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a b s t r a c t 

This study extends the generalized true random-effects model to account for spatial dependence in per- 

sistent and transient inefficiency. For this purpose, a model with spatially autocorrelated persistent and 

transient inefficiency components is specified. Additionally, spatial dependence is also modeled in the 

noise component to account for uncontrolled spatial correlations. The proposed model is applied to a 

panel dataset of Wisconsin dairy farms observed between 2009 and 2017 and estimated using Bayesian 

techniques. Apart from the traditional output-input quantities, the utilized dataset also contains infor- 

mation on the exact location of farms based on their latitude and longitude coordinates as well as on 

environmental factors. The empirical findings suggest low levels of both persistent and transient ineffi- 

ciency for farms. Additionally, all components exhibit spatial dependence with its magnitude being more 

than double for persistent inefficiency. 

© 2021 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 

1. Introduction 

In neoclassical economics, the theory of the firm states that 

producers successfully optimize their production processes. How- 

ever, irrespective of the firms’ objectives (cost minimization or 

profit maximization), this assumption rarely holds in practice. This 

can be due to governmental regulation, poor management prac- 

tices or even unforeseen events that are outside the control of 

producers. Therefore, empirical studies have focused on quantify- 

ing deviations of observed from optimal production. In a paramet- 

ric setting, the measurement of shortfalls in production is achieved 

using the technique of Stochastic Frontier Analysis (SFA) introduced 

simultaneously by Aigner, Lovell, and Schmidt (1977) and Meeusen 

and van den Broeck (1977) . The SFA model recognizes that firms 

may not operate on the frontier due to pure inefficiency and noise. 

The former is captured by a one-sided non-negative inefficiency 

component and the latter by a two-sided error term. 

Since its introduction, the SFA tool has undergone several 

amendments mainly related to the distributional assumptions im- 

posed on inefficiency. Also, the availability of panel data enabled 

∗ Corresponding author. 

E-mail addresses: ioannis.skevas@ucc.ie (I. Skevas), skevast@missouri.edu (T. 

Skevas). 

empirical studies to capture changes in firms’ performances over 

time by specifying the inefficiency component as time-varying. 

Nevertheless, the main challenge when panel data are available lies 

on controlling for unobserved (time-invariant) heterogeneity. With 

this objective in mind, firm effects were accounted for by includ- 

ing an additional time-invariant component in the SFA model. The 

main dilemma of studies following this practice was whether to 

treat these firm effects as (persistent or time-invariant) inefficiency 

or not. For instance, Kumbhakar (1991) and Kumbhakar and Hesh- 

mati (1995) treated firm effects as persistent inefficiency, while 

Greene (2005a) and Greene (2005b) assumed that these effects are 

not parts of inefficiency. 

This methodological conflict led to the introduction of a new 

state-of-the-art model by Colombi, Kumbhakar, Martini, and Vit- 

tadini (2014) , Kumbhakar, Lien, and Hardaker (2014) and Tsionas 

and Kumbhakar (2014) , simultaneously, called the Generalized True 

Random-Effects (GTRE) model. This model separates the time- 

invariant firm effects into a (two-sided) random firm effect that 

captures unobserved heterogeneity and a (one-sided) persistent in- 

efficiency effect. Therefore, overall the GTRE model contains two 

two-sided noise components (one time-invariant and one time- 

varying) and two one-sided inefficiency components (one time- 

invariant or persistent and one time-varying or transient). The 

need for including time-invariant and time-varying noise terms is 
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obvious when panel data are at hand. The question is why one 

needs two inefficiency components. Below we provide some lines 

of reasoning. On the one hand, persistent inefficiency is a long-run 

concept and can be due to rigidities producers face with regards to 

reorganizing their production processes. For instance, quasi-fixed 

factors of production such as capital can’t be instantaneously al- 

tered due to the existence of adjustment costs ( Stefanou, 2009 ); 

( Silva, Oude Lansink, & Stefanou, 2015 ). These adjustment costs can 

be either pecuniary in nature (e.g. high debts) or related to learn- 

ing ( Skevas, Emvalomatis, & Brümmer, 2018a ). In either case, these 

costs can result in persistent inefficiency for firms. On the other 

hand, transient inefficiency is a short-run concept related, for in- 

stance, to management qualities that can vary from year to year 

and can cause temporal changes in inefficiency ( Tsionas & Kumb- 

hakar, 2014 ). Recognizing the need to account for these two ineffi- 

ciency components as this is motivated above, the GTRE model has 

recently been used by several empirical studies including ( Filippini 

& Greene, 2016 ); ( Skevas, Emvalomatis, & Brümmer, 2018c ); ( Lien, 

Kumbhakar, & Alem, 2018 ); ( Adom & Adams, 2020 ). 

Another direction of the efficiency measurement literature that 

runs in parallel concerns the identification of spatial dependen- 

cies in firms’ inefficiency levels. The assumption of the existence 

of spatial relationships between neighboring units originates from 

Tobler (1970 , p. 236), with his first law of geography stating that 

“everything is related to everything else, but near things are more 

related than distant things”. Recently, a plethora of empirical stud- 

ies have emerged that account for spatial dependencies in firms 

inefficiencies including the studies of Areal, Balcombe, and Tiffin 

(2012) , Fusco and Vidoli (2013) , Tsionas and Michaelides (2016) , 

Pede, Areal, Singbo, McKinley, and Kajisa (2018) and Skevas (2020) . 

All the aforementioned studies specify a spatial autoregressive pro- 

cess on inefficiency, assuming that each individual’s inefficiency 

depends on neighbors’ inefficiency levels plus an individual noise 

component. The motivation for seeking for spatial dependencies 

in firms’ inefficiency scores stems from the similar preferences or 

tastes of producers who own land in the same area ( Skevas, Skevas, 

& Swinton, 2018d ) or the potential communication between neigh- 

boring producers regarding their production decisions/practices, 

the use of (new) technologies and the flow of knowledge regard- 

ing the use of resources ( Skevas & Oude Lansink, 2020 ); ( Skevas, 

2020 ); ( Schneider, Skevas, & Oude Lansink, 2021 )). Furthermore, 

spatial dependence in producers’ inefficiency levels may not only 

arise from imitating behavior but also from cases whereby produc- 

ers are being advised by common local consultants and/or by being 

members of the same local cooperative ( Orea & Álvarez, 2019 ). 

Given that studies employing the GTRE model ignore the afore- 

mentioned spatial efficiency studies, and vice versa, this article 

blends the state-of-the-art GTRE model with the spatial autore- 

gressive efficiency model making it the first to provide empirical 

evidence on the existence of spatial dependence on firms’ persis- 

tent and transient inefficiencies. Questions such as whether both 

inefficiencies are spatially dependent or not, and if yes, which 

component exhibits higher spatial dependence are exploited in the 

present article. Furthermore, spatial dependence in the noise com- 

ponent is taken into account in order to capture correlations in fac- 

tors that are outside the control of producers. The proposed model 

is applied to the case of Wisconsin dairy farms. A panel dataset 

is at hand that contains information on farms output, inputs and 

geographical coordinates of latitude and longitude, thus allowing 

us to explore their exact location and identify neighboring produc- 

ers. Additionally, environmental factors are used to account for ob- 

served environmental heterogeneity across farms. The next section 

presents the model, the Bayesian estimation method and a simula- 

tion study. A description of the data along with information on the 

empirical specification follows. The results are then presented and 

the final section provides some concluding remarks. 

2. Methodology 

2.1. Model 

We first introduce some notation. Let i = 1 , 2 , . . . , N and t = 

1 , 2 , . . . , T indicate individuals and time periods, respectively. Let 

y it denote the log output of an individual i in time t, x it denote a 

K × 1 vector of log inputs (including an intercept) of an individual 

i in time t and z it denote a L × 1 vector of log environmental char- 

acteristics of an individual i in time t . The GTRE model introduced 

by Colombi et al. (2014) , Kumbhakar et al. (2014) and Tsionas 

and Kumbhakar (2014) adjusted for environmental factors as in 

O’Donnell (2016) and Njuki, Bravo-Ureta, and Cabrera (2020) in a 

production function setting is written as: 

y it = x 

′ 
it β + z 

′ 
it δ + αi + v it − η+ 

i 
− u 

+ 
it 

(1) 

where β and δ are K × 1 and L × 1 vectors of parameters to be 

estimated, respectively, and the remaining terms are error com- 

ponents with the superscript + denoting non-negative values. The 

term αi is a time-invariant random firm effect that captures un- 

observed heterogeneity, v it is a time-varying noise component, η+ 
i 

represents the time-invariant persistent inefficiency and u + 
it 

cap- 

tures the time-varying transient inefficiency. The typical normality 

assumption is made for the firm effect αi : 

αi ∼ i.i.d. N (0 , σ 2 
α) (2) 

where “i.i.d.” stands for ”independent and identically distributed”

and σ 2 
α denotes the variance of the firm effect. Additionally, dis- 

tributional assumptions need to be made for the inefficiency com- 

ponents η+ 
i 

and u + 
it 

. The typical approach is to assume that both 

of them follow a half-normal distribution ( Tsionas & Kumbhakar, 

2014 ). 

