
Title Stabilizing Function of the Musculoskeletal System for
Periodic Motion

Author(s) Sugimoto, Yasuhiro; Aoi, Shinya; Ogihara, Naomichi;
Tsuchiya, Kazuo

Citation ADVANCED ROBOTICS (2009), 23(5): 521-534

Issue Date 2009

URL http://hdl.handle.net/2433/109954

Right © Koninklijke Brill NV, Leiden and The Robotics Society of
Japan, 2009

Type Journal Article

Textversion publisher

Kyoto University

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kyoto University Research Information Repository

https://core.ac.uk/display/39240685?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Advanced Robotics 23 (2009) 521–534
www.brill.nl/ar

Full paper

Stabilizing Function of the Musculoskeletal System for
Periodic Motion

Yasuhiro Sugimoto a,∗, Shinya Aoi b, Naomichi Ogihara c and Kazuo Tsuchiya d

a Department of Mechanical Engineering, Kobe University, 1-1 Rokkoudai-cho, Nada,
Kobe 657-8501, Japan

b Department of Aeronautics and Astronautics, Graduate School of Engineering, Kyoto University,
Yoshida-honmachi, Sakyo, Kyoto 606-8501, Japan

c Laboratory of Physical Anthropology, Graduate School of Science, Kyoto University,
Kitashirakawa-oiwakecho, Sakyo, Kyoto 606-8502, Japan

d Department of Energy and Mechanical Engineering, Faculty of Science and Engineering,
Doshisha University, YM420, 1-3 Tatara Miyakodani, Kyotanabe City, Kyoto 610-0321, Japan

Received 7 November 2008; accepted 24 December 2008

Abstract
Animals generate various motions by cooperatively manipulating their complicated and redundant mus-
culoskeletal systems controlled by the nervous system. To reveal the mechanism with which a steady
movement is generated, much research has been performed that shows that musculoskeletal properties
themselves can stabilze motion without a sensory feedback system if the muscle architecture and the parallel
elastic elements within a muscle are tuned appropriately. In this paper, we show that the condition of stability
is greatly eased by limiting the targeted movement to the periodic motion. The force–velocity relationship,
which is one of the most famous properties of muscle, plays a decisive role in realizing the self-stabilizing
ability of the musculoskeletal system.
© Koninklijke Brill NV, Leiden and The Robotics Society of Japan, 2009
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1. Introduction

Animals, including humans, achieve various movements by skillfully and cooper-
atively moving their redundant and complex musculoskeletal system. These move-
ments are undoubtedly ruled by nervous systems in the brain and/or the spinal cord.
To clarify the mechanism of generation and the control of movement with the ner-
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vous system, recently research on ‘system biomechanics’ has started in which the
musculoskeletal system model and the neural network model in the spinal cord
and/or the brain are integrated.

In this system biomechanics research, Loeb coined the term ‘preflex’ [1], which
mean the zero-delay, intrinsic response of the neuromusculoskeletal system to a
perturbation. In the feedback loop of neural networks, a time delay caused by neu-
rotransmission or information processing, etc., inevitably exists. Therefore, using
only the feedback control of neural networks, it might be very difficult to realize
stable motions, especially to realize fast movements. Although many researchers
have tried to clarify how a feedforward control system based on an internal model
realized in the nervous system has been achieved, some researchers have also
tried to reveal how the ‘preflex’ properties of musculoskeletal systems contribute
to the stability of movements [2–5]. By using a very simple model intended for
human bending and stretching exercises, Wagner and Blickhan derived a condi-
tion in which the movement driven by the muscle stabilized and showed that the
musculoskeletal system had ‘self-stability’ to some extent, i.e., if the structure of
a musculoskeletal system and a muscle viscoelasticity element are appropriately
adjusted, the movement of the musculoskeletal system can be stabilized without
feedback from the nervous system [4].

There are also various periodic motions such as walking, swimming, flapping and
breathing in the movements of animals. As these movements are basically steady
motions, it is desirable if the musculoskeletal system has good properties for peri-
odic motions from the viewpoint of a control theory. It is common knowledge that
a decerebrate cat can walk on a treadmill [6]. This means that a periodic motion can
be generated merely by a relatively low level of the neuro-musculoskeletal system.
From the above facts, the self-stability of the musculoskeletal system is considered
more important for periodic movements than for other voluntary movements.

In this paper, by limiting the target motions to periodic motions and using the
Floquet theorem, we derive an eased stability condition compared to previous work.
The derived condition is considered from the viewpoint of physiology.

