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Quantization of Open Systems and
the Quantum—Classical Transition

Department of Physics, Waseda University, Tokyo 169-8555, Japan
Ichiro Ohba! and Yukihiro Ota?

BWZRICBWT, EDXSICET-HHEFBOEEHNERL L TV 2N I ERYHEZEORBR
FEDU L DTHS. TZ TiE Markov ICKIRET 2BV R2H S &b —RAERHEADOT
& D Gorini-Kossakowski-Sudarshan & Lindblad (GKSL) O~ X X2 —A A KU ZN7Z unravel
L7z quantun state diffusion (stochastic Schrodinger equation) IC#EHLL %A%, Lindblad E#E
FOR, TOWENERICHNS. BFHE, BRICDOVWT, EFIUCKDEND, ZO&F-
HHEHOEAKFIZIERT 5.

1 Introduction

The quantum-—classical correspondence (QCC) is a fundamental problem in quantum mechan-
ics, but particularly, in a chaotic system, this correspondence is still unclear. While various
studied have been done in Hamiltonian chaotic systems fruitfully, dissipative quantum chaos,
where a definite Hamiltonian does not exist, has scarcely been analysed. Recently, we [1] stud-
ied the QCC for the quantum version of the Duffing oscillator, which is a nonlinear dynamical
system with dissipation and external periodic force, assuming that the system evolves accord-
ing to the Gorini-Kossakowski-Sudarshan-Lindblad (GKSL) master equation (2, 3]. The GKSL
master equation is a general expression for nonunitary Markovian dynamics. Both the positivity
and the trace of the density matrix are preserved as long as the system evolves according to it.
The effect of dissipation is represented by a set of operators, Lindblad operators. However, it
is difficult to derive the relationship between the form of Lindblad operators and a dissipative
phenomenon in the microscopic model in which the system concerned is a nonlinear dynamical
one and the interaction between the system and the environment is complex. In this report,
we discuss the classification of Lindblad operators through an effective model for open quantum
systems with nonlinear dynamics.

2 The QCC in the Duffing oscillator

First, we review the QCC in the Duffing oscillator described by a following classical equation
of motion: m& + 2ym& + mw3a3 /12 — mwir = mwilgcos(wt), where | characterizes a size
of the system. It is known that if one choose a set of dimensionless parameters, (T, g, Q) =
(v/wo, g, w/wp) = (0.125, 0.3, 1.00), a classical chaotic motion occurs in the Poincaré surface. In
the following, we discus the quantum version of Dufling oscillator. We assume that the reduced
density matrix p evolves by the GKSL master equation: p = —£[H, p]+LpL' - %ﬁf)p—— %pf)TL.
We guess the Hamiltonian H (H! = H) and the Lindblad operator L phenomenologically
and analyze the system by the use of an unraveled form of the master equation, the quantum
state diffusion (QSD) {4], for discussing the QCC. It is convenient to define a scaling parameter
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= +/h/Sy, where Sy = ml2wyq is a characteristic action of the system. We can suppose that
the region of § ~ 0 corresponds to a classical case and the region of § ~ 1, to a quantum case.
What phenomena can occur between classical- and quantum—region? We investigate the system
as 3 goes from 0 to 1 with fixed Sp. To analyze the difference in temporal behavior for two
different initial conditions, we calculate the following quantity: A(r) = % Z (1,2} {5Q12

§P1o(T)? }2, where 6Q15(7) = ’I‘r{Qpl T) — T.r{ng 7)}, 6P1a(T) = Tr{Ppl )} - Tr{Ppg }
and dimensionless variables Q = &/l, P = p/mlwy, and 7 = wyt. The canonical commutation
relation is [Q, P] = 782 for the dimensionless variables. The two matrices p1(7) and pa(r) evolve
from different initial states p1(0) and p(0), respectively. Hereafter, we assume that p;(0) =

