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Abstract—Edge computing allows constrained end devices in
wireless networks to offload heavy computing tasks or data
storage when local resources are insufficient. Edge nodes can
provide resources such as the bandwidth, storage and in-
network compute power. For example, edge nodes can provide
data caches to which constrained end devices can off-load their
data and from where user can access data more effectively.
However, fair allocation of these resources to competing end
devices and data classes while providing good Quality of Service
is a challenging task, due to frequently changing network
topology and/or traffic conditions. In this paper, we present
Federated learning-based dynamic Cache allocation (FedCache)
for edge caches in dynamic, constrained networks. FedCache
uses federated learning to learn the benefit of a particular
cache allocation with low communication overhead. Edge nodes
learn locally to adapt to different network conditions and
collaboratively share this knowledge so as to avoid having to
transmit all data to a single location. Through this federated
learning approach, nodes can find resource allocations that
result in maximum fairness or efficiency in terms of the cache
hit ratio for a given network state. Simulation results show that
cache resource allocation using FedCache results in optimal
fairness or efficiency of utility for different classes of data
when compared to proportional allocation, while incurring low
communication overhead.

Index Terms—edge computing, resource allocation, fairness,
federated learning

I. INTRODUCTION

We have been experiencing a rapid growth in the number
of heterogeneous low power mobile and wireless end devices.
These devices differ in how they generate data, their battery
capacities and communication and processing capabilities.
This makes it difficult to achieve good network performance
and application Quality of Service (QoS) as network man-
agement functions have to find a suitable solution that meets
everyone’s need. Software Defined Networking, network slic-
ing, edge computing are some of the approaches that have
been studied and successfully applied to networks to deal
with this heterogeneity and manage performance and QoS.

Edge computing, as one such paradigm, has been ap-
plied with encouraging results in the context of resource-
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constrained Internet of Things (IoT) environments. In the
edge computing model, data generated by an end device
(the producer, e.g., a sensor) is sent to a nearby edge node.
The edge node stores the data in a cache and serves it in
response to incoming requests from a consumer with or
without aggregation. Optimal edge cache management can
yield desired or improved application QoS and reduced traffic
in the core network [1].

A single edge node is typically connected to several end
devices that generate different classes/flows of data with
different QoS requirements. Furthermore, an edge node has
(limited) resources such as up link bandwidth and cache
space that are shared by these data classes/flows. Changing
edge network topology and traffic patterns make effective
allocation of edge resources to competing classes/flows of
data a challenge. In such cases static resource allocation
typically does not achieve a (minimum) guaranteed QoS,
requiring a suitable dynamic resource allocation scheme.

Resource allocation to competing classes/flows of data
with the goal of maximizing the fairness or efficiency of
allocation is a well-researched topic. However, here we aim
at achieving fairness or efficiency in terms of the utility1

of the resource rather than the typical allocation fairness or
efficiency. As the benefit of an allocation is more closely
related to the QoS than the allocation itself, our interest is in
utility fairness rather than allocation fairness.

The utility of an allocated resource varies with several
factors other than the allocated resource share, e.g. the traffic
characteristics, topology and channel condition. The relation-
ship between the allocated resource share and its utility is
often difficult to model. In such situations, Machine Learning
(ML) has shown considerable promise in that the behaviour
of the system is “learned” rather than modelled. If the
network conditions are considered as a set of input features
to an ML algorithm, the optimal resource allocation for that
network condition can be learned from the behaviour of the
network in the past as proposed in [3], [4]. Among others,
deep and reinforcement techniques have been proposed and

1In this paper, we use the term utility to denote the benefit to a class
of data from a resource allocation, rather than the overall efficiency of the
allocation [2]



evaluated to do this.
For any ML task, the accuracy of the model learned

depends on several factors, the most important of which is
the amount of data available for training and its statistical
distribution. When the data for training is available at dif-
ferent network locations, the model can be built either using
local data (data from one network location) or global data
(data from several network locations). In case local data is
used to learn a model, the model may not be as accurate or
comprehensive compared to centralised learning, where all
data sets are sent to a central server to build a global model.
However, centralised learning can be very communication
intensive.

