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Little attention has been paid to the measurement of risk to privacy in Database

Management Systems, despite their prevalence as a modality of data access. This paper

proposes PriDe, a quantitative privacy metric that provides a measure (privacy score)

of privacy risk when executing queries in relational database management systems.

PriDe measures the degree to which attribute values, retrieved by a principal (user)

engaging in an interactive query session, represent a reduction of privacy with respect

to the attribute values previously retrieved by the principal. It can be deployed in

interactive query settings where the user sends SQL queries to the database and

gets results at run-time and provides privacy-conscious organizations with a way to

monitor the usage of the application data made available to third parties in terms of

privacy. The proposed approach, without loss of generality, is applicable to BigSQL-style

technologies. Additionally, the paper proposes a privacy equivalence relation that

facilitates the computation of the privacy score.

Keywords: electronic privacy, data analtyics, relational database management systems (RDBMS), privacy score,

n-grams

1. INTRODUCTION

The recent past has witnessed an exponential increase in the amount of data being collected
by contemporary organizations. Data analytics offers a broad spectrum of benefits. It enables
contemporary organizations to anticipate business opportunities and to deliver relevant products
to their customers, gives them a competitive advantage, facilitates cost reduction, allows
personalization of service, and results in improvements in the customer experience. A long-term
impact of data analytics is, likewise, that it enables early detections of outbreaks of diseases; in
a nutshell, analytics over a huge amount of data is likely to result in an incredible impact on
businesses and our society. Data comes frommultiple sources and comprises personal and sensitive
data. On the one hand, one cannot deny the importance and value of data, but, on the other hand,
the fact that data can include personal and sensitive items means that the usage and storage of and
access to this data raise security and privacy concerns. Contemporary organizations grant access
to their data to third parties who specialize in data analytics so as to gain richer insight from their
data. These organizations are also increasingly conscious of the privacy of the data of individuals.
Therefore, privacy controls that monitor the usage of data in the privacy sense are exceedingly
desirable for contemporary organizations.

In this paper, we propose a privacy control based on the run-time measurement of privacy risk.
The proposed metric, in essence, is a Privacy Distance (PriDe) between the past and the current
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querying behavior of an analyst. Systematically measuring and
quantifying privacy risk is non-trivial (Becker and Chen, 2009;
Wagner and Boiten, 2017). The focus of the majority of
the metrics in the literature has been on social-networking
environments or on “open” systems where the actions of the
users or consumers of the data tend not to be constrained.
However, less attention has been paid to approaches that
objectively measure privacy risk within the Relational Database
Management System (RDBMS) framework. The contribution
of this paper is the construction of a metric that objectively
measures privacy risks by providing data curators with a score
within the RDBMS framework. We are interested in providing a
real-time measure of the (privacy) risk associated with queries by
third parties (Users or analysts1) against a Relational Database.
PriDe computes a run-time score of the privacy risk that arises
from a query to the database. It is a measure of the degree to
which attribute values, retrieved by a principal engaged in an
interactive query session, may represent a reduction of privacy
with respect to the attribute values previously retrieved by the
principal from the RDBMS. Intuitively, the score provides the
basis for a form of privacy anomaly detection: to what degree
of privacy do the current queries of a user differ from the
“normal” past queries of the user. The proposed approach uses
n-gram profiles to model the querying behavior of the principals
(users). N-grams have been effectively used to identify short-term
correlations between events in logs, thus enabling us to build
an approximation of the system behavior (Forrest et al., 1996).
Thus, n-grams have the potential to capture patterns reflecting
the attempted inferences made for some attribute values. Once n-
gram profiles are generated, a comparison of the profiles can be
carried out for the score computation. Moreover, a case of cold
start is also studied, where a profile to compare against (baseline
profile) is not available. Additionally, to enable the comparison to
be carried out in terms of privacy, a privacy equivalence relation
is also proposed in this paper. This paper is a significant revision
of the paper (Khan et al., 2019c) and extends this work, with the
treatment of cold-start (absence of baseline profile - past querying
behavior), experimental results pertaining to the evaluation of the
cold-start scenario and includes discussions, for instance, on the
a use-case of computing privacy score.

The remainder of this paper is organized as follows. We
present related work in section 2. Section 3 describes the design
of PriDe, the privacy score model. Cumulative privacy score
is presented in section 3.3, followed by the demonstration of
the model in section 4. Some conclusions have been drawn in
section 5.

2. RELATED WORK

A large portion of the literature in the context of privacy research
focuses on the anonymization of the data in the databases.
We have witnessed several definitions of privacy including
k-anonymity (Sweeney, 2002), l-diversity (Machanavajjhala
et al., 2007), t-closeness (Li et al., 2007), and differential
privacy (Dwork, 2008). Syntactic definitions of privacy (Clifton

1The terms “analyst,” “principal,” and “user” are used interchangeably in this paper.

and Tassa, 2013), like k-anonymity, l-diversity, and t-closeness,
deal with Privacy-Preserving Data Publishing (PPDP), where one
can use syntactic privacy definitions to anonymize the data to
preserve the privacy of the individuals and subsequently publish
the anonymized data. Differential privacy was initially designed
for statistical databases. Statistical databases allow aggregated
queries and have applications in multiple domains (Deng and
Lv, 2015). Differential privacy mechanisms are for interactive
settings where the user sends a query and gets a result at
run-time. Syntactic definitions and differential privacy aim to
anonymize the data rather than providing a quantitative score as
an indication of changes in the level of privacy.

