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A method to manipulate intrinsic localized mode �ILM� is numerically discussed in a nonlinear
coupled oscillator array, which is obtained by modeling a microcantilever array. Prior to the ma-
nipulation, coexistence and dynamical stability of standing ILMs are first investigated. The stability
of coexisting ILMs is determined by a nonlinear coupling coefficient of the array. In addition, the
global phase structure, which dominates traveling ILMs, is also changed with the stability. It makes
possible to manipulate a traveling ILM by adjusting the nonlinear coupling coefficient. The capture
and release manipulation of the traveling ILM is shown numerically. © 2009 American Institute of
Physics. �DOI: 10.1063/1.3097068�

Energy localization is very often observed in spatially ex-
tended system. Even in a homogeneous coupled oscillator,
a localized excitation is caused by discreteness and non-
linearity. The localized excitation is intrinsic localized
mode, which is also called discrete breather, first found
by Sievers and Takeno. By various theoretical and nu-
merical studies, properties of intrinsic localized mode
have been revealed. In addition, experimental studies re-
cently appear to confirm the properties. Intrinsic local-
ized mode is observed in electronic circuit ladders, optical
wave guides, and micromechanical oscillator arrays. It
has been suggested that intrinsic localized mode can be
utilized for applications to practical engineering. A new
application using localized oscillations should include ap-
propriate control methods. The basis of such control
methods is the manipulation of the intrinsic localized
mode. We discuss how to manipulate a localized
excitation.

I. INTRODUCTION

Intrinsic localized mode �ILM� is a spatially localized
and temporally periodic solution in nonlinear discrete sys-
tems. ILM was analytically discovered by Sievers and Tak-
eno in 1988.1 They identified the ILM in the Fermi–Pasta–
Ulam lattice.2 After the discovery, ILM in nonlinear discrete
systems has attracted many researchers. That is, the exis-
tence, the stability, the movability, and other properties of
ILM have been investigated theoretically and numerically for
a variety of physical systems.3 Experimental studies have
recently appeared.4 ILM is experimentally generated or ob-
served in various systems, for instance, Josephson-junction
array,5,6 optic wave guides,7,8 photonic crystals,9 microme-
chanical oscillators,10 mixed-valence transition metal
complexes,11,12 antiferromagnets,13 and electronic circuits.14

These experiments suggest the phenomenological universal-

ity of ILM and the possible application phase. Studies have
indeed appeared toward potential applications in both funda-
mental science and practical engineering.4

Sato and co-workers10,15 showed the existence of intrin-
sic localized modes in microcantilever arrays. By externally
exciting the array, standing ILMs fixed at a site of the array
were observed. It was also identified that a localized excita-
tion wandered in the array. The wandering excitation is
called traveling ILM in this paper. In the experiments, the
traveling ILM was finally captured at a site and survived as a
standing ILM. Therefore, standing ILMs can be generated by
capturing a traveling ILM at a site. Recently, Sato and
co-workers16,17 manipulated the position of ILM using a lo-
calized impurity. A standing ILM was attracted or repulsed
by the impurity. The attractive and repulsive manipulations
allow shifting the position of standing ILM without decaying
the concentrated energy of ILM. The observations and the
manipulations show that the stable standing ILM exists and it
can be relocated even in a micrometer scale device such as
the microcantilever array. That is, ILM can be applicable to
both micro- and nanoengineering.

A microcantilever array can be modeled by a simple
coupled nonlinear differential equation17 with nonlinearity in
both on-site and intersite terms. It has been shown that sev-
eral ILMs coexist in the array, and the dynamical stability of
these coexisting ILMs depends on the ratio of nonlinearity in
on-site and intersite terms.18 In addition to that, the bifurca-
tion structure concerning the stability change has been inves-
tigated. To study the mechanism of the transition of traveling
ILMs, it is also necessary to analyze on how a traveling ILM
behaves in phase space.

The relationship between traveling waves and the global
phase structure was discussed in a coupled magnetoelastic
beam system, which is modeled as a simple coupled nonlin-
ear differential equation having the same form as of a micro-
cantilever array.19–21 They suggested that the transition of
traveling wave is governed by the phase structure in the vi-
cinity of coexisting standing waves. Standing ILMs in the
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microcantilever array are assumed to have similar dynamics
as the standing wave solutions. That is, it is conjectured that
a traveling dynamics of ILM is governed by the phase struc-
ture around standing ILMs.

