Eksakta : Berkala Ilmiah Bidang MIPA VOLUME 22 NO 01 2021, pp 18-26

ISSN: Print 1411-3724 — Online 2549-7464
DOI: https://doi.org/10.24036//eksakta/vol21-iss2/263

Article

Potential Hydrophobic Pocket of Squalene Synthase: An In Silico Analysis

Article Info

Article history:

Received February 24, 2021 Revised February 27, 2021 Accepted March 06, 2021 Published March 26, 2021

Keywords:

Squalene Synthase, Cholesterol, Potential Binding Pocket, Molecular Interaction

Fitri Amelia^{1*}, Basultan Hidayat¹, Iryani¹, Iswendi¹

Department of Chemistry, Faculty of Mathematics and Natural Sciences (FMIPA), Universitas Negeri Padang, Indonesia

Abstract. Cardiovascular disease cases increase due to consumption cholesterol dietary habit. It is well-known that squalence synthase (SQS) is the first committed enzyme for cholesterol synthesis. Therefore, SQS become target of anti-cholesterol. This paper aims to determine the potential binding pocket of SQS (PDB ID: 1EZF). Dogsitescorer, siteFinder, and DEPTH were used for binding pocket prediction and MOE 2009.10 was performed for molecular docking. We found that there are five out of 37 pockets which have druggability score above 0.8. Pocket_5 is the highest drugability and favorable for hydrophobic interaction, yet lower number of hydrogen bond with the ligand. However, Pocket_2, and Pocket_3 are suitable for hydrogen bond formation of ligand-protein. Molecular docking study showed that TAK-475, D99, and Cynarin inhibitors were embedded on the P_2 and P_3 of SQS, showing that P2_and P3 are promising binding pocket for ligand interactions. These results show a promising alternative to design anti-cholesterol using these potential pocket in silico.

This is an open acces article under the **CC-BY** license.

This is an open access article distributed under the Creative Commons 4.0 Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. ©2021 by author.

Corresponding Author:

Fitri Amelia

Department of Chemistry, Faculty of Mathematics and Natural Sciences (FMIPA), Universitas Negeri Padang, Indonesia

Email: fitriamelia@fmipa.unp.ac.id

1. Introduction

High levels of cholesterol in dietary increases the risks of heart disease and stroke [1]. It has been reported by WHO that around 17 million people die by heart disease and stroke [2]. The prevalence of cholesterol cases increasing is closely related to the country's economy. WHO reports that cholesterol cases in high-income countries increase more than 50% of adults, whereas, in low-income countries, it is only 25% of adults [2].

The current hypercholesterol treatments include low cholesterol diet, exercise, inhibitors of cholesterol adsorbtion, and inhibitors of cholesterol synthesis [3]. The most advanced anti-cholesterol drug against HMG-CoA reductase, statin family, showed undesirable side effects. Statins produce statin-induced myotoxicity (SIM) manifest with severe muscle weakness, muscle pain, and muscle tenderness [4]. In addition, HMG-CoA reductase inhibition prevents mevalonate synthesis which is imporant precursor for dolichol, ubiquinone, and RAS [5].

ISSN: 1411 3724

Currently, a promising strategy for blocking cholesterol synthesis is the development of inhibitor for Squalene synthase (SQS). SQS plays an important role as an enzyme for cholesterol biosynthesis which catalyzes the first step of the steroid synthesis pathway [6]. Clinical studies have shown that inhibition of SQS are effective in lowering serum cholesterol concentrations and LDL-C without interrupting isoprenoid production [7][8]. Moreover, SQS inhibitors have have fewer secondary effects than HMG-CoA reductase inhibitors[9] Due to its main role and strategic location in cholesterol synthesis, SQS is potential drug target for the treatment of cholesterol disease.