However, given that the present paper aims to account for 

spatial dependence in the inefficiency components, their distribu- 

tional assumptions are complemented by a spatial component. Fol- 

lowing Fusco and Vidoli (2013) , the main idea is that the ineffi- 

ciency of an individual i depends on the neighboring individuals’ 

j = 1 , 2 , . . . , N inefficiencies plus an individual noise component. 

Applying the above approach to the GTRE model implies that the 

above-discussed spatial structure needs to be imposed on the in- 

volved persistent and transient inefficiency components. Therefore, 

persistent inefficiency of an individual i is allowed to be a linear 

combination of neighbors’ persistent inefficiencies and an individ- 

ual noise component as follows: η+ 
i 

= λ
∑ N 

i =1 w i η
+ 
i 

+ ˜ ηi , where w i 

is a standardized row of a N × N spatial weights matrix W (whose 

specification is described in the data section), λ is a parameter that 

measures the strength of spatial dependence and ˜ ηi is a noise com- 

ponent assumed to be i.i.d. N (0 , σ 2 
˜ η) . Therefore, the typical half- 

Normal distribution imposed on persistent inefficiency becomes: 

η+ 
i 

∼ i.i.d. N 

+ 

( 

0 , 

( 

1 − λ
N ∑ 

i =1 

w i 

) 

−2 σ 2 
˜ η

) 

(3) 

where σ 2 
˜ η is a variance component 1 The same procedure can be 

applied to the transient inefficiency component u + 
it 

. Therefore, we 

assume that transient inefficiency of an individual i is a linear 

combination of neighbors’ transient inefficiencies and an individual 

noise term as: u + 
it 

= ρ
∑ N 

i =1 w i u 
+ 
it 

+ ˜ u it , where ρ is a parameter that 

captures the strength of spatial dependence and ˜ u it is a noise term 

1 Eq. (3) stems from the following manipulations: We know that η+ 
i 

= 

λ
∑ N 

i =1 w i η
+ 
i 

+ ̃  ηi . Moving the spatial component to the left-hand-side yields: 

η+ 
i 

− λ
∑ N 

i =1 w i η
+ 
i 

= ˜ ηi . Taking η+ 
i 

a common factor results in: η+ 
i 
(1 − λ

∑ N 
i =1 w i ) = 

˜ ηi . Moving the spatial component to the right-hand-side yields: η+ 
i 

= (1 −
λ

∑ N 
i =1 w i ) 

−1 ˜ ηi . Based on this last result one can write the distribution of η+ 
i 

as 

in Eq. (3) . 
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assumed to be i.i.d. N (0 , σ 2 
˜ u 
) . In the same spirit, the half-normal 

distribution imposed on transient inefficiency is: 

u 

+ 
it 

∼ i.i.d. N 

+ 

( 

0 , 

( 

1 − ρ
N ∑ 

i =1 

w i 

) 

−2 σ 2 
˜ u 

) 

(4) 

where σ 2 
˜ u 

is a variance component. 

Finally, besides allowing for spatial dependence in the ineffi- 

ciency components, we also account for spatial dependence in the 

noise term v it . This is because apart from accounting for “behav- 

ioral correlations” through the specification of spatial dependence 

in the inefficiencies, we also recognize that there may exist “un- 

controlled correlations” among individuals, which is a procedure 

also followed by Orea and Álvarez (2019) . Note also that allowing 

for the two-sided random noise term to be spatially dependent 

is in fact equivalent to allowing for spatial dependence in the 

dependent (output) and independent (inputs) variables ( Gibbons & 

Overman, 2012 ), which gives us the opportunity to specify a more 

parsimonious model as opposed to one that accounts for spatial 

dependence in several frontier parameters. Technically-wise, allow- 

ing for spatial dependence in the random noise term v it is similar 

to the above-presented spatial specification for the two ineffi- 

ciency components. Specifically, the two-sided noise component of 

an individual i is allowed to be a linear combination of neighbors’ 

two-sided noise components and a new individual noise term as 

follows: v it = μ
∑ N 

i =1 w i v it + ̃

 v it , where μ is the parameter that 

quantifies spatial dependence and 

˜ v it is the new noise component 

assumed to be i.i.d. N (0 , σ 2 
˜ v ) . Hence, the typical Normal distribu- 

tion imposed on the two-sided noise component becomes: 

v it ∼ i.i.d. N 

( 

0 , 

( 

1 − μ
N ∑ 

i =1 

w i 

) 

−2 σ 2 
˜ v 

) 

(5) 

where σ 2 
˜ v is a variance component to be estimated. 

2.2. Estimation 

The model presented in equations ( 1 -5) is estimated using 

Bayesian techniques. We gather all parameters to be estimated in a 

vector θ = [ β, δσ˜ v , μ, σα, λ, σ ˜ η, ρ, σ ˜ u ] 
′ 
. The likelihood of the model 

is: 

p(y , { αi } , { η+ 
i 
} , { u 

+ 
it 
}| X , Z , W , θ) 

= 

1 

[2 π(1 − μ
∑ N 

i =1 w i ) −2 σ 2 
˜ v ] 

NT/ 2 

exp 

{
−

∑ N 
i =1 

∑ T 
t=1 (y it − x 

′ 
it 
β − z 

′ 
it 
δ − αi + η+ 

i 
+ u 

+ 
it 
) 2 

2(1 − μ
∑ N 

i =1 w i ) −2 σ 2 
˜ v 

}

× 1 

(2 πσ 2 
α) N/ 2 

exp 

{
−

∑ N 
i =1 (αi ) 

2 

2 σ 2 
α

}

× 2 

[2 π(1 − λ
∑ N 

i =1 w i ) −2 σ 2 
˜ η] N/ 2 

exp 

{
−

∑ N 
i =1 (η

+ 
i 
) 2 

2(1 − λ
∑ N 

i =1 w i ) −2 σ 2 
˜ η

}

× 2 

[2 π(1 − ρ
∑ N 

i =1 w i ) −2 σ 2 
˜ u 
] NT/ 2 

exp 

{
−

∑ N 
i =1 (u 

+ 
it 
) 2 

2(1 − ρ
∑ N 

i =1 w i ) −2 σ 2 
˜ u 

}
(6) 

where y is the stacked output vector over i and X and Z are the 

stacked inputs and environmental factors matrices across i and t, 

respectively. The first and the second terms of the likelihood func- 

tion presented in Eq. (6) are due to the Normal distribution im- 

posed on v it and αi in Eq. (5) and Eq. (2) , respectively. Accordingly, 

the third and the fourth terms are due to the half-Normal distribu- 

tion imposed on η+ 
i 

and u + 
it 

in equations ( 3 -4). Next, prior distribu- 

tions are imposed on the parameters in θ. The prior distributions 

and their parameterization are presented in Table 1 . 

The typical approach of using a multivariate Normal prior for β
and δ is followed, where the prior means are set equal to 0 and the 

prior covariance matrices are diagonal with the diagonal entries 

being equal to 1,0 0 0. This high prior variance implies that our prior 

beliefs will have a negligible impact on the results. As it is conven- 

tional in Bayesian inference, we work with precisions instead of 

variances or standard deviations. Precision is simply the inverse of 

the variance. A Gamma prior distribution (as this is typical in the 

Bayesian econometrics literature) is imposed on the precisions of 

the noise component v it and the firm effect a i . Both the shape and 

the rate parameters are set equal to 0.001. Given that the variance 

of the Gamma distribution equals the ratio of the shape parame- 

ter to the square of the rate parameter, the imposed values yield a 

variance of 1,0 0 0. Again, this high value manifests our intention to 

let the data speak about the true parameter values. 

