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ABSTRACT

 

—The white-spotted charr (

 

Salvelinus leucomaenis

 

) is a coldwater-adapted fish distributed in
far-eastern Asia. To assess phylogeographic patterns of this species over most of its range in the Japanese
archipelago and Sakhalin Island, Russia, we examined nucleotide sequences of the mitochondrial DNA
(mtDNA) cytochrome 

 

b

 

 region (557 bp) in 141 individuals from 50 populations. A total of 33 (5.5%) nucle-
otide positions were polymorphic and defined 29 haplotypes. Phylogenetic analysis assigned the observed
haplotypes to four main clades, which were characterized by the idiosyncrasies and discontinuity of geo-
graphic distributions. The nested clade analyses revealed that the geographical distribution patterns of
some haplotypes and clades were explained by historical event such as past fragmentation. Although sub-
stantial genetic differentiation was found among the four main clades, their geographic distributions over-
lapped extensively in several regions. Since white-spotted charr can potentially use both freshwater and
marine environments, coexistence among different lineages can be attributed to secondary contact through
range expansion by migratory individuals during multiple glacial periods after interglacial isolation. Finally,
our data demonstrate that the current subspecies designation does not reflect the phylogeography of this
species based on mtDNA analysis. Hierarchical analysis (AMOVA) also showed that genetic variation was
far more pronounced within subspecies than among subspecies (i.e., among discrete regions). These
results suggest that each population, rather than each subspecies, must be treated as an evolutionarily
significant unit.
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INTRODUCTION

 

Recent theoretical and empirical advances in the field
of molecular genetics have provided many insights into the
assessment of evolutionary genetic relationships among
populations for a number of species (Avise, 2000). Glacial-
interglacial cycles during the Pleistocene have had profound
effects on the evolutionary history of northern temperate
salmonid fishes, especially those distributed in North Amer-

ica and Eurasia (

 

e.g

 

., Bernatchez and Dodson, 1991; Tur-
geon and Bernatchez, 2001; Brunner 

 

et al

 

., 2001; Ber-
natchez, 2001). However, the phylogenetic or population
structure of salmonids in Asia, where effects of glaciation
were relatively weak, remain largely unknown (Sato 

 

et al

 

.,
2001).

The white-spotted charr (

 

Salvelinus leucomaenis

 

) is a
widespread species in far-eastern Asia (Kawanabe, 1989).
Like other salmonids, the white-spotted charr is adapted to
coldwater habitats, which restricts its distribution to higher
altitudes in lower-latitude regions (Nakano 

 

et al

 

., 1996). At
higher latitudes, on the other hand, this species uses a
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range of different habitats within a river, from the headwa-
ters to the mouth, and often to coastal sea water (Fausch 

 

et
al

 

., 1994). Across the species’ range, the white-spotted
charr has recently been designated into four subspecies
based on zoogeographic patterns and morphological char-
acteristics (Nakabo, 2000): 

 

S. l. leucomaenis

 

 (Japanese
Name: amemasu), 

 

S. l. japonicus

 

 (yamato-iwana), 

 

S. l. plu-
vius

 

 (nikko-iwana), 

 

S. l. imbrius

 

 (gogi). Roughly, populations
north of northern Honshu Island, including Hokkaido Island,
Japan, and the Sakhalin Island and Kamchatka Peninsula,
Russia, are classified as 

 

S. l. leucomaenis

 

. They are char-
acterized by large white spots on their sides, and generally
have a migratory (anadromous) life history (Yamamoto 

 

et
al

 

., 1999). However, this subspecies is easily landlocked in

rivers following the construction of barriers that prevent
upstream migration (Morita 

 

et al

 

., 2000; Shimoda 

 

et al

 

.,
2002). The other three subspecies are endemic to Honshu
Island, and are composed mostly of non-migratory (fluvial)
individuals. These subspecies have rather small white spots
on their sides and are flecked with red, reddish-orange, or
yellow spots. 

 

Salvelinus l. imbrius

 

, which is

 

 

 

distributed in
only a few rivers of the westernmost Honshu Island, is char-
acterized by large spots on or around the head. The distri-
butions of 

 

S. l. imbrius

 

, 

 

S. l. japonicus

 

, and southern popu-
lations of 

 

S. l. pluvius

 

 are restricted to the high mountainous
regions of Honshu Island (Nakano 

 

et al

 

., 1996). The south-
ernmost populations of 

 

S. l. japonicus

 

 as well as 

 

S. l. imbrius

 

are currently listed among the “

 

Threatened Local Popula-

 

Fig. 1.

 

Sample localities of white-spotted charr (

 

Salvelinus leucomaenis

 

). Details of the sample sites with a list of abbreviations and sample
sizes are provided in the Appendix.
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tions

 

” (Ministry of the Environment, Japan, 2003) due to
their locally declining population sizes. The other regions,
mainly central Honshu Island, are inhabited by 

 

S. l. pluvius

 

.
Although many biologists have attempted to assign

aspects of intraspecific phylogeny of the 

 

S. leucomaenis

 

complex using several morphological characters (reviewed
in Kawanabe, 1989), its taxonomic status remains contro-
versial due to highly variable morphological patterns among
and even within populations (Nagasawa, 1989; Yamamoto

 

et al

 

., 2000; Nakamura, 2003). In this study, we examined
the geographic distribution pattern of mitochondrial DNA
(mtDNA) sequence polymorphisms in 50 populations of
white-spotted charr over most of its range in the Japanese
archipelago and Sakhalin Island, Russia, to assess how its
spatial population-genetic structure has been moulded.