In order to design the new SQS inhibitors, in silico strategies is considered as the first step of drug development strategy. Huang et.al (2019) reported that three out of 373,782 inhibitors were identified as potential inhibitors of SQS using in silico screening and in vitro studies[6]. Other studies on traditional chinese medicine showed that cynarin, D99, and TAK-475 inhibitors had strong binding in the dynamic system with SQS protein (PDB ID: 3ASX) [7]. Most of these docking studies utilized blind docking. Blind docking, a method for ligand-protein binding prediction, can be used for mapping of drug development. A key advantage of blind docking is the capability to predict the binding without any prior knowledge of the target pocket [10]. However, limitations of blind docking are the unknown number of trials and energy evaluations. It is recommended that more than 100 times of trial, and 10 million energy evaluations [11]. Due to these limitation, therefore, in the in silico drug discovery, the identification of ligand-protein binding pocket is the first stage, followed by hit identification, lead optimization, and ADMET properties calculation [12][13]. Recently, docking protocol using known binding pocket increases accuracy and efficiency than blind docking only with the lower time of trial [14]. Thus, the present study aimed to determine the most potential pocket of squalene synthase for cholesterol synthesis inhibition.

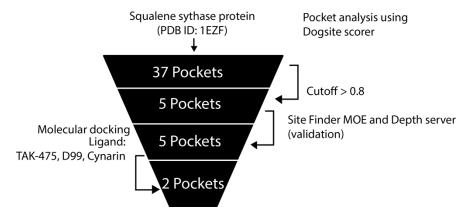
2. Method

2.1. Hardware, Software and Webserver

Personal laptop HP model 14-ck0011TU Intel® Celeron® N4000 CPU 1.1GHz, RAM 4.0 GB, Microsoft Windows 10 Pro 64-bit with internet connection. MOE 2009.10 software (Chemical Computing Group ULC). Webserver http://www.rcsb.org/pdb/, https://proteins.plus/, and http://cospi.iiserpune.ac.in/depth.

2.2. Material

Human squalene synthase (PDB ID: 1EZF) was obtained from the Protein Data Bank (PDB) database (http://www.rcsb.org/pdb/). Ligands structure of TAK-475, D99, and cynarine were retrieved from Pubchem database (https://pubchem.ncbi.nlm.nih.gov/) with the CID: 9874248, 54669582, and 5281769, respectively.


2.3. SQS Binding Pocket Analysis

To predict the binding pocket of human squalene synthase, we have performed the binding pocket analysis. Dogsite scorer server (https://proteins.plus/) [15], Site Finder MOE2009.10 software

[16], and Depth server (http://cospi.iiserpune.ac.in/depth) [17] were used to measure the volume, druggability, and polarity of the pockets.

2.4. Molecular Docking and Binding Analysis

To further identify the potential binding pocket for inhibitors of human squalene synthase, we have docked 1EZF with TAK-475, D99, and cynarine. Ligands were optimized using MOE 2009.10 [18]. Preparation of Human squalene synthase was carried out using MOE 2009.10 software. The native ligands and water molecules were separated from the human SQS structure (PDB ID: 1EZF) and optimized using current forcefield, adjust hydrogen and lone pairs, gradient 0,05, and forcefield partial charges calculation [19]. The docking study was performed by MOE 2009.10 software, which uses; triangle matcher with 2500000 iterations as placement, one-time rescoring, London dG, 100 repetitions for the first retain, and force field refinement [18] [19].

Figure 1. The protocol Utilized in this study for discovering potential pockets

3. Results and Discussion

Binding pocket determination is important to increases accuracy and efficiency in molecular docking. In this study, we analysed the drugability, volume, and polarity of pockets, and ligand-protein interaction to predict the potential binding pocket. SQS structure (PDB ID: 1EZF) was utilized to analyse the drugability, volume, and polarity of pockets. The cutoff of 0.7 was used for druggability score as the based on the average score [20].