Federated Learning(FL) [5] is a relatively new ML
paradigm in which the nodes possessing different sub sets of
training data collaborate and build a model based on all the
data available across the federation. The data does not need to
be transmitted to a central location, but rather the local model
information is shared, resulting in better accuracy with less
communication overhead. When the participating nodes have
limited bandwidth (e.g., edge nodes in IoT scenarios), this is
very beneficial.

In this paper, we propose Federated learning-based dy-
namic Cache allocation (FedCache) for optimally fair or op-
timally efficient utilization of cache space to different classes
of data in edge nodes for resource-constrained environments.
The main contributions of this paper are
• an expression for the utility of the allocated cache space

taking into consideration not only the allocated portion,
but also the network state as seen by a class of data.

• the proposal and evaluation of Federated Learning-based
cache allocation (FedCache) for dynamically allocating
the available cache to ensure optimal fairness or effi-
ciency in terms of the cache hit ratio.

Simulation results for sample IoT (Internet of Things)
scenarios confirm that a model with better accuracy can
be obtained with low communication overhead using FL.
Results show FedCache can use the federated model to decide
optimally fair or optimally efficient allocation of edge cache
space for a dynamic wireless network.

II. CACHE SPACE MANAGEMENT AT THE EDGE

Consider an edge node that caches m classes of data,
where data transmitted by end devices enter into the cache at
an average rate γi for class i. The important factor effecting
the cache hit ratio for a given request pattern is the average
time a data item spends in the cache, which in turn depends
on the rate at which new data enters the cache.

With a single (unified) cache for all classes of data, the
average time a data item of any class spends in the cache is

1∑m
i=1 γi

.

The data inflow rate of a class affects the average time spent
in the cache by a data item of all classes.

This is shown in Figure 1 for a sample IoT case where
a server requests data at an average request rate of δi for
class i. Two classes of data share the cache and γ1 = 2γ2
with data entering the cache at a constant bit rate (CBR).
For this sample case, γ1 > δ1 and γ2 < δ2. Data items are
requested in the order of their generation as is typical for IoT.
The hit ratio depicted is based on a First In First Out (FIFO)
replacement policy. During the cold cache phase, requests
can be satisfied as incoming data items can be stored in the
empty cache. Once the cache fills-up with data, it is evident
that the data of class 1 gets overwritten before it is requested
and would result in a low hit ratio. However, since data of
Class 2 gets replaced as well, its cache hit ratio will fall too,
although γ2 < δ2.

Fig. 1. Cache Hit Ratio over Time (CBR data, Unified Cache)

On the other hand, when the cache is structured such that
data belonging to different classes occupy different sections
of the cache memory, this does not happen as items in a
particular cache section are not affected by data flowing into
other cache sections. This can be seen in Figure 2, where
Class 2 has a hit ratio unaffected by the data inflow of
Class 1 (FIFO replacement, with each item requested once
in the order of generation). Each class is allotted 50% of
the available space in this example with the same data and
request rates as above.

Fig. 2. Cache Hit Ratio over Time (CBR data, Split Cache)

Figure 3 shows the effect of cache space allocated in a split
cache with bursty inflow (data pattern of a smoke sensor from
Table II), with requests at a rate equal to the average rate of



Fig. 3. Cache Hit Ratio with Allocated Space (Bursty data)

inflow. The cache size is 500 data items. Varying request
patterns and/or burstiness may result in an average hit ratio
that is not zero or one as in Figures1 and 2. Nevertheless,
the hit ratio increases with allocated space.

In addition to isolating the hit ratio of a class from the data
inflow of other classes, splitting the cache also allows the use
of different replacement policies for different sections [6].
Typical edge computing scenarios have devices that generate
bursty data and a split cache helps in isolating the effect of
bursts on the hit ratio to that class alone. When the data inflow
of different classes/flows has different burstiness patterns,
the challenge is to partition the cache in a way to result in
optimally efficient hit ratio for the entire cache or optimally
fair hit ratio across different classes .

