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Preface

The problem of enumerating combinatorial objects with certain criteria is a fundamental and

important problem in mathematics and theoretical computer science. In the literature, there

are mainly three directions in the development of the enumeration of combinatorial objects:

1) to develop delicately mathematical methods for counting the number of all objects under

criteria, 2) to develop algorithmic methods for exhaustively generating objects in a particular

combinatorial class without repetition, and 3) to develop algorithms for randomly generating

an object from a specific class under priori probability. While the first direction has been

well studied in early years, the latter two have attracted a lot of attention with the advance

of computer in recent years.

This thesis is associated with the second direction: exhaustive generation, which system-

atically generates all objects of a particular class rather than print out all objects into a paper

or a computer file. In early years, several researchers have studied the exhaustive generation

of objects in small combinatorial classes. In recent years, more and more questions are asked

to generate larger lists of combinatorial objects. With the aid of a computer, it would be

possible not only to count but also to list all objects in larger classes without duplications.

In many cases, the number of objects under study increases exponentially as the problem

size increases. It is high demanding to design efficient algorithms in terms of time and space

complexities. Note that the time complexities of such algorithms are measured by the total

amount of changes in the data structures, not the time required to print out all objects.

This thesis considers a special but very meaningful exhaustive generation problem which

asks to systematically generate all colored and rooted outerplanar graphs with at most given

number n(≥ 1) of vertices without repetition. This problem is motivated by the fact that

about 94.3% of molecules in the NCI database can be represented as outerplanar graphs [73],

where nodes represent atoms and edges represent the bonds between two atoms. The ex-

haustive list of outerplanar graphs has many applications in various areas such as chemistry,

medicine, biology and computer science. However, to the best of our knowledge, few papers

have been published for the exhaustive generation of outerplanar graphs in any classes. The

reasons are twofold: on the one hand, few researchers notice the extensive applications of the

exhaustive list of outerplanar graphs, and on the other hand, it is difficult to design efficient
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algorithms to generate all outerplanar graphs without repetition because of the symmetry of

graphical structures.

In this thesis, we design an efficient algorithm that can systematically generate all required

outerplanar graphs in constant time per each in the worse case with only O(n) space. The

proposed algorithm does not require any duplication test when a new graph is generated. The

key for designing this efficient algorithm is to choose a “canonical” representation for each

colored and rooted outerplanar graph such that the canonical representation of any given

outerplanar graph can be obtained from the canonical representation of another outerplanar

graph with a constant-size change. This shares the spirit of most of the efficient generation

algorithms of rooted trees such as [123].

To be more specific, the basic idea of our algorithm is presented as follows. We first

introduce a canonical embedding as the representation for each outerplanar graph to avoid

duplications. In doing so, the original problem of the thesis reduces to the problem of generat-

ing all canonical embeddings of colored and rooted outerplanar with at most n vertices. Then,

for each canonical outerplanar embedding, we define a unique canonical outerplanar embed-

ding as its parent-embedding so that each pair of parent-embedding and child-embedding has

constant-size differences. Based on this relationship, all canonical outerplanar embeddings

are arranged into a tree structure, called a family tree ℱ , where each node in ℱ corresponds to

a canonical embedding, and each edge in ℱ corresponds to the parent-child relationship be-

tween two canonical embeddings. Finally, we generate all canonical outerplanar embeddings

by traversing the family tree ℱ with the depth-first search. In this way, we can systemati-

cally generate all colored and rooted outerplanar graphs without repetition, and moreover,

the computation time for the changes between two successive graphs is constant in the worst

case and the total space for the entire generation is O(n).

The idea of our algorithm may be applied to the exhaustive generation problems of new

families of tractable planar graphs or other classes of decomposable combinatorial structures.

These algorithms are very useful and can find wide applications. For example, the exhaus-

tive list of combinatorial objects can be used to search solutions under given constraints.

The author hopes that the work in this thesis would be helpful to solve both practical and

theoretical problems and stimulate future studies.

January 2010

Jiexun Wang
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Chapter 1

Introduction

1.1 Combinatorial Enumeration

The problem of enumerating combinatorial objects with certain criteria is a fundamental

and important problem in mathematics and theoretical computer science. The combinatorial

objects to be enumerated are usually assumed to be discrete and finite such as sequences,

subsets, combinations, permutations, partitions, and graphs of specific classes.

In the literature, there are mainly three directions in the development of enumeration

theory of combinatorial objects. The first direction is to develop delicately mathematical

methods for counting the number of all objects under criteria [20, 25, 39, 65, 70, 98, 117,

126, 129, 139, 160]. The second direction is to develop algorithmic methods for exhaustively

generating combinatorial objects in a particular class without repetition [12, 13, 18, 19, 62,

76, 88, 89, 112, 114, 115, 119, 157, 156, 165, 172]. The third direction is to develop algorith-

mic methods for randomly generating a combinatorial object from a specific class with priori

probability of being chosen [10, 11, 17, 34, 55, 69, 77, 81, 94, 111, 130, 132, 135, 176]. The

counting of combinatorial objects has been well studied in early years. The exhaustive gener-

ation and random generation of combinatorial objects have been limitedly developed due to

the restriction of computer and the ignorance of applications in early years. However, with

the advance of computer in recent years, the combinatorial generation has been flourished.

1.1.1 Counting

The study of counting combinatorial objects has a long history in mathematical fields. As

early as in 1751 or thereabouts, Euler counted the number of faces of a convex polyhedron

by the number of the vertices and the number of the edges of the polyhedron. After that,

the counting problems of objects of different combinatorial classes have been investigated. A

typical problem in counting objects can be formulated as follows:

1



2 CHAPTER 1 INTRODUCTION

Counting Problem: Given an integer n ∈ ℕ, and a finite set S with ∣S∣ = n, how to count

the number f(n) of objects in the set S satisfying specific criteria?

There are four standard ways to calculate the counting function f(n) according to Stan-

ley [160]:

(1) The function f(n) is an elegantly explicit closed formula involving only well-known

functions, and free from summation symbols. For example, the number of subsets of

the set S is 2n. The number of the permutations of S is n!. A vertex-labeled graph is

a graph whose vertices are distinguished by labels. The number of vertex-labeled trees

with n vertices is nn−2 [39].

(2) The function f(n) has a recursive form, which can be given in terms of previous calcu-

lated f(i) for 1 ≤ i < n. Take a partition of an integer into a given number of parts for

example. A partition of an integer n into k parts is a sequence p1 ≥ p2 ≥ ⋅ ⋅ ⋅ ≥ pk ≥ 1

such that n = p1 + p2 + ⋅ ⋅ ⋅ + pk. Let p(n, k) be the number of partitions of n into k

parts (note that p(n, k) = f(n)). It holds

p(n, i) =

{

1 for i = 1 or n

p(n− 1, i− 1) + p(n− i, i) for 1 < i < n.

Then f(n) = p(n, k) can be calculated by this recursive formula.

(3) An approximation g(n) such that limn→∞ f(n)/g(n) = 1 for the function f(n) can be

derived. For example, the counting problem of vertex-unlabeled tree, whose vertices are

treated as the same, is much harder than the vertex-labeled case. So far, researchers

have not yet found any formula for counting the exact number of unlabeled trees but

only for the asymptotic number. Ott [126] proved that the approximation number of

unlabeled trees with n vertices is C�nn−5/2, where C = 0.53495 . . . and � = 2.95576 . . . .

(4) The most useful but most difficult to be understood method for evaluating f(n) is to

give a generating function. A generating function G(x) is a formal power series

G(x) =

∞
∑

n=0

f(n)xn

whose coefficients are the sequence {f(0), f(1), . . . , f(n), . . . }. Take the numerical par-

tition for example. The goal is to count the number f(n) of ways of writing an integer n

as a sum of positive integers, where the order of these positive integers is not considered.

A generating function G(x) for the numerical partition is given by

G(x) =
1

(x)∞
=

∞
∑

n=0

f(n)xn = 1 + x+ 2x2 + 3x3 + 5x4 + 7x5 . . . ,
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where (q)∞ is a q-series [6, 71]. The values of f(n) for n = 1, 2, 3, 4, 5, . . . are 1, 2, 3, 5, 7,

. . . , which can be founded by searching “ID A000041” on Sloane’s online database [159].

1.1.2 Exhaustive Generation

The goal of the exhaustive generation of combinatorial objects is to systematically gener-

ate all objects rather than output all combinatorial objects into a paper or a computer

file [32, 74, 96, 119, 168]. We present an abstract formulation for the exhaustive generation

problem as follows:

Exhaustive Generation Problem: How to systematically generate all combinatorial ob-

jects in a specific class without repetition?

An algorithm for an exhaustive generation problem is also a counting algorithm since

each object can be counted as it is generated. However, the reverse is not usually true. The

exhaustive generation problem is more challenging than counting problem. In early years,

several researchers have studied the exhaustive generation of objects in small combinatorial

classes. See Read [138] for a survey of the generation of graphs in small classes. In recent

years, more and more questions are raised to generate larger lists of combinatorial objects.

With the aid of a computer, it would be possible not only to count but also to list all objects

in larger combinatorial classes without duplications.

There are various approaches developed for solving the combinatorial generation problems.

The common idea behind them is to first encode each object into a sequence, and then

recursively generate larger candidate objects by augmenting elements on smaller objects.

Such a strategy is usually named orderly algorithm by Read [137, 138]. Note that duplications

are not allowed in the list of the generated objects. A naive way to test duplications is to

maintain the whole list of generated objects and check whether each newly generated object

is in the list or not. However, this method limits the size of generation problems we can solve

because the list can be probably extremely long.

The main difference between the existing approaches is to define different orderings of the

generation for avoiding the tests of the duplications in the list. In general, there are three

popular approaches which can avoid brute-force checking. The first approach is lexicographical

method, by which all combinatorial objects are arranged in the lexicographical order in terms

of their codes [18, 76, 91, 112, 115, 157, 173]. Examples for generating classes of objects in

the lexicographical order include combinations [112, 157], permutations [18, 76, 125, 149], set

partition [47, 53, 155], and trees [21, 92, 97, 119, 120, 121, 122, 123, 152].

The second well-known approach is combinatorial Gray codes, a generalization of Gray

codes (also called reflected binary Gray codes), which was applied to mathematical puzzles

before they became known to engineers. In 1953, Gray code was patented by Frank Gray,



4 CHAPTER 1 INTRODUCTION

which was used to deal with a communication problem [66]. Gray code is constructed in

the following recursive way: starting from 1-bit with the code 0 and 1, respectively; for

n > 1, constructing the n-bit Gray code by prefixing 0 to all (n − 1)-bit Gray codes, and

then by prefixing 1 to all (n − 1)-bit Gray codes in the reverse order. Here we illustrate

the construction of 3-bit Gray codes. Let Gi (i ∈ [1, n]) be the list of i-bit Gray codes,

where the size of the list is 2i. By definition, G1 = [0, 1], G2 = [00, 01, 11, 10] and G3 =

[000, 001, 011, 010, 110, 111, 101, 100]. From this illustration, we can see that two successive

codes in the list Gi differ only in a single bit. Later Gray codes were applied in various areas

such as circuit testing [142], signal encoding [102], data compression [141], statistics [45], and

graphical and image processing [7].

Joichi et al. [80] first generalized Gray codes to combinatorial Gray codes, by which the ob-

jects are generated as a list such that two successive objects have small structural differences.

After that, the combinatorial Gray codes became a popular strategy for generating combinato-

rial objects such that successive objects differ only slightly [14, 66, 86, 110, 148, 147, 169, 175].

This method has been widely applied for exhaustively generating permutations [78, 167], sub-

sets of a set [22, 35, 51, 52, 124, 146], binary trees [100, 101], spanning trees of a graph [42, 72]

and partition of an integer [150]. Savage [151] presented a detailed survey on the study of

combinatorial Gray codes.

The third method is reverse method introduced by Avis and Fukuda [12]. To explain the

basic idea of the reverse search, let G be a connected graph whose nodes represent the objects

to be generated, and suppose that we have an objective function to be maximized over all

nodes of G. A local search for a given node v in G is designed for exploring the neighborhood

node with larger values from the node v in terms of the objective function until no better

neighborhood vertex exists. For simplicity, assume that the local search derives a spanning

directed tree T of G with a single sink x∗ (an optimal solution). Thus if we trace backward

T from x∗ by systematically reversing its directed edges, then we can generate all objects.

A more formal and detailed description of this method can be referred to the paper of Avis

and Fukuda [12]. Examples for the reverse method include generating set partitions [84],

generating all distributions of n objects to m bins [1] and generating different classes of

trees [9, 120, 121, 122, 123].

1.1.3 Random Generation

In some cases, it is impractical to exhaustively generate objects in some combinatorial class.

However, it is often useful to generate or sample an object from the class at random. The

description of the random generation problem is presented as follows:

Random Generation Problem: How to randomly generate an object in a specific combi-

natorial class in such a way that each object has a priori probability of being chosen?
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Based on the priori probability of object chosen, uniformly random generation is to ran-

domly generate all objects with an equal priori probability. Otherwise, it is called non-uniform

random generation.

The random generation of some classes of combinatorial objects has been studied in the

last few years [10, 11, 17, 69, 77, 94, 111]. In the literature, there are mainly three methods

for random generation of combinatorial objects: Markov chain method [81, 130, 135, 158],

recursive method [124, 135, 175], and Boltzmann method [23, 49, 50, 54].

Markov chain method is a sampling method which constructs a Markov chain such that

its equilibrium distribution is the desired distribution. This method was initially used in

statistics and has been widely used in combinatorics. By this approach, a Markov chain is

constructed in this way: the states of the chain correspond to the combinatorial objects in

the class and the equilibrium distribution of the chain converges to the priori probability

distribution over these objects. By simulating such a Markov chain for a sufficiently number

of steps, an object corresponding to a state can be generated under a probability that is

arbitrarily close to the priori probability. Kannan et al. [81] proposed algorithms based on

Markov chains for generating bipartite graphs and tournaments. Rao et al. [135] applied the

Markov chain method for generating random (0, 1)-matrices with given marginal. Milo et

al. [113] proposed a Markov chain algorithm for generating a graph with arbitrary degree

sequence uniformly at random. Note that a drawback of the Markov chain method is that

in some cases, it is difficult to determine how many steps are needed to converge to the

stationary distribution within an acceptable error.

Recursive method is another useful strategy which was proposed by Nijenhuis andWilf [124],

and then systematized and extended by Flajolet, Zimmermann and Van Cutsem [55]. Later

Zimmermann [178] made a computer package to implement the algorithm of Flajolet et

al. [55]. In this method, each object to be generated can be recursively decomposed into

smaller parts. This decomposition leads to a set of recursive counting formulas. Given all

the necessary recursive counting formulas, we can randomly generate an object in the class

by using the reverse operation of the decomposition with the probability by the counting

formula. Many researchers applied this method to study the random generation of words of

context-free grammars [44, 55], trees [5] and planar maps and convex polyhedra [153].

Boltzmann method is an attractive framework for the random generation of combinatorics,

proposed by Duchon, Flajolet, Louchard and Schaeffer [49, 50]. The idea is to assign a

probability to each object proportional to an exponential of the size of the object, which

relaxes the constraint of generating objects of a strictly fixed size. In other words, random

objects under a Boltzmann model have a fluctuating size, but objects with the same size

occur with the same probability. Boltzmann model has been applied both in the cases of

unlabeled combinatorial objects [54] and labeled combinatorial objects [23, 50].

Finally, we briefly present the relationship between the combinatorial counting and com-
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binatorial random generation problems. Jerrum [77, 158] pointed out that the uniform gen-

eration and counting are computationally equivalent. Besides, the problems of approximate

counting and almost uniform generation are very closely related. More precisely, for most

natural structures, a polynomial time procedure for approximate counting can be used to

construct a polynomial time almost uniform generation algorithm, and vice versa. The only

assumption we need to make is that the structures are self-reducible, which essentially means

that they process a simple inductive construction in terms of similar structures of a smaller

size. This implies that known efficient algorithms for counting can be used to obtain fast

algorithms for uniform generation based on probabilistic Turing machines.

1.1.4 Computational Complexity

This section first reviews basic definitions of algorithms [93], and then surveys the computa-

tional results for combinatorial enumeration algorithms.

An algorithm solves an instance of a problem. In general, the input size is used to

characterize the problem instance. Each algorithm consists of the input size and a series

of instructions each of which consists of elementary steps including variable assignments,

random access to a variable whose index is stored in another variable, conditional jumps (if-

then-endif), loops (for-then, or, while-do), and simple arithmetic operations such as addition,

substraction, multiplication, division, and comparison. The complexity (or efficiency) of an

algorithm is traditionally evaluated by time complexity (or running time) which is the count

of elementary steps and by space complexity which is the amount of computer memory during

the execution of the algorithm. Usually we do not consider the exact computation of time

and space but rather consider a good upper bound on them.

We review traditional and formal definitions of the time and space complexities of an

algorithm, respectively, based on random access machine (RAM) model. Let A be an algo-

rithm with input of size n. If there exists a function T : ℕ → ℕ with a constant C > 0 such

that A terminates the computation after at most C(T (n)) elementary steps for each input

of size n, then the algorithm A runs in O(T (n)) time. We also say that the time complexity

(or running time) of A is O(T (n)). If there exists a function S : ℕ → ℕ with a constant

D > 0 such that there are at most DS(n) number of elementary objects required during the

execution of A, then the algorithm A requires O(S(n)) space. We also say that the space

complexity of A is O(S(n)). In particular, we say that A runs in polynomial time (resp.,

requires polynomial space) if given the size of input n, there exists an integer k such that A

runs in O(nk) time (resp., requires O(nk) space). Especially if k = 0, then A runs in constant

time (resp., requires constant space), i.e., the running time (resp., space) of A is independent

of the input size n.

Note that the running time (resp., space) may vary according to different instances with

the same input size n of the same problem. There are three measures for time (resp., space)
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complexity of algorithm. Worst-case running time (resp., Worst-case space) is the longest

time (resp., most space) that the algorithm will use over all instances; best-case running time

resp., best-case space) is the shortest time (resp., least space) that the algorithm will use over

all instances; and average-case running time (resp., average-case space) is the average time

(resp., space) that the algorithm will use over all instances, which relies on the probability

distribution of instances of the problem. Note that usually people have no interest in the

complexity measure in the best-case.

We are ready to review the complexities of combinatorial enumeration algorithms. Recall

that for the combinatorial counting, most of researchers have focused on developing math-

ematical methods but not concerned on the computational aspect; and that for the combi-

natorial generation, researchers have been interested in exploring algorithmic methods and

analyzed the complexities of algorithms. In the following, we will review the computational

results of exhaustive generation algorithms and random generation algorithms, respectively.

For the combinatorial exhaustive generation, the running time of an algorithm reflects

the total amount of changes in the data structures, but not the time required to print out

all objects. Many researchers are interested in the amount of computation per each object in

an amortized sense (i.e., the total amount of computation divided by the number of objects).

This amortized computation time varies greatly. The amortized time of slow algorithms can

be exponential of the input size. For example, a naive method for generating all subsets

of a given set would require an exponential time of the input size for generating one subset.

However, the amortized time of a faster algorithm can be polynomial with respect to the input

size (called polynomial delay) such as [8, 68, 133, 134]. Especially, an algorithm is called a

constant amortized time (CAT) algorithm if the delay between two successive outputs is

constant. In the literature, CAT algorithms have been proposed for many classes of objects

such as numerical partition [150], combinations [52, 124, 162], parenthesis strings [131, 148,

171], multiset permutations [163] and various types of trees [97, 123, 177].

For the combinatorial random generation, the time and space complexities of algorithms

depend on the types of objects to be generated. Aronld et. al. [10] proposed an O(n) time

algorithm to generate balanced parenthesis strings uniformly at random. Bodirsky et al. [27]

firstly designed an expected exponential time algorithm to generate labeled planar graphs

uniformly at random. Bodirsky et. al. [30] designed algorithms for generating labelled and

unlabeled outerplanar graphs with n vertices uniformly at random in polynomial time in n.

1.1.5 Applications

Counting results of combinatorial objects are frequently used to calculate probabilities. For

example, the determination of the number of independent sets has several applications in

statistical physics and in the estimation of the degree of reliability in communication networks.

Within the mathematical sciences, researchers are constantly trying to find patterns hid-
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den in the structure of combinatorial objects. The growing trend of using computers and

algorithms to produce lists of such objects allows researchers to obtain more information

about the objects themselves. Often, this leads to a more thorough understanding of an

object which may lead to new and interesting discoveries.

Exhaustive list of combinatorial objects in specific class can be used to get samples by

randomly choosing from the list. Besides, some of important combinatorial optimization

problems are called NP-hard problems, for which no polynomial-time algorithm is known.

So far nobody can prove the non-existence of polynomial-time algorithms for the NP-hard

problems. For these difficult combinatorial optimization problems, we can check all objects

in the exhaustive list satisfying the constraints, until finding the optimal solution.

Besides, the random generation can be used to generate test data for other algorithms on

these objects, or to experimentally verify conjectures about properties of this class. We could

also use it to evaluate the average-case running times of algorithms on random instances.

1.2 Graphical Enumeration

Graph is a special class of combinatorial objects. This section will present the existing results

for three problems in graphical enumeration: counting, exhaustive generation and random

generation, respectively, after reviewing basic definitions in graph theory.

1.2.1 Preliminary

We will review some basic definitions in graph theory by Diestel [46].

A graph is a pair G = (V,E) of sets such that E ⊆ V × V , where the elements of V are

the vertices, and the elements e = (x, y) of E are the edges. The vertex set of G is referred

to as V (G), and its edge set as E(G). Let ∣V (G)∣ and ∣E(G)∣ be the number of vertices and

edges in G, respectively. Two vertices x and y of G are adjacent if (x, y) is an edge of G. The

edge e = (x, y) is incident to its end-vertex x or y. Pairwise non-adjacent vertices or edges

are called independent. A set of vertices is called independent set if no two vertices of the set

are adjacent.

Let G = (V,E) and G′ = (V ′, E′) be two graphs. We say that G and G′ are isomorphic

if there exists a bijection ' : V → V ′ with (x, y) ∈ E ⇔ '(x)'(y) ∈ E′ for all x, y ∈ V .

A graph S = (V ′, E′) is a subgraph of G = (V,E) if V ′ ⊆ V and E′ ⊆ E. Especially, S is

a spanning subgraph of G if V ′ = V . A path P = (V ′, E′) of G = (V,E) is a subgraph of G

such that V ′ = {v0, v1, . . . , vk} ⊆ V and E′ = {(v0, v1), (v1, v2), . . . , (vk−1, vk)} ⊆ E, where all

vi for i = 1, 2, . . . , k are distinct. A cycle C = (V ′, E′) of G = (V,E) is a subgraph of G such

that V ′ = {v0, v1, . . . , vk, v0} ⊆ V and E′ = {(v0, v1), (v1, v2), . . . , (vk−1, vk), (vk, v0)} ⊆ E,

where all vi for i = 1, 2, . . . , k are distinct. A clique in G = (V,E) is a subgraph of G such

that any two of its vertices are adjacent.
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A non-empty graph G is called connected if any two of its vertices are linked by a path

in G. Otherwise, G is called disconnected. A graph G is called k-connected (for k ∈ ℕ) if

∣V (G)∣ > k and for any subset X of V with ∣X∣ < k, the graph obtained from G by removing

all vertices of X and their incident edges remains connected.

A directed graph (or digraph) is a pair (V,E) of disjoint sets (of vertices and edges) with

two maps, head: E → V and tail: E → V assigning to every edge e a head-vertex head(e)

and a tail-vertex tail(e). The edge e is said to be directed from the vertex head(e) to the

vertex tail(e).

Note that an undirected or directed graph may have several edges between the same two

vertices x and y. Such edges are called multiple edges. A loop is an edge whose endvertices

are the same vertex. A graph is a multigraph if it has multiple edges.

A planar graph is a graph that can be embedded in the plane, i.e., it can be drawn on

the plane in such a way that its edges intersect only at their endpoints. A plane embedding

is a graph that has been drawn on the plane without creating any edge-edge crossing.

1.2.2 Counting

To our best knowledge, the study of graphical counting can be tracked to Euler who counted

the number of faces of a convex polyhedra. The major activity in graphical enumeration

(mainly counting) was started in the preceding two centuries. Cayley [39] in 1889 counted

the number of labeled trees with n vertices is nn−2. Even earlier, Kirchhoff found the number

of spanning trees in a given connected graphs, whose result was more general than that of

Cayley [70]. However, the counting problem for the unlabeled trees is much harder than

labeled one because there is more symmetry involved. So far, researchers have not found

any formula for the exact number of unlabeled trees, but only has derived formulas for the

asymptotic number [126].

Since Cayley [70], a great number of researchers have studied counting problems of graphs

in more complicated classes. The counting problems for labeled graphs are more manageable

than unlabeled ones because there is less symmetry involved. A well studied graph class

is the class of labeled planar graphs. The exact and asymptotic number of labeled planar

embeddings has been studied intensively [25, 24, 29, 65, 170], starting with Tutte’s work

on the number of rooted oriented planar maps [166]. The number of labeled 3-connected

plane embeddings is related to the number of labeled 3-connected planar graphs [117] since

a 3-connected planar graph has a unique embedding on the sphere [174]. Bender et al. [20]

used this property to count labeled two-connected planar graphs and Gimenez and Noy [65]

extended this work to the asymptotic enumeration of labeled planar graphs.