The purpose of this study is to propose a new method for
manipulation of ILMs in the coupled oscillators which has
nonlinearities in both on-site and intersite terms. Both the
traveling ILMs and the corresponding global phase structure
are numerically investigated. Then a manipulation method is
discussed based on the phase structure. The manipulation can
be achieved by adjusting the coefficient of the nonlinear in-
tersite term.

For the research presented in this paper, a microcantile-
ver array that exhibited ILMs was chosen as coupled oscil-
lators. Parameter settings for the coupled oscillators are dis-
cussed in Sec. II. In Sec. III, the coexistence and the stability
are investigated with respect to various values of the nonlin-
ear coupling coefficient. The relationship between a traveling
ILM and the global phase structure is discussed in Sec. IV.
Finally manipulations of an ILM are shown in Sec. V.

II. COUPLED CANTILEVER ARRAY

A microcantilever array fabricated by Sato et al. is
treated as a coupled oscillator array in this paper. A sche-
matic configuration of the cantilever array is shown in Fig. 1.
Eight cantilevers are arranged with equal intervals in one
dimension. Adjacent cantilevers are coupled by the over-
hang. The size of the array is determined as in Ref. 15. A
cantilever has a length of 50 �m, a width of 15 �m, and a
thickness of 300 nm. All cantilevers are arranged with a pitch
of 40 �m. Overhang region has a length of 60 �m and a
thickness of 300 nm.

The vibration of a single cantilever is described by par-
tial differential equation. Since the cantilever is thin, Euler–
Bernoulli beam theory can be applied to the cantilever. The
theory gives us resonant frequencies of the cantilever. The
lowest frequency corresponds to the first mode oscillation of
the cantilever. Because the microcantilever array was excited
near the lowest frequency,15 the motion of the tip of cantile-
ver is modeled by a simple spring-mass system, which has
the same resonant frequency as the original cantilever.

On the basis of the theoretical22–24 and the experimental
analyses,17 the spring has cubic nonlinearity in the restoring
force. Therefore the single cantilever is represented by a
spring-mass system having cubic nonlinearity in the spring.
The overhang is modeled the same way.17 The difference in
displacement of neighboring cantilevers causes the deforma-

tion of the overhang region. The restoring force caused by
the deformation of the overhang has cubic nonlinearity.17

Therefore the microcantilever array is expressed by

ün = − �1un − �2��un − un−1� + �un − un+1�� − �1un
3

− �2��un − un−1�3 + �un − un+1�3� , �1�

where the displacement of the tip of nth cantilever is de-
picted by un. The first and third terms represent the restoring
force caused by bending each cantilever. The coupling force
is depicted by the second and forth terms.

Equation �1� is nondimensional and is obtained by scal-
ing time and length. The time scaling is applied to the origi-
nal differential equation so that �1 is unity. The coefficient of
nonlinear on-site restoring force is set to 0.01 by the scaling
in length. Values of 5.38 �s and 2.67 �m are chosen as
units of time and length. The linear coupling force was ex-
perimentally estimated to be one-tenth of the on-site restor-
ing force.15 Thus we assumed that the linear and nonlinear
coupling coefficients are one-tenth of the corresponding co-
efficient to on-site force, i.e., �2=0.1 and �2=0.001.

The nondimensional form shows that a microcantilever
array is characterized by coupling coefficients in the nondi-
mensional differential equation. These coupling coefficients
can be thought of as the ratio of on-site and intersite coeffi-
cients. Because the coefficients in Eq. �1� depend on the
length and the thickness of the cantilever and the overhang,
the pitch of arranged cantilevers, Young’s modulus, and the
second moment of area,17 the ratio can be selected in the
design of a microcantilever array. In particular, it has been
reported that the ratio in nonlinear on-site and intersite coef-
ficients governs the stability of ILM.18 The behavior of trav-
eling ILM can be changed with the nonlinearity ratio. Thus,
properties of standing ILMs and traveling ILMs are investi-
gated numerically for various values of the nonlinearity ratio
in this paper.

III. STANDING ILMs AND ITS STABILITY

A. Numerical techniques

In order to obtain a time-periodic solution, the shooting
method using Newton–Raphson method is applied.25 Since
ILMs for Eq. �1� are time-periodic solutions, they can be
found by the shooting method. Equation �1� is integrated
with an initial guess over a given period T. The initial guess
is estimated by a computational technique using anticontinu-
ous limit.26 If the initial guess is close enough to an ILM
solution for Eq. �1�, the ILM is obtained with the given pe-
riod T.