Dogsitescorer result showed that there are seven pockets out of fifteen which have the drugable score > 0.70 and also have a high number of volume (Table 1), indicating discerning between the druggable and non-druggable pockets. The pocket volume increase with the increase of drugability (Table 1). Volume is important variable for druggable prediction, which is individually calculated using the number of volume grid points and grid spacing [21]. However, pocket 5 (P_5) having low pocket volume reached the highest drugability score. It might be due to the percentage of hydrophobic (nonpolar) area is higher than hydrophilic area, but not too different. A similar phenomenon in which SARS-Cov-2 S-glycoprotein binding pocket prediction has been reported previously [22]. Previous report highlighted that water molecules trapped inside the binding site is crucial for hydrophobicity and hydrophilicity of the binding site. Therefore, maintaining the water balance is important to ligand recognition.

Table 1. Potential binding pockets of Squalene synthase (PDB ID: 1EZF) based on Drugable score analysed by Dogsitescorer server

Pocket ^a	Drugable score	Volume (A ³⁾	Vonpolar (%)	Polar (%)	Charge (%)
P_5	0.84	536.59	46	40	14
P_0	0.83	768.73	48	22	30
P_1	0.83	731.62	45	24	31
P_2	0.81	609.07	64	28	8
P_3	0.80	560.22	58	35	8
P_4	0.79	541.14	60	32	8
P_6	0.75	523.64	37	19	45
P_7	0.66	306.72	35	40	25
P_12	0.63	211.83	62	31	8
P_11	0.62	237.40	32	42	26
P_9	0.60	278.89	23	69	8
P_10	0.60	266.81	69	31	0
P_8	0,59	298.49	65	29	6
P_13	0.54	211.48	33	47	20
P_14	0.43	206.58	33	33	34

^aPocket 1, Pocket 2, etc are shown as P 1, P 2, etc

In order to provide better discerning between the druggable and non-druggable pockets, we next utilized the pockets which have score ≥ 0.8 . Binding pocket analysis were confirmed using sitefinder MOE, and Depth. Table 2 showed that all the pockets have more hydrophobic residues rather than hydrophilic. Unlike P_0, P_1 and P_5, dogscorer and sitefinder analysis result on P_2 and P_3 were similar. Previous study revealed that the similarity results of the dogscore and sitefinder analysis result in better complex ligand and protein interaction [22].

To confirm the capability of pockets as binding pocket, we docked all five pocket with TAK-475, D99, dan cynarin ligand. H-bond residues for SQS were provided in Tables 3. We showed that there are more hydrogen bonds than hydrophobic interaction. Consistently, Ligand-OppA protein interaction was achieved by utilizing the hydrogen bonds and the electrostatic forces[23]. Moreover, other findings revealed that hydrogen bonds are considered as the main facilitators of protein-ligand interaction [24]. The present study showed that TAK-475 has the highest number of hydrogen bonds in P_3, while cynarin has high number of hydrogen bonds in P_1 and P_5. Taken together, these results suggest that P_2 and P_3 are potential as binding pocket. As the ligands are completely embedded within the pocket protein Figure 1, physiochemical properties of ligand are important to consider ligand-protein interaction. Both TAK-475 and cynarin have high number of hydrogen acceptors and donors, suggesting strong protein-ligand interactions due to physicochemical properties (Table 4). Our result is supported by a recent study showing that hydrogen acceptor and donor of the ligands are the main facilitators of ligand-protein interaction[22]. Therefore, physicochemical properties of ligand and pocket hydrophobicities are suggested as the main factor for the drug design of cholesterol disease.