On the other hand, the pioneering work for the counting problems of unlabeled graphs was

completed by Redfield [70, 140]. However, this work had not been noticed for about thirty

years, but the counting problem of unlabeled graphs was solved independently by several
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mathematicians including Davis, Gleadson, Golomb, Slepian and Pólya [129]. In particular,

Pólya evaluated the number of graphs by using alternating groups and symmetric groups. The

classical enumeration theorem of Pólya can give the complete generating function for a class of

graphs in terms of a cycle index and a polynomial. Comparing with other mathematicians’

methods, Pólya’s method is easier to be applied to most graphical problems, and hence

becomes the most powerful tool in counting unlabeled graphs. For the class of unlabeled

planar graphs, so far, the exact and asymptotic numbers of general graphs have not been

known. An exception is that the exact numbers of unlabeled rooted 2-connected planar

graphs and unlabeled rooted cubic planar graphs have been computed by Bodirsky et al. [26]

and Gao and Wormald [63].

In recent years, several researchers, especially chemists, have extended the Pólya’s power-

ful method to the counting problems of three-dimensional trees (3D-trees) [56, 57, 58, 103].

Robinson et al. [143] counted the number of stereoisomers of alkanes by modifying Pólya’s

cycle indices. Fujita wrote a series of papers on the enumeration problems of stereoisomers

with three-dimensional tree structures. He developed the proligand method for counting

stereoisomers [56, 57, 58, 59].

1.2.3 Exhaustive Generation

The goal of exhaustive generation of graphs in particular class is to systematically generate all

graphs in the class without repetition. Tree is a connected graph with the simplest structure.

To our best knowledge, the earliest work for exhaustive generation of rooted trees was done by

Scions [152]. He represented a rooted tree by a depth sequence which recorded the depths (i.e.,

distance to the root) of each node in the depth-first search order, defined a unique “canonical”

tree to be the tree among isomorphic rooted trees with the maximal depth sequence, and

then generated the depth sequence of canonical trees in the lexicographical order. Based

on the similar idea, Rusky and Hu [144] designed algorithms for all generating binary trees

lexicographically as a list, and they were the first who proved that their algorithms satisfied

CAT property, that is, they can generate all binary trees in constant time per each tree.

Later Rusky [145] generalized a CAT algorithm for k-ary trees from the work of binary-tree

of Rusky and Hu [144]. Beyer and Hedetniemi [21] generalized the work of Ruskey [145] for

generating k-ary trees lexicographically to generating all rooted trees with n vertices, and also

proved that their algorithms are CAT. Many algorithms have been developed for generating

all free trees and their variants [97, 120, 121, 122, 123].

Most of efficient algorithms of various types of trees share a common idea. Take the

generation of rooted unordered trees for example. One first defines a unique embedding for

each rooted tree as its canonical representation, and then defines a parent-child relationship

among all canonical representations, which is implicitly represented as the family tree each of

whose nodes corresponds to the canonical representation of a colored and rooted tree. Then



1.2 Graphical Enumeration 11

all canonical representations are enumerated one by one according to the depth-first traversal

of the family tree in such a way that a new one is generated by attaching a new leaf vertex

to the immediately previous output and/or by deleting a few leaf vertices from the previous

one. The algorithms output only the constant-size difference between two consecutive trees

in the series of all canonical representations, achieving a constant time enumeration per

each output. The crucial point in the above enumeration approach is a choice of canonical

representation such that the canonical representation of a rooted tree can be obtained from

the canonical representation of another rooted tree with a constant-size change. Nakano and

Uno [123] presented such a canonical representation as a unique embedding based on the fact

that isomorphic duplication can be prevented by maintaining the order of subtrees at each

vertex uniquely.

Later many researchers have intensively studied the exhaustive generation problems of

graphs in more complicated classes such as cubic graphs [28, 36], series-parallel graphs [85]

and monotonic graphs [134]. The general scheme for generating all non-isomorphic graphs in

a specific class is similar with the tree case, that is, first define a canonical code to uniquely

identify a set of isomorphic graphs, and then construct a canonical code of a graph with

larger size from a canonical code of a graph with small size without duplications. Colbourn

and Read [41] designed an algorithm base on this scheme to generate all unlabeled graphs

in polynomial space but not polynomial delay. Later Goldberg proposed a polynomial delay

and polynomial space algorithm for generating unlabeled graph [67]. Besides, there are other

studies on the exhaustive generation of different classes of subgraphs of a single graph such

as spanning trees [62, 82, 87, 114, 136, 156], cycles [99, 109], maximal cliques [2, 31, 104,

105, 116, 128], and maximal independent sets [37, 79, 83, 95, 165].

1.2.4 Random Generation

The random generation of a class of graphs is to randomly generate or sample a graph from

the class under the priority distribution.

The random generation of different classes of graphs has been studied extensively. Ni-

jenhuis and Wilf [124] designed algorithms for randomly generating completely labeled trees

and unlabeled rooted free trees. Furnas [61] gave a complete survey of the different methods

available for the random generation of several classes of binary trees. Quiroz [132] proposed

improved algorithms for the random generation of several classes of trees with the uniform

distribution, comparing to the work of Furnas [61] and Nijenhuis and Wilf [124]. Mckay [111]

generated a k-regular graph with n vertices uniformly at random in expected time O(nk3),

where k = O(n1/3). Bodirsky [27] designed algorithms for uniformly drawing a graph from

the class of simple planar graphs at random in time polynomial in the input size. The ran-

dom generation of acyclic digraphs was studied based on the Markov chain method [107, 108].

Bodirsky [28] presented an expected polynomial time algorithm to generate an unlabeled con-
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nected cubic planar graph uniformly at random. Milo et al. [113] presented a Monte Carlo

method for the uniform generation of random graphs with arbitrary degree sequences, which

was motivated by complex networks. Besides, many papers have been studied on the random

generation of different classes of subgraphs of a single graph such as spanning trees [34, 176].

1.2.5 Applications

Graphs are widely used as a modeling tool in various fields such as biology, social science

and chemistry, and the graphical enumeration is served as very useful tool for solving the

problems in these fields. For example, a protein interaction network can be represented as a

simple graph, where nodes represent proteins, and an edge represents the interaction between

two proteins. The problem of generating all clusters of densely interacting proteins (called

dense modules) is an attractive problem in protein interaction networks. The enumerated

dense modules can be useful for functional annotation of previously uncharacterized genes as

well as for revealing additional functionality of known genes [64, 164].

In social sciences, a social network can be represented as a simple graph, where nodes

correspond to individuals, and an edge corresponds to friendship between two individuals.

The problem of listing all maximal groups of people all of whom know each other is one

of most interesting problems. The enumerated groups can be used to study modularity or

community. Such a group in the social network corresponds to a clique in the graph. Then

problem can be formulated to list all maximal cliques in a given graph. Many algorithms for

maximal clique enumeration have been applied to the study of social networks [48, 127].

In chemistry, each chemical compound can be represented as a multigraph, where nodes

represent atoms and edges represent bonds between atoms. Enumeration of chemical graphs

has been an interesting issue to chemists and mathematicians for more than 130 years, and still

has been attracting them. Many papers such as [3, 4, 15, 33, 38, 40, 43, 60, 75, 90, 103, 106]

have been devoted to the counting or generation of chemical graphs. Especially, Fujiwara

et al. [60] applied a tree generation algorithm to infer tree-like chemical graphs under given

constraint, and later Ishida et al. [75] proposed improved algorithms for the same problem

based on the work of Nagamochi [118]. Implementations of the algorithms due to Fujiwara

et al. [60] and Ishida et al. [75] are available as a web server1.

1.3 Outerplanar Graph Enumeration

1.3.1 Existing Works

An outerplanar graph is a planar graph that can be embedded in the plane such that all

vertices are in the outer face. Outerplanar graphs are characterized as those graphs not

1http://sunflower.kuicr.kyoto-u.ac.jp/˜ykato/chem/
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containing a subdivision of either K4 or K2,3. Syslo [161] pointed out that outerplanar

graphs, after trees, form a next family of easy instances for almost all NP-complete problems

on graphs.

Counting results for outerplanar graphs have been found in recent years [25, 24]. Bodirsky

et al. proved that the number of labeled outerplanar graphs on n vertices is asymptotically

equal to ℎ⋅n−5/2�−nn!, where ℎ is computable constant and � = 0.136593 [25]. Later Bodirsky

et al. considered a more difficult counting problem of unlabeled outerplanar graphs [24]. They

counted the exact number gn of unlabeled outerplanar graphs on n vertices in polynomial

time, and derived the asymptotic estimation of gn by gn−5/2�−n, where g ≈ 0.00909941 and

�−1 ≈ 7.50360.

The random generation of labeled and unlabeled outerplanar graphs has also been well

studied by Bodirsky and Kang [30]. To make the correct probabilistic choices in a recursive

generation of uniformly distributed outerplanar graphs, they introduced a counting technique

using the decomposition of a graph according to its block structure, and computed the exact

number of labeled (resp., unlabeled) outerplanar graphs. Then they generated a labeled

(resp., unlabeled) outerplanar graph with given number of vertices uniformly at random in

the expected polynomial time. However, to our knowledge, few papers have been published for

studying the exhaustive generation of outerplanar graphs in any class. This thesis attempts

to fill in this gap.

1.3.2 Applications

Outerplanar graph is an important class of combinatorial structures, which has been studied

extensively in graph theory. However, few researchers notice its practical application until

Horváth [73] found that about 94.3% of the graphs in NCI molecular graph database are out-

erplanar graphs. In other words, outerplanar graphs can represent the majority of molecules.

This result motivates us to investigate the problem of generating all outerplanar graphs in a

specific class, which has potential applications in many fields such as drug design.

In practice, to reduce the increasing costs of drug development, pharmaceutical companies

have shown great interest in designing new drugs with the aid of computer. It is well known

that molecules with similar structures tend to have the same function [154]. The exhaustive

generation of molecular graphs with a desired function can speed up the screening procedure

of the target molecule.

1.3.3 Challenges

Recall that a CAT algorithm for the exhaustive generation of combinatorial objects in par-

ticular class is an optimal algorithm in terms of time complexity. Each CAT algorithm

generates all objects without repetition without doing the test of duplications. Clearly the
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delay between two consecutive objects is not constant if we need to check whether each newly

generated object has been generated before.

It is not easy to design a CAT algorithm with polynomial space for outerplanar graphs

even for rooted outerplanar graphs because of complicated symmetric structures. The dif-

ficulty in designing such an algorithm is to how to avoid generation duplications without

checking.

1.4 Overview of the Thesis

In this thesis, we study the exhaustive generation problem of simple and connected outerpla-

nar graphs in a specific class as follows:

Problem: Given an integer n ≥ 1 and a color set C with K ≥ 1 colors, how to systematically

generate all colored and rooted outerplanar graphs with at most n vertices without repetition?

We take advantage of the graphical symmetry of colored and rooted outerplanar graph,

generalize the generation idea of rooted trees by Nakano and Uno [121], and obtain the fol-

lowing result in this thesis:

Result: The above problem admits an O(n) space CAT algorithm.

The general idea of our algorithm is presented as follows. We first introduce a “canon-

ical” embedding as the representative for each outerplanar graph to avoid duplications. In

doing so, the original problem of the thesis reduces to the problem of generating all canon-

ical embeddings of colored and rooted outerplanar with at most n vertices. Then for each

canonical embedding, we define a unique canonical embedding as its parent-embedding such

that each pair of parent-embedding and child-embedding have constant differences in terms of

graphical structure. Based on the relationship, all canonical outerplanar embeddings can be

arranged into a tree structure, called the family tree ℱ , where each node in ℱ corresponds to

a canonical embedding. Finally we generate all canonical outerplanar embeddings by travers-

ing the family tree ℱ in the depth-first search. Equivalently, we systematically generate all

colored and rooted outerplanar graphs without repetition, where the computation time for

the changes between two successive graphs is constant in the worst case, and the total space

for the whole generation is O(n).

The rest of this section is devoted to describe the idea of the algorithm with more details.

Chapter 2 reviews some traditional definitions in graph theory and gives our new definitions,

both of which are related to the problem under study. Chapter 3 introduces a delicate

decomposition of a block in an outerplanar embedding, and gives a vertex-labeling and edge-
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Figure 1.1: (a) An illustration of an ordering for sibling-blocks B and B′ rooted at a cut-

vertex v from left to right, whose descendant-blocks are shown by light purple; and (b) An

illustration of the core, wings and all the descendants of a rooted block B, which are shown

by dark pink, light pink and light purple, respectively.

labeling of an outerplanar embedding. Each outerplanar graph consists of blocks. The

structure of an outerplanar embedding is fully determined by the structures of rooted blocks

and the cut-vertices blocks intersect.

Recall that for a rooted tree, its embedding is determined by an ordering of the sibling-

blocks at each cut-vertex, which we call the free symmetry at the cut-vertex, and canonical

embeddings of rooted trees are introduced to avoid isomorphic duplication due to the free

symmetry at all cut-vertices. See Figure 1.1 (a) for an illustration. For the outerplanar case,

we need to avoid additional isomorphic duplications due to possible reflectional symmetry

along each rooted block. This makes us to find a desired choice of embeddings inherently

more difficult. Our idea to overcome the difficulty is to treat each rooted block as a pair

of two rooted trees so that the basic idea for the rooted tree algorithm can be carried over.

More specifically, we decompose each rooted block B into three parts: “core,” “left wings”

and “right wings.” The core is a subgraph which is reflectionally symmetric in the block B

(except for an assignment of colors to the vertices in the core). The left wings and all their

descendant blocks play a role of the first tree rooted at the root of B, and the right wings

and all their descendant blocks plays a role of the second tree rooted at the root of B. See

Figure 1.1 (b) for an illustration. The core of a block B is shown by dark pink, wings of B

are shown by light pink and the descendant blocks of the left and right wings are shown by

light purple. By regarding each rooted block in this way, we generate the rooted outerplanar

graphs in a similar way of the rooted tree algorithm. We define an integer as the depth of a

vertex u in the “core” or the “wing” of the block B, which show the position of the vertex
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u in B. In a recursive way, we assign integers to the vertices of all blocks in the embedding.

Note that the depths of all vertices of an outerplanar embedding only maintain a partial

information of the graphical structure of the embedding. In Chapter 4, we will see that these

depths facilitate to fully describe the embedding.

Chapter 4 shows how to encode each outerplanar embedding into a sequence, called sig-

nature. We first define a parent-child relationship between two outerplanar embeddings, and

then introduce the signature for an outerplanar embedding based on its parent-embedding.

We define the parent-embedding G′ = P (G) of an embedding G with N ∈ [2, n] vertices by

removing a “specific” vertex u of G, called an operation remove(u), where the choice of the

vertex u among V (G) is unique (note that how to choose such a unique vertex u will be

explained in Chapter 4). Accordingly, G is called a child-embedding of G′, which can be

obtained from G′ by applying a reverse operation of remove(u). We attempt to define the

signature �(G) of an embedding G such that G can be uniquely reconstructed from the sig-

nature. For this, we first encode the operation by which we gain G from G′ into a sequence

as a code (u) of the vertex u. Based on the code (u), we know how to attach the vertex u

to G′ to obtain G. Then we define the signature �(G) by the following recursive formula:

�(G) = [�(G′), (u)].

We have proved that the signature �(G) uniquely corresponds to the embedding G.

Chapter 5 chooses a unique embedding as canonical from the embeddings of a colored and

rooted outerplanar graph. The canonical outerplanar embedding is treated to be the repre-

sentative of all isomorphic embeddings. The problem studied in the thesis can be converted

into the problem of generating all canonical outerplanar embeddings with at most n vertices

without duplications. We choose the outerplanar embedding with the maximal code as the

canonical embedding in similar with tree case [121, 123]. For the further investigation, we

find that such a canonical outerplanar embedding G has two “left-heavy” properties, which

are informally described as follows (note that the formal description will be presented in

Chapter 5):

(1) left-sibling-heaviness: for any two sibling-blocks B and B′ rooted at a cut-vertex v ∈

V (G) from left to right, let G(B) (resp., G(B′)) be the subgraph of G consisting of the

block B (resp., B′) and and all its descendant-blocks. It holds that G(B) is “heavier”

than G(B′), i.e., the signature of G(B) is lexicographically larger than that of G(B′);

and

(2) left-side-heaviness: for any block B in G, all left wings and their descendants is “heavier”

than all right wings and their descendants, i.e., the signature of all left wings and their

descendants is lexicographically larger than that of all right wings and their descendants.

Chapter 6 explains how to generating all canonical child-embeddings from a given canon-

ical embedding G without repetition and without testing duplication. Based on Chapters 4
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and 5, an embedding G′ is a canonical child-embedding of G if G′ is obtained from G by

attaching a new vertex v to an element " (i.e., vertex or edge) in V (G)∪E(G) with a vertex

code  and G′ satisfies the left-heavy properties. The systematical generation of all canonical

child-embeddings of G depends on the determination of all possible elements " of G (ar-

ranged by a sequence ℰ∗(G)) and all possible vertex codes (denoted by Γ). We can easily

see that if all these valid elements and vertex codes can be automatically gained, then all

canonical child-embeddings of G can be generated systematically without repetition. Fortu-

nately, we characterize the element sequence ℰ∗(G) and the set Γ of vertex codes such that

an embedding obtained from G by applying a vertex code  in Γ to an element in ℰ∗(G) is

a canonical child-embedding of G. This characterization guarantees that we do not need to

check duplications but can generate all canonical child-embeddings of G without repetition.

Chapter 7 describes the algorithm with pseudo-codes and explains its implementation. To

explain how to implement the algorithm, we present sufficient and compact data structures for

each canonical outerplanar embedding and show the realization of the procedures associated

with the data structures. We prove that the algorithm generates all non-isomorphic colored

and rooted outerplanar graphs with at most given n number of vertices in constant time per

each graph in the worst case and in O(n) space.

Chapter 8 summarizes the results of this thesis, and gives some future directions that

deserve further investigation.
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Chapter 2

Preliminaries

Throughout the thesis, a graph stands for a simple undirected graph.

A component of a graph is a maximal subgraph in which every two vertices (if exist)

are linked by a path (possibly a component consists of a single vertex). A graph is called

connected if it has only one component. Otherwise, it is called disconnected. A vertex in

a connected graph is called a cut-vertex if its removal results in a disconnected graph. A

connected graph with at least three vertices is called biconnected if it has no cut-vertex. A

maximal connected subgraph of a graph is called a block if it has no cut-vertex (i.e., it is

biconnected or consists of a single edge or a single vertex). Two blocks in a graph are called

adjacent if they share a vertex (which is a cut-vertex in the entire graph). By definition,

we see that any connected graph can be decomposed into blocks such that any two blocks

can share at most one vertex. A block in a graph is called a leaf-block if it has at most one

adjacent block.

A graph is called planar if its vertices and edges can be drawn as points and curves on the

plane so that no two curves intersect except for their endpoints. In such a drawing of a planar

graph, the plane is divided into several connected regions, each of which is called a face. A

face is called outer face if it is the unbound region, and it is called inner face otherwise. By

definition, any drawing of a planar graph has only one outer face. A cycle of the graph is

called a facial cycle if it is the boundary of a face. We call such a cycle the outer facial cycle

(resp., an inner facial cycle) if it is the boundary of the outer (resp., an inner) face. A set F

of facial cycles in a drawing defines a combinatorial embedding of a planar graph which gives

an order of neighbors of each vertex. A planar graph with a fixed combinatorial embedding is

called a plane graph if a facial cycle in the embedding is designated as the outer facial cycle.

Note that two distinct plane graphs can be isomorphic to the same planar graph, and hence

both of them can be treated as planar embeddings (i.e., drawings) of this planar graph. An

outerplanar graph is a planar graph that admits a plane graph such that all vertices appear

on its outer boundary.
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A graph with a vertex r designated as the root is called a rooted graph or a graph rooted

at r. The set of vertices and the set of edges of a graph H are denoted by V (H) and E(H),

respectively.

For each block B of a graph rooted at a vertex r, the root r(B) of B is defined to be the

unique vertex v ∈ V (B) closest to r. Let V ′(B) denote V (B)− {r(B)}. A block B is called

the parent-block of all other vertices in V ′(B). A vertex u adjacent to a vertex v is called a

child-vertex of v if u does not belong to the parent-block of v. A block B with r(B) = v is a

child-block of v. Let Ch(v) denote the set of all child-vertices of a vertex v. The depth d(B)

of a block B is defined by the number of blocks which edge sets intersect with a simple path

from a vertex in V ′(B) to the root r. For notational convenience, let Br be an imaginary

block which is the parent-block of rG, and define depth d(Br) = 0. For two blocks B and B′

with r(B′) ∈ V ′(B), we say that B is the parent-block of B′ and that B′ is a child-block of

B. Similarly, we define the ancestor-blocks and descendant-blocks.

Let C = {c1, c2, . . . , cK} be a set of colors. A colored graph is a graph in which each

vertex v is assigned with a color c(v) ∈ C (different vertices can receive the same color). Two

colored and rooted graphs H1 and H2 are rooted-isomorphic if and only if their vertex sets

admit a bijection by which the root, the color classes, and the incidence-relation between

vertices and edges in H1 correspond to those in H2. Let H1 ≡ H2 means that two colored

and rooted graphs H1 and H2 are rooted-isomorphic.

A rooted outerplanar graph H can have several different embeddings in the plane. Note

that there are two ways of embeddings of a rooted block B in the plane. Also there are p!

ways in the orderings of child-blocks of a vertex v, where p is the number of child-blocks of v.

An embedding G of a rooted outerplanar graph H is determined by choosing one of the two

ways of embeddings of each block and choosing one of the orderings of child-blocks of each

cut-vertex. For each block B, let ℓv(B) denote the leftmost vertex in V (B) adjacent to r(B),

and for each vertex v, let ℬ(v) denote a sequence (B1, B2, . . . , Bk) of all child-blocks of v such

that B1, B2, . . . , Bk appear in this order from left to right under v. Thus an embedding G of

a rooted graph H can be represented by

(V (H), E(H), {ℓv(B) ∣ blocks B in H}, {ℬ(v) ∣ v ∈ V (H)}).

Let �(H) denote the set of all embeddings of a colored and rooted outerplanar graph H. For

two colored and rooted outerplanar graphs H1 and H2 (possibly H1 ≡ H2), we say that two

embeddings G1 ∈ �(H1) and G2 ∈ �(H2) are rooted-isomorphic if H1 ≡ H2 and G1 = G2.

Let G1 ≡ G2 mean that two embeddings G1 and G2 are rooted-isomorphic.

For an embedding G ∈ �(H), G′ ⊆ G denote an embedding of a subgraph H ′ of H such

that G′ ∈ �(H ′) is obtained from G ∈ �(H) by deleting the vertices/edges not in H ′. For

notational convenience, a block B in an embedding G also means the embedding of B that is

obtained from G by deleting the vertices/edges not in B. We let G(B) denote the embedding



21

u1

B6

B5

B7

B2

B1

B4

B3

(a) (b)

B f3

B9
B8

u13

u5

u4
u7

u2 u3

u10

u18

u17

u16

u14

u11 u12

u15

u6

u8 u9

B9
B8

u13
u11 u12

B2

u5

u4

B4
u18

u1

B1u2 u3

u7 u6

u8

B5 B6
B7

u17

u16

u14
u15

u10

u9

root root

Figure 2.1: (a) An embedding G of a rooted outerplanar graph; (b) The embedding G′

obtained by flipping block B3 of G.

of that consists of embeddings of B and all descendant-blocks of B. For a block B, let Vcut(B)

denote the set of cut-vertices of v ∈ V ′(B). For a vertex v, let G(v) denote the embedding

obtained from G by deleting the vertices which are not descendants of v. For an embedding

G, let Gf denote the flipped embedding of G that is obtained by reversing the embedding

G on the plane. For example, Figure 2.1(a) shows an embedding G of a rooted outerplanar

graph, and Figure 2.1(b) shows the embedding G′ obtained by flipping block B3 in G.

We define an operation of eliminating a vertex u as follows. Let u′ and u′′ be the vertices

adjacent to u.

remove(u): remove vertex u together with edges (u, u′) and (u, u′′), and addition-

ally introduce a new edge (u′, u′′) if u′ and u′′ are not adjacent.
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Chapter 3

Rooted Outerplanar Graphs

Let G ∈ �(H) be an embedding of a colored and rooted outerplanar graph H, and let rG

denote the root of G. We define the depth d(rG) = 0 for the root rG, and depth of other

vertices in G recursively based on the following decomposition of blocks.