Genetic data were also used to elucidate the congruence of
phylogeographic patterns with current taxonomy of the four
subspecies based on morphologic and zoogeographic pat-
terns.

 

MATERIALS AND METHODS

 

Sample collection

 

Fifty populations of white-spotted charr (141 individuals) were
sampled from their geographic range in the Japanese archipelago
(49 populations) and Sakhalin Island, Russia (one population; Fig.
1; Appendix). We found no records that charr have ever been arti-
ficially released at the selected sampling sites, so we considered all
caught individuals to be native. Dolly Varden (

 

S. malma

 

) from Hok-
kaido Island and bull charr (

 

S. confluentus

 

) from North America
were used as the outgroup, because these two species are consid-
ered to form the sister group of white-spotted charr (Phillips 

 

et al

 

.,

 

Table 1.

 

Mitochondrial sequence variation from 557 bp of the cytochrome 

 

b

 

 region of 141 samples from white-spotted charr and two species 
of outgroups, Dolly Varden (

 

Salvelinus malma

 

) and bull charr (

 

S. confluentus

 

). A nucleotide sequence data of Hap-1 is available from DDBJ, 
EMBL and Gene Bank accession number AB 111031.

 

Haplotype
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5

1 1 1 2 3 4 4 4 5 6 6 7 8 8 9 0 0 0 1 2 3 3 4 5 5 6 7 7 8 8 9 0 1 1 2 2 4 4 5 5 6 7 7 8 0 1 1 2 3 4 5 7 9 9 0 0 1 3 3 3 4 5 7 4 4
7 3 7 9 5 1 0 3 6 2 1 7 0 7 8 7 3 6 9 5 1 4 9 8 4 7 3 2 3 1 4 7 2 1 4 0 6 1 7 4 6 5 4 7 3 4 0 3 8 4 3 8 0 2 7 3 6 2 0 6 9 2 7 0 4 5

Hap-1 G A G A G T A G C A T C A C G T C T C C A G A C T C G A G C G C C A T G A C C C A T A A A A T C G A T A A A A G T C A G C T T G C G

Hap-2 . . . . . . . A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Hap-3 . . . G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C . . . . T . . . . . . . . A . . . . . . . . . . . . . . . . .

Hap-4 . . . G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C . . . . T . . . . . . . . A . . . . . . . . . . A . . . . . .

Hap-5 A . . G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C . . . . T . . . . . . . . A . . . . . . . . . . . . . . . . .

Hap-6 . . . G . . . . . . . . . . . . . . . . . . . . . T . . . . . . . . C . . . . T . . . . . . . . A . . . . . . . . . . . . . . . . .

Hap-7 . . . G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T C . . . . T . . . . . . . . A . . . . . . . . . . . . . . . . .

Hap-8 . . . G . . . . . . . . . . . . . . . . . . G . . . . . . . . . . T C . . . . T . . . . . . . . A . . . . . . . . . . . . . . . . .

Hap-9 A . . G . . . T . . . . . . . . . . . . . . . . . . . . . . . . . . C . . . . T . . . . . . . . A . . . . . . . . . . . . . . . . .

Hap-10 . . . G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T C . . . . T . . . . . . . . A . . . . . . . . . . . . . . . . A

Hap-11 . . . G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C . . . . T . . . . . G . . A . . . . . . . . . . A . . . . . .

Hap-12 . . . G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C . . . . T . . . . . . . . A . . . . G . . . . . . . . . . . .

Hap-13 . . . G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C . . . . T . . . . . . . . . . . G . . . . . . . . . . . . . .

Hap-14 . . . G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C . . . . T . . . . . . . . A . . . G . . . . . . . . . . . . .

Hap-15 . . . G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C . . . . T . . . . . . . . . . . . . . . . . . . . . . . . . .

Hap-16 . . . G . . . . . . . . . . . . . . . . . . . . . . A . . . . . . . C . . . . T . . . . . . . . A . . . . . . . . . . . . . . . . .

Hap-17 . . . . . . . . . . . . . . . . A . . . . . . . . . . . . . A . . . C . . . . T . . . . . . . . A . . . . . . . . . . . . . . . . .

Hap-18 . . . G . C . . . . . . . . . . A . . . . . . . . . . . . . A . . . C . . . . T . . . . . . . T A . . . . . . . . . . . . . . . . .

Hap-19 . . . G . . . . . . . . . . . . A . . . . . . . . . . . . . A . . . C . . . . T . . . . . . . . A . . . . . . . . . . . . . . . . .