TABLE I
NOTATION

Symbol Meaning
N Number of nodes participating in FL
M Number of classes of data at any node
X m-dimensional vector of allocation

to each class at a node
Si network state of the ith class at a node
A set of possible allocation vectors
u(xi, Si) utility of an allocation xi when

the node is in network state Si

F (X) fairness of an allocation X
η(X) efficiency of an allocation X
wj+1
G global model after the jth round

wj+1
i local model of the ith node after

the jth round
αi rate of inflow of the ith class at a node
βi avg. number of interests for the same data item

of the ith class at a node
t number of iterations per round of

federated learning
r number of rounds in

federated learning
T1 Time for which data is gathered during

the test phase
T2 Time after which cache space is reallocated
T3 Time after which the training data set is changed

III. FAIRNESS

Fairness can be defined qualitatively or quantitatively.
Quantitative fairness measures are based on the allocated

portion of the resource alone. Jain’s index [7] is a simple
and well-known way of measuring quantitative fairness, but
its minimum value depends on the bounds of the value being
judged [8]. Qualitative fairness measures such as max-min,
proportional fairness and Tian Lan’s model [9] judge whether
a given allocation is fair, instead of providing a measure of
fairness. A detailed discussion of fairness in networks can be
found in [2].

In general, the utilitarian philosophy of fairness aims
to maximize the overall benefit of the allocation in the
system. In contrast, we distinguish between the following
as suggested in [10]:
• fairness to individuals, which increases with decreasing

disparity in utility among competing individuals and
• efficiency, which is a measure of the overall utility

across the system.
The goal can be to choose an allocation that optimizes

fairness or efficiency of utility.
[8] introduces the concept of fairness in terms of the user

Quality of Experience (QoE). The authors quantify fairness
in a way that normalizes both the QoE and the standard
deviation of the QoE experienced by different users as [8]

F (X) = 1− 2σ

H − L
(1)

where H and L are the upper and lower bounds of QoE and
σ is the standard deviation of the QoE values. As discussed
in Section I, our goal is to optimize the utility fairness rather
the fairness of the allocation itself. This is because the utility
has a more direct impact to the QoS than the portion allocated
as discussed in Section I. Hence, we base our fairness model
on the definition in Equation[1].

Considering cache space allocation among M individuals
(in our case, classes of data), let X = (x1, x2, .., xm) be the
vector of allocations, where xi is the percentage allocation
to the ith individual (class). The fairness of this allocation is
measured by a function F (X) : R+

n −→ R+ [10], which
defines the utility of an allocation xi to an individual as
0 ≤ ui(xi) ≤ 1 where ui is the utility function of the
ith individual. The notation used in this section is given in
Table I.

In a network where some resource has to be allocated, the
utility may not only depend on the quantity of the allocated
resource, but on several other factors, e.g. the network state
S). For example, the goodput of a flow depends not only
on the bandwidth (the resource) allocated to a flow but
also on other factors like the channel conditions at different
receivers of the flow. Similarly, when allocating cache space
(the resource), the cache hit ratio (the utility) depends on
factors such as the rate at which new data enters the cache
and the similarity of requests.

To factor this into fair allocation, we express the utility u of
an allocation xi to an individual as 0 ≤ u(xi,Si) ≤ 1, where
Si is the current condition (state) as seen by the competing
individual (class of data). Si is a vector that includes all the
factors (other than allocation) influencing the utility.



To quantify fairness, we leverage on the formula for fair-
ness introduced in [8]. When the cache hit ratio is measured,
its upper and lower bounds H and L are 1 and 0 respectively.
Let σX be the standard deviation of the cache hit ratios of
different classes resulting from an allocation X.