Structure of rooted blocks

For a block B in G, the vertices in V ′(B) adjacent to r(B) are called the head-vertices of

B, and the edges in B incident to r(B) are called the head-edges of B. Let Vhead(B) denote

the set of all head-vertices in B, and let ℎ = ∣Vhead(B)∣. We denote the head-vertices in

Vhead(B) by

x1, x2, . . . , xℎ/2, yℎ/2, yℎ/2−1, . . . , y2, y1 (if ℎ is even)

x1, x2, . . . , x(ℎ−1)/2, z, y(ℎ−1)/2, . . . , y2, y1 (if ℎ is odd)

from left to right, where ℓv(B) = x1. Define depth of head-vertices to be

d(xi) = d(yi) = d(r(B)) + i, d(z) = d(r(B)) + (ℎ+ 1)/2.

We will define “axial-faces” and “bottom” of block B as follows. Let ℎ be odd. We call

vertex z the bottom vertex of B and denote it by bv(B). If ℎ = 1, then no axial-face is defined

for B. If ℎ ≥ 3, then an inner face of B containing edge (r(B), z) is called an axial-face of B

(there are exactly two such faces).

Let ℎ be even. The inner face f1 of B containing both edges (r(B), xℎ/2) and (r(B), yℎ/2)

is called the first axial-face of B. If f1 consists of an odd number of edges, then f1 has a

unique edge e1 farthest from r(B), and the other inner face containing e1 (if any) is defined

to be the second axial-face f2. For each axial-face fi, i ≥ 2, if fi consists of an even number

of edges, then fi has a unique edge ei farthest from r(B), and the other inner face containing

ei (if any) is defined to be the (i+1)st axial-face fi+1. (Note that the definition of axial-faces

is independent of choice of embeddings G ∈ �(H).)
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Figure 3.1: Structure of a rooted block.

The non-head-vertices in all axial-faces are called the axial-vertices, and the non-head-

edges in all axial-faces are called the axial-edges. Let Vaxis(B) denote the set of axial-vertices

in B, and A(B) denote the set of axial-edges in B. The depth d(u) of an axial-vertex u is

defined to be the number of edges in a shortest path from u to a head-vertex v plus d(v) .

The last axial-face fp has a unique vertex or edge farthest from r(B), which we call the

bottom vertex of B or bottom edge of B, and denote it by bv(B) or be(B), respectively.

A head- or axial-vertex is called a core-vertex of B. A non-core-vertex in B is called a

wing-vertex of B. Let Vcore(B) and Vwing(B) denote core-vertices and wing-vertices in B,

respectively.

Any block B has either a bottom vertex bv(B) or a bottom edge be(B), which we call the

bottom of B, where we let bv(B) = ∅ (resp., be(B) = ∅) mean that B has no bottom vertex

(resp., edge).

If ℎ = ∣Vhead(B)∣ is odd, where Vcore(B) = Vhead(B) and Vwing(B) = ∅, then the left

(resp., right) side of B is defined to be the sequence of vertices x1, x2, . . . , x(ℎ−1)/2 (resp.,

y1, y2, . . . , y(ℎ−1)/2).

Consider the case where ℎ is even. Let

x1, x2, . . . , xℎ/2+1, . . . , xp (resp., x1, x2, . . . , xℎ/2+1, . . . , xp, bv(B))

be the sequence of core-vertices on the shortest path from x1 to the bottom if (xp, yp) = be(B)

(resp., bv(B) exists). We define y1, y2, . . . , yp (resp., y1, y2, . . . , yp, bv(B)) symmetrically.

Let x and x′ be two consecutive core-vertices in the sequence x1, x2, . . . , xp, bv(B) (possibly

bv(B) = ∅), where (x, x′) = (xi, xi+1) for some i or (x, x′) = (xp, bv(B)). Removal of these

vertices from B leaves at most one subgraph B′ which consists of wing-vertices. Let B(x, x′)

denote such a subgraph B′ if any.
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We define a unique numbering for the wing-vertices in B(x, x′), i.e., the vertices in

V (B(x, x′)) − {x, x′} (t = ∣V (B(x, x′))∣ − 2), as the reverse order of the following vertex

eliminations. Let wt be the wing-vertex of degree 2 visited last when we traverse the bound-

ary of B(x, x′) from x to x′ (see Figure 3.1). Then we eliminate wt by operation remove(wt).

For each j ≤ t, let wj−1 be the last wing-vertex of degree 2 along the boundary from x to x′

in the plane graph obtained from B(x, x′) by removing wing-vertices wt, wt−1, . . . , wj in the

same manner (see Figure 3.1). This gives an ordering w1, w2, . . . , wt for the wing-vertices in

B(x, x′).

We define a unique numbering � for all wing-vertices in B(xi, xi+1), i = 1, 2, . . . , p − 1

(and in B(xp, bv(B)) if bv(B) exists) by visiting B(x1, x2), B(x2, x3), . . . , B(xp−1, xp) (and

B(xp, bv(B)) if bv(B) exists) in this order, where we visit the wing-vertices in each B(xi, xi+1)

according to the above ordering. The depth of the jth wing-vertex w in � is defined to be

d(w) = d(r(B)) + p + j (see Figure 3.1). The sequence of core-vertices x1, x2, . . . , xp and

wing-vertices in the order � is called the left side of B. We define the right side of B in the

same way (note that bv(B) is not contained in the left or right side of B).

Let V L(B) and V R(B) denote the sets of vertices in the left and right sides of B, re-

spectively. A vertex u ∈ V L(B) (resp., V R(B)) is called a left (resp., right) vertex of B.

Also denote V L(B) ∩ Vcore(B) by V L
core(B). Similarly for V R

core(B), V L
head(B) and V R

head(B)

V L
axis(B), V R

axis(B), V L
wing(B) and V R

wing(B).

For a vertex u in the left side of B, let PL(u;B) denote the boundary of the left side of B

from u to the bottom of B (excluding the bottom edge), and EL(u;B) denote the sequence

of edges in the path PL(u;B).

We define PR(u;B) and ER(u;B) for the right side symmetrically with PL(u;B) and

EL(u;B).

Let Ẽ(B) denote the set of all edges (v, v′) with v, v ∈ V L(B)∪{bv(B)} or v, v ∈ V R(B)∪

{bv(B)}, where we include edge (v, v′) that appears as an edge when we remove the wing-

vertex w adjacent to v and v′ by remove(w) to define the ordering �, but (v, v′) is not an

edge in B. A left (resp., right) edge e = (v, v′) is an edge such that {v, v′} ⊆ V L(B)∪{bv(B)}

(resp., {v, v′} ⊆ V R(B) ∪ {bv(B)}).

We define depth d(e) for all left edges e ∈ Ẽ(B).

Let L1 = ∣V L
core(B) ∪ {bv(B)}∣ (possible bv(B) = ∅), and L2 = ∣V L

wing(B)∣. For the left

wing-vertex w with the largest depth and the two edges e and e′ incident to w, where e is

closer to x1 than e′ along PL(x1;B), we let d(e) = 2L2 + L1 − 1 and d(e′) = 2L2 + L1 − 2,

and then remove w by applying remove(w). We repeat this procedure of assigning pair of

numbers

(2(L2−1) + L1−1, 2(L2−1) + L1−2), (2(L2−2) + L1−1, 2(L2−2) + L1−2), . . . , (L1+1, L1)

until no left wing-vertices remain. After removing all left wing-vertices, we assign d(ei) = i

for the ith edge ei along PL(x1;B
′) when we traverse PL(x1;B

′) reversely from the bottom to
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the first left head-vertex x1 in the resulting block (see Figure 3.1). The reason why we define

the depth of left edges in this way is to attain the following property. For the left wing-vertex

xi with the largest depth i (xi is the left wing-vertex of degree 2 that appears last along

PL(x1;B) by definition), let x∗ be the vertex that precedes xi along PL(x1;B). Then

the sequence (eq+1, eq, . . . , e1) of edges in EL(x
∗;B) satisfies

d(eq+1) > d(eq) > ⋅ ⋅ ⋅ > d(e1).
(3.1)

We define depth d(e) for all right edges e ∈ Ẽ(B) symmetrically.

Note that the definition of depth of vertices v ∈ V (B) and edges e ∈ Ẽ(B) are independent

of a choice of embeddings B and Bf .



Chapter 4

Signatures of Embeddings

4.1 Tips of Rooted Blocks

We define the “tip” t(B) of a block B as follows.

Let {xi ∣ i = 1, 2, . . . , pL}, pL = ∣V L(B)∣ (resp., {yj ∣ j = 1, 2, . . . , pR}, pR = ∣V R(B)∣)

denote the set of vertices in the left (resp., right) side of B, where d(xi) = d(r(B)) + i and

d(yj) = d(r(B)) + j.

Case-1 V R
cut(B) ∕= ∅ (see Figure 4.1(a)): Define t(B) to be the right vertex y ∈ V R

cut(B) with

the largest depth d(y).

Case-2 V R
cut(B) = ∅ and V R

wing(B) ∕= ∅ (see Figure 4.1(b)): Define t(B) to be the right wing-

vertex y ∈ V R
wing(B) with the largest depth d(y). By definition, y is the right wing-vertex

ypR of degree 2 that appears last along PR(y1;B).

Case-3 V R
cut(B) = V R

wing(B) = ∅ and V L
cut(B) ∕= ∅, where possibly V L

wing(B) = ∅ (see Fig-

ure 4.1(c)-(d)): Define t(B) to be the left vertex x ∈ V L
cut(B) with the largest depth

d(x).

Case-4 V R
cut(B) = V R

wing(B) = V L
cut(B) = ∅ and V L

wing(B) ∕= ∅ (see Figure 4.1(e)): Define t(B)

to be the left wing-vertex x ∈ V L
wing(B) with the largest depth d(x). By definition, x is

the left wing-vertex xpL of degree 2 that appears last along PL(x1;B).

Case-5 ∣V (B)∣ = 2 or V R
cut(B) = V R

wing(B) = V L
cut(B) = V L

wing(B) = ∅, where possibly

ℬ(bv(B)) ∕= ∅ (see Figure 4.1(f)-(g)): Define t(B) to be the core-vertex u ∈ V ′(B)

with the largest depth d(u). Let t(B) be the right endvertex of be(B) if any.
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Figure 4.1: Tip t(B) of a rooted block B: (a) Case-1; (b) Case-2; (c) Case-3; (d) Case-3; (e)

Case-4; (f) Case-5; and (d) Case-5.
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Figure 4.2: An illustration for a sequence of blocks between rG and t(G), which forms a spine.

For a block B such that ℬ(t(B)) ∕= ∅, the successor of B is defined to be the rightmost

block in ℬ(t(B)). The spine of G is defined to be the sequence of all successors starting from

the rightmost block B1 ∈ ℬ(rG) by

B1, B2, . . . , Bp,

where B1 is the rightmost block in ℬ(rG), and each Bi (i ≥ 2) is the successor of Bi−1. See

Figure 4.2. The tip t(G) of G is defined to be the tip t(Bp) of block Bp, and the last block

Bp is called the tip-block of G. Note that the tip-block is not necessarily a leaf-block.

4.2 Parent-embedding and Signature

For an embedding G with ∣V (G)∣ ≥ 2 and tp = t(G), we define the parent-embedding P (G)

of G to be the embedding G′ of a graph obtained from G by operation remove(u) for u = tp.

An embedding G is called a child-embedding of G′. A child-embedding G is obtained from

P (G) by applying a “reverse operation” of remove(u). We encode such a reverse operation

as a “vertex code” (u), which tells how to attach a new vertex u to P (G) to obtain G. We

also define a “signature” of G as a sequence of such vertex codes.

If ∣V (G)∣ = 1, then we define the signature �(G) of G to be a sequence of a single code

c(u),

�(G) = [c(u)].

We define signature �(G) of G from the signature �(P (G)) of P (G) by attaching a vertex

code (u) of u, i.e.,

�(G) = [�(P (G)), (u)].
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A vertex code  is a sequence

(d1, at, d2, op, c)

of five entries such that d1 and d2 are nonnegative integers, c ∈ C,

at ∈ {hL, wL, hR, wR, ∗},

called an attachment-label, and

op ∈ {new-block, star, triangle, subdivide},

called an operation-label. The vertex code (u) of a vertex u = t(G) is defined as follows. Let

B be the tip-block of G. Note that t(B) = tp = t(G) and ℬ(tp) = ∅.

(P-1) Let u = t(G) be a head-vertex of B: Let ℎ = ∣V ′(B)∣.

If ℎ = 1, i.e., B consists a leaf edge (v = r(B), u) of G, then for the block B′ with

v ∈ V ′(B′), define

(u) =

⎧



⎨



⎩

(d(B′), hL, d(v), new-block, c(u)) if v is a left vertex of B′

(d(B′), hR, d(v), new-block, c(u)) if v is a right vertex of B′

(d(B′), ∗, d(v), new-block, c(u)) otherwise (i.e., v ∈ {rG, bv(B
′)}),

(4.1)

where B′ = Br with d(Br) = 0 if v = rG.

If ℎ = 2, i.e., B consists of a triangle (r(B), ℓv(B), u) of G and (r(B), ℓv(B)) is an edge

in B, then define

(u) = (d(B), ∗, d(ℓv(B)), triangle, c(u)).

For ℎ ≥ 3, let v and v′ be the vertices in V ′(B) adjacent to u, and let d(v′) ≥ d(v), where

(v, v′) is an edge e in P (G). Define

(u) = (d(B), ∗, d(v′), star, c(u)).

(P-2) Let u = t(G) be an axial-vertex of B, where u is of degree 2 in G: Let v and v′ be the

vertices in V ′(B) adjacent to u, and let d(v′) ≥ d(v), where (v, v′) is an edge e in P (G), but

(v, v′) can be an edge in B only when ∣V (B)∣ is even. Define

(u) =

{

(d(B), ∗, d(v′), triangle, c(u)) if u, v and v′ form a triangle in G

(d(B), ∗, d(v′), subdivide, c(u)) if v and v′ are not adjacent in G.

(P-3) Let u = t(G) be a left wing-vertex of B: Let x and x′ be the two vertices in B adjacent

to u, where (x, x′) is an edge e in P (G) and e ∈ Ẽ(B) holds. Define

(u) =

{

(d(B), wL, d(e), triangle, c(u)) if u, x and x′ form a triangle in G

(d(B), wL, d(e), subdivide, c(u)) if x and x′ are not adjacent in G.
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(P-4) Let u = t(G) be a right wing-vertex of B: Let y and y′ be the two vertices in B adjacent

to u, where (y, y′) is an edge e in P (G) and e ∈ Ẽ(B) holds. Define

(u) =

{

(d(B), wR, d(e), triangle, c(u)) if u, y and y′ form a triangle in G

(d(B), wR, d(e), subdivide, c(u)) if y and y′ are not adjacent in G.

Let an element denote a vertex or an edge. In case (P-1) with ℎ = 1, we say that G

is obtained from P (G) by creating a new block at B with an application of (u) to vertex

v = r(B) in P (G). In case (P-1) with ℎ ≥ 2 and cases (P-2)-(P-4), we say that G is obtained

from P (G) by expanding block B with an application of (u) to edge e in P (G). Such a

vertex v and an edge e in P (G) are called applicable elements in P (G).

4.3 Generating Operations

Let Cℎ(G) denote the set of all child-embeddings of an embedding G. A child-embedding G′

of G has signature �(G′) = [�(G), (u)]. We define a graph transformation associated with

each type of vertex codes (u) to construct G′ from G. Let (B1, B2, . . . , Bp) be the spine of

G. Note that a newly introduced vertex u by an application of (u) must be the tip of the

resulting embedding G′. From this and definition of tips, we can observe the next.

Lemma 4.1. Any applicable elements in G appear on some block Bi in the spine of G.

We define a graph transformation for each type of vertex codes as follows. For a block

Bℎ in the spine of G, let eb denote the bottom edge be(Bℎ) or the right edge incident to the

bottom vertex bv(Bℎ), where eb is the unique edge in Bℎ if ∣V (Bℎ)∣ = 2.

∙ Vertex code (d1, at, d2, new-block, c) introduces a new head-vertex u with c(u) = c and

a new edge (u, v) for the vertex v ∈ V ′(Bℎ) with d(v) = d2 of in the block Bℎ with

d(Bℎ) = d1 in the spine, where at needs to satisfy (4.1) for B′ = Bℎ. The new edge

(u, v) forms a new block B with d(B) = d1 + 1 and ℓv(B) = u in G′.

∙ Vertex code (d1, ∗, d2, star, c) deletes the edge eb = (v, v′) with v, v′ ∈ V (Bℎ) and

d(v) ≤ d(v′) = d2 in the block Bℎ with d(Bℎ) = d1 in the spine, and introduces a new

head-vertex u with c(u) = c and three new edges (r(B), u), (v, u) and (u, v′).

∙ Vertex code (d1, ∗, d2, triangle, c) introduces a new core-vertex u with c(u) = c and

two new edges (u, v) and (u, v′) for the edge eb = (v, v′) with v, v′ ∈ V (Bℎ) and d(v) ≤

d(v′) = d2 in the blockBℎ with d(Bℎ) = d1 in the spine. Note that (d1, ∗, d2, triangle, c)

is not applied when ∣V (Bℎ)∣ is an even number greater than 2.
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∙ Vertex code (d1, ∗, d2, subdivide, c) deletes eb = (v, v′) with v, v′ ∈ V (Bℎ) and d(v) ≤

d(v′) = d2 in the block Bℎ with d(Bℎ) = d1 in the spine, and introduces a new axial-

vertex u with c(u) = c and two new edges (v, u) and (u, v′). Note that (d1, ∗, d2, subdivide, c)

is not applied to the right edge eb incident to bv(B) if V ′(B) = Vhead(B) and ∣V (B)∣ is

even.

∙ Vertex code (d1, w
L, d2, triangle, c) (resp., (d1, w

R, d2, triangle, c)) introduces a new

left (resp., right) wing-vertex u with c(u) = c and two new edges (v, u) and (u, v′) for

the left (resp., right) edge e = (v, v′) with d(e) = d2 in the block Bℎ with d(Bℎ) = d1

in the spine.

∙ Vertex code (d1, w
L, d2, subdivide, c) (resp., (d1, w

R, d2, subdivide, c)) deletes the left

(resp., right) edge e = (v, v′) with d(e) = d2 in the block Bℎ with d(Bℎ) = d1 in the

spine, and introduces a new left (resp., right) wing-vertex u with c(u) = c and two

new edges (v, u) and (u, v′) for the edge e = (v, v′). Note that (d1, w
L, d2, subdivide, c)

(resp., (d1, w
R, d2, subdivide, c)) is not applied to edge e such that (i) e ∈ A(Bℎ), or

(ii) e is the left (resp., right) edge with the largest depth d(e) incident to the left (resp.,

right) wing-vertex with the largest depth.

Note that Bℎ, v and v′ in the above cases are uniquely determined by d1 and d2.

From the above argument, each type of vertex codes uniquely determines the resulting

graph augmented with a new vertex. Therefore, this means that an embedding G can be

reconstructed uniquely from its signature �(G) by performing the graph transformations

implied by the vertex codes in �(G). Then signature � has the following property.

Lemma 4.2. Let G1 and G2 be two embeddings of colored and rooted outerplanar graphs H1

and H2, respectively. Then G1 ≡ G2 if and only if �(G1) = �(G2).

Proof. For an embedding G ∈ �(H) of a colored and rooted outerplanar graph H, �(G)

is uniquely determined from G independently of the vertex/edge names of H. Hence if

G1 ≡ G2 then �(G1) = �(G2). As observed in the above, given a sequence � of vertex codes,

an embedding G with �(G) = � is determined uniquely. Therefore, if �(G1) = �(G2) then

G1 ≡ G2.
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Canonical Embeddings

For two sequences A and B, let A > B mean that A is lexicographically larger then B,

and let A ≥ B mean that A > B or A = B. Let A ⊐ B mean that B is a prefix of A and

A ∕= B, and let A ≫ B mean that A > B but B is not a prefix of A. Let A ⊒ B mean that

A ⊐ B or A = B, i.e., B is a prefix of A.

For two embeddings G1 and G2 of a graph H, we compare two signatures �(G1) and

�(G2) by comparing their codes lexicographically code-wise. We compare two vertex codes

 and ′ by comparing their entries lexicographically, treating colors and labels as negative

integers such that

0 > cK > cK−1 > ⋅ ⋅ ⋅ > c1 > ∗ > wL > hL > wR > hR

> subdivide > triangle > star > new-block.

For each block B ∈ ℬ(v), the signature �(G) of an embedding G contains a subsequence

which consists of the codes of vertices in V (G(B)) − {v}, which we denote by �(G(B);G).

Left-sibling-heaviness An embedding G is called left-sibling-heavy at a block B ∈ ℬ(v) =

(B1, B2, . . . , Bp) if B = B1 or

�(G) ≥ �(G′)

holds for the embedding G′ obtained from G by exchanging the order of Bi−1 and Bi = B in

ℬ(v).

Lemma 5.1. An embedding G is left-sibling-heavy at a block Bi ∈ ℬ(v) = (B1, B2, . . . , Bp)

with i ≥ 2 if and only if �(G(Bi−1);G) ≥ �(G(Bi);G) holds.

Proof. Let G′ be the embedding obtained from G by exchanging the order of Bi−1 and

Bi in ℬ(v). Signatures �(G) and �(G′) have a common subsequence before the subsequences

[�(G(Bi−1);G), �(G(Bi);G)] and [�(G(Bi);G
′), �(G(Bi−1);G

′)], respectively.

33
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Note that �(G(Bi);G
′) = �(G(Bi);G) and �(G(Bi−1);G

′) = �(G(Bi−1);G). Hence

�(G) ≥ �(G′) holds if and only if

[�(G(Bi−1);G), �(G(Bi);G)] ≥ [�(G(Bi);G), �(G(Bi−1);G)].

Since the lemma holds when �(G(Bi−1);G) = �(G(Bi);G), it suffices to show that

�(G(Bi−1);G) > �(G(Bi);G) implies

[�(G(Bi−1);G), �(G(Bi);G)] > [�(G(Bi);G), �(G(Bi−1);G)], (5.1)

and that �(G(Bi);G) > �(G(Bi−1);G) implies [�(G(Bi);G), �(G(Bi−1);G)] > [�(G(Bi−1);G),

�(G(Bi);G)]. By symmetry, it is sufficient to show the former.

Assume that �(G(Bi−1);G) > �(G(Bi);G). If �(G(Bi−1);G) ≫ �(G(Bi);G), then we

have [�(G(Bi−1);G), �(G(Bi);G)] > [�(G(Bi);G
′), �(G(Bi−1);G

′)]. We assume �(G(Bi−1);G) ⊐

�(G(Bi);G). In this case, ∣�(G(Bi−1);G)∣ > ∣�(G(Bi);G)∣ holds, and the (∣�(G(Bi);G)∣+1)st

code (v) in �(G(Bi−1);G) is compared with the first code (x) in �(G(Bi−1);G).

Let Bx (resp., Bv) be the block such that x ∈ V ′(Bx) (resp., v ∈ V ′(Bv)). Then the first

entry d1(x) of (x) is d1(x) = d(Bx) = d(Bi−1) − 1, whereas the first entry d1(v) of (v)

satisfies d1(v) ≥ d(Bi−1). Hence (v) > (x), as required.

Let B̂ ∈ ℬ(r(B)) denote the sibling preceding B, where we let B̂ = ∅ indicate that

there is no such sibling (i.e., B is the leftmost block in ℬ(r(B))). We define the sibling-state

sbl(B;G) of a block B in G as follows.

sbl(B;G) =

⎧



⎨



⎩

stc if B̂ = ∅ or �(G(B̂);G) ≫ �(G(B);G)

pfx if B̂ ∕= ∅ and �(G(B̂);G) ⊐ �(G(B);G)

eqv if B̂ ∕= ∅ and �(G(B̂);G) = �(G(B);G).

(5.2)

Note that an embedding G is left-sibling-heavy at a block B if and only if sbl(B;G) ∈

{stc, pfx, eqv}. If B̂ ∕= ∅ and sbl(B;G) = stc, then the first pair of codes (v̂) ∈ �(G(B̂);G)

and (v) ∈ �(G(B);G) such that (v̂) > (v) is called the witness pair of sbl(B;G), and the

vertex v ∈ V (G(B)) is called the witness vertex of sbl(B;G).

For a block Bi ∈ ℬ(v) = (B1, B2, . . . , Bq) and a vertex u ∈ G(Bi) − {r(Bi)}, let k(u; v)

denote the integer such that (u) appears as the kth vertex code in �(G(Bi);G). Let �−(u; v)

denote the vertex w ∈ V (G(Bi−1)) with k(w; v) = k(u; v), and let �+(u; v) denote the vertex

w ∈ V (G(Bi+1)) with k(w; v) = k(u; v), where we let �−(u; v) = ∅ and �+(u; v) = ∅ if no

such vertex w exists.

Left-side-heaviness An embedding G is called left-side-heavy at a block B ∈ ℬ(v) if

�(G) ≥ �(G′)
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holds for the embedding G′ obtained from G by replacing B with Bf (thus flipping the

embedding B along the axis through v and the bottom of B).

The code subsequence �(G(B);G) consists of six subsequences: the first consists of the

codes of left or right core-vertices (excluding bv(B)), the second consists of the code of the

descendants of the bottom vertex bv(B) (if any), the third consists of the code of left wing-

vertices, the fourth consists of the code of descendants of left vertices, the fifth consists of

the code of right wing-vertices, and the sixth consists of the code of descendants of right

vertices. We denote these subsequences by �core(G(B);G), �b(G(B);G), �Lwing(G(B);G),

�Ldscd(G(B);G), �Rwing(G(B);G), and �Rdscd(G(B);G), respectively.