Hap-20 . . . G . . G . . . . . . . . . . . . . . . . . . . . . . . . . . . C . . . . T . . . . . . . . A . . . G . . . . . . . . . . . . .

Hap-21 . . . G A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C . . . . T . . . . . . . . . . . . . . . . . . . . . . . . . .

Hap-22 . . . G . . . . . . . . . . . . . C . . . . . . . . . . . . . . . . C . . . . T . . . . . . . . A . . . . . . . . . . . . . . . . .

Hap-23 . . A G . . . . . . . . . . . . . . . . . . . G . . . . . . . . . . C . . . . T . . . . . . . . A . . . . . . . . . . . . . . . . .

Hap-24 . . . G . . . . . . . . . G . . . . . . . . . G . . . . . . . . . . C . . . . T . . . . . . . . A . . . . . . . . . . . . . . . . .

Hap-25 . . . G . . . . . . . . . . . . . . . . . . . G . . . . . . . . . . C . . . . T . . . . . . . . A . . . . . . . . . . . . . . . . .

Hap-26 . . . G . . . . . . . . . . . . . . G . . . . . . . . . . . . . . . C . . . . T . . . . . . . . A . . . . . . . . . . . . . . . . .

Hap-27 . . . G . . . . . . . . . . . . . . . . . . . . . . . . A . . . . . C . . . . T . . . . . . . . A . . . . . . . . . . . . . . . . .

Hap-28 . . . G . . . A . . . T . . . . . . . . . . . . . . . . . . . . . . C . . . . T . C . G . . . . A . . . . . . . . T . . . . . . . .

Hap-29 . . . G . . . A . . . T . . . . . . . . . . . . C . . . . . . . . . C . . . . T . C . G . . . . A . . . . G . . . T . . . . . . . .

 

S. malma

 

C . . . . . . . T C . . G . . . . . . T . A . . . . A . . T A T T . C A G T . . C C . . G . . . . C C . . . G A C . . . T A C A T .

 

S. confluentus

 

. G . . . . . . T C C . . . C C . . . T G A . . . . A G . . A . T . C . G . T . C C G G G . C . . C C . . . G A C T G . T A C . T .
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Fig. 2.

 

Maximum parsimony tree of haplotypes detected from 50 populations of white-spotted charr and two species of outgroups, Dolly
Varden (

 

Salvelinus malma

 

) and bull charr (

 

S. confluentus

 

). Haplotype abbreviations correspond to those listed in the Appendix. Bootstrap
probabilities of 1000 resamplings are shown on the internodes.

 

Fig. 3.

 

The 95% parsimoniously set of cladogram for mtDNA cytochrome 

 

b

 

 haplotypes detected from 50 populations of white-spotted charr.
Each connection represents one mutation step. 0 indicates an interior node in the network that was not in the sample. Boxes represent clades
of increasing number of steps. Haplotype abbreviations correspond to those listed in the Appendix.
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1994; Phillips 

 

et al

 

., 1995). Each white-spotted charr population was
further classified into four subspecies in accordance with zoogeo-
graphic distinctions made by Kawanabe (1989) and Nakabo (2000):
LE (abbreviation of the subspecies name 

 

leucomaenis

 

), JA (

 

japoni-
cus

 

), PL (

 

pluvius

 

), and IM (

 

imbrius

 

). Exact sampling locations and
taxonomic designations are presented in the Appendix.

 

DNA and data analyses

 

Total genomic DNA was extracted from the adipose fin by
proteinase K digestion, phenol/chloroform extraction, and ethanol
precipitation. The cytochrome 

 

b

 

 region of mtDNA was partially
amplified using the primers H15915 (5’-ACCTCCGATCTYCGGAT-
TACAAGAC-3’; Aoyama 

 

et al

 

., 2000) and L15285 (5’-CCCTAAC-

 

Fig. 4.

 

Geographic distributions of each clade defined by the parsimony network shown in Fig. 3. The broken lines indicate the general
boundary among the distribution areas of the four subspecies.
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CCGVTTCTTYGC-3’; Inoue 

 

et al

 

., 2000). Thirty cycles of amplifica-
tion with 30 sec at 94

 

°

 

C, 30 sec at 55

 

°

 

C, and 60 sec at 72

 

°

 

C were
preceded by a predenaturation step (11-min at 94

 

°

 

C) and followed
by an additional 7-min extension step at 72

 

°

 

C. Amplifications were
performed in 50-

 

µ

 

l volumes containing 5 

 

µ

 

l of 10

 

×

 

PCR Buffer, 4 mM
MgCl

 

2

 

,

 

 

 

0.2 

 

µ

 

M of each dNTP, 8 pmol of each primer, and one unit
of AmpliTaq DNA polymerase (Applied Biosystems Inc.). A nucle-
otide sequence data reported here is available from DDBJ, EMBL
and Genebank accession number AB111031.