Another line of research work is in the context of
recommender systems (Shapira et al., 2004; Halkidi and
Koutsopoulos, 2011; Arnau et al., 2014). For instance, the work
presented in Arnau et al. (2014) ensures the privacy of a user’s
web searches from surveillance and data-profiling. A profile
of a user’s interests is represented as a histogram. This user’s
profile of interests is then compared with a consolidated profile
of the interests of the population. Deviation of the user profile
from the population’s profile is measured using entropy and
KL-divergence (both acting as privacy metrics). The approach
in Shapira et al. (2004) is aimed at providing a noise-added
version of an individual’s navigation tracks to prevent an attacker
from inferring the individual’s profile of interests. The approach
generates redundant searches for a variety of fields of interest;
in other words, noise in the form of these redundant searches
was added in order to confuse the attacker. Profiles in the
context of recommender systems are the profiles of interest of
individuals and are constructed by considering the individual’s
search history; for example, where a person frequently searches
for sports cars, the personalized information system deduces
that the person is interested in sports cars. The keyword
“sports cars” then becomes a part of the individual’s profile
of interests. The notion of the profile of interest is different
from the behavioral profile (n-gram profile) presented in our
proposed work. The behavioral profile (n-gram profile) captures
the querying behavior of an individual while attempting to
capture correlations between the queries. An interesting line of
research is to measure the degree of anonymity in Anonymous-
Communication Systems (ACS), where several approaches have
used information-theoretic quantities to evaluate ACSs (Díaz
et al., 2003; Serjantov and Danezis, 2003; Diaz, 2006). For
instance, the approach in Díaz et al. (2003) and Diaz (2006)
measures the degree of anonymity as normalized entropy.
Another facet of privacy is manifested in its perseverance while
the private data is outsourced, for which promising approaches
have been proposed in Pei et al. (2007) and Genga and Zannone
(2018).

However, little research has been reported on objectively
measuring privacy risks within the Relational Database
Management System (RDBMS) framework in settings where
the goal is to measure the changes in the level of privacy of the
individuals in the database when a user or an analyst accesses
it. The primary aim of the past privacy research in the context
of PPDP, recommender systems, and ACSs is to anonymize the
original data to obtain a distorted version of the original data.
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The original data is distorted in such a way that the attacker
perceiving the distorted version is unable to infer any of the
individual’s identification information from it. Additionally, the
privacy metrics in the context of PPDP, recommender systems,
and ACSs are crafted in accordance with the technicalities
prevalent in that particular domain. This aim differs from the
aim of the proposed work, which is to objectively measure the
reduction of privacy of the individuals while the analyst interacts
with the database. We are interested in measuring the change
in privacy level (reduction in the privacy level) rather than
attempting to anonymize the database. Moreover, a novel set of
challenges is manifested when one works within the framework
of RDBMS. One such example is cases where one SQL query is a
subset of another SQL query in terms of privacy.

2.1. Measuring Privacy
PriDe measures the degree to which attribute values, retrieved
by a principal (user) engaging in an interactive query session,
represent a reduction of privacy with respect to the attribute
values previously retrieved by the principal (user) from the
RDBMS. In this work, a user(s) or analyst(s) who has been
granted access to the database, potentially has malicious intent.
The database is maintained by a contemporary organization
(data curator), and the database consists of distinct records of
numerous individuals. In order to demonstrate the difference
between a naïve calculation of the amount of data released in
response to the SQL queries made by an analyst and PriDe,
consider a database containing a table with attributes including
firstName , lastName , department , gender , city , and
departmentHead , as shown in Figure 1. Suppose that the
very first five queries that an analyst makes to the table select
only the value for the attribute city . A naïve calculation of the
amount of data retrieved by the analyst would be five values (the
number of records selected) for the attribute city ; however, the
returned values (NYC) do not affect the privacy of any individual
in the database. PriDe calculates the amount of information,
through attribute values, released to the analyst in terms of
privacy. By “in terms of privacy,” we mean whether or not if
this release affects the privacy of any individual. Let’s say an
analyst makes queries to get values for the attribute gender
followed by queries to get values for the attribute department
by specifying the condition in the WHEREclause of the SQL
statement as WHERE city = “NYC.” We would expect that
this behavior would result in an increasing privacy score. Again,
if the analyst makes another query asking for the value for the
attribute firstName , this further increases the privacy score.
However, in the case of PriDe, when, after making these queries,
the analyst makes a query asking for the value of attribute city ,
then this does not increase the privacy score, as this query does
not affect the privacy of any individual in the database. Another
aspect of computing privacy score is the consideration of “safe”
past behavior or “safe” queries. For instance, we know that it is a
common occurrence that a query to get the value of the attribute
department will be followed by a query to get the value of the
attribute departmentHead and vice versa. This sequence of
queries, if it appeared at run-time, would not increase the privacy
score either while PriDe is deployed.

3. PRIDE—THE PRIVACY SCORE MODEL

In this section, the architecture of PriDe—a privacy score
model—is outlined. Intuitively, PriDe can be considered to be a
posterior privacy control. The computation of the privacy score is
based on behavioral profiles. Behavioral profiles approximate the
query behavior of a user. Behavioral profiles are inferred from a
DBMS log of the SQL queries (audit logs). The fundamental idea
is to capture the normal querying behavior of a user in one profile
(baseline profile) and capture the posterior querying behavior of
the user in another profile (run-time profile). A comparison (in
a privacy sense) of the baseline profile and the run-time profile
then results in the privacy score. The baseline profile is a profile
that is constructed using those queries collected in the audit
log for which there are no presumed privacy risks. When we
say that there are no presumed privacy risks, we mean that we
are making the assumption that the past normal behavior is
considered to be risk-free from a privacy perspective; this is the
same kind of assumption that is made for conventional anomaly
detection systems (Chandola et al., 2009). The baseline profile
is constructed before the privacy score system is operational.
The run-time profile is a profile constructed after the analyst
has been granted access to the information system. In this work,
we consider an adversary model where the user or the analyst
presumably has malicious intentions. The run-time profile is
generated from the audit log consisting of queries made by an
analyst. PriDe operates in two phases: 1—the profile construction
phase, and 2—the profile comparison phase, as described in the
next sections.

3.1. Modeling Querying Behavior
The profile construction phase consists of the query abstraction
step followed by the construction of an n-gram profile. We
discuss both these steps in this section.