The subsequence of �(G(B);G) consisting of �Lwing(G(B);G) and �Ldscd(G(B);G) (resp.,

�Rwing(G(B);G) and �Rdscd(G(B);G)) is denoted by �L(G(B);G) (resp., �R(G(B);G)).

Let �Lcore(G(B);G) (resp., �Rcore(G(B);G)) denote the sequence obtained from �core(G(B);G)

by eliminating the codes of right (resp., left) core-vertices and of the bottom vertex bv(B) (if

any) after deleting the first four entries of each code in �core(G(B);G), respectively. Thus,

�Lcore(G(B);G) (resp., �Rcore(G(B);G)) is the sequence of color entries of left (resp., right)

core-vertices of B.

For each left wing-vertex u of B (resp., a child-vertex u ∈ Cℎ(v) of a vertex v in the left

side of B), we define the flipped code (u) of vertex code (u) to be the code obtained from

(u) by replacing the second entry wL (resp., hL) with wR (resp., hR). Symmetrically, for each

right wing-vertex u of B (resp., a child-vertex u ∈ Cℎ(v) of a vertex v in the right side of

B), we define the flipped code (u) of vertex code (u) to be the code obtained from (u) by

replacing the second entry wR (resp., hR) with wL (resp., hL). For a notational convenience,

we set (u) = (u) for the other vertices u ∈ V (G(B))− {r(B)}.

Let �L(G(B);G) (resp., �R(G(B);G)) denote the sequence obtained from �L(G(B);G)

(resp., �R(G(B);G)) by replacing each vertex code (u) with (u).

Lemma 5.2. An embedding G is left-side-heavy at a block B ∈ ℬ(v) if and only if it holds

[�Lcore(G(B);G), �L(G(B);G)] ≥ [�Rcore(G(B);G), �R(G(B);G)].

Proof. Let G′ be the embedding obtained from G by replacing B with Bf . Signatures

�(G) and �(G′) have a common subsequence before their subsequences [�core(G(B);G), �L(G(B);G),

�R(G(B);G)] and [�core(G(B);G′), �L(G(B);G′), �R(G(B);G′)] start, respectively.

Note that �L(G(B);G′) = �R(G(B);G) and �R(G(B);G′) = �L(G(B);G). Also �core(G(B);G) ≥

�core(G(B);G′) holds if and only if �Lcore(G(B);G) ≥ �Rcore(G(B);G), since �core(G(B);G)

is an alternating sequence of vertices in the left and right sides of B. Hence

�(G) ≥ �(G′) ⇔ [�Lcore(G(B);G), �L(G(B);G), �R(G(B);G)]

≥ [�Rcore(G(B);G), �R(G(B);G), �L(G(B);G)].
(5.3)

For simplicity, let �Lcore denote �Lcore(G(B);G). Similarly for �Rcore, �L, �R, �L and �R.
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Since (5.3) holds when “�Lcore ∕= �Rcore” or “�Lcore = �Rcore and �L = �R,” it suffices to show

that �L > �R (resp., �R > �L) implies [�L, �R] > [�R, �L] (resp., [�R, �L] > [�L, �R]). We prove

the former (the latter can be treated symmetrically).

Assume �L > �R. If �L ≫ �R, then we have [�L, �R] > [�R, �L]. We assume �L ⊐ �R. In

this case, ∣�L∣ > ∣�R∣ holds, and the (∣�R∣ + 1)st code (x) in �L is compared with the first

code (u) in �L, where (u) is the flipped code of the first code (u) in �L. It suffices to show

that (x) > (u), since this shows [�L, �R] > [�R, �L]. Let Bu (resp., Bx) be the block such

that u ∈ V ′(Bu) (resp., x ∈ V ′(Bx)), and let (d1(u), at(u)) and (d1(x), at(x)) be the first

two entries in (u) and (x), respectively. We show that

(d1(x), at(x)) > (d1(u), at(u)),

which implies (x) > (u).

If u (resp., x) is a left wing-vertex of B, then Bu = B, d1(u) = d(B) and at(u) = wR

(resp., Bx = B, d1(x) = d(B) and at(x) = wL) by definition of .

If u (resp., x) is not a left wing-vertex of B, then d(Bu) = d(B) + 1, d1(u) = d(B) and

at(u) = hR (resp., d(Bx) ≥ d(B) + 1, d1(x) ≥ d(B), and if d1(x) = d(B) then at(x) = hL).

Hence d1(x) ≥ d1(u). Clearly d1(x) > d1(u) implies (d1(x), at(x)) > (d1(u), at(u)).

If d1(x) = d1(u), then at(x) ∈ {wL, hL} and at(u) ∈ {wR, hR}, implying (d1(x), at(x)) >

(d1(u), at(u)).

For simplicity, denote �Lcore(G(B);G) by �Lcore. Similarly for �Rcore, �R and �L. We define

the side-state sd(B;G) of a block B in G as follows.

sd(B;G) =

⎧









⎨









⎩

stc if “[�Lcore, �L] ≫ [�Rcore, �R]

nil if �Lcore = �Rcore and �R = ∅

pfx if �Lcore = �Rcore and �L ⊐ �R ∕= ∅

eqv if �Lcore = �Rcore and �L = �R ∕= ∅.

(5.4)

Note that an embedding G is left-side-heavy at a block B if and only if sd(B;G) ∈

{stc, nil, pfx, eqv}. If sd(B;G) = stc, then the first pair of codes (x) ∈ [�Lcore, �L] and

(y) ∈ [�Rcore, �R] such that (x) > (y) is call the witness pair of sd(B;G) = stc, and the

vertex y ∈ V (G(B)) is called the witness vertex of sd(B;G) = stc.

For each vertex u ∈ V (G(B)) − {r(B)} in a block B ∈ ℬ(v) for a vertex v, we define its

corresponding vertex �(u; v) as follows.

If u is a left (resp., right) core-vertex of B, then let �(u; v) be the right (resp., left)

core-vertex w ∈ V (B) with k(w; v) = k(u; v) + 1 (resp., k(w;B) = k(u; v) − 1).

If (u) appears in �b(G(B);G) (i.e., vertex z = bv(B) exists and u ∈ V (G(z))), then

�(u; v) = u.
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If (u) appears as the kth code in �L(G(B);G) (resp., �R(G(B);G)), then let �(u; v) be

the vertex w ∈ V (G(B)) such that (w) appears as the kth code in �R(G(B);G) (resp.,

�L(G(B);G)), where we let �(u; v) = ∅ if no such w exists.

An embedding G is called canonical if it is left-sibling-heavy and left-side-heavy at all

blocks in G.

Lemma 5.3. Let G be an embedding of a colored and rooted outerplanar graph H. Then G

is canonical if and only if �(G) is lexicographically maximum among all �(G′) of embeddings

G′ ∈ �(H).

Proof. (i) Only if part: Let G be an embedding of H such that �(G) is lexicographically

maximum. To derive a contradiction, assume that G is not canonical.

IfG is not left-sibling-heavy at some blockBi ∈ ℬ(v) = (B1, B2, . . . , Bp), then �(G(Bi);G) >

�(G(Bi−1);G) holds by Lemma 5.1. Hence by the definition of left-sibling-heaviness, the em-

bedding G′ obtained from G by exchanging the order of B′

i−1 and B′

i in ℬ(v) has signature

�(G′) which is lexicographically larger than G.

If G is not left-side-heavy at some block B, then it holds [�Rcore(G(B);G), �R(G(B);G)] >

[�Lcore(G(B);G), �L(G(B);G)] by Lemma 5.2. Hence by the definition of left-sibling-heaviness,

the embedding G′ obtained from G by replacing B with Bf has signature �(G′) which is

lexicographically larger than G.

(ii) If part: Let G be a canonical embedding. To prove that �(G) is lexicographi-

cally maximum, it suffices to show that a canonical embedding is unique up to rooted-

isomorphism ≡, since any embedding with the lexicographically maximum signature is canon-

ical by (i) and each signature represents a rooted-isomorphically unique embedding of H by

Lemma 4.2. Let v be a cut-vertex with the largest depth in G. For each block B ∈ ℬ(v),

its embedding maximizes �(G(B);G) (where G(B) = B), and hence the embedding is

unique, since any code (u) is lexicographically larger or smaller than other code (v) with

(u) ∕= (v) by definition. Also the ordering of blocks B1, B2, . . . , Bq ∈ ℬ(v) maximizes

[�(G(B1);G), �(G(B2);G), . . . , �(G(Bq);G)], and is unique. By applying the argument in

a bottom-up manner along G, we see that a canonical embedding is rooted-isomorphically

unique.

Lemma 5.4. For a canonical embedding G with ∣V (G)∣ ≥ 2, its parent-embedding P (G) is a

canonical embedding.

Proof. Let B1, B2, . . . , Bp be the spine of G, and let tp = t(G), and tk = r(Bk+1) for

k = 0, 1, . . . , p − 1. Let G′ = P (G).

Since each block Bk is the rightmost one among its siblings in G, G′ = P (G) remains

left-sibling-heavy at any block other than these blocks Bk, where possibly Bp is eliminated
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in G′ = P (G). For each block Bk which has a preceding sibling B̂k, we have �(G(B̂k);G) ≥

�(G(Bk);G) by Lemma 5.1, since G is left-sibling-heavy at Bk. By the definition of parent-

embeddings, we have �(G(Bk);G) ⊐ �(G′(Bk);P (G)), implying that �(G′(B̂k);P (G)) ≥

�(G′(Bk);P (G)), i.e., P (G) remains left-sibling-heavy at Bk.

It is easy to see that G′ = P (G) remains left-side-heavy at any block other than these

blocks Bk.

For each blockBk, it holds [�Lcore(G(Bk);G), �L(G(Bk);G)] ≥ [�Rcore(G(Bk);G), �R(G(Bk);G)]

by Lemma 5.1, since G is left-side-heavy at Bk.

If tk is the bottom vertex bv(Bk) ofBk or a right wing-vertex of Bk, then �core(G(Bk);G) =

�core(G
′(Bk);P (G)), �L(G(Bk);G) = �L(G

′(Bk);P (G)) and �R(G(Bk);G) ⊒ �R(G
′(Bk);P (G)),

implying that G′ = P (G) remains left-side-heavy at Bk.

If tk is a left wing-vertex of Bk, then �core(G(Bk);G) = �core(G
′(Bk);P (G)), �L(G(Bk);G) ⊐

�L(G
′(Bk);P (G)) and �R(G(Bk);G) = �R(G

′(Bk);P (G)) = ∅, implying that G′ = P (G) re-

mains left-side-heavy at Bk.

Note that tk is not a left core-vertex of Bk by definition of tips. If tk is a right core-vertex

of Bk, then �L(G(Bk);G) = �R(G(Bk);G) = ∅ and �Lcore(G
′(Bk);P (G)) = �Lcore(G(Bk);G)

hold and �Rcore(G
′(Bk);P (G)) is obtained from �Rcore(G(Bk);G) by deleting the last code,

implying that G′ = P (G) remains left-side-heavy at Bk.



Chapter 6

Generating Canonical

Child-embeddings

We now consider how to generate all canonical child-embeddings from a canonical embedding.

6.1 Side-state Change of Applied Blocks

We first consider how to generate all child-embeddings G′ from a canonical embedding G

such that G′ is left-side-heavy at the block applied a vertex code .

Let G be a canonical embedding with ∣V (G)∣ = N , and let B be a block in G. For

an element " in V ′(B) ∪ E(B) and a vertex code  = (d1, at, d2, op, c), let G + (uN+1)

with (uN+1) =  denote the embedding G′ such that �(G′) = [�(G), (d1, at, d2, op, c)], i.e.,

G + (uN+1) is obtained from G by introducing a new vertex uN+1 by applying operation

(d1, at, d2, op, c) to ".

Now we identify all the elements " in V ′(B)∪E(B) that admit a vertex code  such that

G′ = G + (uN+1) remains left-side-heavy at block B. We give the set of such elements in

V ′(B) ∪ E(B) as a sequence of these elements, called the element sequence ℰ(B).

Note that the condition for G′ to remain canonical (i.e., left-sibling-heavy and left-side-

heavy at any other blocks) will be investigated in the next section.

We assume that sd(B;G) ∕= eqv, since otherwise no application of (uN+1) is applied

any element in V ′(B) ∪ E(B) without violating left-side-heaviness of B. Let ℰ(B) = ∅ if

sd(B;G) = eqv.

Let {xi ∣ i = 1, 2, . . . , pL} (resp., {yj ∣ j = 1, 2, . . . , pR}) denote the set of vertices in the

left (resp., right) side of B, where d(xi) = d(r(B)) + i and d(yj) = d(r(B)) + j. To identify

ℰ(B), we consider the same five cases used to define the tip t(B) of a block B.

Case-1. V R
cut(B) ∕= ∅, where sd(B;G) ∈ {stc, pfx}: See Figure 6.1(a)-(d). In this case,

t(B) is the vertex yi ∈ V R
cut(B) with the largest depth d(yi). If sd(B;G) = pfx, then let

39
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Figure 6.1: Illustrations of Case-1 (i.e., V R
cut(B) ∕= ∅): (a) sd(B;G) = stc; (b) sd(B;G) = pfx

and ∣V (B′

ℎ)∣ > ∣V (Bℎ)∣; (c) sd(B;G) = pfx, ∣V (B′

ℎ)∣ = ∣V (Bℎ)∣ and ∣ℬ(xi)∣ > ∣ℬ(yi)∣; (d)

sd(B;G) = pfx, ∣V (B′

ℎ)∣ = ∣V (Bℎ)∣ and ∣ℬ(xi)∣ = ∣ℬ(yi)∣.

ℎ = ∣ℬ(yi)∣, and Bℎ be the ℎth rightmost block (i.e., the rightmost one) in ℬ(yi), and let B′

ℎ

and B′

ℎ+1 (if any) denote the ℎth and (ℎ+ 1)st blocks in ℬ(xi) (see Figure 6.1(b)-(c)).

(a) sd(B;G) = stc (see Figure 6.1(a)): Define ℰ(B) to be

ℰ(B) = [yi, yi+1, . . . , ypR−1, ypR ],

where d(yi) < d(yi+1) < ⋅ ⋅ ⋅ < d(ypR−1) < d(ypR) holds.

(b) sd(B;G) = pfx and ∣V (B′

ℎ)∣ > ∣V (Bℎ)∣ (see Figure 6.1(b)): Define ℰ(B) to be

ℰ(B) = [yi, yi+1, . . . , ypR−1, ypR ].

(c) sd(B;G) = pfx, ∣V (B′

ℎ)∣ = ∣V (Bℎ)∣ and ∣ℬ(xi)∣ > ∣ℬ(yi)∣ (see Figure 6.1(c)): Define

ℰ(B) = [yi], cmax(yi) = c(ℓv(B′

ℎ+1)).

(d) sd(B;G) = pfx, ∣V (B′

ℎ)∣ = ∣V (Bℎ)∣ and ∣ℬ(xi)∣ = ∣ℬ(yi)∣ (see Figure 6.1(d)): Let xj

be the left vertex x ∈ V L
cut(B) having the smallest depth d(xj) such that d(xj) > d(xi)

(i.e., xj is the next vertex in V L
cut(B) after xi), and B′′

1 be the leftmost block in ℬ(xj).

Define

ℰ(B) = [yi, yi+1, . . . , yj−1, yj ], cmax(yj) = c(ℓv(B′′

1 )).

Case-2. V R
cut(B) = ∅ and V R

wing(B) ∕= ∅, where sd(B;G) ∈ {stc, pfx}: See Figure 6.2(a)-(d).
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Figure 6.2: Illustrations of Case-2 (i.e., V R
cut(B) = ∅ and V R

wing(B) ∕= ∅): (a) sd(B;G) =

stc; (b) sd(B;G) = pfx, �Lwing(G(B);G) ⊐ �Rwing(G(B);G), and V L
cut(B) ∕= ∅; (c)

sd(B;G) = pfx, �Lwing(G(B);G) ⊐ �Rwing(G(B);G), and V L
cut(B) = ∅; (d) sd(B;G) = pfx

and �Lwing(G(B);G) = �Rwing(G(B);G).

(a) sd(B;G) = stc (see Figure 6.2(a)): Let y∗ be the right vertex that precedes ypR along

PR(y1;B), and denote the sequence of edges in ER(y
∗;B) by (e′q′+1, e

′

q′ , . . . , e
′

2, e
′

1). De-

fine

ℰ(B) = [y1, y2, . . . , ypR−1, ypR , e
′

1, e
′

2, . . . , e
′

q′ , e
′

q′+1],

where d(e′1) < d(e′2) < ⋅ ⋅ ⋅ < d(e′q′) < d(e′q′+1) holds by(3.1).

(b) sd(B;G) = pfx, �Lwing(G(B);G) ⊐ �Rwing(G(B);G), and V L
cut(B) ∕= ∅ (see Figure 6.2(b)):

There is a left wing-vertex xpR = �(ypR; r(B)), and let ê = (x′, x′′) ∈ Ẽ(B) be the left

edge to which

(xpR+1) = (d(B), wL, d(ê), op(xpR+1), c(xpR+1))

is applied, where op(xpR+1) ∈ {triangle, subdivide}. Let y′ = �(x′; r(B)) and y′′ =

�(x′′; r(B)), and let e′q′ = (y′, y′′) be the corresponding right edge, where e′q′ appears

along ER(y1;B). Denote the sequence of edges in ER(y
′;B) from e′q′ to the bottom of

B by (e′q′ , e
′

q′−1, . . . , e
′

2, e
′

1). Define

ℰ(B) = [y1, y2, . . . , ypR−1, ypR, e
′

1, e
′

2, . . . , e
′

q′ ], opcmax(e
′

q′) = (op(xpR+1), c(xpR+1)).

(c) sd(B;G) = pfx, �Lwing(G(B);G) ⊐ �Rwing(G(B);G), and V L
cut(B) = ∅ (see Figure 6.2(c)):

Define ℰ(B) and opcmax(e
′

q′) in the same way of the above (b).
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Figure 6.3: Illustrations of Case-3 (i.e., V R
cut(B) = V R

wing(B) = ∅ and V L
cut(B) ∕= ∅): (a)

sd(B;G) = stc with V L
wing(B) ∕= ∅; (b) sd(B;G) = stc with V L

wing(B) = ∅; (c) sd(B;G) =

nil with V L
wing(B) ∕= ∅; (d) sd(B;G) = nil with V L

wing(B) = ∅.

(d) sd(B;G) = pfx and �Lwing(G(B);G) = �Rwing(G(B);G) (see Figure 6.2(d)): Let xℎ be

such the vertex x ∈ V L
cut(B) ∕= ∅ with the smallest depth, and let B′

1 be the leftmost

block in ℬ(xℎ). For the corresponding left vertex yℎ = �(xℎ; r(B)), define

ℰ(B) = [y1, y2, . . . , yℎ], cmax(yℎ) = c(ℓv(B′

1)).

Case-3. V R
cut(B) = V R

wing(B) = ∅ and V L
cut(B) ∕= ∅, where sd(B;G) ∈ {nil, stc}: Let xi be

the left vertex in V L
cut(B) with the largest depth d(xi), where xi = t(B). See Figure 6.3(a)-(d).

(a) sd(B;G) = stc and V L
wing(B) ∕= ∅: Let (e′q′ , e

′

q′−1, . . . , e
′

2, e
′

1) denote the sequence of

edges in ER(y1;B), as shown in Figure 6.3(a). Define

ℰ(B) = [y1, y2, . . . , ypR−1, ypR, e
′

1, e
′

2, . . . , e
′

q′ , xi, xi+1, . . . , xpL−1, xpL ].

(b) sd(B;G) = stc and V L
wing(B) = ∅: Let (e′q′ , e

′

q′−1, . . . , e
′

2, e
′

1) denote the sequence of

edges in ER(y1;B), as shown in Figure 6.3(b). Define

ℰ(B) = [y1, y2, . . . , ypR−1, ypR, e
′

1, e
′

2, . . . , e
′

q′ , xi, xi+1, . . . , xpL−1, xpL ].

(c) sd(B;G) = nil and V L
wing(B) ∕= ∅: Let ê = (xj , xj+1) be the two left core-vertices

adjacent to the left wing-vertex xpR+1 with the smallest depth d(xpR+1), let (xpR+1) =
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(d(B), wL, d(ê), op(xpR+1), c(xpR+1)) and yj = �(xj ; r(B)). Let (e′q′ , e
′

q′−1, . . . , e
′

2, e
′

1) de-

note the sequence of edges in ER(yj;B), as shown in Figure 6.3(c). Define

ℰ(B) = [y1, y2, . . . , ypR−1, ypR, e
′

1, e
′

2, . . . , e
′

q′ , xi, xi+1, . . . , xpL−1, xpL ],

opcmax(e
′

q′) = (op(xpR+1), c(xpR+1)).

(d) sd(B;G) = nil and V L
wing(B) = ∅: Let xj be the left core-vertex with ℬ(xj) ∕= ∅ having

the smallest depth d(xj) in B, as shown in Figure 6.3(d). Let B′

1 be the leftmost block

in ℬ(xj). Define

ℰ(B) = [y1, y2, . . . , yj−1, yj , xi, xi+1, . . . , xpL−1, xpL ], cmax(yj) = c(ℓv(B′

1)).

Case-4. V R
cut(B) = V R

wing(B) = V L
cut(B) = ∅ and V L

wing(B) ∕= ∅, where sd(B;G) ∈ {nil, stc}:

See Figure 6.4(a)-(b). Let x∗ be the vertex that precedes xpL along PL(x1;B), and denote

the sequence of edges in EL(x
∗;B) by (eq+1, eq, . . . , e1).

(a) sd(B;G) = stc: Let (e′q′ , e
′

q′−1, . . . , e
′

1) denote the sequence of edges in ER(y1;B) in G,

as shown in Figure 6.4(a). Define

ℰ(B) = [y1, y2, . . . , ypR−1, ypR, e
′

1, e
′

2, . . . , e
′

q′ , x1, . . . , xpL−1, xpL , e1, e2, . . . , eq, eq+1].

(b) sd(B;G) = nil: Let ê = (xj , xj+1) be the two left core-vertices adjacent to the left

wing-vertex xpR+1 with the smallest depth d(xpR+1), as shown in Figure 6.4(b). Let

(xpR+1) = (d(B), wL, d(ê), op(xpR+1), c(xpR+1)) and yj = �(xj ; r(B)). Let (e′q′ , e
′

q′−1, . . . , e
′

1)

denote the sequence of edges in ER(yj;B). Define

ℰ(B) = [y1, y2, . . . , ypR−1, ypR, e
′

1, e
′

2, . . . , e
′

q′ , x1, . . . , xpL−1, xpL , e1, e2, . . . , eq, eq+1],

opcmax(e
′

q′) = (op(xpR+1), c(xpR+1)).

Case-5. ∣V (B)∣ = 2 or V R
cut(B) = V R

wing(B) = V L
cut(B) = V L

wing(B) = ∅ (possibly ℬ(bv(B)) ∕=

∅), where sd(B;G) ∈ {nil, stc}: See Figures 6.5 and 6.6. In this case, t(B) is the core-vertex

u ∈ V ′(B) with the largest depth d(u), where t(B) is bv(B) or the right endvertex of be(B).

(a) ∣V (B)∣ = 2, where t(B) = bv(B) holds. Let eb = (r(B), bv(B)) be the edge in B:

If ℬ(bv(B)) = ∅ (see Figure 6.5(f)), then define

ℰ(B) = [bv(B), eb], opcmax(e
b) = (triangle, c(bv(B))).

If ℬ(bv(B)) ∕= ∅ (see Figure 6.5(g)), then let B′

1 be the rightmost block in ℬ(bv(B)),

and define

ℰ(B) = [bv(B)], cmax(bv(B)) = c(ℓv(B′

1)).
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Figure 6.4: Illustrations of Case-4 (i.e., V R
cut(B) = V R

wing(B) = V L
cut(B) = ∅ and V L

wing(B) ∕= ∅):

(a) sd(B;G) = stc; (b) sd(B;G) = nil.

(b) ∣V (B)∣ ≥ 3 and sd(B;G) = nil (see Figure 6.5(a)-(e)): Denote the sequence of edges

in EL(x1;B) by (eq, eq−1, . . . , e1). Let eb denote the bottom edge be(B) or the right

edge incident to the bottom vertex bv(B).

If ℬ(bv(B)) = ∅ (see Figure 6.5(a)-(d)), where possibly bv(B) = ∅, then define

ℰ(B) = [x1, . . . , xpL−1, xpL, e1, e2, . . . , eq, bv(B), eb],

where we define

opcmax(e
b) = (subdivide, c(bv(B))) if bv(B) ∕= ∅ (i.e., ∣V (B)∣ ≥ 4 is even).

