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Quantum Level Statistics of Gaussian Ensembles in

One-Dimensional Conservative System

Mitsuyoshi Tomiya, Shoichi Sakamoto, Department of Applied Physics, Seikei University
Naotaka Yoshinaga, Department of Physics, Saitama University
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One-dimensional (1D) time-independent system with a particle, e.g. an electron, is studied.
The system has one degree of freedom and one constant of motion, the Hamiltonian: H=const. It
means that the 1D system is integrable [1]. On the other hand it was argued more than a decade
ago [2] that a numerical calculation could construct the potential for the Hamiltonian system which
has eigen-energies of the finite dimensional Gaussian orthogonal ensemble (GOE) matrices.
1D Schrddinger equation with a potential ¥(x) is written as

(-3t V) )ple)=es ) o

where the potential is yet to be constructed. Note that we put the dimensionless unit: m=ha=0.
In this work we numerically construct the 1D potential whose level statistics becomes
indistinguishable from that of the GOE-type systems.

The iterative numerical method which was used in Ref.[3] is applied. It is based on the
standard gradient method. This is simple and practical enough to create the potential for more than
1000 given eigen-energies [2-4].

Here we also apply new method that is called the dressing method [5]. It is very powerful
and it can calculate the potential with more than thousands energy levels. We can add the levels that
are to be the eigen-value of the potential one by one. To construct the potential function of the 1D

Schrbdinger equation with the series of the energy levels {e, (x)} (i =1,2,---,N), we just prepare

some initial potential ¥(x) at first. If we can V() V(®
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Fig.1: The constructed potential ¥(x) for reproducing
1000 energy levels of the GOE matrix. (a) V(x) is
plotted in whole range |x|<40. (b) V(x) is plotted for
[x| <20 to show its details.

Then e, becomes the eigen-value of the 1D

Schrédinger equation with the potential #(x).
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We use both methods and check that the resulting potentials are indentical, considering the
precision of the calculation. The resulting potential ¥(x) is shown in Fig.I. The coarse averaged
shape is a harmonic oscillator and there are oscillating ripples on it expectedly. We apply the
unfolded GOE spectrum whose averaged density becomes unity. The oscillation has larger

amplitude and finer structure near the origin: x ~ 0. The more target eigen-energies e, we adopt,

the wider range of the potential has the oscillation.

The fractal dimension of the shape of the potential is evaluated, using the box counting
method [6]. Fig.2 shows that fractal dimension is 1.7 and in the range where the box size is too
small, the dimension reduces to one discontinuously. The bending point moves to the region where
the size of counting boxes is smaller. It means that larger number of eigen-energies we use, more
finer ripples exists on the shape of the potential as the Fourier analysis [4]. It also implies that the
potential of the chaotic eigen-energies at N —> 0 becomes completely fractal.

Note that the method creates symmetric
potentials with respect to the origin. We also check ' )
the universality of the fractal dimension, changing \ y = ~11535x + 5 361
the GOE spectrum. Thus the fractal structure is the \h"".. $
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fundamental nature of our 1D system. Its %x,,xmx:. %

discontinuous derivative ensures smaller and smaller xxxx**xxx Ty :

dents in the potential. The wave functions in higher s X100 e e }
energy regime can be virtually localized and it s ¥-500 x z
would weaken the repulsion between energy levels. x N=100 3
It allows smaller energy gaps, which never happens 2
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in the one-dimensional system, possible. The path rogt

integral interpretation of quantum mechanics tells us

g P X 4 ] L. Fig.2: The logarithm of the number of the counting
that there cannot exit the shortest classical periodic | . n(L) is plotted against the logarithm of the
orbit if the system follows the RMT predictions for  box size L for N=100, 250, 500, 750, 1000. The
the level statistics [7]. However, finer ripples can  absolute values of the gradients of the fitted lines
create the local minima of the potential here and ~ represent the fractal dimension.
there, where smaller and even infinitesimal classical _
orbits can exist. Then our calculation shows that the 1D system which is still mathematically
integrable can imitate the chaotic energy levels, if the fractal structure infinitely continues toward

smaller scale.
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