DNA sequences were aligned with the multiple sequence editor
CLUSTAL W (Thompson 

 

et al

 

., 1994). Inter- and intraspecific rela-
tionships of haplotypes were inferred by the maximum parsimony
(MP) analyses using PAUP version 4.0b10 (Swofford, 2000). Max-
imum parsimony analyses were performed using heuristic searches
with tree bisection-reconnection branch swapping algorithm. Boot-
strap analysis (Felsenstein, 1985) with 1000 peudoreplicates was
used to measure support of the resulting topologies. To examine
geographic and genetic structuring of white-spotted charr popula-
tions, minimum spanning network for nested clade analysis was cal-
culated using the program TCS version 1.13 (Clement 

 

et al

 

., 2000).
Haplotypes were parsimoniously connected with the 95% probabil-
ity limits, and then converted into a nested design following the pro-
cedures of Templeton 

 

et al

 

. (1987), up to the final level of nesting
comprising the entire network. Two statistical parameters, the clade
distance, 

 

Dc

 

, which measures the geographical range of a particu-
lar clade, and the nested clade distance, 

 

Dn

 

, which measures how
a particular clade is geographically distributed relative to its closest
evolutionary sister clades (Templeton, 1998) were calculated at all
hierarchical levels using the program GEODIS (Posada 

 

et al

 

.,
2000). These statistics were recalculated after each of 1000 ran-
dom permutations of clades or haplotypes against sampling locality
to test the null hypothesis of no geographic association. Geograph-
ical distances among populations were measured as the minimum
sea-shoreline distances between the river mouths. The observed
clade and nested clade distances were then contrasted to the null
distribution to infer which distances are statistically significantly
large and which are significantly small. When the two distance
statistics and interior-tip (I-T) contrasts for each clade were signifi-
cantly small or large, then the results were interpreted with the infer-
ence key provided on the GEODIS web page (http://inbio.byu.edu/
Faculty/kac/crandall_lab/geodis.htm), modified from Templeton
(1998).

We also assessed the phylogenetic relationships among the
four subspecies using the constraint-tree option in PAUP 4.0b10
(Swofford, 2000). Differences in tree topologies were compared
between maximum parsimony (MP) trees unconstrained and con-
strained by current taxonomy, where tree-length differences were
statistically evaluated using the Templeton test (Templeton, 1983).
Finally, a hierarchical analysis of molecular variance (AMOVA) was
performed using Arlequin version 2.0 (Schneider 

 

et al

 

., 2000) to
compare the component of genetic diversity for the variance among
the four subspecies to that observed within each subspecies.

 

RESULTS

Geographical distribution of haplotypes and nested
clade analysis

 

Of the 557 bp of the mitochondrial cytochrome 

 

b

 

 gene
from 141 sequenced white-spotted charr, a total of 33
(5.5%) nucleotide positions were polymorphic and defined
29 haplotypes (Table 1). Of the 33 nucleotide position vari-
ations, 27 (82% in variable sites) were in third-codon posi-
tions, five (15%) were in first positions, and one (3%) was in
second position. The estimated ratio of transitions to trans-

versions was 4.7 (28/6). The most divergent haplotypes
(Hap-2, Hap-29) differed by 12 substitutions (2.1%). Of the
29 haplotypes identified, 20 were found to be specific to a
river, the other 9 were distributed across rivers (see Appen-
dix).

A maximum-parsimony tree, which connects the 29
haplotypes with two outgroup haplotypes of Dolly Varden
and bull charr, was supported by a high consistency index
(CI=0.861) and bootstrap probabilities (54–100% at intern-
odes; Fig. 2). The root of the haplotypes, estimated by the
outgroup sequences, was located between Hap-1 and Hap-
15. All 29 haplotypes could be parsimoniously connected in
a single network with 95% probability (Fig. 3). The whole
network was included in four 2-step clades (clade 2-1, 2-2,
2-3, 2-4), each clade being composed of a different number
of 1-step clades: two clades (clade 2-1), six (2-2), two (2-3),
and two (2-4). Of these, clade 2-2 was characterized by
forming a star-like topology radiating from a haplotype (Hap-
3). Fig. 4 shows the geographic distribution of each clade.
Haplotypes belonging the clades 2-1 and 2-2 were widely
distributed throughout the investigated range, including Hon-
shu, Hokkaido, and Sakhalin Island, where encircled the
geographical areas of all four subspecies. Of these, Hap-1
(clade 2-1) and Hap-3 (clade 2-2) were found across an
immense geographic area, from central Honshu Island north
to northern Hokkaido Island and Sakhalin Island (see
Appendix). Clades 2-3 and 2-4, on the other hand, had rel-
atively narrow distributions, which were restricted to central
and southwestern regions of Honshu Island. Clade 2-3
(Hap-28 and Hap-29) and 2-4 (Hap-17, Hap-18, Hap-19)
were found only in two rivers [Kiso (JA-4) and Kumano (JA-
6)] and in three rivers [Ane (an inlet stream of Lake Biwa;
JA-5), Kuzuryu (PU-10), and Tenjin (PU-12)], respectively.
Coexistences of each higher-level clade were observed in
seven of the 50 studied populations. The rivers Pilenga
(Sakhalin Island; LE-1), Ishikari (Hokkaido Island; LE-12),
Kurobe (Honshu Island; PU-8), and Tone (Honshu Island;
PU-3) had haplotypes belonging to clades 2-1 and 2-2;
Kumano (Honshu Island; JA-6) had clades 2-1 and 2-3; Ten-
jin (Honshu Island; PU-12) had clades 2-1 and 2-4; and
Kuzuryu (Honshu Island; PU-10) had clades 2-2 and 2-4.