The total energy of the ILM, H, is a function of the
period of the ILM, H=H�T�. The function, H�T�, is a single
valued function when the ILM is sufficiently localized. The
total energy monotonically increases with decreasing the pe-
riod T of ILM because Eq. �1� has hard nonlinearity for the
on-site and the intersite restoring forces. Therefore, an ILM
on certain energy surface, which is defined by a given total
energy, can easily be found by Newton–Raphson method.
The total energy is set at 250.

Cantilevers

Overhang
Support

Edge

FIG. 1. Schematic configuration of coupled cantilever array. The array has
eight cantilevers arranged in one dimension. Both ends of the array are fixed
by support.
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A periodic solution can be treated as a fixed point on a
hyper surface. The dynamics around the fixed point is repre-
sented by the Poincaré map defined on the surface. Here we
introduce a hyperplane

�p = ��u,u̇� � R16�up�0, u̇p = 0� , �2�

where p is the index of cantilever and is set at 4 without loss
of generality. An ILM solution corresponds to a fixed point
x���p for the Poincaré map P :�p→�p. Then the stability
of the ILM is equivalent to the stability of the fixed point.
The linearization of the map P leads to the linear map at the
fixed point x�:

�k+1 = DP�x���k, �3�

where � depicts a variation. The matrix DP�x�� has 15 dif-
ferent eigenvalues which correspond to Floquet multipliers.
An ILM is determined to be unstable if one of the 15 eigen-
values is outside unit circle on complex plane. Because Eq.
�1� is a Hamiltonian system, an ILM is not determined to be
unstable if and only if the all of eigenvalues are on a unit
circle.

B. Coexistence of ILM

Equation �1� has several coexisting ILMs. In this paper,
these ILMs are roughly classified into ST and P modes only
by the symmetry of amplitude distribution. ST modes have
odd-symmetric amplitude distributions. Since the locus of
ST mode is at a site, its value becomes an integer. P modes
have even-symmetric amplitude distribution. Then XILM

takes half-integer. Coexisting ILMs in the cantilever array
can be distinguished by the index number of oscillators hav-
ing large amplitude because the translational symmetry is
broken by the fixed ends of array. In this paper, a ST mode
standing at mth site is called STm. A P mode is depicted
Pm−m�, where m�=m+1, because the P mode has even
symmetric in amplitude distribution. The locus of the P mode
is found at m+1 /2.

Coexisting ILMs at �2=0.001 are shown in Fig. 2. The
ends of array correspond to n=0 and 9. Figure 2�a� shows a

ST mode standing at n=1. The ST mode is labeled as ST1.
Other ILMs shown in Figs. 2�b�–2�d� are labeled as ST4,
P1-2, and P4-5, respectively. Eight ST modes and seven P
modes are found at �2=0.001. Figure 3 shows coexisting
ILMs at �2=0.01, which is ten times larger than the former
case. In this array, six ST modes and seven P modes coexist.
ST2, ST4, P1-2, and P4-5 are shown in Figs. 3�a�–3�d�, re-
spectively. ST1 was not found for this array by using our
method. In addition, the symmetry of P1-2 is obviously bro-
ken, that is, the amplitude of the first and second oscillators
are different. The disappearance of ST1 and the symmetry
breaking of P1-2 are due to an increase in the influence of the
fixed boundary with �2. It implies that the effect of the fixed
boundary for ILMs depends on the nonlinear coupling coef-
ficient. This dependency is discussed in more detail with the
stability of ILMs in Sec. III C.

C. Stability of coexisting ILMs

Eigenvalues of ST4 and P4-5 at �2=0.001 are shown in
Fig. 4. All of the eigenvalues for ST4 are on a unit circle, as
shown Fig. 4�a�. Then ST4 is not determined to be unstable.
A solution stays around ST4 for a long period when an initial
condition of the solution is chosen near ST4. Thus, the sta-
bility of ST4 is called “marginally stable.”3 In fact, if Eq. �1�
has some damping terms, then the absolute values of all ei-
genvalues are less than unity. Figure 4�b� shows eigenvalues
of P4-5. One of the eigenvalues is outside the unit circle.
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FIG. 2. Coexisting ILMs at �2=0.001, H=250: �a� ST1, �b� ST4, �c� P1-2,
and �d� P4-5. The sixth order symplectic integrator is applied for the
integration.
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FIG. 3. Coexisting ILMs at �2=0.01, H=250: �a� ST2, �b� ST4, �c� P1-2,
and �d� P4-5.
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FIG. 4. Eigenvalues of the linearized map DP�x�� at �2=0.001: �a� ST4 and
�b� P4-5. The circle drawn by dashed curve indicates unit circle in the
complex plane.
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Then P4-5 is unstable. All coexisting P modes are unstable
and ST modes are stable at �2=0.001. However the stability
of coexisting ILMs are flipped at �2=0.01. ST4 at �2=0.01
is unstable, as shown in Fig. 5�a�. Then P4-5 is stable. It
implies that the stability change occurs between �2=0.001
and 0.01.