3.1.1. SQL Query Abstraction
It is necessary to consider the audit logs of SQL queries at
some level of abstraction, for example, in their use for anomaly-
based intrusion detection systems to detect insider threats to an
organization’s DBMS (Lee et al., 2002; Low et al., 2002; Hussain
et al., 2015; Kul et al., 2016; Sallam et al., 2016), where an
insider is an employee of an organization with legitimate access
privileges (Uno et al., 2004; Koh and Rountree, 2005). The use
of abstraction, in practice, is considered since audit logs typically
encompass a large number of queries. It has been reported in a
recent study that within the time period of only 19 h, around 17
million SQL queries were made in a major US bank (Kul et al.,
2016). Therefore, a way to summarize the audit logs is desirable.
Abstraction is a tuple representation of an SQL query and consists
of query features like relation name, attribute names, the amount
of returned data, and any statistics on the returned data. One
can categorize query features into syntax-centric, data (result)-
centric and context-centric features (Mathew et al., 2010; Sallam
et al., 2016). For our work, we originally considered a naïve
abstraction where only the SQL command type (i.e., INSERT,
SELECT, UPDATE) is selected to represent the original SQL
query. However, this is too coarse-grained and does not take
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FIGURE 1 | An example table with records of five individuals.

into account the rest of the queried attributes. In contrast to
coarse-grained query abstraction, intuitively, one wants to use
a more fine-grained representation of the SQL query by using
the entire SQL query to generate a profile. The purpose of
query abstraction is lost in the case where a very fine-grained
representation (the entire SQL query) is adopted. The idea behind
query abstraction is to summarize a log in a meaningful and
useful way. In this paper, we use an SQL query abstraction
method similar to the one that has already been studied in the
context of mining the logs of SQL queries in Makiyama et al.
(2015). Some examples of the SQL query abstractions deployed
in the paper are depicted in Figure 2. The attribute and relation
names are part of the abstraction, along with the SQL command
type. The motivation behind using this particularization of SQL
query abstraction stems from the privacy-preserving processing.
Along with achieving privacy-preserving processing of audit logs,
implicitly, we also attain the objective of effectively summarizing
the audit logs, so as to have the potential to grow large in size.
In any contemporary organization, the levels of access privileges
differ for different employees (insiders). For example, a data
scientist is authorized to access customer data and on the other
hand, a security officer might not be authorized to access the
same data. Usually, any other security system is operated under
the supervision of roles like privacy or security officers, enabling
them to inspect the many instances of operations during the
execution of the system. Therefore, it might not be desirable
to expose entire queries for inspection. This is undesirable
in sensitive environments; nevertheless, in the case of relaxed
environments, the entire query abstraction or a more relaxed
query abstraction can be used. Privacy-preserving processing of
data has many interestingmanifestations (Zhang and Zhao, 2007;
CERT, 2014). In our work, experiments were performed with
other query abstractions (including the entire query). However,
discussion on the experiments pertaining to these other query
abstractions is not included in this paper due to space limitations.
We observed that the query abstractions shown in Figure 2

appear to fit well in our model in contrast with other query
abstractions that were considered.

Definition 3.1. Query Abstraction: Given a set of SQL queries
Q, the abstraction A(Q) of the queries in Q is a mapping of Q
to A(Q), where the mapping function A():Q → A(Q) defines a
many-to-one relation.

An abstraction of an SQL query Qi is denoted as A(Qi).
The first element of A(Qi) provides the command type, that

is, SELECT, UPDATE, DELETE, INSERT. The second element
of A(Qi) is the attribute and relation names of the command.
Furthermore, to differentiate the attribute values queried and the
attributes in a WHEREclause, the attributes of the WHEREclause
are affixedwith a subscript “w” indicating that the attribute occurs
in WHEREclause, for example, gender w.

3.1.2. Constructing Profiles
While n-grams have their origins in computational
linguistics (Damashek, 1995; Kalchbrenner et al., 2014) and
natural language processing (Sidorov et al., 2014), they are well
suited for modeling short-range correlations between events
in logs (Forrest et al., 1996). N-gram based models have been
frequently used in the literature in the context of intrusion
detection systems, where they are found to be effective in
capturing normative behavior (Hofmeyr et al., 1998; Somayaji
and Forrest, 2000). N-grams are sub-sequences of events
generated by sliding a window of size “n” over a log of events.
When n = 2, the resulting sub-sequences/n-grams are known as
bi-grams , while in case of n = 3 the sub-sequences are known
as tri-grams. N-grams are sub-sequences of a given sequence
of elements, generated by sliding a window of size “n” across
the sequence. An n-gram model allows approximation of the
query behavior of a user and represents it in the form of a
profile of behavior. We refer to behavioral profiles as n-gram
profiles. N-gram profiles are inferred from an RDBMS log of
the SQL queries (audit logs). Audit logs of application systems
have been frequently used in the literature as a basis for mining
behaviors (Alizadeh et al., 2018). The n-gram profiles are
generated using the approach in (Khan and Foley, 2016; Khan
et al., 2019a). To generate an n-gram profile, it is assumed that
an RDBMS audit log L is available. The audit log L is a sequence
Q1,Q2,Q3, ...,Qm of SQL queries including SELECT, UPDATE,
INSERT, and DELETEstatements. The queries in the audit log
L are a mix of simple queries as well as complex queries that
involve joins, GROUP BYstatements, HAVING clauses, nested
queries, and so forth.

Definition 3.2. n-gram profile: Given a sequence L of SQL
queries (abstractions), the n-gram profile β = ngram(A(L), n) is
the set of all sub-sequences of size “n” that appear in A(L).

For example, the bi-gram model for the log abstraction, that
is, the sequence of query abstractions (A(Q1), A(Q1), A(Q4)) is
{〈A(Q1), A(Q1)〉, 〈A(Q1), A(Q4)〉}.
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FIGURE 2 | SQL query abstraction: The first element of the query abstraction is the command type. The second element of the query abstraction is attribute names

followed by the relation names and the names of the attributes in WHEREclause. To differentiate the attributes queried and the attributes in the WHEREclause, the

attributes of the WHEREclause are affixed with a subscript value indicating that the attribute is a part of the WHEREclause.