With Equation[1] we get

F (X) = 1− 2σX (2)

Further, the efficiency η of an allocation is given by
the average of all the cache hit ratios resulting from the
allocation. Thus, the efficiency is given by [10]-

η(X) =
1

m

m∑
i=1

u(xi,Si) (3)

With finite possible allocation vectors X, the allocation
that can result in the best possible fairness or efficiency
can be chosen. However, to do this, one needs to know the
utility function. Since the utility (hit ratio) depends on both
x and S, we propose to use machine learning to learn the
hit ratio of an allocation for different states. The data for
training is gathered by different edge nodes online. Since we
consider allocation at edge nodes in constrained networks,
we use federated learning to build a global model with low
communication overhead.

IV. FEDERATED LEARNING

Machine learning has been successfully applied for regres-
sion to learn the relation between the output (the target) and
a set of inputs (the features). In supervised machine learning,
this is done by training the ML algorithm to create a model
based on a sample set of input-output pairs called the training
data. The model thus created is tested on yet another set of
input - output pairs called the test set. Once the model is
refined enough to obtain the desired accuracy with the test
set, it can be used to predict the output for any given input
data with reasonable accuracy.

In some applications of machine learning, the data used
to train the machine learning algorithm (the training set)
and the creation of a model are located in the same place,
e.g. computing node. For example, training machine learning
models for recognizing characters or image classification
have been done successfully with a centralized training set.
However, in some scenarios, all the training data is not lo-
cated at one computing node but is available as subsets spread
across several networked computing nodes (e.g., training data
gathered by crowd-sourcing). In this case, there are two
options,
• train the model with the local data available; or
• communicate all data to a central node which trains the

model.
Training individual local models may result in sub-optimal

solutions. On the other hand, communicating all data to a
central node to create a single global model may result in
a more accurate model but may be at high communication
cost - especially for training deep learning models with a lot

of data. Such communication overhead may be prohibitive,
particularly in wireless networks with limited bandwidth and
low-energy devices.

Federated learning is a relatively new machine learning
paradigm suited to such problems. Using federated learning,
an optimal, global model can be trained without commu-
nicating the training data itself. This is done by building
local models and sending them to the FL server which aggre-
gates them.Since the communication overhead of transmitting
model data is much lower than transmitting all the training
data, federated learning can work well in networks with
unreliable or slow network connections [5]. In addition, as the
training data does not need to be communicated, privacy is
enhanced. As such, federated learning is an attractive option
for learning in wireless and ad hoc networks [11].

A typical federated learning setting consists of two types of
actors - the participant nodes, each of which has a subset of
the training data and the FL server, which performs the model
aggregation. Each participating node i with i = 1, ..., N has
a subset Di of the training data, runs the training algorithm
locally and transfers the resulting model wi to the FL server.
The server then aggregates all the models to create an
enhanced (optimal), global model wG, which is sent back
to each participating node i for its own use.

However, aggregating the local models just once may not
result in a solution that is accurate enough. Most modern
algorithms used for optimization are iterative in nature and
need a large number of iterations to converge to a solution.
Consequently, a global model from distributed data can be
built by running some iterations at each participating node
and sharing the model with the FL server, which performs
model aggregation and sends the aggregated model back
to the nodes. The process is repeated until the algorithm
converges to a solution.

A. Steps in Federated Learning

Algorithm 1 Federated Learning(Di)
Input: Local Training Data set Di

Output: Global model wG

1: j = 0
2: while j <= r do
3: Receive wj

G from the FL server
4: Using wj

G and Di, build local model as wj+1
i

5: Send wj+1
i to the FL server

6: Increment j
7: end while

Assuming that the each participating node i (i ∈ [1, N ])
has a subset Di of the training data, the FL server first
initializes the task of federated learning. To this effect, it
selects the initial model parameters w0

G and hyper parameters
such as the learning rate and sends them to the participating
nodes. To balance the trade-off between model accuracy and
communication overhead, the local models are communicated



by the participating nodes after locally refining the model for
t iterations (one round). A large value of t results in lower
communication overhead but may result in an inaccurate
model, while a smaller value of t increases communication
overhead but may yield a better model.