If ℬ(bv(B)) ∕= ∅ (see Figure 6.5(e)), then let B′

1 be the rightmost block in ℬ(bv(B)),

and define

ℰ(B) = [x1, . . . , xpL−1, xpL , e1, e2, . . . , eq, bv(B)], cmax(bv(B)) = c(ℓv(B′

1)).

(c) ∣V (B)∣ ≥ 3 and sd(B;G) = stc (see Figure 6.6(a)-(e)): Denote the sequence of edges

in EL(x1;B) and ER(y1;B) by (eq, eq−1, . . . , e1) and (e′q, e
′

q−1, . . . , e
′

1), respectively. Let

eb denote the bottom edge be(B) or the right edge incident to the bottom vertex bv(B).

If ℬ(bv(B)) = ∅ (see Figure 6.6(a)-(d)), then define

ℰ(B) = [y1, y2, . . . , ypR−1, ypR, e
′

1, e
′

2, . . . , e
′

q′ , x1, . . . , xpL−1, xpL, e1, e2, . . . , eq, bv(B), eb],

where possibly bv(B) = ∅, and different operations are applicable to edges eb and e′1,

although they have the same endvertices.
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Figure 6.5: Illustrations of Case-5 with sd(B;G) = nil: (a) be(B) ∕= ∅ and Vaxis(B) = ∅; (b)

be(B) ∕= ∅ and Vaxis(B) ∕= ∅; (c) bv(B) ∕= ∅ and Vaxis(B) = ∅; (d) bv(B) ∕= ∅, ℬ(bv(B)) = ∅

and Vaxis(B) ∕= ∅; (e) ℬ(bv(B)) ∕= ∅ and Vaxis(B) ∕= ∅; (f) ∣V (B)∣ = 2 and ℬ(bv(B)) = ∅; (g)

∣V (B)∣ = 2 and ℬ(bv(B)) ∕= ∅.

If ℬ(bv(B)) ∕= ∅ (see Figure 6.6(e)), then define

ℰ(B) = [y1, y2, . . . , ypR−1, ypR, e
′

1, e
′

2, . . . , e
′

q′ , x1, . . . , xpL−1, xpL , e1, e2, . . . , eq, bv(B)].

From the definition of ℰ(B), we see the next.

Lemma 6.1. No other element " than ℰ(B) admits a vertex code  applicable to " such that

G+ (uN+1) with (uN+1) =  is left-side-heavy at B.

Code set Γ We next consider all vertex codes  for each element " ∈ ℰ(B) such that  is

applicable to " and G + (uN+1) with (uN+1) =  is left-side-heavy at B and left-sibling-

heavy at the new block B′ created by  with new-block (if any). Let Γ(") denote the set of

such vertex codes .

(1) For a vertex v ∈ ℰ(B), Γ(v) is defined as follows. Let B′ denote the new block formed by

operation new-block with v. Then it holds

sd(B′;G′) = nil. (6.1)

We have

sbl(B′;G′) = stc if ℬ(v) = ∅. (6.2)
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Figure 6.6: Illustrations of Case-5 with sd(B;G) = stc: (a) be(B) ∕= ∅ and Vaxis(B) = ∅; (b)

be(B) ∕= ∅ and Vaxis(B) ∕= ∅; (c) bv(B) ∕= ∅ and Vaxis(B) = ∅; (d) bv(B) ∕= ∅, ℬ(bv(B)) = ∅

and Vaxis(B) ∕= ∅; (e) ℬ(bv(B)) ∕= ∅ and Vaxis(B) ∕= ∅.

1. For v ∈ V ′(B)− Vcut(B) such that v is not yj in Case-1(d) and 3(d), define

Γ(v) = {(d(B), at, d(v), new-block, c) ∣ c ∈ C},

where at = hR (resp., at = hL and at = ∗) if v is a right vertex (resp., a left vertex and

the bottom vertex) of B. If sd(B;G) = nil, and v ∈ V ′(B) is not yj in Case-3(d), then

sd(B;G′) =

{

nil if v is a left vertex or the bottom vertex of B;

stc if v is a right vertex of B.
(6.3)

2. For v = yi in Case-1(c), let ℎ = ∣ℬ(yi)∣, and let Bℎ be the ℎ-th block in ℬ(yi) (i.e., Bℎ is

the rightmost block rooted at yi), and B′

ℎ+1 denote the (ℎ+ 1)st block in ℬ(xi). Then

Γ(yi) = {(d(B), hR, d(yi), new-block, c) ∣ c ∈ C, c ≤ c(ℓv(B′

ℎ+1))},

and

sbl(B′;G′) =

⎧



⎨



⎩

eqv if c = c(ℓv(Bℎ)) and ∣V (G(Bℎ))∣ = 2

pfx if c = c(ℓv(Bℎ)) and ∣V (G(Bℎ))∣ ≥ 3

stc if c < c(ℓv(Bℎ)).

(6.4)

3. For v = yj in Case-1(d) or Case-3(d), ℬ(yj) = ∅ holds, and let B′′

1 be the leftmost block

in ℬ(xj). Define

Γ(v) = {(d(B), hR, d(v), new-block, c) ∣ c ∈ C, c ≤ c(ℓv(B′′

1 ))}.
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Let V L(G(B);G) (resp., V R(G(B);G)) denote the set of left (resp., right) wing-vertices

of B and the descendants of left (resp., right) vertices of B. If sd(B;G) = nil, then

sd(B;G′) =

⎧



⎨



⎩

eqv if c = c(ℓv(B′′

1 )) and ∣V L(G(B);G)∣ = ∣V R(G(B);G)∣ + 1

pfx if c = c(ℓv(B′′

1 )) and ∣V L(G(B);G)∣ ≥ ∣V R(G(B);G)∣ + 2

stc if c < c(ℓv(B′′

1 )).

(6.5)

In G, it holds ℬ(yj) = ∅. Hence sbl(B′;G′) = stc holds.

4. For v ∈ Vcut(B) not in Case-1(c), let B′

1 denote the rightmost block in ℬ(v) in G.

Define

Γ(v) = {(d(B), at, d(v), new-block, c) ∣ c ∈ C, c ≤ c(ℓv(B′

1))},

where at = hR (resp., at = hL and at = ∗) if v is a right vertex (resp., a left vertex and

the bottom vertex) of B.

Then

sbl(B′;G′) =

⎧



⎨



⎩

eqv if c = c(ℓv(B′

1)) and ∣V (G(B′

1))∣ = 2

pfx if c = c(ℓv(B′

1)) and ∣V (G(B′

1))∣ ≥ 3

stc if c < c(ℓv(B′

1)).

(6.6)

If sd(B;G) = nil, then sd(B;G′) = nil. (6.7)

(2) For each right edge e′ ∈ ℰ(B), Γ(e′) is defined as follows.

(i) sd(B;G) ∈ {pfx, nil} and �Lwing(G(B);G) ⊐ �Rwing(G(B);G) (i.e., in Case-2(b)-(c), Case-

3(c) and Case-4(b)): In this case, Γ(e′q′) for the edge e′q′ = (y′, y′′) is defined as follows. Let

ê = (x′, x′′) be the corresponding left edge with x′ = �(y′; r(B)) and x′′ = �(y′′; r(B)), and

(xpR+1) = (d(B), wL, d(ê), op(xpR+1), c(xpR+1)) be the code applied to ê, where op(xpR+1) ∈

{subdivide, triangle} and xpR+1 is the (R + 1)th left wing-vertex for R = ∣V R
wing(B)∣.

If op(xpR+1) = triangle, then define

Γ(e′q′) = {(d(B), wR, d(e′q′), triangle, c) ∣ c ∈ C, c ≤ c(xpR+1)},

where if sd(B;G) = nil, then

sd(B;G′) =

⎧



⎨



⎩

eqv if c = c(xpR+1) and ∣V L(G(B);G)∣ = ∣V R(G(B);G)∣ + 1

pfx if c = c(xpR+1) and ∣V L(G(B);G)∣ ≥ ∣V R(G(B);G)∣ + 2

stc if c < c(xpR+1).

(6.8)

If op(xpR+1) = subdivide, then

Γ(e′q′) = {(d(B), wR, d(e′q′), subdivide, c) ∣ c ∈ C, c ≤ c(xpR+1)}

∪ {(d(B), wR, d(e′q′), triangle, c) ∣ c ∈ C},
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where if sd(B;G) = nil, then

sd(B;G′) =

⎧













⎨













⎩

eqv if (uN+1) = (d(B), wR, d(e′q′), subdivide, c(xpR+1)) and

∣V L(G(B);G)∣ = ∣V R(G(B);G)∣ + 1

pfx if (uN+1) = (d(B), wR, d(e′q′), subdivide, c(xpR+1)) and

∣V L(G(B);G)∣ ≥ ∣V R(G(B);G)∣ + 2

stc for other (uN+1) ∈ Γ(e′q′).

(6.9)

(ii) Otherwise, i.e., e′ is not the edge e′q′ in Case-2(b)-(c), Case-3(c) and Case-4(b):

If e′ ∈ A(B) ∪ {e′q′+1}, then define

Γ(e′) = {(d(B), wR, d(e′), triangle, c) ∣ c ∈ C}.

If e′ ∕∈ A(B) ∪ {e′q′+1}, then define

Γ(e′) = {(d(B), wR, d(e′), op, c) ∣ op ∈ {subdivide, triangle}, c ∈ C}.

In (ii),

sd(B;G) = nil changes into sd(B;G′) = stc. (6.10)

(3) For each left edge ej ∈ ℰ(B), Γ(ej) is defined as follows.

If ej ∈ A(B) ∪ {eq+1}, then define

Γ(ej) = {(d(B), wL, d(ej), triangle, c) ∣ c ∈ C}.

If ej ∕∈ A(B) ∪ {eq+1}, then define

Γ(ej) = {(d(B), wL, d(ej), op, c) ∣ op ∈ {subdivide, triangle}, c ∈ C}.

In (3),

sd(B;G) = nil remains unchanged, i.e., sd(B;G′) = nil. (6.11)

(4) For the edge eb = (y, z) ∈ ℰ(B) (d(z) ≥ d(y)), Γ(eb) is defined as follows.

(a) B has no axial-vertex and ∣V (B)∣ is even:

If sd(B;G) = stc (see Figure 6.6(c)), then

Γ(eb) = {(d(B), ∗, d(z), star, c) ∣ c ∈ C}.

If sd(B;G) = nil and ∣V (B)∣ = 2 (see Figure 6.5(f)), then z = bv(B) holds and

Γ(eb) = {(d(B), ∗, d(z), triangle, c) ∣ c ∈ C, c ≤ c(z)}.
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If sd(B;G) = nil and ∣V (B)∣ ≥ 3 (see Figure 6.5(c)), then

Γ(eb) = {(d(B), ∗, d(z), star, c) ∣ c ∈ C, c ≤ c(z)}.

In case (a), if sd(B;G) = nil, then

sd(B;G′) =

{

nil if c = c(z)

stc if c < c(z).
(6.12)

(b) B has no axial-vertex and ∣V (B)∣ is odd:

If sd(B;G) = stc (see Figure 6.6(a)), then

Γ(eb) = {(d(B), ∗, d(z), op, c) ∣ op ∈ {star, subdivide, triangle}, c ∈ C}.

If sd(B;G) = nil (see Figure 6.5(a)), then

Γ(eb) = {(d(B), ∗, d(z), op, c) ∣ op ∈ {star, subdivide, triangle}, c ∈ C},

and

sd(B;G′) = nil. (6.13)

(c) B has an axial-vertex and ∣V (B)∣ is even:

If sd(B;G) = stc (see Figure 6.6(d)), then

Γ(eb) = {(d(B), ∗, d(z), subdivide, c) ∣ c ∈ C}.

If sd(B;G) = nil, B has an axial-vertex and ∣V (B)∣ is even (see Figure 6.5(d)), then

Γ(eb) = {(d(B), ∗, d(z), subdivide, c) ∣ c ∈ C, c ≤ c(z)},

and

sd(B;G′) =

{

nil if c = c(z)

stc if c < c(z).
(6.14)

(d) B has an axial-vertex and ∣V (B)∣ is odd:

If sd(B;G) = stc (see Figure 6.6(b)), then

Γ(eb) = {(d(B), ∗, d(z), op, c) ∣ op ∈ {subdivide, triangle}, c ∈ C}.

If sd(B;G) = nil (see Figure 6.5(b)), then

Γ(eb) = {(d(B), ∗, d(z), op, c) ∣ op ∈ {subdivide, triangle}, c ∈ C},

and

sd(B;G′) = nil. (6.15)
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From the above definition, we can observe that the following two properties hold.

Lemma 6.2. For a block B in a canonical embedding G, and an edge e ∈ ℰ(B), let  be a

vertex code applicable to e. Then G′ = G + (uN+1) with (uN+1) =  is left-side-heavy at

B if and only if  ∈ Γ(e).

Lemma 6.3. For a block B in a canonical embedding G, and a vertex v ∈ ℰ(B), let  with

new-block be a vertex code applicable to v. Then G′ = G + (uN+1) with (uN+1) = 

is left-side-heavy at B and left-sibling-heavy at the new block B′ created by  if and only if

 ∈ Γ(v).

Lemma 6.4. For two distinct elements w′, w′′ ∈ ℰ(B) of a block B, let ′ = (d′1, at
′, d′2, op

′, c′)

and ′′ = (d′′1 , at
′′, d′′2 , op

′′, c′′) be codes in Γ(w′) and Γ(w′′), respectively, where d′′1 = d′1. If w′

precedes w′′ in ℰ(B), then ′ < ′′ holds.

Proof: First we consider the case where at′ ∕= at′′. Let eb be the bottom edge of B or the

right edge incident to the bottom vertex bv(B) of B. Note that if w′ is the vertex bv(B) and

w′′ is the edge eb of B, then at′ = at′′ = ∗. Specifically, there are the following subcases.

1. w′ is a right vertex of B: Then at′ = hR, and

at′′ =

⎧













⎨













⎩

wR if w′′ is a right edge of B;

hL if w′′ is a left vertex of B;

wL if w′′ is a left edge of B;

∗ if w′′ is the edge eb or is the

bottom vertex bv(B).

2. w′ is a right edge of B: Then at′ = wR, and

at′′ =

⎧



⎨



⎩

hL if w′′ is a left vertex of B;

wL if w′′ is a left edge of B;

∗ if w′′ is the edge eb or the vertex bv(B).

3. w′ is a left vertex of B: Then at′ = hL, and

at′′ =

{

wL if w′′ is a left edge of B;

∗ if w′′ is the edge eb or the vertex bv(B).

4. w′ is a left edge of B: Then at′ = wL, and at′′ = ∗ if w′′ is the edge eb or the bottom

vertex bv(B).

By the ordering ∗ > wL > hL > wR > hR, it holds at′ < at′′, implying ′ < ′′.

Next we consider the case where at′ = at′′. In this case, by the definition of ℰ(B), one

of the following two cases occurs:
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1. Both w′ and w′′ are vertices or edges in the same side of B: by the property (1), it

holds d′2 = d(w′) < d(w′′) = d′′2 if both w′ and w′′ are right vertices (resp., right edges,

left vertices, and left edges) of B.

2. w′ is the bottom vertex bv(B) and w′′ is the right edge eb incident to bv(B): in this case,

V R
cut(B) = V R

wing(B) = V L
cut(B) = V L

wing(B) = ∅ and ℬ(bv(B)) ∕= ∅. By the definition of

Γ(w′) and Γ(w′′), we have d′1 = d(B) = d′′1 , at
′ = at′′ = ∗, d′2 = d(w′) = d(bv(B)) = d′′2 ,

op′ = new-block and op′′ ∈ {triangle, subdivide, star}.

Hence d′2 ≤ d′′2 holds. Especially when d′2 = d′′2, it holds op′ < op′′ by the ordering

subdivide > triangle > star > new-block. This implies ′ < ′′.

6.2 State Change in Entire Embeddings

For a canonical embedding G with N = ∣V (G)∣, let Cℎ∗(G) denote the set of all canonical

child-embeddings G+(uN+1) of G. Now we identify the condition for G+(uN+1) to remain

canonical, i.e., left-sibling-heavy and left-side-heavy at all blocks.

For the spine B1, B2, . . . , Bp of G, define sequences

ℰ(G) = [rG, ℰ(B
1), ℰ(B2), . . . , ℰ(Bp)]

and

s(G) = [s1 = sbl(B1;G), s2 = sd(B1;G), s3 = sbl(B2;G), s4 = sd(B2;G), . . . ,

s2p−1 = sbl(Bp;G), s2p = sd(Bp;G)].

Lemmas 4.1 and 6.1 tell that a canonical child-embedding G′ = G + (uN+1) of G is

generated by applying a code (uN+1) = (d1, at, d2, op, c) ∈ Γ(") to an element " ∈ ℰ(G).

Let Bℎ be the block in the spine with " ∈ V ′(Bℎ) ∪ E(Bℎ), i.e., the block to which

a new vertex uN+1 is introduced, where Bℎ is determined by d(Bℎ) = d1. Let B′ denote

the new block created by (uN+1) (if " is a vertex), where B′ is the (ℎ + 1)st block in the

spine of G′. Observe that G′ is also left-sibling-heavy and left-side-heavy at any block not in

the spine of G or at any block Bi with i > ℎ in the spine of G. Thus, to know when G′ is

canonical, we only need to examine states s1, s2, . . . , s2ℎ−1, s2ℎ in G′ and the new sibling-state

s2ℎ+1 = sbl(B′;G′) (if " is a vertex) (recall that the side-state s2ℎ+2 = sbl(B′;G′) is always

nil). We easily observe the next.

Lemma 6.5. Let G be a canonical embedding. For an element " ∈ ℰ(G) and a code  ∈ Γ("),

let G′ = G+ (uN+1) be the child-embedding of G with (uN+1) = .

(i) Any state sj = stc (1 ≤ j ≤ 2ℎ) in s(G) remains unchanged in G′.
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(ii) Any state sj = nil (1 ≤ j < 2ℎ) in s(G) remains unchanged in G′.

(iii) If s2ℎ = sd(Bℎ;G) is nil, then sd(Bℎ;G′) takes one of nil, pfx, eqv and stc according

to (6.3), (6.5), (6.7), (6.8)-(6.15).

(iv) If " is a vertex, then the new block B′ containing uN+1 is the tip-block of G′, and s2ℎ+1

in s(G′) is given by sbl(B′;G′), which takes one of pfx, eqv and stc according to (6.2),

(6.4) and (6.6).

Proof. (i) For sj = s2j′−1 = sbl(Bj′;G) with 1 ≤ j ≤ 2ℎ, it holds sbl(Bj′;G′) = stc even

if Bj′ has a left sibling B̂ ∈ ℬ(r(Bj′)), since �(G′(B̂);G′) = �(G(B̂);G) ≫ �(G′(Bj′);G′) =

[�(G(Bj′);G), (uN+1)] holds by �(G(B̂);G) ≫ �(G(Bj′);G). The case of sj = s2j′ =

sd(Bj′ ;G) with 1 ≤ j ≤ 2ℎ can be treated analogously.

(ii) For sj = s2j′ = sd(Bj′ ;G) = nil with 1 ≤ j < 2ℎ, where �R(G(Bj′);G) = ∅, a

new vertex uN+1 is attached to a left vertex of Bj′ or a descendant block of a left vertex of

Bj′. Hence �core(G
′(Bj′);G′) = �core(G(Bj′);G) and �R(G

′(Bj′);G′) = �R(G(Bj′);G) = ∅

hold. From the left-side-heaviness of Bj′ in G, we have �Lcore(G(Bj′);G) = �Rcore(G(Bj′);G).

This implies �Lcore(G
′(Bj′);G′) = �Rcore(G

′(Bj′);G′). By �R(G
′(Bj′);G′) = ∅, we have

sd(Bj′ ;G′) = nil.

(iii) Immediate from the analysis to obtain (6.3), (6.5), (6.7)-(6.15).

(iv) By the definition of tips, B′ becomes the tip block of G′. It is immediate to see that

s2ℎ+1 in s(G′) is given by sbl(B′;G′), which sbl(B′;G′) is determined by (6.2), (6.4) and

(6.6).

The copy-state cs(G) of G is defined to be the state si∗ ∈ {eqv, pfx} with the minimum

index i∗ in s(G), and the block Bℓ attaining si∗ = sbl(Bℓ;G) or si∗ = sd(Bℓ;G) is called

the dominating block of G; let cs(G) = stc and i∗ = ∞ otherwise (i.e., each state in s(G) is

stc or nil). We distinguish two cases, cs(G) ∈ {stc, eqv} and cs(G) ∈ {pfx}.

Case of cs(G) ∈ {stc, eqv}: If sbl(Bℓ;G) = eqv (resp., sd(Bℓ;G) = eqv) for the

dominating block Bℓ of G, then we see that G′ = G + (uN+1) cannot be left-sibling-heavy

(resp., left-side-heavy) at Bℓ for any element " ∈ V ′(Bi) ∪ E(Bi) with i ≥ ℓ in the spine

of G. If cs(G) = eqv, then let ℰ∗(G) be the sequence of elements obtained from ℰ(G) by

deleting the elements contained in a block Bi with i ≥ ℓ in the spine of G. Let ℰ∗(G) = ℰ(G) if

cs(G) = stc. The next lemma tells when G′ is canonical and how to determine the copy-state

of G′.

Lemma 6.6. Let G be a canonical embedding with cs(G) ∈ {stc, eqv}. For an element

" ∈ ℰ∗(G) and a code  ∈ Γ("), let G′ = G + (uN+1) be the child-embedding of G with

(uN+1) = .

(i) G′ is canonical for any code  ∈ Γ(").
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(ii) If " is an edge in E(Bℎ), then cs(G′) = stc if sd(Bℎ;G′) ∈ {nil, stc}, and cs(G′) =

sd(Bℎ;G′) otherwise (i.e., sd(Bℎ;G′) ∈ {pfx, eqv}).

(iii) If " is a vertex in V ′(Bℎ), then

cs(G′) =

⎧



⎨



⎩

sd(Bℎ;G′) if sd(Bℎ;G′) ∈ {pfx, eqv}

sbl(Bℎ+1;G′) if sd(Bℎ;G′) ∈ {nil, stc} and sbl(Bℎ+1;G′) ∈ {pfx, eqv}

stc otherwise, i.e., sd(Bℎ;G′), sbl(Bℎ+1;G′) ∈ {nil, stc}.

(6.16)

Proof. (i) By definition of cs(G) ∈ {stc, eqv}, it holds sj ∈ {stc, nil} for all j = 1, 2, . . . , 2ℎ.

Hence by Lemma 6.5, sj = stc with j ≤ 2ℎ and sj = nil with j < 2ℎ remain unchanged,

s2ℎ = nil takes sd(Bℎ;G′) ∈ {nil, pfx, eqv, stc} and sbl(B′;G′) ∈ {pfx, eqv, stc} holds

for the new block B′ (if " is a vertex). Thus, G′ is canonical.

(ii) and (iii) are immediate from Lemmas 6.2 and 6.3, the definition of copy-state and the

fact that sj′ ∈ {stc, nil}, j = 1, 2, . . . , 2ℎ− 1 holds in G′.

Case of cs(G) ∈ {pfx}: We define the critical element "∗ ∈ ℰ(G), the critical code

"∗ ∈ Γ("∗), and the critical block of G as follows.

Case-A. The copy-state of G is given by sbl(Bℓ;G) = pfx (see Figure 6.7(a)): The copy-

end-vertex of G is defined to be the vertex v′ = �−(tp; tℓ−1), and the succeeding-copy-vertex

of G is defined to be the vertex v∗ such that (v∗) appears immediately after (v′) in �(G).

The critical code ∗ of G is defined to be (v∗) = (d1, at, d2, op, c
∗).

Case-B. The copy-state of G is given by sd(Bℓ;G) = pfx (see Figure 6.7(b)): The copy-end-

vertex of G is defined to be the vertex v′ = �(tp; tℓ−1), and the succeeding-copy-vertex of G

is defined to be the vertex v∗ such that (v∗) appears immediately after (v′) in �(G). For

the code (v∗) = (d1, at, d2, op, c
∗), the critical code ∗ of G is defined to be ∗ := (v∗) if

at ∈ {wL, hL} (i.e., v∗ is a left wing-vertex of Bℓ or v∗ is a child vertex of a left vertex of Bℓ),

and to be ∗ := (d1, at, d2, op, c
∗) otherwise.

In Case-A and B, we can set the code of a new vertex uN+1 by (uN+1) := ∗, i.e., there

is a unique element "∗ ∈ ℰ(G) to which (uN+1) is applicable. We call such an element "∗ the

critical element of G, and call the block Bk such that "∗ ∈ V ′(Bk)∪E(Bk) the critical block of

G. We call the color entry c∗ in the critical code ∗ the critical color of G. A child-embedding

G′ = G+ (uN+1) of G is called critical if (uN+1) is the critical code ∗ of G.

Let ℰ∗(G) denote the subsequence of ℰ(G) that consists of all elements from rG to the

critical element "∗ of G. Thus,

ℰ∗(G) = [rG, ℰ(B
1), ℰ(B2), . . . , ℰ∗(Bk)],
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Figure 6.7: (a) Block Bℓ with copy-state sbl(Bℓ;G) = pfx; (b) Block Bℓ with copy-state

sd(Bℓ;G′) = pfx.

where ℰ∗(Bk) denotes the subsequence of ℰ(Bk) that consists of all elements from preceding

the critical element "∗ of G (including "∗). Note that the critical element "∗ is the last one

in ℰ∗(G).