3.2. Comparing Profiles
The privacy score, in essence, is a privacy distance that indicates
the objective changes between the past and the current querying
behavior of the analysts. The proposed approach for computing
privacy score enables measurement of the change in privacy by
comparing an analyst’s past and current querying behavior, with
both of the behaviors represented by n-gram profiles. We denote
an n-gram profile as β . SQL logs collected for the construction
of the baseline n-gram profile and the run-time n-gram profile
are denoted as LN and LR, respectively. The baseline profile and
the run-time profile constructed from these logs are denoted as
βN = ngram(A(LN), n) and βR = ngram(A(LR), n), respectively.

Definition 3.3. Mismatches: Given a baseline profile and a
run-time profile that are compared with each other, the set of

mismatches is given by S
βN ,βR
miss =βR − βN. Let |S

βN ,βR
miss | be the

number of mismatches or the number of elements in the set
S
βN ,βR
miss . We denote a mismatched n-gram as Gmiss

i ∈ S
βN ,βR
miss .

We need to go beyond the simple comparison of n-gram
profiles (subtracting the baseline profile from the run-time
profile) and would like to have a more fine-grained comparison
at n-gram level and subsequently at the query (attribute) level,
the reason being that we are interested in determining the
closest match in baseline profile βN for the mismatched n-gram
Gmiss
i . This is because, when we perform a simple subtraction

comparison, we tend to make a binary comparison; that is,
either the n-gram is the same as other n-gram, or it is not. For
instance, consider the following three n-grams G1 = 〈(SELECT,
firstName ), (SELECT, department )〉, Gmiss

2 = 〈(SELECT,
firstName , lastName ), (SELECT, department )〉, Gmiss

3 =
〈(SELECT, city ), (SELECT, gender )〉 where G1 ∈ βN and

Gmiss
2 , Gmiss

3 ∈ S
βN ,βR
miss . If we compare Gmiss

2 and Gmiss
3 against G1,

intuitively, Gmiss
2 has some degree of similarity with G1, while

on the other hand, Gmiss
3 is entirely different from G1. Thus, we

need to take into account the degree of the similarity of the
mismatched n-gram to its closest match if we desire to make a
richer comparison between two profiles.

3.2.1. Distance Between N-Grams
In order to find the closest match of the mismatched n-gram

Gmiss
i ∈ S

βN ,βR
miss , that is to say, how far Gmiss

i is from its
closest match in βN, a measure to compare two n-grams is
desired. To find the closest match, we deploy the strategy of
comparing the corresponding SQL query abstraction of two
n-grams. In SQL query (abstraction) similarity research, the
Jaccard distance (Phillips, 2015) has been commonly used to find
similarity between two SQL query abstractions (Stefanidis et al.,
2009; Aligon et al., 2014; Kul et al., 2018). The Jaccard distance is
expressed as follows:

JaccardD(X,Y) = (|X ∪ Y| − |X ∩ Y|)/|X ∪ Y| (1)

where X and Y are SQL query abstractions. In order to compare
two query abstractions using the Jaccard distance, we have to
consider an SQL abstraction as a set for comparison.

Definition 3.4. Distance Function: We define the function
for the comparison of two n-grams as Dist(Gi,Gj) =∑n

r=1 JaccardD(Gir ,Gjr ), where r is the index (position) of
the item in the n-gram. N-grams of length n result in n
comparisons of SQL query abstractions. The value of Dist(Gi,Gj)
falls in the interval [0, n], where the value is 0 if two n-grams
are identical and the value is n if two n-grams of length n
are distinct.

If two SQL queries abstractions are entirely dissimilar, then
the similarity value is 1, and if they are exactly the same, then

the similarity value is 0. Consider S
βN ,βR
miss = {Gmiss

1 , Gmiss
2 , . . . ,

Gmiss
k

}, and βN = {G1, G2, . . . , Gm}. Each n-gram Gmiss
i ∈

S
βN ,βR
miss is compared with each n-gram Gi in the baseline profile

βN. This results in a total number of k × m comparisons,
that is, 〈Dist(Gmiss

1 , G1), Dist(G
miss
1 , G2), Dist(G

miss
1 , G3), . . . ,

Dist(Gmiss
1 , Gm)〉, 〈(G

miss
2 , G1), Dist(G

miss
2 , G2), Dist(G

miss
2 , G3),

. . . , (Dist(Gmiss
2 , Gm)〉, . . . , 〈Dist(Gmiss

k
, G1), Dist(Gmiss

k
, G2),

Dist(Gmiss
k

, G3), . . . , Dist(G
miss
k

, Gm)〉. We denote each iteration

as Iterl = 〈Dist(G
miss
i , Gj), Dist(G

miss
i , Gj+1), Dist(G

miss
i , Gj+2),
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. . ., Dist(Gmiss
i , Gj+m)〉. A single iteration here is defined as

the comparison of one n-gram from S
βN ,βR
miss with every n-

gram in βN. We take the minimum value of Dist from each
iteration, i.e., Min(Iterl) that belongs to the interval [0, n].
Subsequently, the summation of all Min(iterl) values results
in a privacy score. Given two n-gram profiles βN and βR,
the privacy score is computed between these n-gram profiles

as P〈βN ,βR〉=
∑k

i=1

∑m
j=1Min(Dist(Gmiss

i , Gj)), where Gmiss
i ∈

S
βN ,βR
miss =βR − βN.
It is worth mentioning that the architecture of PriDe can

be considered modular in nature. Therefore, one can plug in
any other similarity measures for query abstractions. Example 1
shows the comparison of two n-grams. The process of profile
comparison is also depicted in Figure 3.

Example 1. Consider the following two n-grams 〈A(Q1), A(Q2)〉
and 〈A(Q3), A(Q4)〉, where Q1, Q2, Q3, and Q4 are shown in
Figure 2. The comparison of the two n-grams is as follows,

Dist(〈A(Q1),A(Q2)〉, 〈A(Q3),A(Q4)〉) =

JaccardD(A(Q1),A(Q3))+ JaccardD(A(Q2),A(Q4))

= (7− 4)/7+ (6− 4)/6

= 0.76

3.2.2. Privacy Equivalence Between Attributes
Suppose the table shown in Figure 1 is queried using the SQL
queries Q1, Q2, and Q3 shown in Figure 2. The records returned
by Q2 are a subset of those returned by Q1, and the records
returned by Q2 are also a subset of those returned by Q3 in
terms of privacy. Q1 and Q2 have privacy equivalence; however,
Q2 and Q3 are not privacy equivalent. The determination of
privacy equivalence relations stems from the Discrimination
Rate privacy metric (Sondeck et al., 2017). To define privacy
equivalence relation, we first briefly review the Discrimination
Rate privacy metric before furthering discussion on Privacy
equivalence relation.