Following Fusco and Vidoli (2013) in that the spatial param- 

eters lie on the unit interval, a Beta distribution is imposed on 

λ and ρ . Given that this is the first study to seek for spatial 

effects in persistent and transient inefficiency, we do not have 

any prior knowledge on the values of the spatial parameters apart 

from case studies that form spatial autoregressive processes on 

a single inefficiency component. We choose to follow Areal et al. 

(2012) because they apply their model to the same case study 

as ours (i.e. dairy farming) and report a value for their spatial 

dependence parameter of around 0.15. Therefore, and given that 

the mean of the Beta distribution equals a/(a+b), we set the shape 

parameter a equal to 2 and the shape parameter b equal to 10. The 

same procedure is followed for the prior of the spatial parameter 

μ. Finally, a Gamma prior distribution is used for the precisions 

of the inefficiency components η+ 
i 

and u + 
it 

. Nevertheless, their 

parameterization differs from the other precision parameters and, 

in both cases, the shape and rate parameters equal 7 and 0.5, 

respectively. This results in lower variance and a more informa- 

tive prior. The need to place a more informative prior on such 

parameters is stressed by Van den Broeck, Koop, Osiewalski, and 

Steel (1994) , Fernandez, Osiewalski, and Steel (1997) , and Griffin 

and Steel (2007) , who warn that an uninformative prior for the 

variance of inefficiency may lead to an improper posterior. 

Now that we specified the model’s likelihood and the parame- 

ters’ priors, using Bayes rule yields the following posterior distri- 

bution: 

π( θ, { αi } , { η+ 
i 
} , { u 

+ 
it 
}| y , X , Z , W ) 

∝ p(y , { αi } , { η+ 
i 
} , { u 

+ 
it 
}| X , Z , W , θ) × p( θ) (7) 

where p( θ) is the prior distribution of the parameters. Estimation 

of the posterior moments of the model’s parameters is organised 

around Markov Chain Monte Carlo (MCMC) simulation and data 

augmentation techniques for the latent variables. 

2.3. Simulation 

The proposed model is tested using simulated data. A panel 

dataset is created with N = 100 and T = 8 . A constant term and 

one independent variable are generated as random draws from 

standard normal distributions and form the x vector. We generate 

two additional variables as random draws from standard normal 

distributions in order to form the z vector. Data in the form of lat- 

itude and longitude are created as random draws from a uniform 

distribution. Subsequently, they are used to calculate the distance 

between individuals. The minimum and maximum values of the 

uniform distribution equal those of the real dataset to better rep- 

resent reality as Wang, Kockelman, and Wang (2013) propose. 

The spatial weights matrix W is then constructed based on the 

inverse distances. Zeros are specified on the diagonal of W and 

in the entries where the distance is above the minimum value at 

3 
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Table 1 

Priors distributions and parameterization. 

Parameter Distribution Probability density function Hyper-priors 

β N (b , A ) | A | − 1 
2 

(2 π) 
K 
2 

exp 

{ 
− ( β−b ) 

′ 
A −1 ( β−b ) 
2 

} 
b = 0 K , A = 10 0 0 × I K 

δ N (d , C ) | C| − 1 
2 

(2 π) 
L 
2 

exp 

{ 
− ( δ−d ) 

′ 
C −1 ( δ−d ) 
2 

} 
d = 0 L , C = 10 0 0 × I L 

τ ≡ 1 
σ 2 

˜ v 
Gamma(a,b) b a 

	(α) 
τα−1 e −bτ a = 0.001, b = 0.001 

μ Beta(a,b) μa −1 (1 −μ) b−1 

B (a,b) 
a = 2, b = 10 

ω ≡ 1 
σ 2 

α
Gamma(a,b) b a 

	(α) 
ω 

α−1 e −bω a = 0.001, b = 0.001 

λ Beta(a,b) λa −1 (1 −λ) b−1 

B (a,b) 
a = 2, b = 10 

φ ≡ 1 
σ 2 

˜ η

Gamma(a,b) b a 

	(α) 
τα−1 e −bτ a = 7, b = 0.5 

ρ Beta(a,b) ρa −1 (1 −ρ) b−1 

B (a,b) 
a = 2, b = 10 

ψ ≡ 1 
σ 2 

˜ u 

Gamma(a,b) b a 

	(α) 
ψ 

α−1 e −bψ a = 7, b = 0.5 

Fig. 1. Posterior distributions of parameters from the simulated data. 

which all individuals have at least one neighbor. The same strat- 

egy is used in the empirical application and the following section 

provides a more formal line of argument. Data on αi , v it , η+ 
i 

and 

u + 
it 

are constructed according to equations ( 2 -5), while data on y 

are generated based on Eq. (1) . True values are: β0 = −1 , β1 = 

1 , δ1 = 1 , δ2 = −1 , σ ˜ v = 0 . 05 , μ = 0 . 1 , σα = 0 . 08 , λ = 0 . 4 , σ ˜ η = 

0 . 14 , ρ = 0 . 1 , σ ˜ u = 0 . 33 . The MCMC scheme involved 140,0 0 0 it- 

erations, while discarding the first 20,0 0 0 to remove the influence 

of the initial values (which were set equal to the true parameter 

values) and keeping one out of two draws to mitigate potential 

autocorrelations. The posterior distributions of the parameters are 

presented in Fig. 1 . 

Note that convergence of MCMC was met for all parameters 

based on the Geweke (1992) diagnostic, while Monte Carlo Stan- 

dard Errors (MCSE) were quite small, indicating that autocorrela- 

tion of draws is not an issue here. All true parameter values are 

inside the regions of their associated posterior distributions. This 

means that we can effectively estimate the model’s parameters 

without biases. 

3. Data & specification 

The proposed model is applied to the case of specialized dairy 

farms in Wisconsin, which participate in the Agricultural Financial 
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Advisor (AgFA) program at the University of Wisconsin-Madison 

Center for Dairy Profitability (CDF). We use a balanced panel 

dataset of 139 farms observed between 2009 and 2017. This yields 

a total of 1251 observations. We stress though that the initial 

dataset at hand was unbalanced. Farms typically leave the panel 

because they may no longer want to be part of the AgFa program, 

or they are no longer a client of the farm association who collected 

farm financial data on behalf of CDF, or even because they exited 

the sector. We also note that even though the transformation of 

the dataset into a balanced panel excludes several observations, 

the resulting dataset is still representative of the initial one. This is 

because the mean values of the utilized variables in the balanced 

dataset are very similar to those in the unbalanced dataset, which 

is logical given that farms participating in the AgFa program are 

relatively homogeneous in that they are relatively small and finan- 

cially weaker farms that are seeking to improve their profitability. 

The decision to construct and work with a balanced 

panel dataset is based on the following reasoning. As Elhorst 

(2014b) stresses, the asymptotic properties of global spatial es- 

timators may become problematic for unbalanced panels if the 

reason why data are missing is not known with certainty, which 

is the case in our study. Therefore, extending spatial estimators 

to an unbalanced panel data setting involves making a strong 

assumption about why observations are missing and using data 

imputation techniques. For instance, Pfaffermayr (2013) and Wang 

and Lee (2013) assume that data are missing at random (i.e. the 

missing data may depend on variables observed in the data set, 

but not on the missing values themselves) for their unbalanced 

spatial panels, an assumption that is not true in our case. Our 

data are missing not at random (MNAR) because the missingness 

could be related to unobserved conditions (e.g. a farmer’s decision 

to exit the sector). In the case of MNAR, there is no direct way 

of analysis. This is because crucial parts of the data are missing, 

making it unclear what their effect on results is. Most impor- 

tantly, because the necessary information is missing, one cannot 

verify whether it has occurred. Addressing this problem is not 

straightforward from a statistical point of view, as assumptions 

must be made that cannot be tested empirically ( Buehl, Heinzl, 

Mittlboeck, & Findl, 2008 ). In light of this, and the fact that a 

general approach to addressing the issue of missing observations 

in spatial panels is still not available ( Elhorst, 2014b ), we proceed 

with the constructed balanced panel dataset. 