Table 2. Residues of Amino Acid in binding pockets of SQS

Pocket ^a	Hydrophobicity			Charges		pecial charges
	Hydro	ophobic	Hydrophilic	(+) es	(-) es	_
	MET_B154 ^b	ILE_B217 ^c	GLN_B212	LYS_B160	GLU_B83	PRO_B232
	PHE_B157	TYR_B220	ASN_B215	HIS_B161	ASP_B84	
	LEU_B158	PHE_B230 ^d	GLN_B224	ARG_B22	ASP_B219	
P_0	VAL_B162	TRP_B231	GLN_B233	8	ASP_B223	
	TYR_B171	TRP_B236			GLU_B22	
	VAL_B175	LEU_B243			9	
	ILE_B216					
	MET_A86	VAL_A175	GLN_A212	LYS_A160	ASP_A80	GLY_A227
	MET_A150	ILE_A216	ASN_A215	HIS_A16	GLU_A83	PRO_A232
	MET_A154	TYR_A220	GLN_A224	1	ASP_A84	
D 1	PHE_A157	PHE A230	GLN_A233	ARG_A2	ASP_A21	
P_1	LEU_A158	TRP_A231		28	9 ACD A22	
	VAL_A162	TRP_A236			ASP_A22	
	TYR_A171	LEU_A243			3 GLU_A22	
					GLU_A22 9	
	PHE_C54	VAL_C179	SER_C184	ARG_C77	ASP_C80	.Y_C180GLY_
	ILE_C58	LEU_C183	GLN_C293	THEG_CTT	101_000	C208CYS_C
	VAL_C69	PHE_C187				289PRO_C2
	PHE_C72	ALA_C204				92
P_2	TYR_C73	MET_C207				
_	LEU_C76	LEU_C211				
	MET_C150	TYR_C276				
	VAL_C175	PHE_C288				
	ALA_C176					
	PHE_A54	VAL_A179	SER_A184	ARG_A77	ASP_A80	.Y_A177 <mark>GLY</mark> _
	ILE_A58	LEU_A183	GLN_A212			A180GLY_
	VAL_A69	PHE_A187	GLN_A293			A208CYS_A
P_3	PHE_A72	ALA_A204				289PRO_A2
_ -	TYR_A73	MET_A207				92
	LEU_A76	LEU_A211				
	VAL_A175 ALA A176	TYR_A276 PHE A288				
	PHE_A54	ILE_A291	ASN_A48	ARG_A52	GLU_B343	PRO_B332,
	ALA_A55	ALA_B333	GLN_A49	ARG_B36	GLU_D343	1 KO_D332,
	ALA_A56	ALA_B336	SER_A51	7 MCG_D30		
	VAL_A57	ILE_B337	SER_A53	HIS_B347		
	ILE_A58	TYR_B339	GLN_A283	1110_D0 17		
P_5	GLN_A59	MET_B342	SER_A284			
	ALA_A60	TYR_B346	ASN_A287			
	LEU_A61	ILE_B363	THR_A329			
	PHE_A288	ILE_B366	ASN_B330			
	_	_	GLN_B340			
			SER_B364			

^aPocket 1, Pocket 2, etc are shown as P_1, P_2, etc

^b residues with red colour = predicted by dogsitescorer and sitefindermoe

^cresidues with black colour = predicted by dogsitescorer only

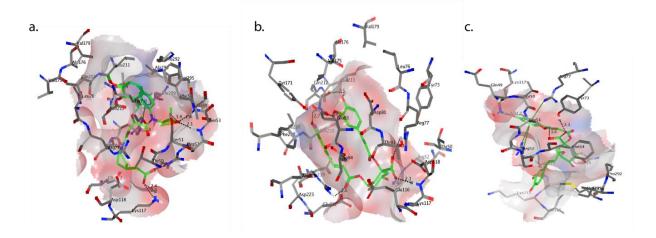

^dresidues with yellow highlight = predicted by dogsitescorer, sitefinder moe, and DEPTH server