Figure 6 shows the stability and the locus of each coex-
isting ILM with respect to the nonlinear coupling coefficient,
�2. The locus of ILM is obtained by

XILM =
	n=1

8 n � �un�
	n=1

8 �un�
, �4�

where �un� is the absolute value of nth oscillator’s displace-
ment on the hyper surface �4. The set of stable ILMs is
represented by the solid curve. The dashed curves corre-
spond to unstable ILMs. The figure clearly shows that the
stability of coexisting ILMs is flipped with the nonlinear
coupling coefficient, �2. In particular, ILMs standing around
the center of array almost simultaneously gain or lose stabil-
ity at �2
0.005 45.18 On the other hand, ST1 and P1-2 co-
incide at �2
0.002 38 and disappear with increment of �2.
The P1-2 appears again with ST2 at �2
0.007 16. Such
appearance and disappearance are classified as saddle-node
bifurcation.18

Figure 6 shows that a bifurcation point tends to depart
from �2
0.005 45 as the locus of ILM approaches the end
of array. This parameter gap seems to be affected by the
fixed ends. In fact, the gap is vanished in the ringed array.18

Since the fixed end can be thought as an impurity, the pa-

rameter gap can also be obtained by adding an impurity.
Thus, Fig. 6 also shows the magnitude of the effect of an
impurity with respect to the coupling nonlinearity. The influ-
ence of an impurity has a peak near �2
0.005 45 that cor-
responds to the stability change in ILMs standing near the
center of array.

IV. TRAVELING ILM AND PHASE STRUCTURE

A. Relationship between traveling ILM and invariant
manifold

Perturbation against an unstable ILM generates a travel-
ing ILM. Trajectory of the traveling ILM is determined by
phase structure around the unstable ILM.21 The phase struc-
ture is characterized by invariant manifolds of the unstable
ILM. Each unstable ILM in coexisting ILMs has only one
eigenvalue outside the unit circle. Then the unstable mani-
fold of each unstable ILM is one-dimensional. In addition,
the stable manifold is also one dimensional since Eq. �1� can
be reversed with respect to time.

We applied a projection G :�p→C for drawing invariant
manifolds, where C means the set of all complex numbers.
The projection is defined as27

hk = G�xk� = 	
n=0

N �1

2
u̇n

2ei�2�/N�n + UOn�un�ei�2�/N�n

+ UIn�un − un−1�ei�2�/N��n+�1/2��� , �5�

where N=9. The fixed boundaries are denoted by u0 and u9.
The values of u0 and u9 are kept at zero. On-site and intersite
potentials of the nth oscillator are represented by UOn and
UIn, respectively. The on-site and the intersite potentials are
given by

UOn�un� =
�1

2
un

2 +
�1

4
un

4,

�6�

UIn�un − un−1� =
�2

2
�un − un−1�2 +

�2

4
�un − un−1�4.

The locus of an ILM is given by �k=arg hk. The velocity of
an traveling ILM can be estimated from the difference be-
tween �k and �k+1.27

The structure of unstable manifolds is schematically
drawn by projection. Figure 7�a� shows the structure at �2

=0.001. In Fig. 7�a�, stable and unstable ILMs are repre-
sented by open circles and squares, respectively. Unstable
manifolds are drawn by solid curves. The unstable manifold
of P3-4 has a cyclic structure, which is centered between
P3-4 and ST4 in Fig. 7�a�. The structure implies that a trav-
eling ILM initially excited near P3-4 wanders between P3-4
and ST4. In Fig. 7�b�, the behavior of the traveling ILM is
shown with energy distribution given by Eq. �6�. The dark
region corresponds to high energy state. At first, the energy is
mainly distributed on the third and fourth sites and between
them. The locus of the energy distribution is at 3.5. In other
words, the traveling ILM stays near P3-4. The traveling ILM
suddenly moves to ST4 at t
50. The energy concentrates on
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FIG. 5. Eigenvalues of the linearized map DP�x�� at �2=0.001: �a� ST4 and
�b� P4-5.
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the third oscillator at t=60. Then the traveling ILM immedi-
ately returns to P3-4. Finally the traveling ILM reciprocally
moves for a long period. Figures 7�a� and 7�b� show that the
behavior of the traveling ILM is predictable by the structure
of unstable manifolds in the phase space.