The following steps are repeated iteratively in each jth

round.
1) Each participating node i uses wj

G to run a learning
algorithm and refines wj

G in t iterations to build a local
model wj+1

i . The goal of the participating nodes is
to minimize the loss function based on the local data
subset.

2) The FL server aggregates the received local models
wj+1

i (i ∈ [1..N ]) to create the global model wj+1
G ,

which it sends back to the participating nodes. This
finishes one round.

3) Steps 1 and 2 are repeated for r rounds or until a
sufficiently accurate model is built.

Fig. 4. Federated Learning with three participating nodes

Algorithm 1 describes the operation of the participating
nodes in learning local models. Figure 4 illustrates federated
learning for three participating nodes (N = 3).

A simple and classic way to aggregate models at the FL
server is using the FedAvg algorithm [12], which is based on
Stochastic Gradient Descent (SGD). Several improvements
have been proposed for the basic FL algorithm and the
FedAvg algorithm [13]. While a detailed discussion of all
these is beyond the scope of this paper, we discuss below one
such important variation that is beneficial to ad hoc networks.

In the simple version of FL, the FL server knows the
number of participating nodes beforehand and waits for local
updates from each of them in each round. However, not all of
the participating nodes may respond in each round. This can
be due to poor network connection between the FL server
and the nodes, node mobility or low battery power. In such
cases, the server may have to wait for a very long time (in
the extreme case, forever) for a round to finish. To avoid this,
several variations of FL have been proposed. Some of these
are to wait for the first N ′ local model update messages
(N ′ ≤ N ) instead of all N or to wait for a fixed time to
receive local model updates. This ensures that the system
converges to a global model even in the case of a varying
number of participating nodes.

V. RELATED WORK

An overview of fairness in wireless networks is given
in [2]. The authors discuss popular qualitative and quanti-

tative measures of fairness and put-forth several issues and
challenges in achieving fairness in wireless networks. They
identify that the relationship between a network resource and
its utility is an important open issue that needs to be studied.

In [14], the authors compare the communist (maximizes
fairness), utilitarian (maximizes benefit to the whole group)
and capitalist (unregulated allocation) cache policies for
shared system caches. They identify that near-optimal perfor-
mance cannot be obtained by static uniform partitioning of
the cache, no matter which policy is used for evaluation. Our
simulations corroborate this fact for allocation in the case of
caching at network nodes. Hence, the proposed allocation
mechanism in this paper performs dynamic non-uniform
partitioning of the cache space and can be used either to
maximize fairness or the efficiency (communist or utilitarian
respectively, as per [14]).

There has been a lot of interest in applying machine
learning to improve efficiency in communication networks.
Specifically, machine learning has been explored for auto-
matic resource management by the authors of [15]. Authors
of [16] establish that the device-to-device sharing model is
an NP-hard optimization problem. Subsequently, the edge
caching replacement problem is derived as a Markov Deci-
sion Process(MDP) and Double Deep Q-Network algorithm
is used for the edge caching strategy. In [17], computing
resources on the network edge are allocated using the ε-
greedy Q-learning algorithm. In [4], a resource allocation
method for content-centric IoT networks is proposed. The
authors use Deep Q-learning and present results that show
increased Quality of Experience (QoE) when caching is done
at all the nodes as in Content Centric Networking. In [3],
the authors propose and evaluate cooperative Q-learning for
fair power allocation in Hetnets. [18] presents a new caching
policy using deep reinforcement learning for networks where
the content popularity distribution is not known.

All these papers consider deep and/or reinforcement learn-
ing for resource allocation. This requires all the data to be
at a single location where the model is trained. This may
not be feasible in environments where different data subsets
are gathered by nodes at different network locations and
with bandwidth constraints. Our approach proposes federated
learning to deal with such scenarios. In addition, our main
goal is to optimize the fairness or efficiency of the utility of
cache space among competing classes, something which the
above-cited work does not consider.