 

Table 2.

 

Results of the nested contingency tests of geographical
associations for clades. Nested design and clade designation are
given in Fig. 3.

Clade

 

χ

 

2

 

P

 

Clade

 

χ

 

2

 

P

 

1-1 8.471 0.671 2-1 28.000 0.000

1-2 21.000 0.000 2-2 426.867 0.000

1-3 270.256 0.000 2-3 3.733 0.216

1-4 18.000 0.004 2-4 4.000 0.268

1-5 10.000 0.071

1-6 4.000 0.237

1-7 18.800 0.058

1-11 5.000 0.189 Total 355.227 0.000
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Table 3.

 

Results of the nested geographical analysis of the 

 

S. leucomaenis

 

 mtDNA haplotypes, following the inference key modified from
Templeton (1988). Nested design and clade designation are given in Fig. 3. Following the name of haplotypes or clade number are the clade
(

 

Dc

 

) and nested clade (

 

Dn

 

) distances. A bold S means that the distance measure was significantly small at the 5% level, and a bold L means
that the distance measure was significantly large at the 5% level. The average difference between interior versus tip clades for both distance
measures is given in the row labelled I-T.

Haplotypes One-step clades Two-step clades

 

No Dc Dn No Dc Dn No Dc Dn

 

Hap-1 1379.19 1365.71 Clade 1-1 1358.37 1487.41 Clade 2-1 1535.06 1582.56

 

L

 

Hap-2 0 1158.02 Clade 1-2 1484.17 1613.63 Clade 2-2 1097.54

 

S

 

1253.42

 

S

 

I-T 1379.19 207.70 I-T 125.80 126.22 Clade 2-3 145.73

 

S

 

2012.38

 

L

 

Clade 2-4 2389.79

 

L

 

2009.14

 

L

 

Hap-13 0 2250.66 I-T –378.63 –683.47

 

S

 

Hap-15 0

 

S

 

1261.74 1-2-3-5-6-7-8: restricted gene 

Hap-21 1286.46 1458.25 flow/dispersal with some long-distance

I-T –1125.65 –295.56 dispersal

1-2-3-4-9NO: Past Fragmentation

Hap-3 0

 

S

 

802.79

 

S

 

Clade 1-3 863.38

 

S 1010.79 S

Hap-6 0 S 689.32 Clade 1-4 827.67 S 1214.06

Hap-12 0 S 669.62 Clade 1-5 434.91 S 992.77

Hap-16 0 S 1831.86 L Clade 1-6 526.57 1888.70 L

Hap-22 0 S 1086.73 Clade 1-7 243.41 S 942.26 S

Hap-26 0 1335.23 Clade 1-8 0 S 1653.05 L

Hap-27 0 S 1406.35 L I-T 368.16 L –172.00 S

I-T 718.27 L –249.50 S 1-2-3-4-9: Past Fragmentation

1-2-3-5-15NO: Past Fragmentation

Hap-4 550.60 S 736.10 S

Hap-11 172.20 S 1148.86 L

I-T 378.40 –412.76 S

1-2-3-5-15NO: Past Fragmentation

Hap-5 508.75 466.26 L

Hap-9 0 311.35

I-T 508.75 L 154.91

1-2-3-4-9NO: Past Fragmentation

Hap-14 0 789.86

Hap-20 0 394.93

I-T 0 394.93

Hap-7 360.01 305.75 L

Hap-8 7.50 S 158.52 S

Hap-10 0 187.16

I-T 354.66 L 139.05 L

1-2-3-5-15NO: Past Fragmentation

Clade 1-9 0 109.30

Clade 1-10 0 218.60

I-T 0 –109.30

Hap-17 273.89 1215.67 Clade 1-11 1738.89 2137.90

Hap-19 0 3570.14 Clade 1-12 0 2596.47

I-T –273.89 2354.47 I-T 1738.89 –458.57
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Of the twelve 1-step clades identified in the network,
four clades (clade 1-8, 1-9, 1-10, 1-12) were not informative
due to the limited amount polymorphism and the restricted
distribution of haplotypes in clades. Three 1-step clades (1-
2, 1-3, 1-4) and two 2-step clades (2-1, 2-2) and a total cla-
dogram showed significant geographical associations in the
nested contingency tests (Table 2). According the inference
chain the geographical arrangements of these haplotypes
and clades could be best interpreted as past fragmentation
(Table 3). The restricted gene flow/dispersal with some
long-distance colonization was only inferred for total cla-
dogram.