las){es| (i =1, 2), where a; = V2((Q)i(0) +1 (P)i(0)) = VA(Tr{Qpi(0)} + i Tr{Ppi(0)}). The
calculation of A(7) is similar to the derivation of a Lyapunov exponent in classical mechanics.
In order to determine H and L, we require a reproduction of the equation of motion with
respect to the expectation values for Q and P: H = Hp + Hg + Hem, L=vT (Q +1 P) where
Hp = P2/2 + 32Q*/4 — Q?/2, Hr = T(QP + PQ)/2, Hey = —gQ cos(Qt)/8. We choose the
parameters, (I', g, ) = (0.125, 0.3, 1.00). Before performing simulation, we have to determine
a suitable value of e = A(7 = 0). If two points in the phase space coexist inside the same Planck
cell, they are not distinguishable each other. The size of the Planck cell is determined from the
commutation relation [Q, P] = [Z, $]/So = 43%. The Planck cell has a volume AQAP = % 3% in

the scaled phase space and has a linear size of effective Planck cell 8 in (Tr(Qp), Tr(Pp))-plane.
With the fixed S the smaller 32 corresponds to the smaller (= 3250). We adopt two choices:
(1) e = 0.01 (two points are distinguishable only for classical region (8 = 0.01)) and (2) e ~
(they are distinguishable for all Gs).

We reproduced results similar to those of Ref. [5] for the constant phase maps and verified the
existence of the strange attractor in the Poincaré surface. We show the results of simulation of
A(7) in case(1) (Fig. 1) In Fig. 1.(a), we see an exponential increase of A(7), which is a charac-
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FIG. 1: The time evolution of A(7) with € fixed as 0.01. The quantities plotted are dimensionless
by definition. The complex Wiener process is used in the QSD. Figures (a) and (b) are obtained
with a single realization of the complex Wiener process for each initial condition (20 samples).
Figures (c)—(d) are obtained by averaging over 100 realizations of the complex Wiener process
for each initial condition (10 samples). Figures (a), (b), (c), and (d) are for § = 0.01, 0.10, 0.40,
and 1.00, respectively.

teristic behavior of chaos and corresponds to the fact that the maximum Lyapunov exponent is
positive in classical chaotic systems. We find very different behavior between (b) and (c)-(d),
where each pair of initial two points is within the same Planck cell and they are indistinguish-
able. However, there remains the remnant of chaotic dynamics for 8 = 0.10(b) and more or less
up to 8 = 0.40(c). On the otherhand, chaotic dynamics is completely lost for § = 0.40, and
1.00. This observation suggests that the crossover from classical to quantum behavior exists
around ~ 0.40. Let us show the results for case(2) € ~ 3, where initial two points are separated
by the effective Planck cell size: A(r) for 8 = 0.10, 0.40, 0.60, 1.00, 1.50, and 2.00. We also find
an exponentially increasing behavior in Fig.2(a) for § = 0.10. While in Figs. 2(b)—(f) except
for a very short period after the starting time, A(7) for each 8 decreases for some duration
and tends to approach Agsymp. This observation also suggests our issue that the crossover from
classical to quantum behavior exists around ~ 0.40. Now let us call the region of 3 > 1 the
deep quantum region. We analyze the behavior of A(7) in this region. First we estimate 7o
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FIG. 2: The time evolution of A(7) with € = 3. The quantities plotted are dimensionless by
definition. The complex Wiener process is used in the QSD. The asymptotic value of A(7),
Agsymp, is indicated by the dotted line. The right-hand side of Eq. (??), D(7), is expressed by
the broken dotted line. Figure (a) is obtained with a single realization of the complex Wiener
process for each initial condition (20 samples). Figures (b)—(f) are obtained by averaging over
100 realizations of the complex Wiener process for each initial condition (10 samples). Figures
(a), (b), (¢), (d), (e), and (f) are for 8 = 0.10, 0.40, 0.60, 1.00, 1.50, and 2.00, respectively.

which is the time for when the value of A(7) becomes smaller than the size of effective Planck
cell. Using these data, the upper bound for A(7) is expressed by a equation derived from QSD,

_1

A(r —79) < {(1 + —ﬁ%) e(r=70) _ 1} *, which is shown by the broken dotted line in Fig. 2.

We find in the case of 8 > 1 this inequality gives a good approximation of the upper bound.
Finally we remark that while, in case of Sy > A, the existence of dissipation is very important

for occurrence of chaotic dynamics, in case of Sy ~ / < £ (in quantum and deep quantum

cases) effect of dissipation suppresses even the occurrence of chaotic behavior.