This paper consists of five sections. After the Introduction in this first section,
Section 2 describes the model of the musculoskeletal system. In Section 3, the sta-
bility criteria for periodic motions are derived. In Section 4, the interesting property
in the derived condition for stability is described and how stability criteria changes
when the musculoskeletal system changes is discussed. Finally, Section 5 presents
the conclusion.

2. Model of the Musculoskeletal System

2.1. Skeletal Model

The linkage model that we consider is shown in Fig. 1. It is composed of two mass-
less segments (thigh and shank), a point mass m that represents the body and a
muscle (knee extensors). In this paper, we examine the vertical oscillations of this
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Figure 1. Geometric model of the knee joint. lo, lu: length of the thigh and the shank; ko, ku: length of
the extensor from attachment to the middle of the patella to its insertion; r : distance between the center
of rotation and mid-patella to its insertion; m: body mass; X: vertical displacement of the location of
the hip.

model that are generated by bending the knees. It is considered that this motion sim-
ulates the human knee-bending motion. For simplicity, we assume that the hip does
not move horizontally, i.e., it only makes a vertical one-dimensional movement.

Let the position (vertical displacement) of the hip be X, its velocity be V = Ẋ,
the length of the muscles be lm and the shortening velocity of muscle be vm = −l̇m.
The moment arm of the knee joint r is assumed to be constant.

The geometric transformation between ground reaction force F(X,V ) and mus-
cle force fm(t,X,V ) for vertical movements can be described by function G(X):

F(X,V ) = G(X)fm(t,X,V ) (1)

G(X) = r sinα

lolu sinβ
X, (2)

where:

β = 2α + arcsin

(
r

ko
sinα

)
+ arcsin

(
r

ku
sinα

)

X =
√

l2
o + l2

u − 2lulo cosβ.

These formulations can be derived with the geometric restraints and the balance of
moments. Refer to Refs [4, 7] for the detailed devivation of these equations.

Note that inequality G(X) > 0 always exists for the range of the movement of
the knee joint (0 < α < π and 0 < β < π).
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With the same function G(X), the relationship between V and vm can be written
as:

V = 1

G(X)
vm. (3)

2.2. Muscle Model

The important factors for the force development of a muscle are contraction veloc-
ity vm and activation function E. In this paper, as a force developing model, we
adopt the following model described by the product of the simplest muscle model
(the Hill-simple [8]) and activation function E (0 � E(t) � 1):

fm(t,X,V ) = E(t)fH(X,V ). (4)

For concentric contrations, the relationship between force and velocity of muscle
fH(X,V ) is:

fH(X,V ) = c

vm(X,V ) + b
− a ∀vm � 0. (5)

For eccentric contrations:

fH(X,V ) = C

vm(X,V ) − B
+ A ∀vm < 0. (6)

Both parameters a, b, c and A,B,C in (5) and (6) are determined experimentally
[7, 9]. Thus, accurately, model fH(X,V ) becomes a different model based on the
sign of vm. However, for the following discussion, it is assumed to be continuous
close to vm = 0 (Fig. 2).

There is one very important property of fH(X,V ). From (3), (5) and (6), and the
fact that c and C are always positive, fH(X,V ) is monotonically decreasing, i.e.:

∂fH(X,V )

∂V
< 0, (7)

is always satisfied. This fact should be remembered because it plays a crucial role
in the following discussion.

Figure 2. Example of Hill-type force–velocity relation. fiso is the isometric force of muscle.
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2.3. Dynamic Equation

With the geometric function G(X) and the muscle model fm(t,X,V ), the dynami-
cal equation of the system can be described as:

1

dt

(
X

V

)
=

(
V

1

m
G(X)fm(t,X,V ) − g

)(
V

M(t,X,V )

)
, (8)

where g is the gravitational acceleration and M(t,X,V ) = 1/mG(X)fm(t,X,

V ) − g.

3. Stability Criteria for Periodic Motion

In previous work [4], a linearized system of (8):

1

dt

(
X

V

)
=

(
∂V
∂X

∂V
∂V

∂M
∂X

∂M
∂V

)(
X

V

)
=

(
0 1
a2 a1

)(
X

V

)
, (9)

was derived first and the eigenvalues of the Jacobian were derived. Then, from the
condition that all these eigenvalues become negative, the stability condition of the
system was derived:

a1 < 0 a2 < 0. (10)

With this condition, various discussions were carried out. Here,

a1 = ∂

∂V

(
1

m
G(X)fm(t,X,V )

)
(11)

a2 = ∂

∂X

(
1

m
G(X)fm(t,X,V )

)
, (12)

and the activation function of muscle E(t) was assumed to be sufficient to generate
a prescribed movement and no delay was assumed in the signal transmission.

