauchy geometric) DK6 

Probabilistic dispersal kernel (Gaussian arithmetic) PK1 

Probabilistic dispersal kernel (Gaussian geometric) PK2 

Probabilistic dispersal kernel (inverse exponential 

arithmetic) 

PK3 

Probabilistic dispersal kernel (inverse exponential 

geometric) 

PK4 

Probabilistic dispersal kernel (Cauchy arithmetic) PK5 

Probabilistic dispersal kernel (Cauchy geometric) PK6 

Unlimited dispersal  UD 
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Table 2. Threshold-dependent accuracy measures for species presence/absence models. TP = 

True Positive, TN = True Negative, FP = False Positive, FN = False Negative 

 

Metric Equation 

Sensitivity TP / (TP + FN) 

Specificity TN / (TN + FP) 

Proportion Correctly Classified (PCC) (TP + TN) / n 

True Skill Statistic (TSS) (Sensitivity + Specificity) - 1 

Kappa 
[(TP + TN) − (

�(TP + FN)(TP + FP) + (FP + TN)(FN + TN)�
n )]

[𝑛𝑛 − �(TP + FN)(TP + FP) + (FP + TN)(FN + TN)
n �]
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Table 3. Mean and standard deviation (SD) of accuracy metric scores for the three statistical 

methods fitted on the 1990 environmental data and projected using the 2010 environmental 

data, with the assumption of unlimited migration across the 50 species. Abbreviations stand 

for Proportion Correctly Predicted (PPC), True Skill Statistic (TSS) and Area Under the 

Curve (AUC). 

 

 Sensitivity Specificity PPC Kappa TSS AUC 

 Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) 

GLM 0.532 (0.209) 0.855 (0.108) 0.738 (0.121) 0.325 (0.180) 0.386 (0.180) 0.693 (0.090) 

MaxEnt 0.601 (0.208) 0.828 (0.137) 0.732 (0.115) 0.343 (0.168) 0.286 (0.168) 0.714 (0.084) 

RF 0.563 (0.251) 0.857 (0.142) 0.803 (0.101) 0.403 (0.185) 0.420 (0.197) 0.710 (0.098) 
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Table 4. Pairwise comparison of the performance of the 20 migration methods. The value represents the average change in area (km2) predicted present averaged for the 50 

species between the method in the row compared to the method in the column. Green represents a significant increase in accuracy (True Skill Statistic – TSS) and red 

represents a significant decrease in accuracy (TSS) between the methods. Significance of α = 0.05 calculated using a paired sample t-Test. XD is no dispersal, L is limited 

dispersal (1 = rook’s, 2 = Queen’s), FR is fixed rate (1 = 1 step arithmetic, 2 = 1 step geometric, 3 = 2 step arithmetic, 4 = 2 step geometric), DK is discrete kernel, PK is 

probabilistic kernel, UD is unlimited dispersal. For Kernels, 1 = Gaussian Probability Density Function (PDF) arithmetic, 2 = Gaussian PDF geometric, 3 = inverse 

exponential PDF arithmetic, 4 = inverse exponential PDF geometric, 5 = Cauchy PDF arithmetic, 6 = Cauchy PDF geometric. 

 XD L1 L2 FR1 FR2 FR3 FR4 DK1 DK2 DK3 DK4 DK5 DK6 PK1 PK2 PK3 PK4 PK5 PK6 UD 
XD                     
L1 31848                    
L2 34010 2162                   
FR1 36276 4428 2266                  
FR2 33588 1740 -422 -2688                 
FR3 35616 3768 1606 -660 2028                
FR4 29708 -2140 -4302 -6568 -3880 -5908               
DK1 36382 4534 2372 106 2794 766 6674              
DK2 35698 3850 1688 -578 2110 82 5990 -684             
DK3 36640 4792 2630 364 3052 1024 6932 258 942            
DK4 36322 4474 2312 46 2734 706 6614 -60 624 -318           
DK5 36640 4792 2630 364 3052 1024 6932 258 942 0 318          
DK6 36640 4792 2630 364 3052 1024 6932 258 942 0 318 0         
PK1 30382 -1466 -3628 -5894 -3206 -5234 674 -6000 -5316 -6258 -5940 -6258 -6258        
PK2 31104 -744 -2906 -5172 -2484 -4512 1396 -5278 -4594 -5536 -5218 -5536 -5536 722       
PK3 36552 4704 2542 276 2964 936 6844 170 854 -88 230 -88 -88 6170 5448      
PK4 35316 3468 1306 -960 1728 -300 5608 -1066 -382 -1324 -1006 -1324 -1324 4934 4212 -1236     
PK5 31016 -832 -2994 -5260 -2572 -4600 1308 -5366 -4682 -5624 -5306 -5624 -5624 634 -88 -5536 -4300    
PK6 31452 -396 -2558 -4824 -2136 -4164 1744 -4930 -4246 -5188 -4870 -5188 -5188 1070 348 -5100 -3864 436   
UD 36640 4792 2630 364 3052 1024 6932 258 942 0 318 0 0 6258 5536 88 1324 5624 5188  
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Table 5. Ensemble Agreement Index (EAI) scores for the 50 species. A value of 1 indicates 

all 20 methods made the same predictions for all locations. –lk represents a significant 

lepokurtic distribution. –pk represents a significant platykurtic distribution. A kurtosis value 

twice the standard error was considered significantly different from a normal distribution. 