Table 3. Binding energy and residues involved in ligands interaction

	Ligand	Binding energy	Residues involved			
Pocket			Hydrogen bond (distance A ⁰)	Hydrophobic interaction (distance A ⁰)		
	TAK-475	-17.1669	TYR_B171 (3.37) ARG_B228 (1.99)	ARG_B77 (3.00)		
D O	D99	-15.5290	TYR_B171 (3.06) ARG_B228 (2.05)	<u> </u>		
P_0 -	Cynarin	-16.1079	GLU_B116 (1.99) ASP_B219 (1.99) (1.99)	PHE_B230		
	TAK-475	-15.0187	ARG_A52 (2.02) ARG_A77 (2.04) LYS_A117 (2.57) GLN_A212 (1.84)	-		
D 1	D99	-12.6647	ARG_A77 (2.03) ASP_A219 (1.67)	PHE_A230		
P_1 -	Cynarin	-16.2647	THR_A81 (3.31) ASP_A118 (2.14) ARG_A228 (2.57) GLN_A212 (2.71)(2.54) GLU_A83 (2.23)	-		
	TAK-475	-17.3370	ARG_C52 (1.78) LYS_C117 (2.1)	-		
P_2	D99	-15.8893	ASN_C215 (2.71) LYS_C117 (1.97)	ARG_C52 (2.66)(3.16)		
	Cynarin	-16.3325	ARG_C52 (1.99) VAL_C69 (1.97)	-		
P_3	TAK-475	-14.8776	ASN_A215 (2.59) SER_A51 (3.41) PHE_A54 (1.83) SER_A53 (2.05) ARG_A52 (1.92) LYS_A117 (2.43)	ARG_A218		
	D99	-13.5409	ARG_A52 (1.93) LYS_A117 (2.2)	-		
	Cynarin	-16.0648	SER_A53 (2.29) TYR_A73 (3.46) ARG_A77 (2.38)	-		
P_5	TAK-475	-12.3923	SER_A53 (3.35)	ARG_A52 (3.01)		
	D99	-12.7368	ARG_A52 (1.89) ARG_A218 (2.29) LYS_A117 (2.32)	ARG_A218		
	Cynarin	-14.7047	LYS_A117 (4.98)(2.19) SER_A51 (3.56) TYR_A73 (2.13)	ARG_A52, ARG_A77		

Table 4. Physiochemical properties of ligan

No	Ligan		Properties	
No		MW	H Acceptor	H Donor
1	TAK-475	645.1	9	1
2	D99	549.5	5	2
3	Cynarin	516.4	12	7

Figure 2. SQS Local Structure of the Docking Complexes: a) TAK-475 with P_3, Cynarin with b) P_1 and c) P_5

4. Conclusion

In conclusion, we have identified two SQS hydrophobic pocket (P_2, and P_3) as potential binding pocket. The findings from molecular docking demonstrated that TAK-475, D99, and Cynarin inhibitors are embedded on the P_2 and P_3 of SQS. Complex of inhibitors and P_3 has lower binding energy and higher hydrogen bond than that and P_2 of SQS. These findings provide promising alternative to design anti-cholesterol.

5. Acknowledgment

We thank LP2M Universitas Negeri Padang for supporting this research by a Grant- in- Aid for Penelitian Unggulan Perguruan Tinggi (Grant Number: 1431/UN35.13/LT/2020).

References

- [1] Dietschy J M and Siperstein M D 1967 Effect of cholesterol feeding and fasting on sterol synthesis in seventeen tissues of the rat. *J. Lipid Res.* **8** 97–104
- [2] WHO Raised cholesterol: Situation and trends
- [3] Sando K R and Knight M 2015 Nonstatin therapies for management of dyslipidemia: a review. *Clin. Ther.* **37** 2153–79
- [4] Souich P du, Roederer G and Dufour R 2017 Myotoxicity of statins: Mechanism of action *Pharmacol. Ther.* **175** 1–16
- [5] Mil A H M van, Westendorp R G J, Bollen E L E M, Lagaay M A and Blauw G J 2000 HMG-CoA Reductase Inhibitors in the Prevention of Stroke *Drugs* **59** 1–6
- [6] Huang H, Chu C L, Chen L and Shui D 2019 Evaluation of potential inhibitors of squalene synthase based on virtual screening and in vitro studies *Comput. Biol. Chem.* **80** 390–7
- [7] Chen Y, Chen X, Luo G, Zhang X, Lu F, Qiao L, He W, Li G and Zhang Y 2018 Discovery