[11] presents a comprehensive survey of various federated
learning techniques and their applicability to learning in
mobile edge computing. The authors identify areas in which
FL can be used for networks - cyber attack detection, edge
caching and computation offloading, base station association
and vehicular networks. They also identify challenges faced
by FL from the network perspective i.e., open issues in
making FL better in the face of unreliable communication,
such as dropped participants, communication security and so
on. Our work is different from those works as our focus is



on the usage of FL to improve communication performance
and not on better communication for FL.

A study of caching and computation offloading trade-off
using federated learning in mobile edge computing (MEC)
systems has been studied in [19]. The authors use deep rein-
forcement learning with federated learning to make optimal
caching and computation offload decisions in a MEC system.
Similar to this, [20] studies federated learning for making
computation off-loading decisions. In [21], the authors apply
FL for proactive content caching in the network, where
content popularity over different geographical regions can
be leveraged to cache data proactively. Although the goal
of these papers is to improve the network performance and
QoS using FL, their focus is not on cache allocation or
fairness/efficiency optimization.

VI. FEDCACHE - FEDERATED LEARNING-BASED
OPTIMAL CACHE ALLOCATION

Let the total available cache space at an edge node be
R units and the number of classes of data (“individuals” as
mentioned in Section III) among which the cache space is
shared be M. If each class i of data gets xi units of the cache
space, the following constraint must hold:

M∑
i=1

xi ≤ R (4)

Since the goal is to optimize the utility fairness, we need to

maxF

s.t.
∑M

i=1 xi ≤ R
(5)

where F is given by Equation (2). Alternately, the goal can
be to maximize the efficiency of allocation i.e.,

max η

s.t.
∑M

i=1 xi ≤ R
(6)

where η is given by Equation (3).

Algorithm 2 FedCache(wG)
1: Initialize timer2 and timer3
2: while 1 do
3: if timer2 = T2 then
4: Sense Sm for each mth class
5: for X in A do
6: for m = 1 to M do
7: Use wG to predict um(xm,Sm)
8: end for
9: end for

10: Find X∗ = {X | F (X) = max
{∀X∈A}

F (X)}
11: for m = 1 to M do
12: Apply X∗ and note the resulting actual cache hit

ratio u′m
13: Augment (xm,Sm, u

′
m) to the new local data set

D′i
14: end for
15: Reset timer2
16: if timer3 = T3 then
17: Federated Learning(D′i)
18: Reset timer3
19: end if
20: end if
21: end while

Our proposed cache allocation mechanism FedCache is
specified in Algorithm 2. The notation used here is given
in Table I. In a typical edge node, data from end devices is
gathered and held in the cache from where it can be requested
by application users or a server. As the amount of cache
space allocated increases, the cache hit ratio improves as
can be seen from Figure 3. For a given cache space, if the
rate at which fresh data flows into the cache increases, items
already present in the cache are replaced faster and cannot
be retrieved from the cache anymore, resulting in lower hit
ratio. In typical IoT scenarios, data is requested in the order
of its generation. If the same data item is requested multiple
times, it may result in multiple hits or misses depending on
whether it is present in the cache or not.

Thus, the factors effecting the utility u of the ith class in
such a cache are
• the cache space allocated to class i, xi,
• the average rate with which data of that class flows into

the cache αi and
• the average number of times the same data item is

requested βi
Hence, the state vector Si of the ith class at a given instant

is (αi, βi). The FedCache algorithm is executed iteratively
repeating the phases described below.

A. Learning the Utility Function using Federated Learning

During the set-up phase, nodes using FedCache gather
the following data while varying the space allocation xi to
different classes of data:
• the state Si of class i at that time and



• the resulting cache hit ratio (utility) for class i, u(xi,Si)

After gathering this data (Di is used to denote the data
set gathered by the ith node) for T1 seconds, the nodes
participate in a federated learning phase to learn a model
that can predict the utility u of a particular allocation xi in
a state Si. This global model is used to predict the cache
hit ratio resulting from an allocation for the given network
conditions. By iterating over all possible allocations for a
class in its current state, the node can choose an allocation
that is optimal in terms of fairness and/or overall efficiency.