3 Some consideration of Lindblad operators

In this section, we show some trials to inquire the source of Lindblad operator, based on the
method of Ref. [6]. We assume that a total system is closed and consists of (system)+(environment)
with coupling between two systems represented by an extra stochastic force. This force is mod-
eled by a bosonic field.

First, we consider a particle in a one-dimensional potential ®(z). The classical equation
of motion is p(t) = —®'(z) — f(t) and &(t) = Lp(t), where ft) = ih\/g(&(t) — af(t)),
[a(t), at(t")] = &(t — t'), and [a(t), a(t')] = 0. We quantize z(t) and p(t) by the canoni-

~

cal commutation relation, [£(¢), p(t)] = th. Then, the Heisenberg equation becomes dp(t) =
~92| dt - m\/g(d/i — dA"), dA = adt, and di(t) = Lp(t)dt. It is easy to check that
((dp)?)o = ’\Thzdt, where ( )p means an expectation value with respect to a vacuum state of
operator a. If an operator 2 = 2(Z(t), p(t)) is an arbitrary polynomial of & and p, then we obtain
the Heisenberg equation of 2 as d2 = {—%’ [2, £y @} — 33, &), 55]} dt — V2XRe{[2, ]dA}.
We can change it to the Schrodinger picture Tr(25(t)) = Tr(2(t)4(0)), using a density matrix
p(t), dp(t) = {—% {p(t) 2oy @} — 2[1A(1), 4], aﬁ]}dt. This is the GKSL master equation of

> 2m
continuous measurement process with Lindblad operator .
Next, we consider the Hamiltonian, Hine = —z4 f(t), with 4 = x + ¢p. From the Heisenberg
equation, dp(t) = —22|. — ih\@ (dA — dAY), dA = adt, and di(t) = Lp(t) + h\/§ (dA — dAY).
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We obtain the time evolution of operator (t), dz = {—% {z, >+ <I>] — 22, #4], x+]}dt -
52

V2XRe{[2, #,]dA} and master equation of this system, dj(t) = —£[p(t), & + ®dt — 2

x [[6(t), £+], £4+]dt. In this case the Lindblad operator is Z .

R Furthnermorq, we consider A certain type of kicked top with dissipation. The Hamiltonian is
H=aJ,+ %Jg F(t), F(t) =) ,2_.0(t—n). Let us bosonize this system using the following

correspondence: (&% + af?) < n,fw, £(@? —al?) o Jys (28282 +1) Jx, with the
usual commutation relations, [4, af] = 1, [#, p] = i, where & = %(& +al) p = ﬁ(d —ah).
Substituting & and &' for J; and #, p by order, we obtain a Hamiltonian, H = % (*”2—2 + %) +
%K’ &, P)F (), K(&,p) = {3(2% - 132)}2. Based on the Heisenberg equations derived from
the Hamiltonian, we can assume stachastic equations, dp = —§&dt — % (%—Iaf)fc,;a,w F(t)dt +
z\/g (dA—dAY), di = Shdt+ —2’\3 (%) W F(t)dt. Then the time evolution of arbitrary operator
% is determined by the equation, dz = —i[2, H]dt — 2([2, ], £]dt — \/é 2, 2](dA — dA?). Finally
we obtain a continuous measurement of kicked quantum top, ‘fi; = —i[H, p] + 1(28p2 — p&* —
#2p). Mapping the variables back to top, the Hamiltonian is expressed as follows: H=oal,+

FJ2F(), 2 =3@+al ) =J+J +2/, ¢= sa+ah) = \Jr +J-+2J,.

4 Concluding remarks

First we simulated the quantum version of a dissipative chaotic system using the QSD (stochas-
tic Schrodinger eq) and found the crossover from classical to quantum behavior in the quantum
version of the Duffing oscillator through the analysis of A(7). This analysis is expected to be an
effective one for investigating the QCC in the dissipative chaotic systems. The QSD is powerful
to analyse quantum open systems.

Secondarily we presented some trials to make physical explanation of Lindblad operators.
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