- ISSN: 1411 3724
- of Potential Inhibitors of Squalene Synthase from Traditional Chinese Medicine Based on Virtual Screening and In Vitro Evaluation of Lipid-Lowering Effect *Molecules* **23** 1–18
- [8] Do R, Kiss R S, Gaudet D and Engert J C 2009 Squalene synthase: A critical enzyme in the cholesterol biosynthesis pathway *Clin. Genet.* **75** 19–29
- [9] Charlton-Menys V and Durrington P N 2007 Squalene synthase inhibitors: Clinical pharmacology and cholesterol-lowering potential *Drugs* **67** 11–6
- [10] Hassan N M, Alhossary A A, Mu Y and Kwoh C-K 2017 Protein-Ligand Blind Docking Using QuickVina-W With Inter-Process Spatio-Temporal Integration *Sci. Rep.* **7** 15451
- [11] Hetényi C and van der Spoel D 2009 Efficient docking of peptides to proteins without prior knowledge of the binding site *Protein Sci.* 11 1729–37
- [12] Kumar P and Ghosh I 2019 Application of In Silico Drug Repurposing in Infectious Diseases pp 427–62
- [13] Bianchi V, Gherardini P F, Helmer-Citterich M and Ausiello G 2012 Identification of binding pockets in protein structures using a knowledge-based potential derived from local structural similarities *BMC Bioinformatics* **13** 1–13
- [14] Ghersi D and Sanchez R 2009 Improving Accuracy and Efficiency of Blind Protein-Ligand Docking *NIH Public Access* **74** 417–24
- [15] Fahrrolfes R, Bietz S, Flachsenberg F, Meyder A, Nittinger E, Otto T, Volkamer A and Rarey M 2017 ProteinsPlus: a web portal for structure analysis of macromolecules *Nucleic Acids Res.* **45**
- [16] C.C.G inc 2009 MOLECULAR OPERATING ENVIRONMENT
- [17] Tan K P, Nguyen T B, Patel S, Varadarajan R and Madhusudhan M S 2013 Depth: a web server to compute depth, cavity sizes, detect potential small-molecule ligand-binding cavities and predict the pKa of ionizable residues in proteins *Nucleic Acids Res.* **41** 14–21
- [18] Amelia F, Iryani, Sari P Y, Parikesit A A, Bakri R, Toepak E P and Tambunan U S F 2018 Assessment of Drug Binding Potential of Pockets in the NS2B/NS3 Dengue Virus Protein *IOP Conf. Series: Materials Science and Engineering* (IOP Conf. Series: Materials Science and Engineering) p 349
- [19] Iryani, Amelia F and Iswendi 2018 Active sites prediction and binding analysis E1-E2 protein human papillomavirus with biphenylsulfonacetic acid *IOP Conf. Series: Materials Science and Engineering* (IOP Publishing)
- [20] Schmidtke P and Barril X 2010 Understanding and Predicting Druggability. A High-Throughput Method for Detection of Drug Binding Sites *J. Med. Chem.* **53** 5858–5867
- [21] Volkamer A, Kuhn D, Grombacher T, Rippmann F and Rarey M 2012 Combining global and local measures for structure-based druggability predictions. *J. Chem. Inf. Model.* **52** 360–72
- [22] Amelia F, Hidayat B and Iryani 2020 Hydrophobic Pocket of SARS-Cov-2 Spike Glycoprotein are Potential as Binding Pocket 1st ICChSE IOP Conf. Series: Journal of Physic (inpress)
- [23] Murshudov G N, Dodson E J, Neil T K, Dodson G G, Higgins C F and Wilkinson A J 1994 The structural basis of sequence-independent peptide binding by OppA protein *Science (80-.).* **264** 1578–81

[24] Salentin S, Haupt V J, Daminelli S and Schroeder M 2014 Polypharmacology rescored: Proteineligand interaction profiles for remote binding site similarity assessment *Prog. Biophys. Mol. Biol.* **116** 1–13