B. Dynamic Allocation of Cache space

Once the model is trained, after every time interval T2,
each node measures the inflow rate of data αi and similarity
of requests βi. It then calculates the utility of different pos-
sible space allocations and adjusts the cache space allocated
to the different classes of data to achieve maximum fairness
or efficiency.

C. Refining the Model

The actual fairness or efficiency of the cache allocation
strategy depends on the FL model built. In networks with
fixed number of nodes or traffic patterns, the model can
be built once during the setup phase. For networks with
widely varying traffic conditions and network topologies, the
model predictions may result in cache hit ratios that are not
optimally fair or efficient. To deal with this, nodes continue
to gather data during the operational phase. The actual cache
hit ratio u′m resulting from allocation according to the current
model is recorded together with the allocation and state as
(xm,Sm, u

′
m). This builds a new data set based on the node’s

experience. After T3 seconds, the nodes run the federated
learning phase again to refine the model, using the new
local data sets D′i i ∈ [1, N ]. The model built during the
setup phase is refined by running federated learning after
every T3 seconds of the operational phase. This life-long
learning helps build a better model, which can result in a
better allocation.

VII. SIMULATION RESULTS

In order to evaluate the proposed resource alloca-
tion scheme FedCache, we performed simulations using
ndnSIM [22], an ns3-based network simulator for Informa-
tion Centric Networks (ICN). ICN is a name-based network
architecture where data is requested, routed and returned by
its name, rather than the host (IP) address. Several ICN
architectures have been proposed including Named Data
Networking (NDN) [23], which is pull-based. In an NDN net-
work, the node interested in a data item (the consumer) sends
an interest packet with the unique name of the data item.
This interest is routed based on the forwarding information
in the Forwarding Information Base (FIB) at intermediate
nodes. Once the interest reaches the node generating/serving
the data item (the producer), the data item is returned along
the reverse path and is stored in a content store (CS) (a cache)
at all the network nodes along the path. Subsequent interests

for this data item may be satisfied by any network node that
has the item in its cache.

Our choice of the NDN architecture for simulation is due
to its innate support for caching of data at any network
node. The proposed algorithm, FedCache, can be applied to
any (name or host-based) network that supports caching at
network nodes.

The network considered for simulation consists of three
edge nodes, each of which is connected to a variable number
of (up to 25) end nodes randomly located in a 100x100m
area. Edge nodes are connected to the devices with 802.11
links and the loss model considered is ThreeLogDistance-
PropagationLossModel. The end nodes themselves are IoT
devices with varying data generation patterns. The data gen-
eration patterns for these devices have been taken from [24],
where the researchers study the traffic from real devices and
characterize them. The data rates of the devices considered
are given in Table II. Data coming from the devices is divided
into three classes, depending on their criticality. For example,
data from smoke and motion sensors is considered to be of
Class 0, data from smart plugs and cameras is considered to
be Class 1 and data from photo frames and weather stations
is treated as of Class 2.

TABLE II
SAMPLE TRAFFIC PARAMETERS OF VARIOUS END DEVICES

Type of Avg. sleep Mean data Peak to Packet
device time(s) rate (bps) mean ratio length(bits)
Smoke sensor 4 462 11 234
Motion sensor 4 11388 11 234
Smart Plug 241 462 11 144
Wireless
Speaker 4 462 66 144
Smart bulb 4 462 11 94
Smart camera 4 2461 11 144
Smart photo
frame 4 462 11 234
Hub for
smart things 4 462 11 94
BP monitor 24832 462 11 144

Data gathered by end nodes is cached at the nearest edge
node from where it is served to the consumers requesting it.
We consider a FIFO replacement policy because for typical
IoT applications, fresh data is more important than older data.
Keeping such applications in view, we consider a simple
request pattern where data is requested in the order of its
generation. However, the choice of the replacement policy is
orthogonal to the working of FedCache. The rate at which
data of class m is sent by end devices to a given edge node
is αm and the average number of consumers requesting the
same data item of class m from the edge node is βm. Even for
a fixed set of end devices, αm varies over time because the
data gathered by end devices is bursty, as observed by [24].