Rate (DR) Privacy Metric: the Discrimination Rate (DR) is
a recently proposed privacy metric for measuring the efficiency
of an anonymity system based on information theory. The
Discrimination Rate privacy metric considers the attribute as
a discrete random variable, while the result set is considered
as the set of outcomes of another discrete random variable.
For instance, consider two discrete random variables, X and
Y , where X is the set of outcomes and Y is the attribute
for which the measurement of the identification capacity is
desired. H(X) (entropy) represents the amount of information
carried by X. The entropy of X conditioned on Y , i.e.,
(H(X|Y)) (Sondeck et al., 2017), is computed as the measure
of the effect of Y on X. Therefore, the amount of information
carried by Y (attribute) according to X is given by H(X) −
H(X|Y). Moreover, H(X) − H(X|Y) is divided by H(X) to get
a normalized value. The Discrimination Rate of an attribute is
a value in the interval [0, 1]. The Discrimination Rate value 0
for an attribute means that the attribute does not contribute
to refining the attacker’s knowledge when carrying out a
re-identification attack.

Definition 3.5. Discrimination Rate Consider two discrete
random variables, X and Y , where X is the set of outcomes and Y
is the attribute for which the measurement of the identification
capacity is desired. H(X) and (H(X|Y)) are the entropy of
X and the entropy of X conditioned on Y , respectively. The

discrimination rate is computed as DRX(Y) = 1− H(X|Y)
H(X)

.

H(X) is the entropy of a discrete random variable X and is
computed by Equation (2). H(X|Y) is the conditional entropy of
a discrete random variable X given a discrete random variable Y
and is computed by Equation (3). The discrete random variable
can take values from S with probability p(x).

H(X) = −
∑

x∈S

p(x)log(p(x)) (2)

H(X|Y) = −
∑

x∈S1

∑

y∈S2

p(x, y)log(p(x|y)) (3)

where p(x, y)log(p(x|y) are the joint and conditional probability
distributions for discrete random variables X and Y . The
discrimination rate is computed for the combination of attributes
and is known as the Combined Discrimination Rate (CDR).
The discrimination rate value 1 for an attribute means that
the knowledge of the values of this attribute leads to a re-
identification attack.

Definition 3.6. Combined Discrimination Rate (CDR)

Consider discrete random variables X and Y1,Y2, . . .Yn, where
X is the set of outcomes and Y1,Y2, . . .Yn is the set of attributes
for which the measurement of the identification capacity is
desired. H(X) and H(X|Y1,Y2, . . .Yn) are the entropy of X and
the entropy of X conditioned on Y1,Y2, . . .Yn, respectively. The
combined discrimination rate (CDR) for Y1,Y2, . . .Yn given X is

computed as CDRX(Y1,Y2, . . .Yn) = 1− H(X|Y1 ,Y2 ,...Yn)
H(X)

.

The discrimination rate of each attribute in the table shown in
Figure 1 is shown in Figure 4 and the combined discrimination
rate (CDR) for combination of attributes are shown in Figure 5.
In other words, the DR (or CDR) for attributes (or a combination
of attributes) is the identification capability of the attributes (or
combination of attributes).

3.2.3. Defining Privacy Equivalence Relation
To perform a privacy comparison between two sets of attributes,
we describe a privacy-equivalence relation as defined in (Khan
et al., 2019b). We denote the privacy equivalence relation as
p
≡, and we generalize privacy equivalence relation for a set of
attributes.

Definition 3.7. Privacy Equivalence Relation
p
≡ Given two sets

of attributes Si and Sj, then the privacy equivalence between Si
and Sj is defined as Si, being a subset of Sj, and, for every x ∈ z, has
a discrimination rate value of 0, where z = Sj ∩ Si or an attribute or
a set of attributes ∈ Sj ∪ Si has DRX(atr) or CDRX(atr1, . . . , atrk)
= 1.

A query abstraction A(Qi) is a set of elements. However,
to compare the attributes in the A(Qi), we exclude the SQL
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FIGURE 3 | The run-time profile is compared with the baseline profile, resulting in a privacy score. Each n-gram from the set of mismatched n-grams is compared

with each n-gram in the baseline profile. The minimum value of the Jaccard distance is taken from one iteration of comparison, and, subsequently, all the minimum

values are added together to get the privacy score.

FIGURE 4 | Computed Discrimination Rate (DR) values for each attribute in the table shown in Figure 1.

command type from A(Qi) such that SQi = (A(Qi) - SQL
Command Type). For instance, let A(Qi) = { SELECT,
lastName, gender, hospitaldb }, then SQi = {
lastName , gender , hospitaldb }. For the table shown
in Figure 1, the Discrimination Rate for the attribute city is
0 therefore we deduce that, for the queries shown in Figure 2,
A(Q1) and A(Q2) hold privacy equivalence between them, i.e.,

A(Q1)
p
≡ A(Q2) while A(Q1) and A(Q3) do not hold privacy

equivalence between them, i.e., A(Q1)
p

6≡ A(Q3) because the
Discrimination Rate value for the attribute department is not
zero, although the result set of A(Q2) is a subset of the result set
of A(Q3). An example of the comparison of n-grams with privacy
equivalence relation is shown in Example 2.