One output and six inputs namely capital, labor, land, livestock, 

purchased feed and materials are specified. Output consists of 

milk, meat and crops. We do not separate the different categories 

because farms almost exclusively produce milk. Capital consists of 

machinery and buildings, while labor includes own and hired labor 

hours. Land represents the own and hired acres of agricultural area 

and livestock includes the total number of heads. Finally, the last 

two inputs are purchased feed and materials, with the latter in- 

cluding all intermediate inputs excluding purchased feed, such as 

veterinary expenses, energy, contract work, crop-specific costs and 

other variable costs. Output, capital, purchased feed and materi- 

als are measured in monetary units (i.e. constant 2010 prices). The 

monetary output and inputs are transformed into implicit quantity 

indices by computing the ratio of value to its corresponding price 

index. Price indices for output and inputs are obtained from the 

National Agricultural Statistics Service and, when necessary, aggre- 

gated to Törnqvist price indexes. 

Additionally, two environmental indicators are used; summer 

precipitation and summer temperature. These variables are spec- 

ified on the frontier and not on the distribution of inefficiencies 

because they should not affect the way producers manage their 

assets but rather the production of milk. As Qi, Bravo-Ureta, and 

Cabrera (2015, page 8664) note “In general, research on the con- 

nection between climatic variables and livestock has focused on 

Table 2 

Summary statistics of the utilized variables. 

Variable Unit Mean SD 2.5% 97.5% 

output dollars 1,232,073 1,675,622 1,139,130 1,325,015 

capital dollars 530,042 955,156 477,062 583,023 

labor hours 11,874 15,873 10,993 12,754 

land acres 578 472 552 605 

livestock # heads 228 294 211 244 

feed dollars 326,723 521,074 297,820 355,625 

materials dollars 563,816 727,069 523,487 604,145 

precipitation inches 3.678 0.998 3.623 3.733 

temperature ◦F 66.333 1.488 66.251 66.416 

output-related effects.”. Qi, Bravo-Ureta, and Cabrera (2015) stress 

that livestock production is particularly vulnerable to extreme 

weather, which can cause significant output losses. In particu- 

lar, increased summer precipitation contributes to high humidity 

which is known to be related to mastitis infection ( Morse et al., 

1988 ). Mastitis is the most economically important disease in the 

dairy industry worldwide, causing among others milk yield losses, 

increased veterinary costs, involuntary culling of cows, and higher 

workload for the farmers ( Halasa, Huijps, Østerås, & Hogeveen, 

2007 ). Increased summer temperature can cause heat stress to 

dairy cattle ( Armstrong, 1994 ). One of the effects of heat stress in 

dairy cows is increased somatic cell count ( Hammami, Bormann, 

M’hamdi, Montaldo, & Gengler, 2013 ), which is known to nega- 

tively affect milk quantity and quality ( Cinar, Serbester, Ceyhan, 

& Gorgulu, 2015 ). Given the above arguments, this study incor- 

porates the environmental indicators on the frontier through the 

“period-and-environment specific frontier” presented in Eq. (1) as 

in O’Donnell (2016) and Njuki et al. (2020) . Table 2 offers summary 

statistics of all variables. 

A time trend is also included to capture technological 

progress/regress. A translog specification is used including interac- 

tions between inputs and environmental variables, interactions be- 

tween the time trend, the inputs and the environmental variables, 

and their square values. Prior to estimation output, inputs and en- 

vironmental variables are normalized by their geometric means 

thus allowing for a direct interpretation of the first-order terms of 

inputs as output elasticities evaluated at the geometric mean of the 

data. 

Apart from output, input and environmental quantities, the 

dataset contains exact location information of farms based on their 

latitude and longitude. This information is used to calculate the 

distance between farms and form the spatial weights matrix W . 

Apart from its diagonal elements which equal zero so that an indi- 

vidual is not termed as neighbor to himself/herself, the remaining 

elements are set equal to the inverse distance ( 1 /d i j ), thus plac- 

ing higher weight on closer neighbors. This choice is based on the 

argument used by Roe, Irwin, and Sharp (2002) , stressing that in- 

dividuals are more likely to be influenced by closer than more dis- 

tant neighbors. Following common practice, a distance threshold 

d ∗ is used outside which spatial relationships no longer exist. As 

in Marasteanu and Jaenicke (2016) and Skevas (2020) this thresh- 

old is set equal to the minimum distance at which all individuals 

in the sample have at least one neighbor. This is 50km in our case 

study. Finally, all elements in W are normalized by its maximum 

eigenvalue as in Vega and Elhorst (2015) . 

4. Results 

Using the same sampling scheme used with the simulated data, 

estimation of our model with the Wisconsin dairy farms’ data 

yields the posterior moments of the model’s parameters that are 

presented in Table 3 . Convergence of MCMC was met for all pa- 

rameters according to the Geweke’s diagnostic, while MCSE’s are 
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Table 3 

Posterior moments of the estimated parameters. 

Variable Mean SD MCSE 95% Credible Interval 

constant 0.232 0.015 0.000 [0.203, 0.262] 

l og _ capital 0.096 0.005 0.000 [0.086, 0.106] 

l og _ l abor 0.022 0.008 0.000 [0.007, 0.037] 

l og _ l and 0.042 0.015 0.000 [0.012, 0.071] 

l og _ l i v estock 0.216 0.023 0.000 [0.172, 0.261] 

log _ f eed 0.178 0.011 0.000 [0.157, 0.199] 

l og _ material s 0.441 0.018 0.000 [0.405, 0.476] 

trend 0.024 0.001 0.000 [0.022, 0.026] 

log _ precipitation 0.006 0.011 0.000 [-0.016, 0.027] 

log _ temperature -0.069 0.013 0.000 [-0.094, -0.043] 

l og _ capital × log _ l abor 0.005 0.005 0.000 [-0.004, 0.015] 

l og _ capital × log _ l and -0.008 0.012 0.000 [-0.032, 0.016] 

l og _ capital × log _ l i v estock -0.041 0.017 0.000 [-0.076, -0.007] 

log _ capital × log _ f eed -0.019 0.008 0.000 [-0.035, -0.002] 

l og _ capital × log _ material s -0.011 0.017 0.000 [-0.044, 0.021] 

log _ capital × log _ precipitation 0.020 0.014 0.000 [-0.008, 0.047] 

log _ capital × log _ temperature -0.008 0.018 0.000 [-0.044, 0.028] 

l og _ capital 2 0.033 0.004 0.000 [0.025, 0.041] 

l og _ l abor × log _ l and -0.014 0.011 0.000 [-0.036, 0.009] 

l og _ l abor × log _ l i v estock -0.026 0.019 0.000 [-0.064, 0.011] 

l og _ l abor × log _ f eed 0.001 0.011 0.000 [-0.020, 0.021] 

l og _ l abor × log _ material s 0.025 0.017 0.000 [-0.009, 0.059] 

l og _ l abor × log _ precipitation -0.015 0.010 0.000 [-0.034, 0.005] 

l og _ l abor × log _ temperature -0.004 0.015 0.000 [-0.032, 0.024] 

l og _ l abor 2 -0.002 0.004 0.000 [-0.010, 0.007] 

l og _ l and × log _ l i v estock 0.055 0.040 0.000 [-0.024, 0.133] 

l og _ l and × log _ f eed -0.066 0.020 0.000 [-0.106, -0.026] 

l og _ l and × log _ material s 0.046 0.040 0.000 [-0.032, 0.123] 

l og _ l and × log _ precipitation 0.016 0.018 0.000 [-0.019, 0.051] 

l og _ l and × log _ temperature 0.018 0.026 0.000 [-0.034, 0.069] 

l og _ l and 2 -0.001 0.009 0.000 [-0.019, 0.017] 

l og _ l i v estock × log _ f eed -0.058 0.033 0.000 [-0.123, 0.005] 

l og _ l i v estock × log _ materials -0.227 0.074 0.000 [-0.372, -0.085] 

l og _ l i v estock × log _ precipitation -0.035 0.042 0.000 [-0.118, 0.049] 

l og _ l i v estock × log _ temperature 0.066 0.053 0.000 [-0.039, 0.170] 

l og _ l i v estock 2 0.175 0.046 0.000 [0.085, 0.265] 

l og _ f eed × log _ material s 0.059 0.031 0.000 [-0.001, 0.118] 

log _ f eed × log _ precipitation 0.040 0.020 0.000 [0.001, 0.079] 

log _ f eed × log _ temperature -0.029 0.025 0.000 [-0.078, 0.021] 

log _ f eed 2 0.040 0.009 0.000 [0.022, 0.058] 

l og _ material s × log _ precipitation -0.053 0.037 0.000 [-0.125, 0.021] 

l og _ material s × log _ temperature -0.019 0.048 0.000 [-0.112, 0.074] 

l og _ material s 2 0.043 0.042 0.000 [-0.037, 0.125] 

log _ precipitation × log _ temperature -0.176 0.041 0.000 [-0.256, -0.096] 

log _ precipitation 2 -0.055 0.025 0.000 [-0.103, -0.006] 

log _ temperature 2 -0.046 0.039 0.000 [-0.122, 0.032] 

trend × log _ capital -0.003 0.001 0.000 [-0.006, 0.000] 

trend × log _ labor 0.000 0.001 0.000 [-0.002, 0.002] 

trend × log _ land -0.004 0.002 0.000 [-0.008, 0.000] 

trend × log _ li v estock 0.007 0.004 0.000 [-0.001, 0.016] 

trend × log _ f eed -0.002 0.002 0.000 [-0.006, 0.002] 

trend × log _ materials 0.003 0.004 0.000 [-0.005, 0.011] 

trend × log _ precipitation 0.015 0.006 0.000 [0.004, 0.026] 

t rend × log _ temperat ure -0.046 0.006 0.000 [-0.059, -0.034] 

trend 2 -0.013 0.000 0.000 [-0.014, -0.012] 