Relationships among subspecies
Overall haplotype (h) and nucleotide (π) diversities in

the white-spotted charr complex were 0.890±0.018 (SD) and
0.0049±0.0029 (SD), respectively. The indices of diversity
among the four subspecies are shown in Table 4. The small
sample size of S. l. imbrius (three populations) might reflect
the small number of haplotypes and low genetic diversity.
For the other three subspecies, S. l. japonicus had the high-
est diversity indices, while S. l. leucomaenis had the lowest.
Analysis of molecular variance (AMOVA) revealed signifi-
cant spatial patterns of genetic structure both among sub-
species (P<0.05) and within subspecies (P<0.01; Table 5).
Most of the genetic variance was distributed within subspe-
cies (84.4%), whereas among subspecies, variance was
only 15.6%. The Templeton test showed a statistically sig-
nificant difference between the unconstraint MP tree and the
MP tree from the constraint analysis of four subspecies (Wil-
coxon rank test; Z=–3.21, P=0.0013).

DISCUSSION

General Phylogeographic Patterns
The phylogeographic survey of white-spotted charr

throughout most of its distribution range in the Japanese
archipelago and Sakhalin Island revealed the existence of

the four main clades. They were characterized by the idio-
syncrasies and discontinuity of geographic distributions, and
showed significant geographical associations in nested con-
tingency tests, suggesting that there has been a strong his-
torical component to the organization of white-spotted charr
mtDNA.

Of the four main clades identified, clade 2-1 was con-
sidered to be an ancestral (older) mtDNA type of the white-
spotted charr, owing to its closest position to the sequences
of Dolly Varden and bull charr. In addition, this group had
the widest geographic distribution throughout the Japanese
archipelago and north to Sakhalin Island. The current distri-
bution pattern of white-spotted charr is thought to reflect
species-specific preferred temperature regimes (Takami et
al., 1997), and is determined by high-temperature thermal
barriers in rivers (Nakano et al., 1996). As a result, individ-
uals are now restricted to higher altitudes in southern
regions (mainly central Honshu Island), whereas those of
Hokkaido and Sakhalin islands occur along entire river
courses, often to coastal sea water (Fausch et al., 1994).
Lower among-population mtDNA diversity was observed in
S. l. leucomaenis, which was distributed in the more north-
ern portion of the range compared to the other three sub-
species (Honshu Island). This may partly explain that high-
latitude populations have a high degree of diadromy, and
combined with continued gene flow among populations,
results in the constraint factor of genetic divergence
(McDowall, 1999). In glacial periods, on the other hand, we
hypothesize that access to and use of lower-altitude habitats
could be possible even in southern populations as thermal
barriers moved downstream (Nakano et al., 1996), and
eventually allowed colonization by dispersal via seaward
migrations. The existence of a widespread haplotype (Hap-
1, see Fig. 4) in this group suggests that the extensive dis-
persal occurred through seaward migration, and that fish
were subsequently isolated in some rivers in the southern
range of the distribution where water temperatures had risen
during the interglacial period. Nested clade analyses

Table 4. Haplotype diversity and nucleotide diversity of white-spotted charr populations grouped by four subspecies.

Taxon (subspecies) Number of Samples
Number of 
Haplotypes

Haplotypic diversity 
h±SD

Nucleotide diversity 
π±SD

S. l. leucomaenis 82 11 0.800±0.034 0.0035±0.0022

S. l. pluvius 32 11 0.899±0.030 0.0056±0.0033

S. l. japonicus 18 11 0.941±0.033 0.0075±0.0044

S. l. imbrius 9 2 0.500±0.128 0.0035±0.0025

Table 5. Hierarchical analysis based on the genetic distance among subspecies. 

Source of variation d.f. Sum of squares
Variance 

components
Percentage of 

variation

Among subspecies 3 23.06 0.232 15.61*

Within subspecies 137 171.83 1.254 84.39**

Total 140 194.89 1.486

*, P<0.05; **, P<0.01.
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revealed that past fragmentation was inferred for the geo-
graphical distributions of haplotypes within clade 1-2 (Hap-
13, 15, 21). This might result from their long-term isolation,
because they are now patchily distributed at the southwest-
ern edge of the range [Kumano (JA-6), Sufu (IM-2), and
Takatsu (IM-3)], or at higher altitudes [Tone (PU-3) and Shi-
nano (PU-7)].

The most dominant group identified was clade 2-2. This
group was characterized by a star-like appearance in the
parsimony network, with many relatively short branches
radiating from one major haplotype (Hap-3). In addition, the
phylogeographic patterns of some haplotypes and lower-
level clades within clade 2-2 in the nested clade analysis
were described by past fragmentation. The rapid range
expansion of this group, as well as clade 2-1, is indicative
by the widespread haplotype Hap-3, which would have been
separated and isolated long enough to fix diagnostic haplo-
types in each river.

In contrast to clade 2-2, clade 2-3 was geographically
very restricted, and was distributed only in the Kiso (JA-4)
and Kumano (JA-6) Rivers, on the Pacific side of central
Honshu Island. This area corresponds to the southernmost
distribution of the genus Salvelinus. Although clade 2-3
implicitly originated from clade 2-2, the former differed by
five or more substitutions from the closest haplotype of the
latter. This may indicate that gene flow from adjacent rivers
has been prohibited extensively in that region, possibly due
to being at the edge of the distribution range, and would
result in isolation long enough to accumulate the substitu-
tions.