Example 2. Consider the following two n-grams, 〈A(Q1),A(Q3)〉
and 〈A(Q2), A(Q4)〉, where Q1, Q2, Q3, and Q4 are shown in

Figure 2. We know that A(Q2)
p
≡ A(Q1). The distance between

the two above-mentioned n-grams is given by Dist(〈A(Q1),
A(Q3)〉, 〈A(Q2), A(Q4)〉),

Dist(〈A(Q1),A(Q3)〉, 〈A(Q2),A(Q4)〉) =

JaccardD(A(Q1),A(Q2))+ JaccardD(A(Q3),A(Q4))

= 0+ (6− 4)/6

= 0.33

2

3.2.4. The Scenario of Cold Start
It is worthwhile to consider the scenario of a cold start—
the unavailability of a baseline profile. In this scenario, only
a run-time profile is generated, and the privacy score is
computed solely using this run-time profile. One can think of
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FIGURE 5 | Computed Combined Discrimination Rate (CDR) values for the attributes in the table shown in Figure 1.

the comparison in the cold start scenario as comparing the
run-time profile with an empty (baseline) profile. The privacy
score in this scenario is the “total number of unique n-grams
× n,” where n is the size of the n-gram in the run-time
profile, i.e., |βR| × n. However, this is not the case when we
look into the cumulative privacy score, which is discussed in
section 3.3.

3.3. Cumulative Privacy Score
It could be the case that the user of the system wants to
add the privacy scores of several days in order to get an
idea of how much loss of privacy there was in those days in
total. The privacy scores cannot be added to each other in
naïve way. This section describes how the privacy scores can
be summed.

To compute the privacy score, one generates a baseline profile
and a run-time profile and, subsequently, compares the profiles
with each other. The question that arises is, “when should the
run-time profile be constructed?” As for the construction of
the baseline profile, one can construct it before the information
system is up and running. On the other hand, the run-time
profile is constructed when the information system is operational,
meaning that access has been granted to the analyst, and the
analyst has started making queries. The time horizon can be
divided into equal intervals so that run-time profiles can be
constructed for each interval. The time horizon is the total time

period for which the analyst was granted access to the database.
For simplicity, we opt to construct a run-time profile by the end
of each day. That is to say, audit logs are collected by the end
of each day, and then the run-time profile is generated using
these logs. We denote the run-time profile constructed by the
end of the xth day as βX ; for example, the run-time profile
constructed by the end of day 1 is denoted as β1. β0 represents
the profile constructed on day 0 or the baseline profile. It is worth
mentioning that the baseline profile is generated only once. We
denote the privacy score computed on the xth day as P〈β0 ,βX〉; for
example, the score computed on day 2 is denoted as P〈β0 ,β2〉. In
the cold start scenario, where the baseline profile is unavailable,
we denote the privacy score as P〈{},β1〉 computed on day 1 and,
similarly, the privacy score computed on day 2 as P〈{},β2〉, and
so forth.

Imagine that the owner of the information gets a privacy
score for each day but desires the cumulative privacy score
at day 10. A naïve addition of privacy scores for all 10
days (from day 1 to 10) is not an accurate representation
of the cumulative privacy score. For instance, a user can
make identical queries in the same order every day for 10
days, thus resulting in an identical n-gram profile for each
day. Therefore, one must take into account the combination
of n-gram profiles for 10 days in such a way that only
unique behaviors (unique n-grams) for all 10 days are
part of the combined n-gram profile of all 10 days. To
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FIGURE 6 | Variations of privacy score computations: This figure shows a variety of ways in which individual privacy scores and cumulative privacy scores can be

computed. For example, 1[< β0 >,< β1,β2 >] represents the cumulative privacy for day 1 and day 2. P〈β0 ,β3〉 represents the individual privacy score for day 3.

FIGURE 7 | This graph shows the results for the scenario of a banking setting, with the SQL query abstraction in Figure 2 being used. The red bar in the figure shows

the actual privacy score, while the green bar in the figure indicates the maximum possible privacy score (worst-case privacy score—MβX ) for each day. The blue line

shows the cumulative privacy score.

unravel this, we define the cumulative privacy score, denoted
as 1.

Definition 3.8. Cumulative Privacy Score Let the cumulative
privacy score from day 1 to day X be denoted as 1[< β0 >

,< β1,β2, . . . ,βX >], where < β1,β2, . . . ,βX > = (β1 ∪

β2 ∪ β3 ∪ β4, . . . ,∪βX)=β(1,2,...,X). The cumulative privacy score
is computed as follows: 1[< β0 >,< β1,β2, ....,βX >] =
∑k

i=1

∑m
j=1Min(Dist(Gmiss

i , Gj)) where Gmiss
i ∈ S

β0 ,β(1,2,...,X)
miss =

β(1,2,...,X) − β0.

The union defined over the profiles considers the profiles as
sets, with n-grams being the elements of the sets. The algorithm
for privacy score computation where the baseline profile is
available is shown in Algorithm 1. Figure 6 shows some scenarios
of the privacy score computation with respect to a baseline
profile (reference point). In the case of the cold start scenario,

the cumulative privacy score for day 1 to day 3 is denoted as
1[< {} >,< β1,β2,β3 >]. The cumulative privacy score in the
cold start scenario from day 1 to day X is computed as follows:
|β1 ∪ β2∪, . . . ,βX| × size of n-gram.

3.3.1. Max (Worst-Case) Privacy Score
One (as the data curator) could be interested in knowing
what the maximum or worst-case privacy score possible would
be. The availability of a worst-case privacy score enables the
data curator to make well-informed decisions by comparing
the worst-case privacy score with the actual privacy score.
For instance, an insignificant difference between the worst-
case privacy score and the actual privacy score is indicative of
potentially malicious querying behavior. The Max (worst-case)
privacy score is denoted by MβX . In the proposed model, the
maximum privacy score (worst-case privacy score) is the total
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FIGURE 8 | This graph shows the results of the cold start scenario using the SQL query abstraction depicted in Figure 2. The red bar shows the actual privacy score,

and the blue line shows the cumulative privacy score over the time horizon.

number of unique n-grams × n, where n is the size of the n-gram
in the run-time profile, i.e.,MβX = |βR| × n.

3.3.2. Acceptable Threshold for Privacy-Loss Score
A challenge in the privacy-score model, and in general, is how
to determine what is an acceptable privacy-loss score2. There are
two ways of finding a threshold. The first way to compare it is
with reference to the worst-case privacy-loss score. The second
way is to compare it with past privacy-loss scores. In future,
we are interested in examining how to determine an acceptable
threshold for a privacy-loss score, especially in the scenario of
cold start.