Unstable manifolds of unstable ST modes at �2=0.01
are shown in Fig. 8�a�. The unstable manifolds have cyclic
structures as well as the unstable manifolds of P modes at
�2=0.001. However, the cyclic structures of the unstable
manifolds of ST modes are centered at a stable P mode. The
unstable manifold of ST4 is located nearby ST5 and vice
versa. Thus, a traveling ILM will move from the vicinity of
ST4 toward ST5 if the traveling ILM is excited near the ST4.
The behavior of the traveling ILM is shown in Fig. 8�b�. The
traveling ILM that was initially at n=4 begins to move at
t
50. Finally the traveling ILM reciprocally moves between

ST4 and ST5. The reciprocal behavior corresponds to the
structure of the unstable manifolds. In addition, the traveling
ILM maintains its localized energy distribution, while it
wanders in the array. Therefore, the structure of unstable
manifolds implies the behavior of a traveling ILM, which is
generated near an unstable ILM.

B. Invariant manifold and nonlinear coupling
coefficient

The structure of unstable manifolds in phase space also
depends on the nonlinear coupling coefficient because the
stability of coexisting ILMs is flipped by varying �2. Figure
8 shows the structure of unstable manifolds at �2=0.003,
0.005, and 0.006. The stability change occurs between �2

=0.005 and 0.006. Unstable manifolds of P modes at �2

=0.003 have cyclic structures. The phase structure shown in
Fig. 8�a� asymptotically changes to Fig. 8�b� with increasing
�2. Figure 8�b� shows a simple structure similar to the phase
space of a pendulum system. The inset in Fig. 8�b� shows the
structure around P3-4. There is no hetero- or homoclinic con-
nection. The phase structure at �2=0.006 is also a simple
structure. In Fig. 8�c�, the unstable manifold of ST4 reaches
both the vicinity of ST5 and ST4. If �2 increases from 0.006
to 0.01, the structure changes to Fig. 8�a�. Therefore, the
structure of unstable manifolds in phase space is changed
with its cyclic structures maintained with respect to the non-
linear coupling coefficient. However, the structure is drasti-
cally changed when the stability change occurs. In Sec. V,
the drastic change is applied to a manipulation of a traveling
ILM.

V. CAPTURE AND RELEASE

The behavior of a traveling ILM is determined by the
structure of unstable manifolds in phase space. Thus, the
traveling ILM can be manipulated by changing the phase
structure. In the microcantilever array, the nonlinear coupling
coefficient flips the stability of coexisting ILMs and changes
the phase structure. In this section, capture and release of a
traveling ILM is numerically discussed.

We assume that a traveling ILM is initially excited near
a coexisting ILM, which is stable. The traveling ILM stays
around the stable ILM. If the stability change is caused by
rapid shift of the nonlinear coupling coefficient, the traveling
ILM begins to move along the unstable manifold of the de-
stabilized ILM. That is to say, the traveling ILM is released.
The released ILM will wander in the array. The wandering
ILM can be captured by the stability change if the wandering
ILM approaches to the vicinity of an unstable ILM. The
captured ILM stays around the stabilized ILM.

Capture and release of a traveling ILM is numerically
shown in Fig. 9�a�. An ILM initially stands at P3-4. In the
initial state, the nonlinear coupling coefficient is set at �2

=0.006. Thus, the P3-4 is stable. The nonlinear coupling co-
efficient is discontinuously changed from 0.006 to 0.005 at
k=69, where k denotes the map number corresponding to the
time evolution. As a result, the first stability change is
caused. The ILM is released. The released ILM leaves from
the destabilized P3-4 at k
110. Then it approaches to the
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FIG. 8. �a� Unstable manifold of ST3, ST4, and ST5. �b� Temporal devel-
opment of a traveling ILM.
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vicinity of P4-5 because the unstable manifold of P3-4
reaches near the P4-5 �see Fig. 8�b��. After the released ILM
reaches the P4-5, �2 is set at 0.006 again at k=134. The P4-5
gains stability by the second stability change. The released
ILM is captured around the stabilized P4-5. Consequently,
the ILM travels from P3-4 to P4-5.