σ˜ v 0.039 0.004 0.000 [0.031, 0.046] 

σα 0.058 0.008 0.000 [0.043, 0.074] 

σ ˜ η 0.161 0.015 0.000 [0.134, 0.193] 

σ ˜ u 0.119 0.005 0.000 [0.109, 0.130] 

zero for all parameters suggesting that the posterior draws do not 

exhibit autocorrelation. All output elasticities are positive and “sta- 

tistically significant”, given that their associated 95% credible in- 

tervals do not contain zero. This is an expected finding given that 

the utilized inputs play a key role in the production of dairy farm’s 

output as this is also reported by Emvalomatis, Stefanou, and Oude 

Lansink (2011) , Sauer and Latacz-Lohmann (2015) and Skevas et al. 

(2018a) . Material inputs have the biggest effect on production with 

livestock and purchased feed following. Adding the output elastici- 

ties yields a scale elasticity of 0.995 suggesting that dairy farms in 

Wisconsin operate, on average, on the decreasing returns to scale 

part of the technology with a probability of 65%. Finally, there is 

evidence that Wisconsin dairy farms experience an inverted U- 

shaped technical change due to the positive estimate of the trend 

variable and the negative estimate of its square term. Note that the 

remaining parameter estimates (i.e. interaction and square terms) 

are not discussed because the performed geometric mean normal- 

ization of the data directs interest only to the first-order terms. 

However, all estimates are presented for the sake of completeness. 

Regarding the environmental variables, summer precipitation 

is “statistically insignificant” while summer temperature is nega- 

tive and “statistically significant”. This is an expected finding since, 

as stated above, increased summer temperature can lead to heat 

stress in dairy cattle and in turn high somatic cell count, which 
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Table 4 

Summary statistics of persistent and transient inefficiency. 

Variable Mean SD Min Max 

Persistent 9% 0.039 2% 20% 

Transient 8% 0.013 5% 14% 

Table 5 

Posterior moments of the spatial parameters. 

Variable Mean SD MCSE 95% Credible Interval 

μ 0.082 0.051 0.000 [0.011, 0.203] 

λ 0.247 0.095 0.000 [0.068, 0.433] 

ρ 0.091 0.043 0.000 [0.018, 0.182] 

can negatively affect milk quantity ( Cinar et al., 2015 ). We also 

note that squared summer precipitation is also negative and “sta- 

tistically significant”. As mentioned above, this is because too high 

summer precipitation causes high humidity, which is related to 

mastitis infection that negatively affects milk output ( Halasa et al., 

2007 ). 

Moving to the estimates of persistent and transient inefficiency, 

summary statistics are provided in Table 4 . Average (across indi- 

viduals) persistent inefficiency is estimated at 9% while average 

(across both individuals and time) transient inefficiency is 8% 

2 The 

fact that transient and persistent inefficiency exhibit similar aver- 

age values implies that the time-span covered by the utilized data 

is close to farms’ equilibrium, which is a conclusion also drawn 

by Skevas, Emvalomatis, and Brümmer (2018b) who found simi- 

lar persistent and transient inefficiencies for German dairy farms. 

Variation in the inefficiency scores is low, particularly in farms’ 

transient inefficiency. Persistent inefficiency exhibits more extreme 

values than transient inefficiency in both sides. On the one hand, 

minimum persistent inefficiency is only 2%, while minimum tran- 

sient inefficiency is 5%. On the other hand, maximum persistent in- 

efficiency is 20% and maximum transient inefficiency is 6% lower. 

In general, Wisconsin dairy farms exhibit low inefficiency levels al- 

though there is still scope for improvement for both their long-run 

and short-run performance. 

To put the inefficiency results into context, using the same case 

study as ours, Cabrera, Solis, and Del Corral (2010) reported an 

average inefficiency score of 12% for 2007 and Chidmi, Solís, and 

Cabrera (2011) a mean inefficiency of 10% for the period 2004–

2008. The small differences in the inefficiency estimates between 

the above-cited studies and ours, can be attributed to the more re- 

cent dataset that we use and to our different modeling approach 

that captures both persistent and transient inefficiency as well as 

their spatial associations. Furthermore, Njuki et al. (2020) used 

both the same case study (for the period 1996–2012) and the GTRE 

model and reported an average persistent inefficiency of 6% and 

mean transient inefficiency of 14%. Although our study also reports 

relatively low inefficiency scores for Wisconsin dairy farms, the 

observed differences may stem from the older dataset that Njuki 

et al. (2020) use and their ignorance of spatial dependence in the 

inefficiency components. 

We note in passing that the GTRE model accommodates by con- 

struction random-effects as its name manifests. Although there ex- 

ists a debate on whether fixed or random effects fit a panel dataset 

best, treating the two-sided unobserved heterogeneity term as a 

fixed effect is not common because when trying to eliminate it us- 

ing the typical “first-differences” transformation the time-invariant 

persistent inefficiency component is also cancelled out. A valid al- 

ternative that does not eliminate the persistent inefficiency term 

2 Table A.1 in the Appendix presents the evolution of average transient ineffi- 

ciency from 2009 to 2017. 

could be Mundlak’s approach of including the variables’ group 

means as additional independent variables. Although this is an un- 

common approach in the efficiency literature that uses the GTRE 

model, we also estimate the model using Mundlak’s approach. 

While the obtained estimates change only slightly, the persistent 

inefficiency component is inflated, manifesting that it may be still 

capturing part of unobserved time-invariant heterogeneity, which 

is not the case in the random-effects specification. Additionally, 

Bayes factors reveal that the random-effects specification fits the 

data best. The results from these comparisons are presented in 

Table A.2 in the Appendix. 

Turning to the estimates of the spatial parameters, 

Table 5 presents their associated posterior moments. Note that, 

as mentioned in the previous section, we followed the typical 

procedure of setting the distance threshold d ∗ equal to the mini- 

mum distance at which all farms in our sample have at least one 

neighbor (i.e. 50km). Roe et al. (2002) follow a more arbitrary 

approach and set a threshold that results in all farms having 

several neighbors. Although we do not follow this more arbitrary 

approach, we conduct robustness checks with respect to higher 

thresholds (i.e. 55km, 60km and 65km). The posterior distribu- 

tions of the spatial parameters for each threshold are presented 

in Figs. (A .1 , A .2 , A .3 ) in the Appendix. The results reveal that the 

estimates are not sensitive to the threshold choice. This is logical 

since even though adding more neighbors by specifying higher 

thresholds, the inverse distance specification of the spatial weights 

matrix gives less weight to more distant neighbors. 