For gathering the initial training data (the setup phase),
each edge node varies the available cache space (200 data
items) for each class of data from 10% to 80%. For each
cache allocation, the number of consumers requesting the



same data item β is varied from 1 to 62. For each cache
allocation vector X and β, the rate at which data arrives
into the cache (α) and the corresponding cache hit ratio u
is noted per class. The tuple (um, xm, αm, βm) consisting
of the readings for the mth class is noted after every 100
simulation seconds and is inserted into the training data set.

Fig. 5. Average loss with communication cost for federated learning

Fig. 6. Average loss without federated learning

Fig. 7. Average loss with federated learning

Once the training data is gathered, the nodes run a feder-
ated learning algorithm with an Adam optimizer [25].

The sigmoid activation function and mean square error loss
are considered for training, with the learning rate starting at

2For IoT data, “popularity” may not be as high as that for the World Wide
Web data.

TABLE III
AVERAGE LOSS WITH NUMBER OF ROUNDS OF FL

Number of rounds Iterations per round Average Loss
10 100 0.107501
20 50 0.078738

100 10 0.072162
1000 1 0.067673

0.1 and decaying with a factor of 0.95 for every 5 steps. Since
we consider just three features, the network consists of a 3x16
input layer, one 16x8 hidden layer and a 8x1 output layer.
This requires 1472 bytes of data to be exchanged between the
FL server and an edge node per round. Table III shows the
variation in average loss as the number of rounds increases,
for a total number of 1000 iterations. It can be seen that
the accuracy increases with frequent model updates (more
number of rounds), but the total communication cost also
increases with the number of rounds as illustrated in Figure 5
(x-axis in logscale with base 10). For our data, we chose 20
rounds with 50 iterations per round, as this gives a reasonable
balance of good accuracy and communication cost.

Figure 6 shows the variation of average loss over time
when the nodes do not use FL but learn from their local data
with the same model hyper parameters as discussed above.
Figure 7 shows the average loss with federated learning. It
can be seen that federated learning results in a model with
less loss and better convergence.

Figures 8 and 9 illustrate the fairness and efficiency for all
the possible allocation vectors (36 for 3 classes and allocation
in steps of 10%) for a state S = (1.5, 4) (data inflow rate of
150 per 100 seconds and similarity of 4 same requests per
second), as per the model. Of these, the allocation that results
in maximum efficiency or fairness can be chosen.

Fig. 8. Fairness for different allocations when S = (1.5, 4)

Figures 10 and 11 depict the optimal fairness and effi-
ciency of allocation for eight different scenarios with differ-
ent network states. FedCache is compared with an allocation
where the cache is split in proportion to the data rate α
(denoted by Split (Proportional)) and a unified cache that
is not split. For all sample network conditions, it can be seen
that FedCache achieves its goal (either efficiency or fairness)



Fig. 9. Efficiency for different allocations when S = (1.5, 4)

better than proportional resource allocation in a split cache
or a unified cache.

Fig. 10. Fairness for different scenarios

Fig. 11. Efficiency for different scenarios

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we present a dynamic cache allocation
scheme FedCache for optimal fairness or efficiency in terms
of utility in edge caches of constrained networks. FedCache
uses a continuous, federated learning mechanism to build a
model that can predict the utility of a cache allocation under
a particular network state. This model is used for choosing
the optimal allocation under the network condition at that
time. Simulation results show that FedCache results in better

fairness or efficiency compared to proportional allocation,
while incurring low communication overhead for training.

While the present work aims to optimize fairness/efficiency
of cache hit ratio treating all classes to be equal, we intend
to study it further with different priorities for each class.
The effect of more complex request patterns on split cache
allocation can be explored. Allocation of a single resource
(the cache) has been studied and evaluated in this work. An
interesting idea would be to extend the proposed scheme for
joint resource allocation.
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