Lemma 6.7. Let G be a canonical embedding with cs(G) = pfx, and let cs(G) = si∗ = pfx

be given by s2ℓ−1 = sbl(Bℓ;G) = pfx. For an element " ∈ ℰ∗(G) and a code  ∈ Γ("), let

G′ = G+ (uN+1) be the child-embedding of G with (uN+1) = .

(i) G′ is not left-sibling-heavy at Bℓ if “" ∕∈ ℰ∗(G)” or “" = "∗ and  > ∗.”

(ii) It holds sbl(Bℓ;G′) = stc if “" ∈ ℰ∗(G)− {"∗}” or “" = "∗ and ∗ > .”

(iii) For the critical G′, it holds sbl(Bℓ;G′) = eqv if the succeeding-copy-vertex v∗ of

G is followed immediately by the first head-vertex x1 = ℓv(Bℓ) in �(G); it holds

sbl(Bℓ;G′) = pfx otherwise.

Proof. Since cs(G) = si∗ = pfx, a new code (uN+1) corresponds to the code of the

succeeding-copy-vertex v∗ ofG in �(G′) to determine the state si∗ inG′. Let ∗ = (d∗1, at
∗, d∗2, op

∗, c∗)

be the critical code (v∗) of G, where d∗1 = d(Bk).

(i) It suffices to show that (uN+1) > (v∗) if “" ∕∈ ℰ∗(G)” or “" = "∗ and  > ∗.”

For each element " ∈ V ′(Bi) ∪ E(Bi) with i > k, any code  = (d1, at, d2, op, c) ∈ Γ(") is

lexicographically smaller than ∗ since d1 = d(Bi) > d(Bk) = d∗1 holds in the spine of G.

This indicates (uN+1) > ∗.
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Assume that " ∈ ℰ(Bk) − ℰ∗(Bk) and (uN+1) = (d1, at, d2, op, c) ∈ Γ("), where d1 =

d(Bk) = d∗1. If "∗ precedes " in ℰ(Bk), then (uN+1) > ∗ holds by Lemma 6.4. Finally

consider the case where " = "∗. In this case, clearly (uN+1) > ∗ if  > ∗.

(ii) It suffices to show that (v∗) > (uN+1) if “" ∈ ℰ∗(G)−{"∗}” or “" = "∗ and ∗ > .”

For each element " ∈ V ′(Bi) ∪ E(Bi) with i < k, any code  = (d1, at, d2, op, c) ∈ Γ(") is

lexicographically smaller than ∗ since d1 = d(Bi) < d(Bk) = d∗1 holds in the spine of G.

This indicates (v∗) > (uN+1).

Assume that " ∈ ℰ∗(Bk) and (uN+1) = (d1, at, d2, op, c) ∈ Γ("), where d1 = d(Bk) = d∗1.

If " precedes "∗ in ℰ(Bk), then ∗ > (uN+1) holds by Lemma 6.4. Finally consider the case

where " = "∗. In this case, clearly ∗ > (uN+1) if 
∗ > .

(iii) Let B̂ ∈ ℬ(tℓ−1) be the left sibling of Bℓ. If G′ is critical, i.e., " = "∗ and

∗ = (uN+1), then �(G′(Bℓ);G′) = [�(G(Bℓ);G), (uN+1)] is a prefix of �(G′(B̂);G′) =

�(G(B̂);G). Hence it holds sbl(Bℓ;G′) = eqv if ∣�(G(B̂);G)∣ = ∣�(G(Bℓ);G)∣ + 1, i.e., the

succeeding-copy-vertex v∗ of G is followed immediately by the first head-vertex x1 = ℓv(Bℓ)

in �(G). It holds sbl(Bℓ;G′) = pfx otherwise.

Lemma 6.8. Let G be a canonical embedding with cs(G) = pfx, and let cs(G) = si∗ = pfx

be given by s2ℓ = sd(Bℓ;G) = pfx. For an element " ∈ ℰ∗(G) and a code  ∈ Γ("), let

G′ = G+ (uN+1) be the child-embedding of G with (uN+1) = .

(i) G′ is not left-side-heavy at Bℓ if “" ∕∈ ℰ∗(G)” or “" = "∗ and  > ∗.”

(ii) It holds sd(Bℓ;G′) = stc if “" ∈ ℰ∗(G) − {"∗}” or “" = "∗ and ∗ > .”

(iii) For the critical G′, it holds sd(Bℓ;G′) = eqv if the succeeding-copy-vertex v∗ of G

is followed immediately by the vertex u which code (u) appears as the first code in

�R(G(Bℓ);G); it holds sd(Bℓ;G′) = pfx otherwise.

Proof. Since cs(G) = si∗ = sd(Bℓ;G) = pfx, a new vertex uN+1 corresponds to the

succeeding-copy-vertex v∗ of G, whose code (uN+1) determines the side-state of si∗ in G′.

Let ∗ = (d∗1, at
∗, d∗2, op

∗, c∗) be the critical code (v∗) of G, where d∗1 = d(Bk).

(i) It suffices to show that (uN+1) > ∗ if “" /∈ ℰ∗(G)”, since clearly (uN+1) > ∗ if

“" = "∗” and “∗ < .”

For each element " ∈ ℰ(Bi) with i > k, any code  = (d1, at, d2, op, c) ∈ Γ(") is lexi-

cographically larger than ∗ since d1 = d(Bi) > d(Bk) = d∗1 holds in the spine of G. This

indicates (uN+1) > ∗.

For each element " ∈ ℰ(Bk) − ℰ∗(Bk) and (uN+1) = (d1, at, d2, op, c) ∈ Γ("), where

d1 = d(Bk) = d∗1. Note that " precedes "∗ in ℰ(Bk). By Lemma 6.4, (uN+1) > ∗ holds.

(ii) It suffices to show that ∗ > (uN+1) if “" ∈ ℰ∗(G)−{"∗},” since clearly ∗ > (uN+1)

holds if “" = "∗” and “∗ > .”
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For each element " ∈ ℰ(Bi) with i < k, any code  = (d1, at, d2, op, c) ∈ Γ(") is lexico-

graphically smaller than ∗ since d1 = d(Bi) < d(Bk) = d∗1 holds in the spine of G. This

indicates ∗ > (uN+1).

For each element " ∈ ℰ∗(Bk) − {"∗} and (uN+1) = (d1, at, d2, op, c) ∈ Γ("), where

d1 = d(Bk) = d∗1. Note that " precedes "∗ in ℰ(ℬ). By Lemma 6.4, ∗ > (uN+1) holds.

(iii) If G′ is critical, i.e., " = "∗ and (uN+1) = ∗, then [�Lcore(G
′(Bℓ);G′), �L(G

′(Bℓ);G′)]

is a prefix of [�Rcore(G
′(Bℓ);G′), �R(G

′(Bℓ);G′)] = [�Rcore(G(Bℓ);G), �R(G(Bℓ);G), (uN+1)].

Hence it holds sd(Bℓ;G′) = eqv if ∣�L(G(Bℓ);G)∣ = ∣�R(G(Bℓ);G)∣ + 1, i.e., the succeeding-

copy-vertex v∗ of G is followed immediately by the vertex u whose code (u) appears as the

first code in �R(G(Bℓ);G). Otherwise, it holds sd(Bℓ;G′) = pfx.

Lemma 6.9. Let G be a canonical embedding with cs(G) = pfx. For an element " ∈ ℰ∗(G)

and a code  ∈ Γ("), let G′ = G+ (uN+1) be the child-embedding of G with (uN+1) = .

(i) If G′ is critical, then each state sj′ = pfx (i∗ < j′ ≤ 2ℎ) in s(G) changes into sj′ ∈

{pfx, eqv, stc} in G′.

(ii) If G′ is not critical, then each state sj′ = pfx (i∗ < j′ ≤ 2ℎ) in s(G) changes into

sj′ = stc in G′.

Proof. (I) Assume that si∗ = sbl(Bℓ;G) = pfx, i.e., �(G(B̂ℓ);G) ⊐ �(G(Bℓ);G) holds

for the left sibling B̂ℓ of Bℓ (see Figures 6.8 and 6.9). Let Bj be the block Bj such that

sj′ = s2j−1 = pfx in the spine of G, and let t′ = �−(tj−1; tℓ−1) for tj−1 = r(Bj) and

tℓ−1 = r(Bℓ).

First we show that it holds sj′ = sbl(Bj;G′) ∈ {pfx, eqv, stc} in G′, and that if G′ is

not critical, then sj′ = sbl(Bj ;G′) is stc. Since sbl(Bj;G) = sj′ = pfx, block Bj has a left

sibling Bj
3 ∈ ℬ(tj−1). Note that [�(G(Bj

3);G), �(G(Bj );G)] appears as the last subsequence

of �(G(Bℓ);G). Then there are blocks Bj
1, B

j
2 ∈ ℬ(t′) such that [�(G(Bj

1);G), �(G(Bj
2);G)]

appears as the last subsequence of �(G(B̂ℓ);G). By �(G(B̂ℓ);G) ⊐ �(G(Bℓ);G), we see that

�(G(Bj
1);G) = �(G(Bj

3);G) and �(G(Bj
2);G) ⊐ �(G(Bj);G).

See Figure 6.8. Since G is left-sibling-heavy at Bj
2, it holds

�(G(Bj
1);G) ≥ �(G(Bj

2);G)

by Lemma 5.1. In G′, a new vertex uN+1 is added to the block Bℎ with ℎ ≥ j in the spine,

and we have �(G(Bj
2);G) ≥ �(G′(Bj);G′). More specifically, if G′ is critical, then

�(G(Bj
2);G) ⊒ �(G′(Bj);G′);

if G′ is not critical, then

�(G(Bj
2);G) ≫ �(G′(Bj);G′).
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Figure 6.8: Critical block Bℓ with copy-state cs(G) = sbl(Bℓ;G) = pfx, and a block Bj

(j > ℓ) with s2j−1 = sbl(Bj;G) = pfx.

Therefore we have �(G′(Bj
3);G

′) = �(G(Bj
1);G) ≥ �(G(Bj

2);G) ≥ �(G′(Bj);G′), i.e., sj′ =

sbl(Bj ;G′) ∈ {pfx, eqv, stc} in G′. In particular, if G′ is not critical, then �(G′(Bj
3);G

′) ≫

�(G′(Bj);G′), i.e., sj′ = sbl(Bj;G′) = stc in G′.

Next we show that, for the block Bj such that sj′ = s2j = pfx, it holds sj′ = sd(Bj;G′) ∈

{pfx, eqv, stc} in G′, and if G′ is not critical, then sj′ = sd(Bj ;G′) is stc. Note that

�(G(Bj);G) appears as the last subsequence of �(G(Bℓ);G). There is a block Bj
1 ∈ ℬ(t′)

such that �(G(Bj
1);G) appears as the last subsequence of �(G(B̂ℓ);G). By �(G(B̂ℓ);G) ⊐

�(G(Bℓ);G), we see that �(G(Bj
1);G) ⊐ �(G(Bj);G). By Lemma 5.2, sd(Bj;G) = pfx

implies that

�Lcore(G(Bj);G) = �Rcore(G(Bj);G) and �L(G(Bj);G) ⊐ �R(G(Bj);G) ∕= ∅.

See Figure 6.9. From �R(G(Bj);G) ∕= ∅, we have

�core(G(Bj
1);G) = �core(G(Bj);G), �L(G(Bj

1);G) = �L(G(Bj);G), �R(G(Bj
1);G) ⊐ �R(G(Bj);G).

Hence �Lcore(G(Bj
1);G) = �Rcore(G(Bj

1);G) must hold by �core(G(Bj
1);G) = �core(G(Bj);G)

and �Lcore(G(Bj);G) = �Rcore(G(Bj);G).

Since G is left-side-heavy at Bj
1, it holds

[�Lcore(G(Bj
1);G), �L(G(Bj

1);G)] ≥ [�Rcore(G(Bj
1);G), �R(G(Bj

1);G)]
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Figure 6.9: Critical block Bℓ with copy-state cs(G) = sbl(Bℓ;G) = pfx, and a block Bj

(j > ℓ) with s2j = sd(Bj;G) = pfx.

by Lemma 5.2. From this and �Lcore(G(Bj
1);G) = �Rcore(G(Bj

1);G), we have

�L(G(Bj);G) = �L(G(Bj
1);G) ≥ �R(G(Bj

1);G)

In G′, a new vertex uN+1 is added to the right side of Bℎ (if j = ℎ) or block Bℎ with ℎ > j

in the spine, and we have [�Lcore(G
′(Bj);G′), �L(G

′(Bj);G′)] ≥ [�Rcore(G(Bj);G′), �R(G
′(Bj);G′)],

where �Lcore(G
′(Bj);G′) = �Lcore(G(Bj);G) = �Rcore(G(Bj);G) = �Rcore(G

′(Bj);G′). More

specifically, if G′ is critical, then

�L(G
′(Bj);G′) = �L(G(Bj);G) = �L(G(Bj

1);G) ≥ �R(G(Bj
1);G) ⊒ �R(G

′(Bj);G′);

if G′ is not critical, then

�L(G
′(Bj);G′) = �L(G(Bj);G) = �L(G(Bj

1);G) ≥ �R(G(Bj
1);G) ≫ �R(G

′(Bj);G′).

Therefore we have �L(G
′(Bj);G′) = �L(G(Bj

1);G) ≥ �R(G(Bj
1);G) ≥ �R(G

′(Bj);G′), i.e.,

sj′ = sd(Bj ;G′) ∈ {pfx, eqv, stc} inG′. In particular, ifG′ is not critical, then �L(G
′(Bj);G′) ≫

�R(G
′(Bj);G′), i.e., sj′ = sd(Bj ;G′) = stc in G′.

(II) Assume that si∗ = sd(Bℓ;G) = pfx, i.e., �Lcore(G(Bℓ);G) = �Rcore(G(Bℓ);G) and

�L(G(Bℓ);G)] ⊐ �R(G(Bℓ);G) ∕= ∅. Recall that, for a vertex u ∈ V (G(Bℓ)) − {r(Bℓ)}, we

define (u) to be the code obtained from (u) by replacing the second entry wR (resp., ℎR)
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Figure 6.10: Critical block Bℓ with copy-state cs(G) = sd(Bℓ;G) = pfx, and a block Bj (j > ℓ)

with s2j−1 = sbl(Bj ;G) = pfx.

with wL (resp., ℎL) if u is a right wing-vertex of Bℓ (resp., u is a child-vertex of a vertex in

the right side of Bℓ), and we set (u) = (u) otherwise. Let tℓ−1 = r(Bℓ).

First we show that, for a block Bj such that sj′ = s2j−1 = sbl(Bj ;G) = pfx, it holds

sj′ = sbl(Bj;G′) ∈ {pfx, eqv, stc}, and if G′ is not critical, then sj′ = sbl(Bj ;G′) is stc.

Let tj−1 = r(Bj). Since sbl(Bj;G) = pfx, the block Bj has a left sibling Bj
3 ∈ ℬ(tj−1).

Note that [�(G(Bj
3);G), �(G(Bj);G)] appears as the last subsequence of �Rdscd(G(Bℓ);G), and

hence it appears as the last subsequence of �R(G(Bℓ);G). Accordingly, let t′ = �(tj−1; tℓ−1).

There are blocks Bj
1, B

j
2 ∈ ℬ(t′) such that [�(G(Bj

1);G), �(G(Bj
2);G)] appears as the last

subsequence of �Ldscd(G(Bℓ);G), and hence it appears as the last subsequence of �L(G(Bℓ);G).

By �L(G(Bℓ);G)] ⊐ �R(G(Bℓ);G) ∕= ∅ and the definition of , we see that

�(G(Bj
1);G) = �(G(Bj

3);G) and �(G(Bj
2);G) ⊐ �(G(Bj);G).

See Figure 6.10. Since G is left-sibling-heavy at Bj
2, it holds

�(G(Bj
1);G) ≥ �(G(Bj

2);G)

by Lemma 5.1. In G′, a new vertex uN+1 is added to the block Bℎ with ℎ ≥ j in the spine,

and we have �(G(Bj
2);G) ≥ �(G′(Bj);G′). More specifically, if G′ is critical, then

�(G(Bj
2);G) ⊒ �(G′(Bj);G′);



60 CHAPTER 6 GENERATING CANONICAL CHILD-EMBEDDINGS

ε∗

B 

k

B 

h

B 

p

t 
p=t(G)

uN+1

t 
h-1

v*

B  

j

t  
j-1t’ =µ(t 

j-1;t 
l-1)

B1 
j

t 
l-1

B 

l
t 
l

Figure 6.11: Critical block Bℓ with copy-state cs(G) = sd(Bℓ;G) = pfx, and a block Bj (j > ℓ)

with s2j = sd(Bj ;G) = pfx.

if G′ is not critical, then

�(G(Bj
2);G) ≫ �(G′(Bj);G′).

Therefore we have �(G′(Bj
3);G

′) = �(G(Bj
3);G) = �(G(Bj

1);G) ≥ �(G(Bj
2);G) ≥ �(G′(Bj);G′),

i.e., sj′ = sbl(Bj;G′) ∈ {pfx, eqv, stc}. In particular, ifG′ is not critical, then �(G′(Bj
3);G

′) ≫

�(G′(Bj);G′), i.e., sj′ = sbl(Bj;G′) = stc.

Next we show that, for a block Bj such that sj′ = s2j = sd(Bj;G′) = pfx, it holds

sj′ = sd(Bj ;G′) ∈ {pfx, eqv, stc}, and if G′ is not critical, then sj′ = sd(Bj;G′) is stc. Note

that �(G(Bj);G) appears as the last subsequence of �Rdscd(G(Bℓ);G), and hence appears as

the last subsequence of �R(G(Bℓ);G). Let t′ = �(tj−1; tℓ−1) for tj−1 = r(Bj). There is a

block Bj
1 ∈ ℬ(t′) such that �(G(Bj

1);G) appears as the last subsequence of �L(G(Bℓ);G).

By �L(G(Bℓ);G) ⊐ �R(G(Bℓ);G) ∕= ∅ and the definition of , we see that �(G(Bj
1);G) ⊐

�(G(Bj);G). By Lemma 5.2, sd(Bj;G) = pfx implies that

�Lcore(G(Bj);G) = �Rcore(G(Bj);G) and �L(G(Bj);G) ⊐ �R(G(Bj);G) ∕= ∅.

See Figure 6.11.

From �R(G(Bj);G) ∕= ∅, we have

�Lcore(G(Bj
1);G) = �Lcore(G(Bj);G), �Rcore(G(Bj

1);G) = �Rcore(G(Bj);G),

�L(G(Bj
1);G) = �L(G(Bj);G), �R(G(Bj

1);G) ⊐ �R(G(Bj);G).
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Hence �Lcore(G(Bj
1);G) = �Rcore(G(Bj

1);G) must hold by �Lcore(G(Bj
1);G) = �Lcore(G(Bj);G),

�Lcore(G(Bj);G) = �Rcore(G(Bj);G), and �Rcore(G(Bj);G) = �Rcore(G(Bj
1);G).

Since G is left-side-heavy at Bj
1, it holds

[�Lcore(G(Bj
1);G), �L(G(Bj

1);G)] ≥ [�Rcore(G(Bj
1);G), �R(G(Bj

1);G)]

by Lemma 5.2. From this and �Lcore(G(Bj
1);G) = �Rcore(G(Bj

1);G), we have

�L(G(Bj
1);G) ≥ �R(G(Bj

1);G).

In G′, a new vertex uN+1 is added to the right side of Bℎ (if j = ℎ) or block Bℎ with ℎ > j

in the spine, and we have [�Lcore(G
′(Bj);G′), �L(G

′(Bj);G′)] ≥ [�Rcore(G
′(Bj);G′), �R(G

′(Bj);G′)],

where �Lcore(G
′(Bj);G′) = �Lcore(G(Bj);G) = �Rcore(G(Bj);G) = �Rcore(G

′(Bj);G′). More

specifically, if G′ is critical, then

�L(G
′(Bj);G′) = �L(G(Bj);G) = �L(G(Bj

1);G) ≥ �R(G(Bj
1);G) ⊒ �R(G

′(Bj);G′);

if G′ is not critical, then

�L(G
′(Bj);G′) = �L(G(Bj);G) = �L(G(Bj

1);G) ≥ �R(G(Bj
1);G) ≫ �R(G(Bj);G′).

Therefore we have �L(G
′(Bj);G′) = �L(G(Bj

1);G) ≥ �R(G(Bj
1);G) ≥ �R(G

′(Bj);G′), i.e.,

sj′ = sd(Bj;G′) ∈ {pfx, eqv, stc}. In particular, if G′ is not critical, then �L(G
′(Bj);G′) ≫

�R(G
′(Bj);G′), and hence sj′ = sd(Bj;G′) = stc.

We are ready to characterize when G+ (uN+1) is canonical.

Lemma 6.10. Let G be a canonical embedding with cs(G) = pfx. For an element " ∈ ℰ∗(G)

and a code  ∈ Γ("), let G′ = G+ (uN+1) be the child-embedding of G with (uN+1) = .

(i) If " is not the critical element "∗ of G, then G′ is canonical for any code  ∈ Γ(").

(ii) Let " be the critical element "∗ of G. Then G′ is canonical if and only if ∗ ≥ .

(iii) If G′ is critical, then cs(G′) = si∗ ∈ {pfx, eqv} holds and si∗ in G′ takes either pfx or

eqv according to Lemmas 6.7(iii) and 6.8(iii).

(iv) If G′ is not critical and " is an edge in E(Bℎ), then cs(G′) = stc if sd(Bℎ;G′) ∈

{nil, stc} and cs(G′) = sd(Bℎ;G′) otherwise (i.e., sd(Bℎ;G′) ∈ {pfx, eqv}).

(v) If G′ is not critical and " is a vertex in V ′(Bℎ), then

cs(G′) =

⎧



⎨



⎩

sd(Bℎ;G′) if sd(Bℎ;G′) ∈ {pfx, eqv}

sbl(Bℎ+1;G′) if sd(Bℎ;G′) ∈ {nil, stc} and sbl(Bℎ+1;G′) ∈ {pfx, eqv}

stc otherwise, i.e., sd(Bℎ;G′), sbl(Bℎ+1;G′) ∈ {nil, stc}.

(6.17)
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Proof. (i) and (ii) are immediate from Lemmas 6.2, 6.3, 6.5, 6.7, 6.8 and 6.9.

(iii) is immediate from Lemmas 6.7(iii) and 6.8(iii).

(iv) and (v) are immediate from Lemmas 6.2, 6.3, 6.5 and 6.9, and the definition of

copy-state.



Chapter 7

Algorithm

7.1 Outline of Algorithm

Based on the results in the previous sections, we can see that all canonical embeddings

with at most n vertices to be enumerated are arranged in a specific order indicated by the

defined parent-child relationship between canonical embeddings. This order implies that

all canonical embeddings can be outputted in a recursive way similar to the scheme of the

depth-first search. That is, starting from a graph consisting of a single vertex, we recursively

enumerate its first canonical child-embedding by appending a new vertex to the current graph

until reaching an embedding that has no child-embedding; and then we backtrack to the most

recent embedding which has child-embeddings not being enumerated yet. Note that during

the enumeration, we only output the difference between an enumerated embedding with its

parent embedding.

The above idea of enumeration is presented as the following Algorithm GENERATE,

where “/*. . . */” indicates a comment. How to implement the procedure of the algorithm

will be explained with more details in Sections 7.2-7.5.

Algorithm GENERATE(n, C)

Input: An integer n ≥ 1 and a set C = (c1, c2, . . . , cK) of K colors.

Output: All canonical embeddings of colored and rooted outerplanar graphs with at most

n vertices.

1 begin

2 for each c ∈ C do

3 Let G be the graph consisting of a single vertex u1(= rG) with c(u1) = c;

4 Let Br be the imaginary parent-block of the root rG;

5 Output c(u1) = c;

6 "1 := u1; 1 := (0, ∗, 0, new-block, c1);

7 GEN(G,Br, "1, 1)

63
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8 endfor

9 end.

Given an embedding G with N vertices, a block B, an element " ∈ ℰ(B) and a code  ∈ Γ("),

Procedure GEN(G,B, ", ) recursively generates all descendant-embeddings of G with at

most n vertices, which is given as follows.

Procedure GEN(G,B, ", )

/* Let N = ∣V (G)∣ ∈ [1, n − 1], and uN+1 be a new vertex that will be created. */

1 begin

2 G′ :=Append(G,B, ", ); /* Compute a child-embedding G′ = G+  of G. */

3 if N is odd then Output (uN+1) =  endif;

4 if N + 1 < n then "1 := rG; 1 := (0, ∗, 0, new-block, c1); GEN(G′, Br, "1, 1) endif;

5 if N is even then Output (uN+1) =  endif;

6 RemoveTip(G′); /* Compute G obtained from G′ by removing the tip of G′. */

7 [B′, "′, ′] :=NextCode(B, ", ;G); /* Calculate three parameters B′, "′ and ′ to

generate the next child-embedding of G */

8 if [B′, "′, ′] ∕= ∅ then GEN(G,B′, "′, ′) endif

9 end.