In this paper, by limiting target motions X̃ to periodic motions, we try to ease the
stability condition (10) with the Floquet theorem.

The eased condition of stability is given by the following theorem.

Theorem 1. System (9) becomes stable for periodic motions if and only if:∫ T

0
a1(t)dt < 0 ⇐⇒

∫ T

0

(
∂

∂V

(
1

m
G(X)fm(t,X,V )

))
dt < 0. (13)

Proof. Let the one of the periodic solution of (9) whose period is T be:

�1 = (θ(t), θ̇ (t))T ,

where θ(t) = θ(t + T ) and �1 is not identically zero, i.e., θ(t) �≡ 0 and θ̇ (t) �≡ 0,
and θ(t) > 0 can be assumed from the fact X > 0.
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With u(t) and v(t), the another solution �2, which is linealy independent of �1,
can be written as:

�2 = (
u(t)θ, v(t)θ̇

)T
. (14)

From the fact that �2 is the solution of (9):

u̇θ + uθ̇ = vθ̇ (15)

v̇θ̇ + vθ̈ = a2uθ + a1vθ̇, (16)

can be derived. As �1 is also the solution of (9):

θ̈ = a2θ + a1θ̇ , (17)

can be derived. By eliminating v from (15) and (16):

2u̇θ̇ + θü + uθ̈ = a2uθ + a1(uθ̇ + θu̇). (18)

By substituting (17) into (18):

ü = a1u̇ − 2u̇
θ̇

θ
, (19)

can be derived.
From (19), u(t) and u̇(t) can be described as follows:

u̇(t) = C2e
∫ t

0 (a1(s)−2θ̇ (s)/θ(s))ds

= C2e
∫ t

0 −2θ̇ (s)/θ(s)ds · e
∫ t

0 a1(s)ds

= C2
1

θ(t)2
e
∫ t

0 a1(s)ds (20)

u(t) = C1 +
∫ t

0

C2

θ(ξ)2
e
∫ ξ

0 a1(s)ds dξ. (21)

From (20) and (21), v(t) can be derived as:

v(t) = C1 +
∫ t

0

C2

θ(ξ)2
e
∫ ξ

0 a1(s)ds dξ + C2
1

θ(t)θ̇(t)
e
∫ t

0 a1(s)ds . (22)

Therefore, the basic solution Y(t) for the system (9) can be derived as:

Y(t) =
(

θ(t) Y1(t)

θ̇ (t) Y2(t)

)

Y1(t) = θ(t)

(
C1 +

∫ t

0

C2

θ(ξ)2
e
∫ ξ

0 a1(s)ds dξ

)

Y2(t) = θ̇ (t)

(
C1 +

∫ t

0

C2

θ(ξ)2
e
∫ ξ

0 a1(s)ds dξ

)
+ C2

θ(t)
e
∫ t

0 a1(s)ds .
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The period matrix is U = Y(T )Y (0)−1 and then the eigenvalues of U become
Floquet multipliers. These values can be calculated directly from Y(t), Y1(t) and
Y2(t) as:

1, e
∫ T

0 a1(t)dt . (23)

These values are also the eigenvalues of the Poincare maps of the system (9).
The eigenvalue 1 in (23) corresponds to the eigenvector which is tangent to the

periodic orbit. Then, the magnitude of the lest of eigenvalue has to be smaller than 1
to be the periodic motions of the system (9) orbital stable.

From the above, we can conclude that periodic motions of the system (9) become
orbital stable if and only if:

e
∫ T

0 a1(t)dt < 1 = e0 ←→∫ T

0
a1(t)dt < 0 ←→

∫ T

0

(
∂

∂V

(
1

m
G(X)fm(t,X,V )

))
dt < 0.

Remark 1. Mathematically, the above discussions are valid for any periodic mo-
tions. However, from a physiologic viewpoint, they becomes significant only when
a periodic motion is feasible for the system. That is, only a periodic motion where
activation function E(t), which can achieve the movement that exists under the
condition 0 � E(t) � 1, is intended.