Species EAI  with Discrete 
Kernels 

EAI without Discrete 
Kernels 

Blackcap (Sylvia atricapilla) 0.999-lp 0.998-lp 
Great Spotted Woodpecker (Dendrocopos major) 0.997-lp 0.995-lp 
Grey Heron (Ardea cinerea) 0.996-lp 0.993-lp 
Grey Wagtail (Motacilla cinerea) 0.993-lp 0.990-lp 
Common Buzzard (Buteo buteo) 0.992-lp 0.989-lp 
Oystercatcher (Haematopus ostralegus) 0.992-lp 0.989-lp 
Red-legged Partridge (Alectoris rufa) 0.992-lp 0.988-pk 
Canada Goose (Branta canadensis) 0.991-lp 0.987-lp 
Green Woodpecker (Picus viridis) 0.990-lp 0.986-lp 
Nuthatch (Sitta europea) 0.990-lp 0.986-lp 
Raven (Corvus corax) 0.990-lp 0.985-lp 
Kingfisher (Alcedo atthis) 0.988-lp 0.982-lp 
Tree Sparrow (Passer montanus) 0.988-lp 0.982-lp 
Sand Martin (Riparia riparia) 0.985-pk 0.978-pk 
Herring Gull (Larus argentatus) 0.985-lp 0.978-lp 
Lesser Black-backed Gull (Larus fuscus) 0.985-lp 0.978-lp 
Siskin (Spinus spinus) 0.985-lp 0.977-lp 
Barn Owl (Tyto alba) 0.982-lp 0.973-lp 
Peregrine Falcon (Falco peregrinus) 0.982-lp 0.973-lp 
Reed Warbler (Acrocephalus scirpaceus) 0.982-lp 0.974-pk 
Common Eider (Somateria mollissima) 0.981-lp 0.972-lp 
Goosander (Mergus merganser) 0.981-lp 0.973-lp 
Stonechat (Saxicola rubicola) 0.979-lp 0.970-lp 
Little Grebe (Tachybaptus ruficollis) 0.978-lp 0.967-lp 
Shelduck (Tadorna tadorna) 0.977-lp 0.967-lp 
Quail (Coturnis coturnix) 0.974-lp 0.962-lp 
Cormorant (Phalacrocora carbo) 0.973-lp 0.961-lp 
Grasshopper Warbler (Locustella naevia) 0.971-lp 0.958-lp 
Common Tern (Sterna hirunda) 0.970-lp 0.955-lp 
Greylag Goose (Anser anser) 0.966-lp 0.951-lp 
Long-eared Owl (Asio otus) 0.951-lp 0.928-lp 
Hobby (Falco subbuteo) 0.950-pk 0.926-pk 
Water Rail (Rallus aquaticus) 0.946-lp 0.921-lp 
Gadwall (Anas strepera) 0.944-lp 0.917-pk 
Mandarin Duck (Aix galericulata) 0.938-lp 0.910-lp 
Goshawk (Accipter gentilis) 0.937-lp 0.909-pk 
Wigeon (Anas penolope) 0.935-lp 0.905-lp 
Little Ringed Plover (Charadrius dubius) 0.927-lp 0.894-lp 
Nightjar (Caprimulgus europaeus) 0.917-lp 0.879-lp 
Great Skua (Stercorarius skua) 0.895-pk 0.847-pk 
Garganey (Anas querquedula) 0.879-pk 0.823-pk 
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Egyptian Goose (Alopochen aegyptiaca) 0.856-lp 0.793---- 
Osprey (Pandion haliaetus) 0.825-pk 0.744-pk 
Cetti’s Warbler (Cettia cetti) 0.802-lp 0.715-lp 
Firecrest (Regulus ignicapilla) 0.788-lp 0.719---- 
Ring-necked Parakeet (Psittacula krameri) 0.784---- 0.691-pk 
Barnacle Goose (Branta leucopsis)  0.782-lp 0.689-lp 
Woodlark (Lullula arborea) 0.775-pk 0.676-pk 
Wood Duck (Aix sponsa) 0.769-lp 0.675-pk 
Dartford Warbler (Sylvia undata) 0.740-pk 0.634-pk 
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Figure 1. The ‘BAM’ diagram, which depicts the interaction between biotic (B), abiotic (A), and 

movement (M) factors. Four areas are represented: G, the geographical space within which the analyses 

are developed, Ga, the abiotically suitable area, Go, the occupied distributional area, and Gi, the 

invadable distribution (if movement limitation is reduced). Modified from Soberón (2007).  

 

Figure 2. Conceptual diagram of workflow. 

 

Figure 3. Sensitivity scores for the 20 dispersal models for the three statistical methods and four breeding 

groups. XD is no dispersal, L is limited dispersal (1 = rook’s, 2 = Queen’s), FR is fixed rate (1 = 1 step 

arithmetic, 2 = 1 step geometric, 3 = 2 step arithmetic, 4 = 2 step geometric), DK is discrete kernel, PK is 

probabilistic kernel, UD is unlimited dispersal. For Kernels, 1 = Gaussian PDF arithmetic, 2 = Gaussian 

PDF geometric, 3 = inverse exponential PDF arithmetic, 4 = inverse exponential PDF geometric, 5 = 

Cauchy PDF arithmetic, 6 = Cauchy PDF geometric (n.b. DK1 to DK6 are consolidated under DK due to 

no visible variation). 

 

Figure 4. Number of times each dispersal model recorded the highest value for a particular accuracy 

metric for each individual species. Across the 50 species and five accuracy metrics, the highest possible 

value could have been 250. 

 

Figure 5. Ensemble maps of predicted presence based on environmental suitability (using MaxEnt) and 

the 20 dispersal models for 2010 for a–c) three species with high uncertainty (Cetti’s Warbler, Firecrest, 

Woodlark), d–f) three introduced species (Egyptian Goose, Ring-necked Parakeet, Red-legged Partridge) 

and g–i) three with high modelling certainty (Blackcap, Green Woodpecker, Great Spotted Woodpecker). 
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