The spatial dependence parameter μ is estimated at 0.082 re- 

vealing that there indeed exists spatial dependence in the noise 

component, which can stem from “uncontrolled correlations” be- 

tween individuals. These can include similarities in soil quality 

(that can affect f eed production), identical local shocks (extreme 

weather events) and proximity of urban areas (advantage of better 

infrastructure). Furthermore, both persistent and transient ineffi- 

ciencies of Wisconsin dairy farms are spatially dependent. Specif- 

ically, the spatial parameter with regards to persistent inefficiency 

( λ) is estimated at 0.247, while the spatial parameter associated 

with transient inefficiency ( ρ) is 0.091. A possible explanation for 

this finding is that neighboring dairy farmers in Wisconsin com- 

municate or imitate each-other regarding both long-run and short- 

run choices/practices. For instance, Brock and Barham (2013) pro- 

vide evidence of the impact of social networks in the adoption 

of organic dairy farming in Wisconsin. More specifically, farm- 

ers faced information constraints related to organic dairy farm- 

ing and overcame these constraints through the exchange of in- 

formation with early adopters. Furthermore, Lewis, Barham, and 

Robinson (2011) in their study of the role of spatial spillovers in 

organic dairy farming adoption in southwestern Wisconsin, show 

that the presence of nearby organic dairy farmers affects the adop- 

tion decision. Given that the decision to adopt a new technology, 

such as organic farming, can affect both short and long-run per- 

formance (since adoption of new technologies requires substan- 

tial changes in equipment, facilities, and managerial strategy), this 

shows that communication/imitation between neighboring Wis- 

consin dairy farmers can result in spatial dependence in their 

(in)efficiencies. 

Additionally, producers may have common consultants that are 

advising them regarding their short/long-run production practices 

(i.e correct use of variable inputs/new machines), which can re- 

sult in spatial dependence in their (in)efficiency levels. Also, farm- 

ers may belong to the same local cooperative thus having similar 

input qualities and machinery services, which can again result in 

similar short/long-run performances. Although there does not ex- 

ist any study that reports the magnitude of spatial dependence for 

both persistent and transient inefficiency, it would worth mention- 

ing that Skevas (2020) reports a value of 0.371 for the inefficiency’s 
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spatial dependence parameter. This finding is larger than the ones 

reported in our study but not comparable because of using a dif- 

ferent dataset and more importantly, because our reported spatial 

dependencies concern two inefficiency components. 

What is striking in our results though is that the magnitude of 

spatial dependence in persistent inefficiency is more than double 

when compared to the magnitude of spatial dependence in tran- 

sient inefficiency. This can be because dairy farmers can consider 

some choices to be more important than others, and therefore im- 

itate or seek for information from neighboring peers or follow the 

advice of their common consultants/cooperatives mostly for them. 

For example, the costs at stake can be much higher in the decision 

to adopt a new technology (decision that can also result in persis- 

tent (in)efficiency), than in the decision of how much of a variable 

input to use (decision that will only affect transient (in)efficiency), 

because the former constitutes a large investment for farms. There- 

fore, producers that are reluctant to adopt new technologies can 

influence neighboring ones to make similar choices, thus collec- 

tively exhibiting some persistent inefficiency. Conversely, farmers 

that are keen to adopt new technologies can influence neighboring 

farmers to also do so, thus collectively exhibiting higher persistent 

efficiency. On the contrary, producers may not discuss or imitate 

their neighbors regarding the decision of how much feed to use 

because they may not consider this decision equally important as 

the decision to innovate. 

5. Conclusions 

We propose a model that combines the (environmentally- 

adjusted) GTRE model of Colombi et al. (2014) , Kumbhakar et al. 

(2014) and Tsionas and Kumbhakar (2014) and the spatial autore- 

gressive efficiency model complemented by spatial autoregressive 

disturbances. This makes us the first to present a model that si- 

multaneously separates time-invariant firm effects from persistent 

and transient inefficiency while accounting for spatial dependence 

in these two inefficiency components. 

The need to separate unobserved heterogeneity from ineffi- 

ciency is a well-discussed topic in the panel data econometrics lit- 

erature with its main objective being to prevent distortions in the 

inefficiency estimates ( Greene, 2005a ) and ( Greene, 2005b ). The 

need to decompose inefficiency into persistent (i.e. time-invariant) 

and transient (i.e. time-varying) components lies on the rigidity of 

some production factors that make inefficiency persist ( Stefanou, 

2009 ) and on factors that are volatile and cause temporal changes 

in inefficiency ( Tsionas & Kumbhakar, 2014 ). Finally, among other 

factors, spatial dependence in inefficiency can stem from imitation 

or communication between neighboring units regarding production 

choices/practices and the flow of knowledge ( Skevas, 2020 ). 

The proposed model is first tested using simulated data in a 

Bayesian estimation framework. The results from the simulation 

study reveal that all parameters are well identified without yield- 

ing biases. The model is then applied to a panel dataset of special- 

ized dairy farms in Wisconsin observed over the period 2009–2017. 

The utilized dataset does not only provide information on farms’ 

physical units (i.e. output and inputs) and environmental charac- 

teristics (i.e. summer precipitation and temperature) but also on 

their exact location based on latitude and longitude coordinates, 

thus allowing us to identify neighboring farmers. 

The results reveal that all output elasticities are positive with 

material inputs having the highest effect on Wisconsin’s dairy 

farms production. Additionally, farms operate under mild decreas- 

ing returns to scale, while an inverted U-shaped technical change 

is reported. High summer temperature and too high precipitation 

limit production. Coming to the inefficiency scores, mean persis- 

tent inefficiency is 9% and mean transient inefficiency is 8%. That 

is, Wisconsin dairy farms can still improve both their long-run and 

short-run performances. Variation in inefficiency scores is slightly 

higher in the persistent component. 

The empirical findings also provide evidence of spatial depen- 

dence in the noise component as well as in both persistent and 

transient inefficiencies. Spatial dependence in the noise component 

can be attributed to correlations in uncontrolled factors such as 

soil quality and to common local shocks. The finding of spatial de- 

pendence in inefficiencies can be because dairy farmers commu- 

nicate with their neighbors and exchange ideas on how to man- 

age both their short-run and long-run production processes or due 

to receiving similar advice from common consultants/cooperatives. 

Nevertheless, the strength of spatial dependence is much higher 

for the persistent inefficiency component. An explanation for this 

result is that farmers deem factors that cause (in)efficiency to per- 

sist (e.g. delay in the adoption of a new technology) more impor- 

tant than factors related to typical production choices (e.g. amount 

of feed use), resulting in higher level of communication regarding 

the former. 

Finally, we note that the rule of thumb of at least one neigh- 

bor on which the parameterization of the spatial weights matrix 

W is based, was used because estimation procedures for the dis- 

tance threshold are not developed for more advanced models as 

the utilized GTRE model but rather for more simple models. An ex- 

ample is the linear Spatial Lag of X (SLX) model for which Elhorst 

(2014a) proposes an estimation procedure where the distance cut- 

off point is estimated according to an algorithm that minimizes 

the ordinary least squared residuals. Based on that, future research 

can focus on developing an algorithm for estimating the distance 

cut-off point for more complicated models such as the stochastic 

frontier. Furthermore, although the efficiency measurement liter- 

ature has raised many concerns regarding the endogeneity of in- 

puts ( Kutlu, 2010 ); ( Shee & Stefanou, 2015 ); ( Karakaplan & Levent, 

2017 ), the majority of GTRE studies, including ours, ignore this is- 

sue (which can be particularly true for variable inputs) with the 

exceptions of Lai and Kumbhakar (2018) and Lien et al. (2018) . 

Hence, future work can combine the spatial GTRE model presented 

in this study, and the endogeneity-correcting approaches proposed 

by Lai and Kumbhakar (2018) and Lien et al. (2018) . 
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Appendix A 

Table A1 

Evolution of average transient ineffi- 

ciency from 2009 to 2017. 

Year Transient Inefficiency 

2009 10% 

2010 8% 

2011 6% 

2012 7% 

2013 8% 

2014 6% 

2015 11% 

2016 9% 

2017 7% 

Average 8% 
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Fig. A1. Posterior distributions of μ for the different cut-off points. 

Table A2 

Main estimated quantities from the Random-Effects and Mundlak models. 