4. Discussion

4.1. Physiological Meaning of the Eased Condition

We proved that the stability condition (10) in the previous work can be eased to
condition (13) by limiting the target motion to periodic motions. In particular, it is
noted that the condition concerning a2 is eliminated in our result (13). For example,
from the condition concerning a2 in (10), we get:

1

m

(
∂G(X)

∂X
fm + G(X)

∂fm

∂X

)
< 0 ←→

∂G(X)

∂X
fH + G(X)

∂fH

∂X
< 0 ←→

∂fH

∂X
< − 1

G(X)

∂G(X)

∂X
fH,

because m > 0, E > 0 and G(X) > 0. The right-hand side is negative because all
the terms included are positive. Therefore, the function ∂fH/∂X must be more neg-
ative than the right-hand side. During concentric contraction this inequality could
be attainable. For eccentric contractions, the situation is completely different. If
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the velocity vm is negative, ∂fH/∂X becomes positive. Therefore, this inequality
is false for eccentric contractions. So, in Ref. [4], the conclusion, ‘Acting eccen-
trically, the Hill-simple model is not stable. Acting concentrically, the Hill-simple
model is stable if the contraction velocity of the muscle is fast enough’ was drawn.

On the contrary, our result (13) does not seem so surprising because the class of
target motion is narrowed. However, we can show that this result has quite interest-
ing properties.

If the following inequality:

∂

∂V

(
fm(t,X,V )

)
< 0, (24)

is always satisfied, (13) is also always satisfied because m > 0 and G(X) > 0,
which was described in Section 2. Here, the propriety of fH(X,V ) should be noted.
As described in (7), the force–velocity relationship fH(X,V ) is monotonically
decreasing. Therefore, (24) is always satisfied because the activation function of
muscle E(t) has a value from 0 to 1, as in (13).

Consequently, the following corollary can be derived.

Corollary 1. The periodic motion of the system (8) is (locally) always stable if
the motion is feasible, i.e., if activation E(t), which achieves the motion, can be
designed and always meets the condition 0 � E(t) � 1.

This corollary has very strong results because, for periodic motions, the local
stability of the motion can only be certified by the properties of musculoskeletal
systems: even a spinal feedback loop (reflex) is not necessary. The fact that the
force–velocity relationship is monotonically decreasing is one of the most popular
muscle properties, which has already been claimed in previous works [4, 10], so it
may have a large role in the stability of motion. However, if only periodic motions
are intended, it seems quite interesting that this property plays a crucial role in the
guarantee of the stability of motion.

4.2. Variation of the Muscle Model

Up to now, we have discussed stability with the simplest muscle model (Fig. 3a) that
consists only of the contractile element. However, models in which elastic or/and
damper elements are connected in parallel to the contractile element (Fig. 3b) or in
which an elastic element is connected in series to the contractile element (Fig. 3c)
are often used as more realistic muscle models. Thus, we discuss how stability
criteria change when a model in which elastic or damper elements are connected in
parallel to the contractile element is adopted, assuming that a tendon is stiff enough
to disregard the series elastic elements.

In this case, the muscle force can be described as follows by the sum to origi-
nate in each of the contractile elements (CE), elastic elements (PEC) and damper
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(a)

(b)

(c)

Figure 3. Variations of the muscle model. (a) Simple Hill model. (b) Hill–PEC–DC model.
(c) Hill–PEC–DC–SEC model.

elements (DC):

fm = E(t)fH(X,C) + fPEC + fDC

= E(t)fH(X,C) + kPEC(�lpec + �loffset) − Dvm, (25)

where:

�lpec = −
∫ t

0
vm(τ )dτ = −

∫ t

0
G(τ)V (τ)dτ,

�loffset is the difference of PEC length between the natural length of PEC and the
length of PEC at t = 0, kPEC is the stiffness of the PEC, and D is the damping
coefficient of the DC.

When the partial derivative fm(X,V ) of V is calculated while noting (3), the
following inequality can be derived:

∂

∂V
fm(t,X,V ) = E(t)

∂fH(X,V )

∂V
− DG(X) < 0.

From this inequality, it can be said that (24) is always consistent when the
model (25) is used as a muscle model and the periodic motions are always locally
stable.
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Figure 4. Geometric model of the knee joint with agonist and antagonist muscles. lo, lu: length of the
thigh and the shank; ko, ku: length of the extensor from attachment to the middle of the patella to its
insertion; kof, kuf: attachments of the flexor muscle at the femur and tibia, respectively, r : distance
between the center of rotation and mid patella to its insertion; m: body mass; X: vertical displacement
of the location of the hip.