4. COMPUTING PRIVACY SCORE

We evaluated the proposed approach in two scenarios. One
scenario was of an application where generic users (or roles of
users) have a standard behavior. As a result, a baseline profile
can be constructed. The other contrasting scenario is a cold
start. For the first scenario, we considered a synthetic banking
application for managing accounts, that is, a transaction-oriented
system. Reasonably, a user with a role in the bank has similar
behavior to other users with the same role. For the cold start
scenario, we considered health-care predictive analytics settings
where users look up information in the hospital database to
gain insights. In the cold start scenario, when a new user is
appointed, a baseline profile is unavailable for their behavior.
The reason for using synthetic applications is because it is hard
to gain access to real-world data-sets. Organizations are hesitant
to and are sometimes legally constrained from sharing sensitive

2The privacy score is manifestation of loss of privacy, therefore, the terms privacy

score and privacy-loss score are used interchangeably.

data (Sallam and Bertino, 2017), especially in the era of GDPR.
Benchmark data-sets (query logs) consisting of a variety of
SQL queries made to a DBMS for diverse scenarios are highly
desirable to facilitate research in this domain. Admittedly, the
unavailability of real-world data-sets is a significant constraint in
the evaluation of the approaches proposed in this line of research
and is vexing to researchers working in it.

The audit logs of the banking application consisted of
transactions that include account open, account close, withdraw,
deposit, and transfer. Each transaction is initiated by an employee
of the bank with a role and involves the execution of a number of
SQL statements. Audit logs for 6 days, i.e., the audit logs of day
0, day 1, day 2, . . . , day 5, were collected. The audit log of day 0
was used to generate a baseline profile. The application system
was run with 2500 random transactions for each day, in total
generating around 7200 SQL statements for each audit log. In the
health-care predictive analytics setting, audit logs for day 1, day
2, . . . , day 5 were collected, as day 0 was undesired in the cold
start scenario. Each audit log consisted of computer-generated
queries such that more attributes (combination of attributes)
were queried as compared to the attributes (combination of
attributes) queried the previous day. The audit log of day 1, day
2, day 3, day 4, and day 5 consisted of around 700, 1200, 2200,
3000, and 5500 queries. We denote the profiles constructed from
the audit log of each day as βday. The profiles constructed on
day 0, day 1, day 2, day 3, day 4, and day 5 were denoted as
β0,β1,β2,β3,β4, and β5 for both scenarios. PriDe was deployed
in both the scenarios, and both the individual privacy score and
the cumulative score are shown for both scenarios in Figure 7

(with baseline profile) and Figure 8 (cold start scenario).
Figure 7 shows the scenario of the banking setting, where

the SQL query abstraction in Figure 2 is used. The individual
privacy scores in a banking setting for day 1, day 2, day 3, day
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4, and day 5 are 35.0, 37.65, 35.15, 35.15, and 7.65, respectively.
The red bar in Figure 7 shows the actual privacy score, while
the green bar in Figure 7 indicates the max (worst-case) privacy
score MβX . These privacy scores for each day indicate that
there are newly discovered querying behaviors resulting in
a reduction of privacy with respect to the attribute values
previously retrieved by the user. However, the privacy score for
each day when compared to the potential worst-case privacy
score is insignificant, particularly for day 5. On the other
hand, from the cumulative privacy score, one can obtain more
meaningful insights. The cumulative score for day 1 indicates the
discovery of new querying behavior resulting in a reduction of
privacy; nevertheless, a further reduction in privacy is indicated
by a minor increase in cumulative privacy score for day 2. The
small increase in cumulative privacy score on day 3 implies that
there are further new behaviors discovered apart from the ones
discovered on days 1 and 2, thus indicating a further reduction in
privacy. Identical cumulative privacy scores for days 3, 4, and 5
indicate that, at this point, the unknown querying behaviors have
already been discovered; however, these querying behaviors are
repeated on days 3, 4, and 5, as indicated by the individual privacy
scores. This kind of trend was expected because of the nature
of the banking application, where a set of identical transactions
are repeated daily, resulting in less diverse SQL queries and
thus an insignificant individual privacy score each day and a
stable cumulative privacy score over several days, provided that
the baseline profile is well captured. However, an unexpected
increase in cumulative privacy score, as well as in individual
privacy score, is an indication of peculiarities. Figure 8 shows
the individual and cumulative privacy scores in a health-care
predictive analytics setting. The individual privacy scores for day
1, day 2, day 3, day 4, and day 5 are 20, 60, 170, 215, and 395,
respectively. In contrast with the banking setting, the baseline
profile is not present; additionally, the audit logs do not consist
of repeated transactions. In contrast to the cumulative privacy
score in the banking setting, the cumulative privacy score here
is significantly increased each day. The cumulative privacy scores
on day 1 and day 2 are the same as the individual privacy scores,
indicating that querying behavior on day 1 was repeated on day
2 along with new querying behaviors resulting in the reduction
of privacy. There is an increasing trend in cumulative privacy
score for day 3, day 4, and day 5; these cumulative privacy scores
are higher than the corresponding day’s individual privacy score,
indicating a reduction of privacy with respect to the attribute
values retrieved on day 1 and day 2 by the analyst from the
database. The increasing trend in cumulative privacy score is an
indication that the user is making diverse queries, and this is
being validated by the cumulative privacy score.

4.1. Use-Case: Global Consistency
The privacy-loss score is more suited in the cold start scenario.
However, there are scenarios where the distance between the
two behaviors is relevant for calculating the privacy loss, for
instance, for global consistency. The proposed approach for
computing a quantitative score for privacy can serve as a good
tool to provide a global consistency measure. In case where
several data analytics firms are simultaneously granted access to

Algorithm 1: The privacy score algorithm, Pscore, takes
two privacy profiles as an input and returns a privacy
score. The algorithm Dist computes the similarity
between the two n-grams.