Similar to clade 2-3, clade 2-4 also had a restricted dis-
tribution, and was found only in the Kuzuryu (PU-10) and
Tenjin (PU-12) Rivers, in west-central Honshu, and the Ane
River (JA-5), an inlet river of Lake Biwa, indicating that clade
2-4 had also been isolated for a long time in that restricted
region. Despite geographic proximity, the Ane River, which
flows into the Pacific Ocean through Lake Biwa, belongs to
a different watershed than the Kuzuryu and Tenjin Rivers,
which flow into the Sea of Japan. The Ane River population,
therefore, seems unlikely to have been established through
the dispersal process via diadromous migration; rather, they
might have colonized as a result of paleogeographic pro-
cesses around the Lake Biwa basin, such as stream-capture
between adjacent rivers (Matsuura, 1999). Another example
of gene flow between the Sea of Japan side and the Lake
Biwa basin (Pacific Ocean side) across a watershed is the
loach Cobitis taenia (Kimuzuka and Kobayashi, 1983).

Although substantial genetic differentiations were found
among the four main clades, their geographic distributions
overlapped extensively in several regions. For instance,
Hap-21 (Clade 2-1) and Hap-29 (clade 2-3), which differ at
nine sites (1.6%) of all positions examined, coexist in the
Kumano River in southernmost Honshu Island. A previous
calibration derived from phylogeographic patterns for salmo-
nids and successions of Pleistocene glaciation events led to
an average estimate of mtDNA substitution rates of 1–2%

per million years per nucleotide site (see Bernatchez, 2001).
The estimated divergence time between the Hap-21 and
Hap-29, hence, corresponds to approximately 0.8–1.6 mil-
lion years. Thus, it seems plausible to suppose that the
coexistence of different clades has been attributed to sec-
ondary contact through range expansion during multiple gla-
cial periods after interglacial isolation.

The glacial-interglacial cycles of the Pleistocene have
had enormous impacts on the phylogeographic structure of
several coldwater-dwelling freshwater fishes, especially in
European and North American regions where the impacts of
glaciation on hydrology were particularly severe. For
instance, it has been suggested for lake whitefish Corego-
nus clupeaformis (Bernatchez and Dodson, 1991), Corego-
nus artedi (Turgeon and Bernatchez, 2001), Arctic charr
Salvelinus alpinus (Brunner et al., 2001), and brown trout
Salmo trutta (Bernatchez, 2001) that the development of ice-
cover during the glacial periods forced these species into
habitat refugia that resulted in significant genetic differentia-
tion. Although the extent of glaciation in far-eastern Asia
was much more limited (Yonekura et al., 2001), climate
oscillations might also affect the dispersal and vicariance
processes of freshwater fishes through changes in the
hydrological network and/or thermal responses of species
(Takahashi et al., 2001; Yokoyama and Goto, 2002). Such
an inference seems especially applicable to stenothermal,
coldwater stream fishes such as the white-spotted charr.
This study suggests that a feasible range expansion of
white-spotted charr resulted mainly from an invasion by
migratory individuals during glacial periods, followed by their
persistence in rivers during the interglacial periods. This pro-
cess would have occurred repeatedly over time and space
in relation to climate fluctuations.

Relationships among the four subspecies
Several genetic studies of Japanese freshwater fishes

have demonstrated the relatively clear spatial patterns in
population genetic structure (e.g., freshwater sculpin Cottus
nozawae, Yokoyama and Goto, 2002; threespine stickle-
back Gasterosteus aculeatus, Higuchi and Goto, 1996,
Yamada et al., 2001, Watanabe et al., 2003; medaka Ory-
zias latipes, Sakaizumi et al., 1983). Population genetic
analysis of Gasterosteus aculeatus (Higuchi and Goto,
1996), for instance, revealed two salient genetically diver-
gent groups that comprised populations of both the Pacific
Ocean and the Sea of Japan. Our data, however, showed
that the geographic distribution of each clade overlapped
broadly; in addition, we found only limited congruence
between the mtDNA phylogeographic patterns and the dis-
tributions of the four currently recognized subspecies. More-
over, the Templeton test revealed that mtDNA lineages of
these four subspecies were not monophyletic. These
results, in turn, may suggest that the current subspecies
designations are not compatible with differentiations at the
mtDNA level.

As mentioned above, the lack of clear geographic pat-
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terns in mtDNA among subspecies could be caused by both
the large-scale dispersal events and by multiple coloniza-
tions of different lineages. Historical intergradations of
mtDNA, compared to nuclear genes, might easily be
achieved by secondary contact because the effective popu-
lation size of mtDNA for salmonids is much smaller than that
of nuclear genes (Hansen and Loeschecke, 1996; Laikre et
al., 1998). Another possible explanation for the incongru-
ence between mtDNA and morphological differentiation
could be a rapid adaptive response to local environments.
Given that the morphological differences among extant sub-
species have originated recently (i.e., after the last glacial
period), differences detectable with mtDNA sequences
would not have accumulated sufficiently over a limited time
span. Further detailed examination, e.g., using high resolu-
tion nuclear gene markers and large sample sizes at fine
geographic scales, would be helpful for understanding the
morphological divergence, genetic differentiation, and post-
glacial distribution of the species.