Section 7.2 will introduce data structures of each canonical embedding maintained in

the algorithm. Sections 7.3-7.5 will explain how to realize the three routines—Append in

Line 2, RemoveTip in Line 6 and NextCode in Line 7 of Procedure GEN, respectively.

Note that there are parts of data involved in these three routines but not maintained can be

calculated by the maintained data structures. The calculation of these unmaintained data

will be presented in Appendix.

7.2 Data Structures

The goal of this section is to define sufficient and compact data structures for each canonical

embedding. In this work, each rooted outerplanar embedding consists of blocks, where each

block contains left/right head-vertices, axial-vertices, wing-vertices and bottom vertex, and

left/right head-edges and axial-edges. Further, each colored and rooted embedding G is

encoded by a code sequence �(G), where code (u) of each vertex u tells the way of the

generation of the vertex u. Thus, instead of using the traditional data structures of graph

such as adjacent list and adjacent matrix, we will define a new data structure for vertex

and a new data structure for block of each colored and rooted embedding, respectively, such

that these data are sufficient to calculate codes of all vertices of the embedding. Note that

our goal is to enumerate all canonical embeddings with at most n vertices. Also we will
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define additional data which include the information of canonical embeddings such as states

of blocks and copy-states of the whole embeddings.

Specifically, given a colored and rooted outerplanar embedding G, the index idx(u) of a

vertex v is defined to be a positive integer i such that the code of u appears as the ith code in

�(G). From now on, an integer i for a vertex u with idx(u) = i will be treated as the vertex

u for simplicity. Given a vertex u ∈ V (G) − {rG}, let B be a block, " be the element (i.e.,

vertex or edge) of V (B) ∪ E(B), and let  = (d1, at, d2, op, c) be the code which is applied

to " to generate the vertex u, where d1 is the depth of B, at depends on the position of " in

B (i.e., left, right or bottom), d2 is the depth of " or the depth of one end-vertex of the edge

", op is the operation used to generate the vertex u, and c is the color of the vertex u.

To calculate the code  of such a vertex u, we claim that the following data for vertices

and blocks are necessary: the depth of a block, the data showing the position of vertex in its

parent-block (i.e., left, right or bottom), the depth of a vertex, the operation used to generate

a vertex, and the color of a vertex. Note that the applicable element " can be an edge. Since

we plan to maintain data for vertices and blocks only without maintaining data for edges, we

expect that we can compute the type of each applicable edge e (i.e., head-/axial-/bottom-

edge) in its parent-block B, the depth d(e), and the position of the edge e in B (i.e., left or

right) by the defined data of endvertices of e and the data of its parent-block.

For this purpose, we define the orientation for edge elements of each block as follows.

Each left (resp., right) edge incident to vertices in V L(B)∪{bv(B)} (resp., V R(B)∪{bv(B)})

is defined to be directed from its endvertex with smaller depth to the other endvertex.

Given a wing-vertex u, let e′ = (u′, u) and e′′ = (u, u′′) be two edges introduced to

edge e = (u′, u′′) directed from u′ to u′′ when u is newly created. We have d(u) > d(u′) and

d(u) > d(u′′), since (u) appears later than both (u′) and (u′′) in the signature �(G). Then

we define the edge e′ = (u′, u) to be directed from u′ to u, and define the edge e′′ = (u, u′′)

to be directed from u to u′′. See Figure 7.1 for illustrations.

As mentioned before, the above data are not sufficient for canonical embeddings. By

definition, an embedding is canonical if and only if it is left-sibling-heavy and left-side-heavy

at all blocks of this embedding. Besides, canonical embeddings are classified based on their

copy-states. Thus, for each canonical embedding, we will additionally maintain the sibling-

state and side-state of all blocks, its copy-state and its dominating block.

Now we present a data structure of each vertex u and a data structure of each block B

for a canonical embedding G as follows, respectively (in the following definitions of data, we

let the data to be ∅ if they do not exist).

Data for each vertex u

data(u) =

(

idx(u), d(u),pblock(u), op(u), c(u), type(u),blocks(u),pre(u),wgedge(u), cstate(u)

)
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Figure 7.1: The orientation of left edges and right edges of a rooted block B.

∙ idx(u) = i: a positive integer i (≥ 1) is the index of the vertex u in G such that (u)

appears as the ith code in �(G).

∙ d(u): the depth of the vertex u.

∙ pblock(u): the parent-block B of the vertex u, i.e., u ∈ V ′(B).

∙ op(u): the operation used to generate the vertex u.

∙ c(u) : the color of the vertex u.

∙ type(u) = [tLhead, t
R
head, t

L
axis, t

R
axis, t

L
wing, t

R
wing, t

L
cut, t

R
cut]: an array with eight entries in

ℤ
+
0 showing the vertex type of u in its parent-block B (i.e., whether u is a left/right

head-/axial-/wing-/cut-vertex or the bottom vertex of B) and showing the index of u

among the same type of vertices in B. Specifically, u is the tLhead-th left head-vertex of

B if tLhead ≥ 1, and u is not left head-vertex of B if tLhead = 0. The meanings of tRhead ≥ 0,

tLaxis ≥ 0, tRaxis ≥ 0, tLwing ≥ 0, tRwing ≥ 0, tLcut ≥ 0 and tRcut ≥ 0 are similar.

The data type(u) can be used to compute the position of each vertex u in its parent-

block B (i.e., left, right or bottom) in O(1) time, and then to compute the attachment-

label in the code of a vertex in O(1) time. Specifically, u is a left vertex of B if and

only if the first, third or fifth entry of type(u) is larger than 0; and u is a right vertex

of B if and only if the second, forth or sixth entry of type(u) is larger than 0. Since the

bottom vertex bv(B) is neither a left vertex nor a right vertex of B, u = bv(B) ∕= ∅ if

and only if tLhead = tRhead = tLaxis = tRaxis = tLwing = tRwing = tLcut = tRcut = 0.

Besides, we know whether a left (resp., right) vertex u ∈ V ′(B) is a cut-vertex or not

in O(1) time by type(u). That is, a left (resp., right) vertex u ∈ V ′(B) is a cut-vertex
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if and only if the seventh (resp., eighth) entry of type(u) is larger than 0.

∙ blocks(u): all blocks rooted at u arranged from left to right, where we set blocks(u) = ∅

if u is not a cut-vertex. By blocks(u), we can know any ith block rooted at the vertex

u in O(1) time.

∙ pre(u) = [v1, v2]: If u is a left or right vertex of B, then the first entry v1 (resp.,

the second entry v2) of pre(u) is the vertex in V ′(B) with the smallest (resp., largest)

index such that v1 (resp., v2) points to the vertex u by a directed edge. Note that

v1 = v2 occurs if and only if there is only one vertex pointing to u in B. For example

in Figure 7.1 (a), pre(x6) = [x3, x8] for the left vertex x6 in B, and pre(y5) = [y4, y4]

for the right vertex y5 in B. If u is the bottom vertex of B, then the first entry v1

(resp., the second entry v2) of pre(u) is the vertex in V ′(B) with the largest index such

that v1 (resp., v2) is a left (resp., right) vertex of B that is not the last left (resp.,

right) core-vertex pointing to the vertex u by a directed edge. Note that v1 = v2 never

occurs if u is the bottom vertex, v1 ∕= ∅ and v2 ∕= ∅. For example in Figure 7.1 (a),

pre(bv(B)) = [x6, y5].

By definition, the first entry of pre(u) for a wing-vertex u of B is the tail of the

directed edge to which is applied the code (u) to generate the vertex u. For example

in Figure 7.1 (a), the vertex x6 is generated by applying the code (x6) to the edge

e = (x3, bv(B)) directed from x3 to the bottom vertex bv(B), where x3 is the first entry

in pre(x6) = [x3, x8].

Besides, we can calculate the previous edge of a given edge e′ = (v,w) directed from v

to w in ℰ(B) by the second entry of pre(v). Specifically, let e = (u, v) directed from u

to v and e′ = (v,w) directed from v to w be two consecutive edges in ℰ(ℬ). If we know

the edge e′ = (v,w), then we can calculate the tail u of the edge e = (u, v) by pre(v).

For example in Figure 7.1 (a), suppose that the edges e = (x8, x6) and e′ = (x6, bv(B))

are two consecutive edges in ℰ(B). Given the edge e′ = (x6, bv(B)), the tail x8 of its

previous edge e = (x8, x6) is the second entry of pre(x6) = [x3, x8].

∙ wgedge(u) = u′′: u′′ is the head of directed edge e to which can be applied a code to

generate a wing-vertex u of B, where we set wgedge(u) = ∅ if u is not a wing-vertex of

B.

For example in Figure 7.1 (a), vertex x6 is generated by applying the code (x6) to the

edge e = (x3, bv(B)) directed from v3 to bv(B). We can see that wgedge(x6) = bv(B)

is the tail of the edge e = (x3, bv(B)).

Note that for a wing-vertex u of B, two data wgedge(u) and pre(u) can calculate the

edge e = (u′, u′′) to which is applied the code (u) to generate the vertex u, where u′

is the first entry in pre(u), and u′′ = wgedge(u).
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∙ cstate(u) = [cs(G′), Bd]: the copy-state cs(G′) and the dominating block Bd (if any) of

the canonical embedding G′ constructed when u is introduced (hence ∣V (G′)∣ = idx(u)).

Data for each block B

data(B) =

(

d(B), r(B), ℓv(B), V L
head(B), V R

head(B), V L
axis(B), V R

axis(B), V L
wing(B), V R

wing(B),

V L
cut(B), V R

cut(B), sbl(B), sd(B)

)

∙ d(B): the depth of the block B.

∙ r(B): the root of the block B.

∙ ℓv(B): the first head vertex of the block B.

∙ V L
head(B) : an array storing all left head-vertices in G arranged in the increasing vertex

indices. Then the ith vertex in V L
head(B) and the size ∣V L

head(B)∣ can be accessed in

O(1) time. Similarly for other arrays V R
head(B), V L

axis(B), V R
axis(B), V L

wing(B), V R
wing(B),

V L
cut(B) and V R

cut(B).

∙ sbl(B) = u: the witness vertex u of sbl(B;G) if sd(B;G) = stc and there are at least

two blocks rooted at r(B), where we set sbl(B) = sbl(B;G) otherwise.

∙ sd(B) = u: the witness vertex u of sd(B;G) if sd(B;G) = stc, where we set sd(B) =

sd(B;G) otherwise (i.e., sd(B;G) ∈ {nil, pfx, eqv}).

We have completed to present the data structure for each block in a canonical embedding.

Given a canonical embedding G with N ∈ [1, n] vertices, there are at most N − 1 blocks.

By definition, there are ten entries in data(u) of each vertex u of G and there are thirteen

entries in data(B) for each block B of G. Then we can easily derive the following result about

the computer memory required for maintaining all data of each canonical embedding.

Lemma 7.1. Given an integer n ≥ 1, each canonical embedding with N ∈ [1, n] vertices

requires O(n) space for maintaining the data structures for its vertices and for its blocks.

7.3 Realization of Routine Append

Now we are ready to explain how to implement Routines Append. Given an embedding G

with N (∈ [1, n− 1]) vertices, a block B in ℰ∗(G), an element " ∈ ℰ(B) and a code  ∈ Γ("),

Routine Append(G,B, ", ) computes a child-embedding G′ = G+ of G. That is, it updates

or creates the data of vertices and blocks in G′ that are different from that of G due to a

newly introduced vertex uN+1 with (uN+1) = . We present the routine as follows.
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Routine Append(G,B, ", )

/* Let uN be the vertex of G with idx(uN ) = N , and uN+1 be a vertex that will be newly

introduced by applying  to the element " ∈ ℰ(B). Let  = (d1, at, d2, op, c). */

A1 begin

A2 if " ∈ V ′(B) then

A3 Create data(B′) for a new edge-block B′ with V (B′) = {", uN+1};

A4 Update data(");

A5 endif

A6 Update the data of the head of the directed edge " if at ∈ {wL, wR};

A7 Update data(uN ) if ∣V ′(B)∣ ≥ 3 is odd in G, and  satisfies at = ∗ and op ∈ {star, subdivide};

A8 Update data(B);

A9 Compute cs(G′) according to Lemmas 12 and 16;

A10 if cs(G′) = pfx then

A11 Identify the dominating block Bd of G′

A12 endif

A13 Create data(uN+1)

A14 end.

By the above routine, we generate the child-embedding G′ from G by appending the new

vertex uN+1 to a vertex " ∈ ℰ(B) with the operation new-block, or by appending the new

vertex uN+1 to an edge " ∈ ℰ(B) with one of operations {star, subdivide, triangle}. In

the following, we will explain how to update or create data structure of vertices and blocks of

G′ in the above routine line by line. Let  = (d1, at, d2, op, c) be the last input in the above

Routine Append.

∙ In Line A3: we create data(B′) for the new block B′ generated by appending uN+1 to the

vertex ". Specifically, d(B′) := d(B) + 1, r(B′) := ", ℓv(B′) := N + 1, V L
head(B

′) := [N + 1],

V R
head(B

′) := ∅, V L
axis(B

′) := ∅, V R
axis(B

′) := ∅, V L
wing(B

′) := ∅, V L
cut(B

′) := ∅, V R
wing(B

′) := ∅,

V R
cut(B

′) := ∅, and sd(B′) := nil. It remains to create sbl(B′). Let B∗ be the rightmost

block rooted at the vertex " if " is a cut-vertex. By Lemma 6.5(iv), we have

sbl(B′) :=

⎧









⎨









⎩

eqv if " is a cut-vertex, c(uN+1) = c(ℓv(B∗)) and ℓv(B′)− ℓv(B∗) = 1;

pfx if " is a cut-vertex, c(uN+1) = c(ℓv(B∗)) and ℓv(B′)− ℓv(B∗) ≥ 2;

uN+1 if " is a cut-vertex and c(uN+1) < c(ℓv(B∗));

stc if " is not a cut-vertex.

Based on the above analysis, data(B′) can be updated in O(1) time.

∙ In Line A4: we update data(") for the vertex ". Recall that " is a cut-vertex in G if

and only if blocks(") = ∅. Note that " is a cut-vertex in G′ with a newly additional block
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B′ rooted at it. Then at most two data —type(") and blocks(") among data(") are changed

from G to G′. Recall that " is the bottom vertex of B if and only if all entries of type(") are

equal to 0. Thus, we only need to update blocks(") in G′ and need to update type(") in G′

if " is a left or right vertex of B that is not a cut-vertex in G as well. Specifically, we update

blocks(") by adding B′ to its end.

It remains to update type(") in G′. If " is a left vertex of B that is not a cut-vertex in

G, then " is the (∣V L
cut∣+ 1)st left cut-vertex of B in G′, i.e., the seventh entry of type(") is

set to be ∣V L
cut(B)∣+1, and other entries of type(") are unchanged; if " is a right vertex of B

that is not a cut-vertex in G, then " is the (∣V R
cut∣+ 1)st right cut-vertex of B in G′, i.e., the

last entry of type(") is set to be ∣V R
cut(B)∣+ 1, and other entries of type(") are unchanged.

Based on the above analysis, we can update data(") for the vertex " in O(1) time.

∙ In Line A6: we update the data of the head of the edge " if at ∈ {wL, wR}. By definition

of code of vertex, uN+1 is a new left (resp., right) wing-vertex of B in G′ if at = wL (resp.,

at = wR). Before updating the data of the head of ", we need to determine the orientation of

the edge ". By Lemma 8.3, we can know the head and the tail of the edge ". Let " = (u′, u′′)

be the directed edge with the tail u′ and the head u′′, and let pre(u′′) = [u, v] in G (possibly

u = ∅ and v = ∅). Then we update pre(u′′) for the head u′′ of the edge " in G′ as follows:

pre(u′′) := [uN+1, v] if uN+1 is a left vertex of B in G′, and pre(u′′) := [u, uN+1] in G′ if uN+1

is a right vertex of B in G′. Clearly, we can update the data of the head of the edge " in

O(1) time.

∙ In Line A7: we update data(uN ) if ∣V ′(B)∣ ≥ 3 is odd in G and  satisfies at = ∗

and op ∈ {star, subdivide}. In this case, " is the edge eb = (uN−1, uN ) in G, where

idx(uN−1) = N − 1 and idx(uN ) = N , and the bottom vertex uN of B in G turns to be

the last left core-vertex of B in G′. Note that only two data—type(uN ) and pre(uN ) among

data(uN ) are changed from G to G′. Then we will update type(uN ) and pre(uN ) in G′ as

follows.

By definition, uN = bv(B) ∕= ∅ in G if and only if all entries of type(uN ) are equal to

zero. If ∣V ′(B)∣ ≥ 3 is odd in G and op = star, then

type(uN ) := [∣V L
head(B)∣+ 1, 0, 0, 0, 0, 0, 0, 0],

i.e., the bottom vertex uN in G turns to be a left head-vertex of B in G′.

If ∣V ′(B)∣ ≥ 3 is odd in G, at = ∗ and op = star, then

type(uN ) := [0, 0, ∣V L
axis(B)∣+ 1, 0, 0, 0, 0, 0],

i.e., the bottom vertex uN in G turns to be a left axial-vertex of B in G′.

Besides, we update pre(uN ) in G′ as follows. Recall that uN = bv(B) in G, and there are

only two vertices uN−2 and uN−1 pointing to uN by a directed edge in G, respectively, where
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uN−2 and uN−1 are the last left and right core-vertex of B in G, respectively. By definition,

we have pre(uN ) = [∅, ∅] in G. After uN becomes the last left core-vertex of B in G′, uN−2 is

the only one vertex pointed to uN by a directed edge in G′. Hence pre(uN ) := [uN−2, uN−2]

in G′.

Based on the above analysis, data(uN ) can be updated in O(1) time when ∣V ′(B)∣ ≥ 3 is

odd in G and  satisfies at = ∗ and op ∈ {star, subdivide}.

∙ In Line A8: we update data(B) in G′. Since the first three data—the depth d(B), the

root r(B) and the first head-vertex ℓv(B) of B among data(B) are not changed from G to G′,

we only need to update the rest: V L
head(B), V R

head(B), V L
axis(B), V R

axis(B), V L
wing(B), V R

wing(B),

V L
cut(B), V R

cut(B), sbl(B) and sd(B), respectively. Recall that  = (d1, at, d2, op, c).

Now we explain how to update the arrays of left/right head-/axial-/wing-/cut-vertex of B

for the case that " is a vertex in ℰ(B) and for the case that " is an edge in ℰ(B), respectively.

∙ If " is a left (resp., right) vertex of B that is not a cut-vertex in G, then " is a cut-vertex

in G′, and we add idx(") to the end of V L
cut(B) (resp., V R

cut(B)).

∙ If " is an edge in ℰ(B) that is not {eb}, and  satisfies at = wL (resp., at = wR), then

we add uN+1 to the end of V L
wing(B) (resp., V R

wing(B)).

∙ If " is the edge eb and ∣V ′(B)∣ = 1, then we add uN+1 to the end of V R
head(B).

∙ If " is the edge eb and ∣V ′(B)∣ ≥ 2 in G, then V L
head(B), V L

axis(B), V R
head(B) and V R

axis(B)

are needed to be updated due to the change for the vertex type of uN of B from G to

G′ and the newly created vertex uN+1 in G′. Recall that if ∣V ′(B)∣ ≥ 2 is odd in G,

and  satisfies at = ∗ and op ∈ {star, subdivide}, then the bottom vertex uN in G

turns to be the last left core-vertex of B in G′ and the new vertex uN+1 is the last right

core-vertex of B in G′.

Specifically, if " = eb, ∣V ′(B)∣ ≥ 2 is odd and  satisfies op = star in G, then we add

uN to the end of V L
head(B) and add uN+1 to the end of V R

head(B). If " = eb, ∣V ′(B)∣ ≥ 2

is odd, and  satisfies at = ∗ and op = subdivide in G, then we add uN to the end of

V L
axis(B) and add uN+1 to the end of V R

axis(B).

It remains to update sbl(B) and sd(B) in G′. We only need to update sbl(B) in G′

if sbl(B) = pfx in G and update sd(B) in G′ if sd(B) ∈ {nil, pfx} in G. The reason is

presented as follow. Let B1, B2, . . . , Bk be the blocks in ℰ∗(G). Suppose that B = Bi is the

ith (i ∈ [1, k]) block in ℰ∗(G). By definition of ℰ∗(G), all blocks Bj for j = 1, 2, . . . , k satisfy

that sbl(Bj ;G) ∕= eqv and sd(Bj;G) ∕= eqv. Besides, by Lemma 6.5(i), both sbl(B;G) =

stc and sd(B;G) = stc remain unchanged in G′.
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Let Bℓ (ℓ ∈ [1, k]) be the dominating block of G, which is maintained by cstate(uN ), and

let "∗ and ∗ be the critical element and the critical code of G when cs(G) = pfx, both of

which can be calculated by Lemma 8.8 in O(1) time.

We will first update sbl(B) in G′ in the case of sbl(B) = pfx in G based on the copy-state

of G and the criticality of G′ as follows. Clearly, each block Bj with smaller superscribe as

B (i.e., 1 ≤ j < i) satisfies sbl(Bj;G) ∈ {stc, pfx} and sd(Bj ;G) ∈ {stc, nil, pfx}. Thus,

the copy-state of G is cs(G) = pfx, and the dominating block Bℓ of G satisfies 1 ≤ ℓ ≤ i.

If G′ is the critical child-embedding of G, i.e., " = "∗ and  = ∗, then by Lemma 6.9 (1),

sbl(B;G) = pfx changes into one of {pfx, eqv, stc} in G′. In the following, we will give the

exact conditions that sbl(B) = pfx in G changes into stc, pfx and eqv in G′, respectively,

after we present new necessary definitions.

We will define element "̂ and code ̂ with respect to the block B in G in a similar way to

define the critical element "∗ and the critical code ∗ with respect to the dominating block

Bℓ in G. Let v′ = �−(uN ; r(B)), which can be computed by Equation 8.1 in Lemma 8.6. Let

v̂ be the vertex such that idx(v̂) = idx(v′) + 1. Let ̂ = (v̂) and "̂ be the element to which

is applied ̂ to generate v̂. By Lemma 8.5, we can calculate "̂ and ̂ for the vertex v̂ in O(1)

time. Now we are ready to show the update of sbl(B) in G′ as follows:

sbl(B) :=

⎧



⎨



⎩

stc if (a) ∣blocks(r(B))∣ = 1, and (b) " ∕= "̂, or, " = "̂ and  < ̂;

uN+1 if (a) ∣blocks(r(B))∣ ≥ 2, and (b) " ∕= "̂, or, " = "̂ and  < ̂;

eqv if " = "̂,  = ̂ and idx(�−(uN+1; r(B))) = idx(ℓv(B))− 1.

If G′ is not critical, i.e., " ∕= "∗, or, " = "∗ and  = ∗, then by Lemma 6.9 (2), it

holds sbl(B;G′) = stc. Hence we update sbl(B) := stc for ∣blocks(r(B))∣ = 1, and

sbl(B) := N + 1 for ∣blocks(r(B))∣ ≥ 1.

Next we will update sd(B) in G′ when sd(B) ∈ {pfx, nil} as follows. If sd(B) = pfx

in G, then similarly we can see that cs(G) = pfx. Let uR be the first vertex in V R
wing(B) if

V R
wing(B) ∕= ∅, or uR = ℓv(B1) for the leftmost block of ℬ(u′) of the first vertex u′ in V R

cut(B)

if V R
wing(B) = ∅ and V R

cut(B) ∕= ∅. By Lemma 6.9 (1), sd(B;G) = pfx changes into one of

{pfx, eqv, stc} in G′. Specifically, sd(B) in G′ is updated as follows:

sd(B) :=

{

uN+1 if " ∕= "̂, or, " = "̂ and  < ̂;

eqv if " = "̂,  = ̂ and idx(�(uN+1; r(B))) = idx(uR)− 1.

If sd(B) = nil in G, then by Lemma 6.5 (iii), sd(B;G′) belongs to {nil, pfx, eqv, stc}

according to formulas (6.3), (6.5), (6.7), (6.8)-(6.15). By definition, we update sd(B) := uN+1

if sd(B;G′) = stc, and sd(B) := sd(B;G′) otherwise.

Based on the above analysis, we can see that data(B) can be updated in O(1) time.

∙ In Lines A9 and A11, we update the copy-state cs(G′) of G′ and calculate the dominating

block Bd of G′, respectively. In the following, we will explain the update of cs(G′) and the



7.3 Realization of Routine Append 73

calculation of Bd based on cs(G), the element type of " and the criticality of G′. Let Bℓ

be the dominating block, "∗ be the critical element and ∗ be the critical code of G when

cs(G) = pfx. Let uR be the first vertex in V R
wing(B) if V R

wing(B) ∕= ∅, or uR = ℓv(B1) for the

leftmost block of ℬ(u′) of the first vertex u′ in V R
cut(B) if V R

wing(B) = ∅ and V R
cut(B) ∕= ∅.