Random-Effects Mundlak 

Variable Mean SD 95% Credible Interval Mean SD 95% Credible Interval 

constant 0.232 0.015 [0.203, 0.262] 0.277 0.012 [0.254, 0.301] 

log_capital 0.096 0.005 [0.086, 0.106] 0.093 0.005 [0.083, 0.104] 

log_labor 0.022 0.008 [0.007, 0.037] 0.012 0.008 [-0.004, 0.028] 

log_land 0.042 0.015 [0.012, 0.071] 0.008 0.019 [-0.028, 0.045] 

log_livestock 0.216 0.023 [0.172, 0.261] 0.177 0.027 [0.125, 0.229] 

log_feed 0.178 0.011 [0.157, 0.199] 0.182 0.012 [0.159, 0.204] 

log_material 0.441 0.018 [0.405, 0.476] 0.417 0.020 [0.378, 0.456] 

log_precipitation 0.006 0.011 [-0.016, 0.027] 0.004 0.011 [-0.017, 0.025] 

log_temperature 0.069 0.013 [-0.094, -0.043] 0.076 0.013 [-0.103, -0.050] 

log _ capital - - - 0.040 0.019 [0.003, 0.076] 

l og _ l abor - - - -0.002 0.013 [-0.028, 0.023] 

l og _ l and - - - 0.032 0.024 [-0.016, 0.079] 

l og _ l i v estock - - - 0.170 0.045 [0.081, 0.258] 

log _ f eed - - - -0.098 0.020 [-0.137, -0.058] 

log _ material - - - 0.009 0.046 [-0.081, 0.100] 

log _ precipitation - - - -0.017 0.103 [-0.215, 0.188] 

log _ temperature - - - 0.302 0.053 [0.194, 0.403] 

σα 0.058 0.008 [0.043, 0.074] - - - 

persistent inefficiency 9% 12% 

transient inefficiency 8% 8% 

log marginal likelihood 1,876.213 1,765.101 

posterior probability 1.000 0.000 
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Fig. A2. Posterior distributions of λ for the different cut-off points. 
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Fig. A3. Posterior distributions of ρ for the different cut-off points. 

11 



I. Skevas and T. Skevas European Journal of Operational Research xxx (xxxx) xxx 

ARTICLE IN PRESS 

JID: EOR [m5G; January 16, 2021;19:34 ] 

References 

Adom, P. K. , & Adams, S. (2020). Decomposition of technical efficiency in agricultural 

production in africa into transient and persistent technical efficiency under het- 

erogeneous technologies. World Development, 129 , 104907 . 
Aigner, D. , Lovell, C. A. K. , & Schmidt, P. (1977). Formulation and estimation of 

stochastic frontier production function models. Journal of Econometrics, 6 (1), 
21–37 . 

Areal, F. J. , Balcombe, K. , & Tiffin, R. (2012). Integrating spatial dependence into 
stochastic frontier analysis. Australian Journal of Agricultural and Resource Eco- 

nomics, 56 (4), 521–541 . 

Armstrong, D. V. (1994). Heat stress interaction with shade and cooling. Journal of 
Dairy Science, 77 (7), 2044–2050 . 

Brock, C. C. , & Barham, B. L. (2013). ‘Milk is milk’: Organic dairy adoption decisions 
and bounded rationality. Sustainability, 5 (12), 5416–5441 . 

Buehl, W. , Heinzl, H. , Mittlboeck, M. , & Findl, O. (2008). Statistical problems 
caused by missing data resulting from neodymium: Yag laser capsulotomies 

in long-term posterior capsule opacification studies: Problem identification and 
possible solutions. Journal of Cataract & Refractive Surgery, 34 (2), 268–273 . 

Cabrera, V. E. , Solis, D. , & Del Corral, J. (2010). Determinants of technical efficiency 

among dairy farms in wisconsin. Journal of Dairy Science, 93 (1), 387–393 . 
Chidmi, B. , Solís, D. , & Cabrera, V. E. (2011). Analyzing the sources of technical effi- 

ciency among heterogeneous dairy farms: A quantile regression approach. Ani- 
mal Production, 13 (2) . 

Cinar, M. , Serbester, U. , Ceyhan, A. , & Gorgulu, M. (2015). Effect of somatic cell count 
on milk yield and composition of first and second lactation dairy cows. Italian 

Journal of Animal Science, 14 (1), 3646 . 

Colombi, R. , Kumbhakar, S. C. , Martini, G. , & Vittadini, G. (2014). Closed-skew nor- 
mality in stochastic frontiers with individual effects and long/short-run effi- 

ciency. Journal of Productivity Analysis, 42 (2), 123–136 . 
Elhorst, J. P. (2014a). Matlab software for spatial panels. International Regional Sci- 

ence Review, 37 (3), 389–405 . 
Elhorst, J. P. (2014b). Spatial panel data models. In Spatial econometrics (pp. 37–93). 

Springer . 

Emvalomatis, G. , Stefanou, S. E. , & Oude Lansink, A. (2011). A reduced-form model 
for dynamic efficiency measurement: Application to dairy farms in germany and 

the netherlands. American Journal of Agricultural Economics, 93 (1), 161–174 . 
Fernandez, C. , Osiewalski, J. , & Steel, M. F. J. (1997). On the use of panel data in 

stochastic frontier models with improper priors. Journal of Econometrics, 79 (1), 
169–193 . 

Filippini, M. , & Greene, W. (2016). Persistent and transient productive inefficiency: a 

maximum simulated likelihood approach. Journal of Productivity Analysis, 45 (2), 
187–196 . 

Fusco, E. , & Vidoli, F. (2013). Spatial stochastic frontier models: Controlling spatial 
global and local heterogeneity. International Review of Applied Economics, 27 (5), 

679–694 . 
Geweke, J. (1992). Evaluating the accuracy of sampling-based approaches to the cal- 

culations of posterior moments. Bayesian Statistics, 4 , 641–649 . 

Gibbons, S. , & Overman, H. G. (2012). Mostly pointless spatial econometrics? Journal 
of Regional Science, 52 (2), 172–191 . 

Greene, W. (2005a). Fixed and random effects in stochastic frontier models. Journal 
of Productivity Analysis, 23 (1), 7–32 . 

Greene, W. (2005b). Reconsidering heterogeneity in panel data estimators of the 
stochastic frontier model. Journal of Econometrics, 126 (2), 269–303 . 

Griffin, J. E. , & Steel, M. F. J. (2007). Bayesian stochastic frontier analysis using win- 

bugs. Journal of Productivity Analysis, 27 (3), 163–176 . 
Halasa, T. , Huijps, K. , Østerås, O. , & Hogeveen, H. (2007). Economic effects of bovine 

mastitis and mastitis management: A review. Veterinary Quarterly, 29 (1), 18–31 . 
Hammami, H. , Bormann, J. , M’hamdi, N. , Montaldo, H. H. , & Gengler, N. (2013). Eval- 

uation of heat stress effects on production traits and somatic cell score of hol- 
steins in a temperate environment. Journal of Dairy Science, 96 (3), 1844–1855 . 

Karakaplan, M. U. , & Levent, K. (2017). Handling endogeneity in stochastic frontier 
analysis. Economics Bulletin, 37 (2), 889–901 . 

Kumbhakar, S. C. (1991). Estimation of technical inefficiency in panel data models 

with firm-and time-specific effects. Economics Letters, 36 (1), 43–48 . 
Kumbhakar, S. C. , & Heshmati, A. (1995). Efficiency measurement in swedish dairy 

farms: an application of rotating panel data, 1976–88. American Journal of Agri- 
cultural Economics, 77 (3), 660–674 . 

Kumbhakar, S. C. , Lien, G. , & Hardaker, J. B. (2014). Technical efficiency in competing 
panel data models: a study of norwegian grain farming. Journal of Productivity 

Analysis, 41 (2), 321–337 . 

Kutlu, L. (2010). Battese-coelli estimator with endogenous regressors. Economics Let- 
ters, 109 (2), 79–81 . 

Lai, H. , & Kumbhakar, S. C. (2018). Endogeneity in panel data stochastic frontier 
model with determinants of persistent and transient inefficiency. Economics Let- 

ters, 162 , 5–9 . 
Lewis, D. J. , Barham, B. L. , & Robinson, B. (2011). Are there spatial spillovers in 

the adoption of clean technology? the case of organic dairy farming. Land Eco- 

nomics, 87 (2), 250–267 . 
Lien, G. , Kumbhakar, S. C. , & Alem, H. (2018). Endogeneity, heterogeneity, and deter- 

minants of inefficiency in norwegian crop-producing farms. International Journal 
of Production Economics, 201 , 53–61 . 

Marasteanu, I. J. , & Jaenicke, E. C. (2016). Hot spots and spatial autocorrelation in 
certified organic operations in the united states. Agricultural and Resource Eco- 

nomics Review, 45 (3), 485–521 . 
Meeusen, W. , & van den Broeck, J. (1977). Efficiency estimation from cobb-douglas 

production functions with composed error. International Economic Review, 18 (2), 
435–4 4 4 . 