Algorithm: Privacy Score

input : Two privacy profiles: a baseline privacy profile
and a run-time privacy profile

output: A privacy score (Distance)

1 Procedure PScore( ProfileA, ProfileB) :
2 pscore← 0
3 temp[m]← 0

4 Smiss = ProfileB - ProfileA for every ngram ′i′ in Smiss do
5 k← 0 for every ngram ′j′ in ProfileA do
6 temp[k]← Dist(i, j)
7 k← k+ 1

8 end
9 pscore← pscore+min(temp[j])

10 end
11 return Pscore

input : Two ngrams
output: Distance between two n-grams

12 Procedure Dist( ngram1, ngram2) :
13 D← 0
14 for l← 0 to length-of-ngram do
15 F← 0
16 E← 0
17 F = JaccardD(ngram1[l], ngram2[l]) ⊲ ngram1[l]

and ngram2[l] is the lth element of the n-grams E =
E + F

18 end
19 return E

input : Two SQL Query Abstractions
output: Distance between two SQL query abstractions

20 Procedure JaccardD( Abs1, Abs2) :
21 D← 0
22 if Priveq(A(Q1), A(Q2)) == true ⊲ A(Q1), A(Q2) are

the SQL query abstractions then
23 D← 0
24 else
25 D = (|A(Q1) ∪ A(Q2)| − |A(Q1) ∩

A(Q2)|)/|A(Q1) ∪ A(Q2)|
26 end
27 return D

input : Two SQL Query Abstractions
output: Distance between two SQL query abstractions

28 Procedure Priveq( ngram1, ngram2) :
29 if (Ab2.issubset(Ab1)) == true ⊲ issubset returns a

Boolean stating whether the set is contained in the
specified set.

30 then
31 if (DR.Ab2 == DR.Ab1) ⊲ DR. give us a

precomputed discrimination rate value.
32 then
33 return True
34 end

35 else
36 return False
37 end
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the organization’s database, the organization (data curator) can
perform a consistency check using a privacy score to monitor and
subsequently can take measures before a breach materializes.

An enterprise, Ozon (the data curator), collected a huge
amount of data over some period of time. The data consists of
the purchases made via its online shopping portal. Motivated
by the financial gain, Ozon decided to grant access to its
application data to many companies, namely Acme Analytics,
Wayne Analytics, and Start Analytics. Following the defense-in-
depth strategy, Ozon already had a number of security controls
in place. Due to growing concerns over data privacy, this time,
Ozon’s management reached a decision to increase a layer by
adding a technology, PriDe, that monitors information gain in
a privacy sense. Granting access to third parties has been a
regular practice by Ozon, and no privacy incidents have taken
place in the past. However, Ozon has a policy of keeping the
audit logs of all interactive sessions when access to its data
is granted. Using these past logs with PriDe, Ozon integrated
PriDe into its privacy and security dashboards. When the third
parties performed their analytics, Ozon kept an eye on the privacy
scores of these third parties so as to have a consistency check to
monitor for peculiarities; for instance, if Acme Analytics’s privacy
score is much higher than that of the rest of the firms, then
this alerts Ozon to take urgent measures before any unforeseen
breach materializes.

4.2. Modeling Querying Behavior Using
Machine Learning
The proposed privacy-loss score approach uses n-grams to
capture short-term correlations between the queries made by
the user to the DBMS. In essence, the n-grams are being used
to model the querying behavior of the user. However, this
is only one of the ways in which querying behavior can be
modeled. Another way to model a user’s querying behavior is
to use machine learning. Machine learning has been applied
in behavioral analysis for the detection of misbehavior in
VANET (Grover et al., 2011), modeling driver’s behavior using
smartphone sensor data (Ferreira et al., 2017), and modeling
behavior models for Android Malware Analysis (Chuang and
Wang, 2015). A number of machine learning-based approaches
exist for modeling behaviors within specific applications;
however, little attention has been paid to machine learning-based
approaches in the context of modeling query behavior in terms
of privacy, thus enabling one to compute a privacy-loss score.
As future work, we are interested in exploring the interpretation
of machine learning for behavioral analysis to model querying
behaviors in terms of privacy.

4.3. Application in Detection of SQL
Injections
Detection of malicious queries, including SQL injections, is a
significant area of research (McWhirter et al., 2018). The privacy-
loss score model is built upon another model that captures the
querying behavior of a user and constructs user profiles. Given
a normative profile of a user constructed using safe queries
(where, by safe, we mean queries free from any malicious queries
including SQL injections), we compare this with a run-time
profile that may have malicious queries including SQL injections

and label potentially malicious queries and SQL injections as
mismatches (anomalies). For the sake of clarity, we refer to
this application of a part of the privacy-loss score model as the
Malicious Query Detection (MalDetect) approach. The proposed
approach in McWhirter et al. (2018) uses a machine learning-
based solution of classifying SQL queries using features of
the initial query string and predicts a class for an incoming
query, that is, whether the incoming query is malicious or is a
normal query. Both the approach in McWhirter et al. (2018) and
MalDetect, though different in construction, have the potential to
achieve a high detection rate.

5. CONCLUSIONS

In this work, we introduced PriDe, which computes a
privacy score within the framework of a Relational Database
Management System (RDBMS). A strategy for a refined
comparison (measuring privacy distance) in terms of privacy
equivalence has also been proposed in this paper. The privacy
score is computed using audit logs containing SQL queries. This
makes the proposed approach stand out as, first, it quantifies
the privacy risk and, second, it only requires SQL statements
to compute the privacy score. Experiments were carried out to
evaluate the approach in two scenarios where, in one scenario, a
data-set was available for constructing the baseline profile while,
in the second scenario, there was a cold start. The results suggest
that PriDe can provide a quantitative score in terms of privacy
that enables organizations to monitor and gain insights about
the data that is being shared with a third party from a privacy
perspective. The privacy score can augment a privacy dashboard
that indicates the health of the system in terms of privacy, that
is to say, it enables a data curator to check whether something is
wrong with the way the database is being accessed. The proposed
approach, without loss of generality, is applicable to BigSQL-style
technologies. In future work, we would like to examine existing
machine learning techniques for behavioral analysis so that they
can be applied to model querying behaviors in terms of privacy.
In addition to that, we would have liked to explore the translation
of the privacy score model, beyond relational models, onto other
data models.
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