4.3. Variation of the Skeletal Model

The linkage model with one muscle (Fig. 1) has been considered because only the
flexor muscle is enough to generate a simple vertical one-dimensional movement.
However, each joint of animals usually has at least two muscles, i.e., an extensor
muscle and a flexor muscle. Here, we discuss how stability criteria change when
the knee joint has extensor and flexor muscles (Fig. 4).

In this case, the geometric transformation between the ground reaction force
F(X,V ) and extensor and flexor muscle force fme(t,X,V ) and fmf(t,X,V ) can
be described by function Ge(X),Gf(X) [5]:

FG(t,X,V ) = Ge(X) · fme(t,X,V ) − Gf(X) · fmf(t,X,V ), (26)

where:

Ge(X) = r sinα

lolu sinβ
X

Gf(X) = kofkuf · X
lolu

√
k2

of + k2
uf − (kofkuf)/(lolu)(l2

o + l2
u − X2)

β = 2α + arcsin

(
r

ko
sinα

)
+ arcsin

(
r

ku
sinα

)
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X =
√

l2
o + l2

u − 2lulo cosβ.

Note that inequalities Ge(X) > 0 and Gf(X) > 0 always also consist from the
range of the movement of the knee joint (0 < α < π and 0 < β < π). With the
same functions Ge(X) and Gf(X), the relationship between V and vme and vmf,
i.e., extensor and flexor contractile velocity, can be written as:

vme = Ge(X) · V vmf = −Gf(X) · V. (27)

With the same muscle model (4)–(6):

fm{e,f}(t,X,V ) = E{e,f}(t)fH(X,V ), (28)

the dynamical equation of the system (Fig. 4) can be described as:

1

dt

(
X

Y

)
=

(
V

1

m
FG(t,X,V ) − g

)(
X

Y

)
. (29)

Considering that the agonist/antagonist muscle model is different from the single
muscle model only in FG, the local stability condition of this model (29) for periodic
motions can be easily derived as follows (the proof of the Theorem 2 is omitted
because the proof is basically the same as the proof of Theorem 1).

Theorem 2. System (29) becomes stable for periodic motions if and only if:∫ T

0
b1(t)dt < 0 ⇐⇒

∫ T

0

(
∂

∂V

(
1

m
FG(t,X,V )

))
dt < 0, (30)

where:

b1 = ∂

∂V

(
1

m
FG(t,X,V )

)
b2 = ∂

∂X

(
1

m
FG(t,X,V )

)
. (31)

Moreover, as well as the case of the model with a single muscle, the following
coexist:

(i) The force–velocity relationships are always monotonically decreasing, i.e.,
∂/∂vmefme < 0 and ∂/∂vmffmf < 0.

(ii) Ge(X) > 0 and Gf(X) > 0.
(iii) Ee(t) > 0 and Ef(t) > 0.

Using the above property (i) and (27):

∂

∂V
fme < 0

∂

∂V
fmf > 0,

can be derived.
From these facts:

∂

∂V
(FG(t,X,V )) = GeEe

∂

∂V
fme − GfEf

∂

∂V
fmf < 0,

can be derived as well as the case of the model with a single muscle.
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Consequently, a similar corollary as Corollary 1 is also concluded for the sys-
tem (29). That is, also for the agonist/antagonist muscle model, the periodic mo-
tion of the system (31) is (locally) always stable if activation Ee(t) and Ef(t),
which achieve the periodic motion, can be designed and always meet for condi-
tion 0 � Ee,f(t) � 1.

5. Conclusions

In this paper, we discussed the condition of stability for movements driven by a very
simple musculoskeletal system. By limiting the target motions to periodic motions
and using Floquet theorem, we derived an eased stability condition compared to the
previous research. In addition, considering the force–velocity relationship of mus-
cles, which is the one of most popular properties, we showed that the eased stability
condition was always satisfied, i.e., the periodic motions of the musculoskeletal
system were always locally stable.

In this paper, the activation function E(t) is not discussed. Of course, for vari-
ous stable movements of animals, it is quite important that the activation function
E(t), which is an input to a muscle, is designed appropriately with feedback in-
puts from sensory organs. However, the results of this paper, which show that the
musculoskeletal system itself has ‘self-stability’ especially for periodic motions to
some extent, are very interesting and then it is worthwhile to clarify the generation
mechanism of the stable movements of human or animals.
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