However, the released ILM is not captured if the second
stability change is caused at k=118, as shown in Fig. 9�b�.
The ILM travels in the whole of array. The direction of the
traveling ILM is turned by the end of array. On the other
hand, Fig. 9�c� shows that the released ILM is captured
around the ILM where the traveling ILM initially stands. The
second stability change is caused at k=115. The traveling
ILM reciprocally moves around P3-4. The difference in the
behavior is due to the phase structures. A released ILM trav-
els along unstable manifolds from unstable P3-4, as shown in
Fig. 10�a�. After the second stability change, the phase struc-
ture is drastically changed. Figure 10�b� shows the phase
structure and trajectories of traveling ILMs after the second
stability change. For the trajectory corresponding to Fig.
9�b�, the traveling ILM is located outside all cyclic structures
of unstable manifolds. On the other hand, the traveling ILM
is inside the cyclic structure for the trajectory in Figs. 9�a�
and 9�c�. It implies that if a traveling ILM released by the
first stability change is inside the cyclic structure when the
second stability change occurs, the traveling ILM is captured
around a stabilized ILM. In addition, a traveling ILM wan-
dering the whole of array is generated if the traveling ILM is
located outside all cyclic structures �see Fig. 11�.

The manipulation using the stability change requires that
the nonlinear coupling coefficient �2 of Eq. �1� is adjustable.
The nonlinear on-site coefficient �1 can also flip the stability
because the ratio �2 /�1 determines the stability of coexisting
ILMs.18 It has been reported that an on-site nonlinearity can
be adjustable by applying a static electric field to a micro-

cantilever array.17 The electric field is applied between each
cantilever and a substrate facing the array, and an electric
force is thus induced in each cantilever. The on-site potential
is modified as UOn�un�=�1un

2 /2+�1un
4 /4−	1V2 / �d0�+un�,17,28

where d0� and V depict a nondimensionalized distance and the
voltage between the cantilever array and the substrate, re-
spectively. The relative magnitude of the static electric po-
tential is determined by a coefficient 	1 which depends on
the size of cantilever. According to Maclaurin’s expansion,
an applied electric field changes the on-site nonlinear coeffi-
cient as �1�=�1−4	1V2 /d0�

5. Therefore the on-site nonlinear-
ity can be varied as a function of the voltage. If a microcan-
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tilever array is fabricated to have the stable ST modes, the
manipulation is possible because an applied voltage de-
creases the nonlinear on-site coefficient.

In addition, a macromechanical cantilever array with
tunable on-site nonlinearity is also proposed to study the
manipulations of ILM.29 The dynamics of the macrocantile-
ver array is similar to the coupled oscillators discussed in
this paper. On-site potential of each cantilever is adjusted by
an static magnetic field caused by an electromagnet facing to
the tip of the cantilever. Because each cantilever has a per-
manent magnet at the free end, the magnetic field causes a
nonlinearity in the on-site potential. The nonlinearity is eas-
ily varied by adjusting the current flowing in the electromag-
nets. Consequently, the manipulation method using param-
eter adjustment can be confirmed experimentally for both
micro- and macrocantilever arrays.

VI. CONCLUSION

In this paper, it has been shown how a traveling ILM
behaves in the phase space. Unstable manifolds of unstable
coexisting ILMs strongly affect the behavior of traveling
ILM. That is, it is suggested that the structure of unstable
manifolds in the phase space governs the traveling ILM.

On the basis of the fact that the global phase structure is
changed by a nonlinear coefficient in the coupled oscillators,
we have proposed a new method to manipulate ILM. Since
the equation of motion of the coupled oscillators is general-
ized by nondimensionalization, the results in this paper can
be applied to various systems without loss of generality. In
addition, the possibility to realize the manipulation in experi-
ments is discussed for micro- and macrocantilever arrays. In
micrometer scale, a static electric field can vary a nonlinear
on-site coefficient as a function of the voltage between the
cantilever array and the substrate. On the other hand, a static
magnetic field can be used to adjust the nonlinear on-site
coefficient in macroscale. Therefore the manipulation using
stability change can be possibly applied to experimental sys-
tems.
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