Morse, D. , DeLorenzo, M. A. , Wilcox, C. J. , Collier, R. J. , Natzke, R. P. , & 
Bray, D. R. (1988). Climatic effects on occurrence of clinical mastitis. Journal of 

Dairy Science, 71 (3), 848–853 . 

Njuki, E. , Bravo-Ureta, B. E. , & Cabrera, V. E. (2020). Climatic effects and total factor 
productivity: econometric evidence for wisconsin dairy farms. European Review 

of Agricultural Economics , 1–26 . 
Orea, L. , & Álvarez, I. C. (2019). A new stochastic frontier model with cross-sectional 

effects in both noise and inefficiency terms. Journal of Econometrics, 213 (2), 
556–577 . 

O’Donnell, C. J. (2016). Using information about technologies, markets and firm 

behaviour to decompose a proper productivity index. Journal of Econometrics, 
190 (2), 328–340 . 

Pede, V. O. , Areal, F. J. , Singbo, A. , McKinley, J. , & Kajisa, K. (2018). Spatial depen- 
dency and technical efficiency: An application of a bayesian stochastic frontier 

model to irrigated and rainfed rice farmers in bohol, philippines. Agricultural 
Economics, 49 (3), 301–312 . 

Pfaffermayr, M. (2013). The cliff and ord test for spatial correlation of the distur- 

bances in unbalanced panel models. International Regional Science Review, 36 (4), 
492–506 . 

Qi, L. , Bravo-Ureta, B. E. , & Cabrera, V. E. (2015). From cold to hot: Climatic ef- 
fects and productivity in wisconsin dairy farms. Journal of dairy science, 98 (12), 

8664–8677 . 
Roe, B. , Irwin, E. G. , & Sharp, J. S. (2002). Pigs in space: Modeling the spatial struc- 

ture of hog production in traditional and nontraditional production regions. 

American Journal of Agricultural Economics, 84 , 259–278 . 
Sauer, J. , & Latacz-Lohmann, U. (2015). Investment, technical change and efficiency: 

empirical evidence from german dairy production. European Review of Agricul- 
tural Economics, 42 (1), 151–175 . 

Schneider, K. , Skevas, I. , & Oude Lansink, A. (2021). Spatial spillovers on input-spe- 
cific inefficiency of Dutch arable farms. Journal of Agricultural Economics, 72 (1), 

224–243 . 

Shee, A. , & Stefanou, S. E. (2015). Endogeneity corrected stochastic production fron- 
tier and technical efficiency. American Journal of Agricultural Economics, 97 (3), 

939–952 . 
Silva, E. , Oude Lansink, A. , & Stefanou, S. E. (2015). The adjustment-cost model of 

the firm: Duality and productive efficiency. International Journal of Production 
Economics, 168 , 245–256 . 

Skevas, I. (2020). Inference in the spatial autoregressive efficiency model with 

an application to dutch dairy farms. European Journal of Operational Research, 
283 (1), 356–364 . 

Skevas, I. , Emvalomatis, G. , & Brümmer, B. (2018a). The effect of farm characteris- 
tics on the persistence of technical inefficiency: a case study in german dairy 

farming. European Review of Agricultural Economics, 45 (1), 3–25 . 
Skevas, I. , Emvalomatis, G. , & Brümmer, B. (2018b). Heterogeneity of long-run tech- 

nical efficiency of german dairy farms: A bayesian approach. Journal of Agricul- 
tural Economics, 69 (1), 58–75 . 

Skevas, I. , Emvalomatis, G. , & Brümmer, B. (2018c). Productivity growth measure- 

ment and decomposition under a dynamic inefficiency specification: The case of 
german dairy farms. European Journal of Operational Research, 271 (1), 250–261 . 

Skevas, I. , & Oude Lansink, A. (2020). Dynamic inefficiency and spatial spillovers in 
dutch dairy farming. Journal of Agricultural Economics . 

Skevas, T. , Skevas, I. , & Swinton, S. M. (2018d). Does spatial dependence affect the 
intention to make land available for bioenergy crops? Journal of Agricultural Eco- 

nomics, 69 (2), 393–412 . 

Stefanou, S. E. (2009). A dynamic characterization of efficiency. Agricultural Eco- 
nomics Review, 10 (389-2016-23313), 18–33 . 

Tobler, W. R. (1970). A computer movie simulating urban growth in the detroit re- 
gion. Economic Geography, 46 (1), 234–240 . 

Tsionas, E. G. , & Kumbhakar, S. C. (2014). Firm heterogeneity, persistent and tran- 
sient technical inefficiency: A generalized true random-effects model. Journal of 

Applied Econometrics, 29 (1), 110–132 . 

Tsionas, E. G. , & Michaelides, P. G. (2016). A spatial stochastic frontier model with 
spillovers: Evidence for italian regions. Scottish Journal of Political Economy, 

63 (3), 243–257 . 
Van den Broeck, J. , Koop, G. , Osiewalski, J. , & Steel, M. F. J. (1994). Stochastic frontier 

models: A bayesian perspective. Journal of Econometrics, 61 (2), 273–303 . 
Vega, S. H. , & Elhorst, J. P. (2015). The slx model. Journal of Regional Science, 55 (3), 

339–363 . 

Wang, W. , & Lee, L. (2013). Estimation of spatial panel data models with randomly 
missing data in the dependent variable. Regional Science and Urban Economics, 

43 (3), 521–538 . 
Wang, Y. , Kockelman, K. M. , & Wang, X. C. (2013). The impact of weight matrices 

on parameter estimation and inference: A case study of binary response using 
land-use data. Journal of Transport and Land Use, 6 (3), 75–85 . 

12 

http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0001
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0001
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0001
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0001
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0002
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0002
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0002
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0002
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0002
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0003
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0003
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0003
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0003
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0003
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0004
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0004
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0005
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0005
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0005
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0005
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0006
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0006
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0006
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0006
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0006
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0006
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0007
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0007
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0007
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0007
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0007
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0008
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0008
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0008
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0008
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0008
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0009
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0009
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0009
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0009
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0009
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0009
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0010
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0010
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0010
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0010
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0010
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0010
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0011
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0011
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0012
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0012
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0013
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0013
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0013
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0013
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0013
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0014
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0014
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0014
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0014
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0014
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0015
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0015
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0015
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0015
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0016
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0016
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0016
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0016
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0017
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0017
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0018
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0018
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0018
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0018
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0019
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0019
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0020
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0020
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0021
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0021
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0021
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0021
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0022
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0022
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0022
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0022
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0022
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0022
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0023
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0023
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0023
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0023
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0023
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0023
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0023
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0024
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0024
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0024
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0024
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0025
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0025
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0026
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0026
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0026
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0026
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0027
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0027
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0027
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0027
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0027
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0028
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0028
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0029
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0029
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0029
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0029
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0030
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0030
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0030
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0030
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0030
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0031
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0031
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0031
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0031
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0031
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0032
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0032
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0032
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0032
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0033
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0033
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0033
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0033
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0034
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0034
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0034
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0034
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0034
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0034
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0034
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0034
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0035
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0035
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0035
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0035
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0035
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0036
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0036
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0036
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0036
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0037
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0037
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0038
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0038
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0038
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0038
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0038
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0038
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0038
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0039
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0039
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0040
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0040
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0040
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0040
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0040
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0041
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0041
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0041
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0041
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0041
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0042
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0042
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0042
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0042
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0043
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0043
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0043
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0043
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0043
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0044
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0044
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0044
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0044
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0045
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0045
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0045
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0045
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0045
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0046
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0046
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0047
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0047
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0047
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0047
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0047
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0048
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0048
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0048
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0048
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0048
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0049
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0049
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0049
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0049
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0049
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0050
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0050
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0050
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0050
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0051
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0051
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0051
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0051
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0051
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0052
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0052
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0053
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0053
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0054
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0054
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0054
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0054
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0055
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0055
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0055
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0055
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0056
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0056
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0056
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0056
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0056
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0056
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0057
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0057
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0057
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0057
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0058
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0058
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0058
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0058
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0059
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0059
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0059
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0059
http://refhub.elsevier.com/S0377-2217(21)00006-0/sbref0059

	A generalized true random-effects model with spatially autocorrelated persistent and transient inefficiency
	1 Introduction
	2 Methodology
	2.1 Model
	2.2 Estimation
	2.3 Simulation

	3 Data & specification
	4 Results
	5 Conclusions
	Acknowledgments
	Appendix A
	References