Hierarchical analysis (AMOVA) showed that genetic
variation was far more pronounced within subspecies than
among subspecies (i.e., among discrete regions). Most
white-spotted charr populations, particularly in Honshu
Island, are substantially reproductively isolated from other
conspecific populations and represented by having diagnos-
tic haplotypes. This suggests that each population, rather
than each subspecies, must be treated as an evolutionarily
significant unit (Waples, 1995). In addition to genetic diver-
gence, some ecological differences among populations,
such as egg size (Morita, 2003), growth rate (Yamamoto et
al., 1999), and size and age at the time of seaward migra-
tion (Yamamoto and Morita, 2002), have been reported for
white-spotted charr. Many white-spotted charr populations,
as well as other salmonids, have currently suffered from
genetic degradation, excessive competition, overfishing, and
introductions (Crisp, 2000). The importance of their charac-
teristic population structure, therefore, must be adequately
considered when establishing population units for conserva-
tion and management.
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Appendix. Population abbreviation, current taxonomy, locality, Haplotype abbreviation (see Table 1), and sample size.

Population Taxon (subspecies) River (lake) Haplotype Sample Size

LE-1 Salvelinus leucomaenis leucomaenis Pilenga Hap-1,4 3

LE-2 S. l. leucomaenis Nairo Hap-3 3

LE-3 S. l. leucomaenis Toimaki Hap-4 3

LE-4 S. l. leucomaenis Shokotsu Hap-4 3

LE-5 S. l. leucomaenis Ichani Hap-4 1

LE-6 S. l. leucomaenis Nishibetsu Hap-4 3

LE-7 S. l. leucomaenis Kushiro Hap-1,2 2

LE-8 S. l. leucomaenis Onbetsu Hap-1 3

LE-9 S. l. leucomaenis Toyoni Hap-1 2

LE-10 S. l. leucomaenis Gabari Hap-3 3

LE-11 S. l. leucomaenis Teshio Hap-3,4,5 3

LE-12 S. l. leucomaenis Ishikari (Shumarinai Lake) Hap-1,4 3

LE-13 S. l. leucomaenis Shokanbetsu Hap-3 3

LE-14 S. l. leucomaenis Notto Hap-3 3

LE-15 S. l. leucomaenis Ooiwaoi Hap-3 3

LE-16 S. l. leucomaenis Oojinnai Hap-3 3

LE-17 S. l. leucomaenis Kame Hap-3 3

LE-18 S. l. leucomaenis Haraki Hap-3 2

LE-19 S. l. leucomaenis Miuemon Hap-3,7 3

LE-20 S. l. leucomaenis Karasawa Hap-3,6 3

LE-21 S. l. leucomaenis Fuyube Hap-3 3

LE-22 S. l. leucomaenis Tomari Hap-5,7 3

LE-23 S. l. leucomaenis Yoneshiro Hap-5,7 3

LE-24 S. l. leucomaenis Gakko Hap-8 3

LE-25 S. l. leucomaenis Nikko Hap-7,8 3

LE-26 S. l. leucomaenis Ima Hap-7,10 3

LE-27 S. l. leucomaenis Ootsubo Hap-3 3

LE-28 S. l. leucomaenis Chidori Hap-11 3

LE-29 S. l. leucomaenis Aikawasawa Hap-12 3

PU-1 Salvelinus leucomaenis pluvius Takase Hap-3,11 2

PU-2 S. l. pluvius Kuji Hap-3 1

PU-3 S. l. pluvius Tone Hap-3,13 3

PU-4 S. l. pluvius Ara Hap-22 3

PU-5 S. l. pluvius Yagara Hap-5 3

PU-6 S. l. pluvius Haya Hap-7,9 3

PU-7 S. l. pluvius Shinano Hap-15 3

PU-8 S. l. pluvius Kurobe Hap-1,14 3

PU-9 S. l. pluvius Jyoganji (Arimine Lake) Hap-1 2

PU-10 S. l. pluvius Kuzuryu Hap-16,17 3

PU-11 S. l. pluvius Maruyama Hap-1 3

PU-12 S. l. pluvius Tenjin Hap-1,17 3

JA-1 S. leucomaenis japonicus Fuji Hap-3 2

JA-2 S. l. japonicus Ooi Hap-23,24,25,26 5

JA-3 S. l. japonicus Tenryu Hap-3,27 3

JA-4 S. l. japonicus Kiso Hap-28 3

JA-5 S. l. japonicus Ane (Biwa Lake) Hap-18,19 3

JA-6 S. l. japonicus Kumano Hap-21,29 2

IM-1 Salvelinus leucomaenis imbrius Hii Hap-20 3

IM-2 S. l. imbrius Sufu Hap-21 3

IM-3 S. l. imbrius Takatsu Hap-21 3