If cs(G) ∈ {stc, eqv} and " is an edge in E(B), then by Lemma 6.6 (ii), we have

cs(G′) :=

{

stc if sd(B) is nil or equal to N + 1;

sd(B) if sd(B) ∈ {pfx, eqv},

and the dominating block Bd of G′ is

Bd :=

{

B if cs(G′) = pfx;

∅ if cs(G′) ∈ {stc, eqv}.

If cs(G) ∈ {stc, eqv} and " is a vertex in V ′(B), then by Lemma 6.6 (iii), we have

cs(G′) :=

⎧



⎨



⎩

sd(B) if sd(B) ∈ {pfx, eqv};

sbl(B′) if sd(B) is nil or equal to N + 1, and sbl(B′) ∈ {pfx, eqv};

stc both sd(B) and sbl(B′) are nil or are equal to N + 1,

and the dominating block Bd of G′ is

Bd :=

⎧



⎨



⎩

B if cs(G′) = sd(B) = pfx;

B′ if cs(G′) = sbl(B′) = pfx;

∅ if cs(G′) ∈ {stc, eqv}.

If cs(G) = pfx, and G′ is critical (i.e., " = "∗ and  = ∗), then by Lemma 6.10 (iii), we

have

cs(G′) :=

⎧









⎨









⎩

eqv if cs(G) = sbl(Bℓ;G) and idx(�−(uN+1; r(B
ℓ))) = idx(ℓv(Bℓ))− 1;

or if cs(G) = sd(Bℓ;G) and idx(�(uN+1; r(B
ℓ))) = idx(uR))− 1;

pfx if cs(G) = sbl(Bℓ;G) and idx(�−(uN+1; r(B
ℓ))) ≤ idx(ℓv(Bℓ))− 2;

or if cs(G) = sd(Bℓ;G) and idx(�(uN+1; r(B
ℓ))) ≤ idx(uR))− 2,

and the dominating block Bd of G′ is

Bd :=

{

Bℓ if cs(G′) = pfx;

∅ if cs(G′) ∈ {stc, eqv}.

If cs(G) = pfx, G′ is not critical and " ∈ E(B), then by Lemma 6.10 (iv), we have

cs(G′) :=

{

stc if sd(B) is nil or equal to N + 1;

sd(B) if sd(B) ∈ {pfx, eqv},
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and the dominating block Bd of G′ is

Bd :=

{

B if cs(G′) = pfx;

∅ if cs(G′) ∈ {stc, eqv}.

If cs(G) = pfx, G′ is not critical and " ∈ V ′(B), then by Lemma 6.10 (v), we have

cs(G′) :=

⎧



⎨



⎩

sd(B) if sd(B) ∈ {pfx, eqv};

sbl(B′) if sd(B) ∈ {nil, stc} and sbl(B′) ∈ {pfx, eqv};

stc if both sd(B) and sbl(B′) are nil or are equal to uN+1,

and the dominating block Bd of G′ is

Bd :=

⎧



⎨



⎩

B if cs(G′) = sd(B) = pfx;

B′ if cs(G′) = sbl(B′) = pfx;

∅ if cs(G′) ∈ {stc, eqv}.

Based on the above analysis, we can update the copy-state of G′ and calculate its dominating

block in O(1) time.

∙ In Line A13, we create data(uN+1) for the new vertex uN+1. Recall that B′ is the new

edge-block if " is a vertex, and  = (d1, at, d2, op, c).

We first create the following seven data for uN+1: idx(uN+1) := N+1; d(uN+1) := d(")+1

if " is a vertex, and d(uN+1) := d(uN )+ 1 if " is an edge; pblock(uN+1) := B′ if " is a vertex,

and pblock(uN+1) := B if " is an edge; blocks(uN+1) := ∅; op(uN+1) := op; c(uN+1) := c,

and cstate(uN+1) := [cs(G′), Bd].

Next we create type(uN+1) as follows. If " is a vertex, then uN+1 is the first left head-

vertex of the new block B′, and hence

type(uN+1) := [1, 0, 0, 0, 0, 0, 0, 0].

Otherwise, " is an edge of B in G. If ∣V ′(B)∣ = 2 in G′, then uN+1 is the first right head-vertex

of B in G′, and hence

type(uN+1) := [0, 1, 0, 0, 0, 0, 0, 0].

If ∣V ′(B)∣ ≥ 3 is even in G′ and op = star, then uN+1 is a right head-vertex of B in G′,

and hence

type(uN+1) := [0, ∣V R
head(B)∣+ 1, 0, 0, 0, 0, 0, 0].

If ∣V ′(B)∣ ≥ 3 is even in G′, at = ∗ and op = subdivide, then uN+1 is a right axial-vertex

of B in G′, and hence

type(uN+1) := [0, 0, 0, ∣V R
axis(B)∣+ 1, 0, 0, 0, 0].
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If ∣V ′(B)∣ ≥ 3 is odd in G′, at = ∗ and op ∈ {star, subdivide}, then uN+1 is the bottom

vertex of B in G′, and hence

type(uN+1) := [0, 0, 0, 0, 0, 0, 0, 0].

If at = wL, then uN+1 is a left wing-vertex of B in G′, and hence

type(uN+1) := [0, 0, 0, 0, ∣V L
wing(B)∣+ 1, 0, 0, 0].

If at = wR, then uN+1 is a right wing-vertex of B in G′, and hence

type(uN+1) := [0, 0, 0, 0, 0, ∣V R
wing(B)∣+ 1, 0, 0].

It remains to create pre(uN+1) and wgedge(uN+1). Note that wgedge(uN+1) ∕= ∅ if

and only if uN+1 is a wing-vertex of B. In the following, we will create pre(uN+1) and

wgedge(uN+1) based on the element type of ", the vertex type of uN+1 and ∣V ′(B)∣. If

" is a vertex, then pre(uN+1) := [∅, ∅] and wgedge(uN+1) := ∅. Otherwise, " is an edge

e = (u′, u′′) ∈ E(B). Without loss of generality, we assume that d(u′) < d(u′′). Especially

when " = e is a left or right edge of B, we can know the orientation of e in O(1) time by

Lemma 8.3. Note that the edge e can be directed from u′ to u′′ or directed from u′′ to u′.

If ∣V ′(B)∣ = 2, then uN+1 is the first right head-vertex of B, and hence there is no vertex

pointed to uN+1 by a directed edge. Thus, pre(uN+1) := [∅, ∅] and wgedge(uN+1) := ∅.

If ∣V ′(B)∣ ≥ 3 is even and uN+1 is the last right core-vertex of B, then u′ is the last

second right core-vertex of B, which is the only vertex pointed to uN+1 by a directed edge.

Thus, pre(uN+1) := [u′, u′] and wgedge(uN+1) := ∅.

If uN+1 is the bottom vertex of B, then pre(uN+1) := [∅, ∅] and wgedge(uN+1) := ∅.

If uN+1 is a wing-vertex of B and e = (u′, u′′) is directed from u′ to u′′, then pre(uN+1) :=

[u′, u′], and wgedge(uN+1) := u′′.

If uN+1 is a wing-vertex of B and e = (u′, u′′) is directed from u′′ to u′, then pre(uN+1) :=

[u′′, u′′], and wgedge(uN+1) := u′.

Clearly, we can create data(uN+1) in O(1) time.

We have completed the explanation of Routine Append. Based on the above analysis

and Lemma 7.1, we can easily derive the running time and the memory for Routine Append

with given inputs.

Lemma 7.2. Given an embedding G with N (∈ [1, n − 1]) vertices, a block B in ℰ∗(G),

an element " ∈ ℰ(B) and a code  ∈ Γ("), Routine Append(G,B, ", ) computes a child-

embedding G′ = G+  of G in O(1) time and O(n) space in the worst case.
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7.4 Realization of Routine RemoveTip

Given a canonical embedding G′ with N(≥ 1) vertices, Routine RemoveTip(G′) computes

the parent-embedding G obtained from G′ by removing the tip t(G′) (i.e., by remove(t(G′))),

which is given as follows:

Routine RemoveTip(G′)

/* Let N = ∣V (G′)∣ ≥ 1, and uN be the vertex of G′ with idx(uN ) = N . */

R1 begin

R2 Let t(G′) = uN , and B be the block in G′ with uN ∈ V ′(B);

R3 if ∣V ′(B)∣ = 1 then

R4 Let v = r(B) be the root of B, and B′ be the block in G′ with r(B) ∈ V ′(B′);

R5 Update data(v) for v = r(B);

R6 Update data(B′);

R7 Remove both data(uN ) and data(B)

R8 else /* ∣V ′(B)∣ ≥ 2 */

R9 Let e = (u′, u′′) be the edge of B with idx(u′) ≤ idx(u′′), to which is applied (uN ) to

generate the vertex uN ;

R10 Update data(u′) and data(u′′) for the endvertices u′ and u′′ of the edge e if ∣V ′(B)∣ ≥ 3;

R11 Update data(B);

R12 Remove data(uN )

R13 endif

R14 end.

Reverse to RoutineAppend, we update the data for vertices and blocks in G that are changed

due to the removal of uN in Routine RmoveTip. Specifically, if ∣V ′(B)∣ = 1, then the removal

of uN leads to the change of data(v) for v = r(B) and data(B′) for the block B′ containing

v from G′ to G. If ∣V ′(B)∣ ≥ 2, then by Lemma 8.5, the edge e = (u′, u′′) in above Line R9

can be calculated in O(1) time, and the removal of uN leads to the change of data(u′) and

data(u′′) for the endvertices of the edge e = (u′, u′′) and the change of data(B) from G′ to

G. In the following, we will explain the update of data in the above Routine RemoveTip

line by line.

∙ In Line R5, we update data(v) in G whenB is an edge-block rooted at v in G′. The removal

of the vertex uN can only lead to the change of two data type(v) and blocks(v) among data(v)

from G′ to its parent-embedding G. Specifically, type(v) is changed from G′ to G if there is

only one block rooted at v in G′ (i.e., ∣blocks(v)∣ = 1). In this case, the cut-vertex v in G′ is

not a cut-vertex in G any more. Let type(v) = [tLhead, t
R
head, t

L
axis, t

R
axis, t

L
wing, t

R
wing, t

L
cut, t

R
cut] in

G. If v is a left (resp., right) cut-vertex such that only one block is rooted at it in G′, then v is

not left (resp., right) cut-vertex in G, i.e., type(v) := [tLhead, t
R
head, t

L
axis, t

R
axis, t

L
wing, t

R
wing, 0, t

R
cut]
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(resp., type(v) := [tLhead, t
R
head, t

L
axis, t

R
axis, t

L
wing, t

R
wing, t

L
cut, 0]). Besides, the removal of the tip

uN of G′ results in the removal of the edge-block B, i.e., we remove B from blocks(v). Based

on the above analysis, data(v) can be updated in O(1) time.

∙ In Line R6, we update data(B′) for the block B′ containing the root v of the edge-block

B. We can see that the removal of uN can only result in the change of the four data: V L
cut(B),

V R
cut(B), sbl(B′) and sd(B′) among data(B′) from G′ to G. Recall that the root v of the

tip-block B is the tip of the block B′. By definition of the tip of a block, v is the last vertex

in V L
cut(B

′) (resp., V R
cut(B

′)) in G′. Note that if there is only one block rooted at v in G′, then

the vertex v is not a cut-vertex of B′ in G anymore, and hence we remove the last vertex v

from V L
cut(B

′) (resp., V R
cut(B

′)).

It remains to update sbl(B′) and sd(B′) in G. We claim that sbl(B′) would change from

G′ to G if sbl(B′) = uN or sbl(B) = eqv in G′, and that sbl(B′) in G′ remains unchanged in

G otherwise. We will analyze all cases that sbl(B′) in G′ remains unchanged in G as follows.

If sbl(B′) ∈ stc in G′, i.e., there is only one block rooted at r(B′) in G′, then the removal

of uN will not change the fact that there is only one block rooted at r(B′) in G, and hence

sbl(B′) ∈ stc in G. If sbl(B′) = ui such that idx(r(B′)) < idx(ui) = i < idx(uN ) = N ,

then sbl(B′;G′) = stc, and the removal of uN would not change sbl(B′) = ui in G. If

sbl(B′) = pfx in G′, then sbl(B′) = pfx in G. However, if sbl(B′) = idx(uN ) in G′ or

sbl(B′) = eqv in G′, then sbl(B′) := pfx in G.

Now we update sd(B′) in G. Note that sd(B′) remains unchanged in G if (a) sd(B′) = ui

such that idx(r(B′)) < idx(ui) < idx(uN ) in G′, (b) sd(B′) = nil in G′, or (c) sd(B′) =

pfx in G′ and V R
wing(B

′) ∪ V R
cut(B

′) ∕= ∅. However, if sd(B′) = uN or sd(B′) = eqv, and

V R
wing(B

′) ∪ V R
cut(B

′) = ∅ in G′, then sd(B′) := nil in G. If sd(B′) = uN or sd(B′) = eqv,

and V R
wing(B

′) ∪ V R
cut(B

′) ∕= ∅ in G′, then sd(B′) := pfx in G. If sd(B′) = pfx in G′ and

V R
wing(B

′) ∪ V R
cut(B

′) = ∅, then sd(B′) := nil in G.

Based on the above analysis, we can update data(B′) for the block B′ with v ∈ V ′(B′) in

O(1) time when B is the edge-block rooted at v.

∙ In Line R10: we update data(u′) and data(u′′) for the endvertices u′ and u′′ of the edge

e = (u′, u′′) with idx(u′) < idx(u′′). Note that d(u′) ≤ d(u′′). If ∣V ′(B)∣ ≥ 3 and uN is

the last right core-vertex of B in G′, then e = (uN−2, uN−1), i.e., u
′ is the last second right

core-vertex uN−2 of B in G′ and u′′ is the last left core-vertex uN−1 of B in G′. In this case,

the removal of uN will lead to the change in the vertex type of u′′ = uN−1, i.e., the last left

core-vertex uN−1 of B in G′ turns to be the bottom vertex of B in G. We can see that only

two data— type(u′′) and pre(u′′) among data(u′′) can be changed from G′ to G. Specifically,

type(u′′) := [0, 0, . . . , 0] in G, and pre(u′′) := [∅, ∅].
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If uN is a wing-vertex of B in G′, then by Lemma 8.3, we can know the orientation of the

edge e = (u′, u′′) with idx(u′) < idx(u′′) in O(1) time. Specifically, the edge e is directed from

u′ to u′′ if u′ is the first entry of pre(uN ) and u′′ = wgedge(uN ), and the edge e is directed

from u′′ to u′ if u′′ is the first entry of pre(uN ) and u′ = wgedge(uN ). In the following, we

only analyze the case that the edge e is directed from u′ to u′′, since we can similarly analyze

the case that the edge e is directed from u′′ to u′.

The removal of uN only leads to the change of pre(u′′) for the head u′′ of the edge e in

G, since uN is the last vertex of B pointing to u′′ by a directed edge in G′. Specifically, let

pre(u′′) = [v1, v2] in G′, where v1 = uN if uN is a left vertex of B, and v2 = uN if uN is a

right vertex of B in G′. Then we update pre(u′′) in G based on the positions of the vertices

u′′ and uN in its parent-block B in G′ as follows. If u′′ is not the bottom vertex of B, then

pre(u′′) := [v1, u
′]. If u′′ = bv(B) ∕= ∅ and uN is a left wing-vertex in G′, then u′ turns to be

the last left vertex of B pointing to u′′ by a directed edge in G. Thus, pre(u′′) := [∅, v2] if

u′ is the last left core-vertex of B in G, and pre(u′′) := [u′, v2] if u
′ ∕= v1 is not the last left

core-vertex of B in G. If u′′ = bv(B) ∕= ∅ and uN is a right wing-vertex in G′, then u′ turns to

be the last right vertex of B pointing to u′′ by a directed edge in G. Thus, pre(u′′) := [v1, ∅]

if u′ is the last right core-vertex of B in G, and pre(u′′) := [v1, u
′] if u′ ∕= v2 is not the last

right core-vertex of B in G.

Based on the above analysis, we can update the data for the endvertices of the edge

e = (u′, u′′) in O(1) time if ∣V ′(B)∣ ≥ 3.

∙ In Line R11: we update data(B) for the cyclic block B in G. According to the update of

data(B) in Routine Append, we only need to update the last ten data: V L
head(B), V R

head(B),

V L
axis(B), V R

axis(B), V L
wing(B), V R

wing(B), V L
cut(B), V R

cut(B), sbl(B) and sd(B), respectively.

We first update the arrays for the left/right head-/axial/wing-vertices of B in G as follow.

If ∣V ′(B)∣ = 2, then uN is the last right head-vertex of B in G′, and hence we update V R
head(B)

by remove uN from it. If ∣V ′(B)∣ ≥ 3 is even and uN is the last right head-vertex (resp.,

axial-vertex) of B in G′, then uN−1 is the last left head-vertex (resp., axial-vertex) of B in G′,

and we update V L
head(B) (resp., V L

axis(B)) by removing uN−1 from it, and update V R
head(B)

(resp., V R
axis(B)) by removing uN from it. If uN is a left (resp., right) wing-vertex, then we

update V L
wing(B) (resp., V L

wing(B)) by removing uN from it.

Next we update sbl(B) and sd(B) in G similar to the update of sbl(B′) and sd(B′) in

the case of ∣V ′(B)∣ = 1. If sbl(B) = uN or sbl(B) = eqv, then sbl(B) := pfx in G. If

sd(B) = uN or sd(B) = eqv, and V R
wing ∪ V R

cut = ∅, then sd(B) := nil in G. If sd(B) = uN

or sd(B) = eqv, and V R
wing ∪ V R

cut ∕= ∅, then sd(B) := pfx in G. If sd(B) = pfx and

V R
wing ∪ V R

cut = ∅, then sd(B) := nil.

We have completed the analysis of Routine RemoveTip. Based on the above analysis

and Lemma 7.1, we can easily obtain the following result.
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Lemma 7.3. Given a canonical embedding G′ with N(≥ 1) vertices, Routine RemoveTip(G′)

is executed in O(1) time and in O(n) space in the worst case.

7.5 Realization of Routine NextCode

Given a given canonical embedding, RoutineNextCode helps to generate its child-embeddings

that has not been generated. Let G be the current canonical embedding. Given a block

B ∈ ℰ∗(G), an element " ∈ ℰ(B) and a code  ∈ Γ("), Routine NextCode(B, ", ;G)

returns an array with three entries: the code ′ succeeding  if any, the element "′ with

′ ∈ Γ("′) and the block B′ with "′ ∈ ℰ(B′), and returns ∅ if no such ′ exists. The general

structure for Routine NextCode is given as follows.

Routine NextCode(B, ", ;G)

/* Let G be current canonical embedding, and ℰ∗(G) be the sequence consisting of all

applicable elements of G. */

N1 begin

N2 if " is not the last element in ℰ∗(G) and  is the largest code in Γ(") then

N3 Let "′ ∈ ℰ∗(G) be the element succeeding ", B′ be the block such that "′ ∈ ℰ(B′),

and ′ be the smallest code in Γ("′);

N4 Return [′, "′, B′]

N5 else if " is not the last element in ℰ∗(G) and  is not the largest code in Γ(") then

N6 Let ′ is the code in Γ(") succeeding ;

N7 Return [′, ", B]

N8 else /* " is the last element in ℰ∗(G) and  is the largest code in Γ(") */

N9 Return ∅

N10 endif

N11 end.

∙ In Line N2: we check whether " is the last element in ℰ∗(G) or not and check whether 

is the largest code in Γ(") or not. By definition of ℰ∗(G), we can check whether " is the last

element in ℰ∗(G) in O(1) time. In the following, we first review the definition of ℰ∗(G), and

then give the sufficient and necessary condition that " is the last element in ℰ∗(G).

Let B1, B2, . . . , Bp be the blocks in the spine ofG, and ℰ(G) = [rG, ℰ(B
1), ℰ(B2), . . . , ℰ(Bp)].

Recall that if cs(G) = stc, then ℰ∗(G) = ℰ(G). Otherwise, i.e., cs(G) ∈ {eqv, pfx}. Let Bℓ

(ℓ ∈ [1, p]) be the dominating block ofG. If cs(G) = eqv, then ℰ∗(G) = [rG, ℰ(B
1), ℰ(B2), . . . ,

ℰ(Bℓ−1)]; and if cs(G) = pfx, then ℰ∗(G) = [rG, ℰ(B
1), ℰ(B2), . . . , ℰ(Bℓ)], where the critical

element "∗ of G is the last one in ℰ(Bℓ). Based on the definition of ℰ∗(G), we can see that an

element " is the last one in ℰ∗(G) if and only if (1) cs(G) = pfx and " is the critical element

of G, (2) cs(G) = stc, B is the tip-block of G (i.e., the tip B is not a cut-vertex), and " is
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the last element in ℰ(B) (by Lemma 8.9), or (3) cs(G) = eqv, B = Bℓ−1, and " is the last

element in ℰ(B) (by Lemma 8.9). By Lemma 8.10, we can calculate the largest code of Γ(")

for a given element " in ℰ(B) in O(1) time, and hence we can know whether a given code 

is the largest code or not in O(1) time.

∙ In Line N3: we compute the element "′ succeeding " and the smallest code ′ in Γ("′) when

" is not the last element in ℰ∗(G) in O(1) time. The calculation of "′ depends on whether "

is the last element in ℰ(B). Note that we can check whether " is the last element of ℰ(B) in

O(1) time by Lemma 8.9.

Recall that "ifst(B) and "ilst(B) are the first element and the last element of ℰ(B)∩Xi for

X1 = VR(G(B)), X2 = ER(y1;B), X3 = VL(G(B)), X4 = EL(x1;B), X5 = {eb, bv(B)},

where x1 and y1 are the first left and right head-vertex of B. Let t(B) be the tip of B, which

can be calculated in O(1) time by Lemma 8.4. Let B′ be the rightmost block rooted at t(B).

If " is the last element of ℰ(B), then "′ is the first element in ℰ(B′), which can be calculated

in O(1) time by Lemma 8.9. Otherwise, " is not the last element of ℰ(B). Then the element

"′ next to " also belongs to ℰ(B). If " = "ilst(B) ∕= ∅ for some 1 ≤ i ≤ 4, then "′ is the

first non-empty element in the sequence "i+1
fst (B), "i+1

lst (B), "i+2
fst (B), "i+2

lst (B),. . . , "5fst(B) and

"5lst(B). If "ifst(B) ∕= ∅ and idx("ifst(B)) ≤ idx(") < idx("ilst(B)) for i = 1 (resp., i = 3), then

"′ is the right (resp., left) vertex with idx("′) = idx(") + 1. If "ifst(B) ∕= ∅ and " = (v, u) is a

right (resp., left) edge directed from v to u such that d("ifst(B)) ≤ d(") < d("ilst(B)) for i = 2

(resp., i = 4), then "′ is the right (resp., left) edge e = (w, v), where w is equal to the second

entry of pre(v). If " = "5fst(B) = bv(B) ∕= ∅ and ℬ(bv(B)) = ∅, then "′ = "5lst(B) = eb.

Besides, we can compute the smallest code ′ ∈ Γ("′) in O(1) time by Lemma 8.10. Based

on the above analysis, we can compute the element "′ succeeding " and the smallest code ′

in Γ("′) in O(1) time.

∙ In Line N6: we check whether " is the last element in ℰ∗(G), and check whether  is the

largest code in Γ("). As mentioned in Line N3, we can check whether " is the last element in

ℰ∗(G) in O(1) time. By Lemma 8.10, we can compute the largest code in Γ(") in O(1) time,

and hence we can check whether  is the largest code in Γ(") in O(1) time.

∙ In Line N7: we calculate the code ′ succeeding  when " is not the last element in ℰ∗(G)

and  is not the largest code in Γ("). In the following, we explain the calculation of the code

′ based on the cases in the definition of code set in Section 6.1. Let  = (d1, at, d2, op, c).

(1) For " = v ∈ V ′(B)− Vcut(B) such that v is not yj in Case-1(d) (Figure 6.1(d)) and 3(d)

(Figure 6.3(d)), we have ′ := (d1, at, d2, op, c+ 1).
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(2)-(i) For " = e′q′ , let xpR+1 be the (∣V R
wing(B)∣+ 1)st left wing-vertex of B, we have

′ :=

⎧









⎨









⎩

(d1, at, d2, op, c+ 1) if op(xpR+1) = triangle;

(d1, at, d2, op, c+ 1) if op(xpR+1) = subdivide, op = triangle and c < cK ;;

(d1, at, d2, subdivide, c1) if op(xpR+1) = subdivide, op = triangle and c = cK ;

(d1, at, d2, subdivide, c+ 1) if op(xpR+1) = subdivide, op = subdivide and c < c(xpR+1).

(2)-(ii) For " = e′ that is not the edge e′q′ in Case-2(b)-(c) (Figure 6.2(b)-(c)), Case-3(c)

(Figure 6.3(c)) and Case-4(b) (Figure 6.4(b)), recall that A(B) is the set of axial-edges in B.

We have ′ := (d1, at, d2, subdivide, c1) if e
′ /∈ A(B) ∪ {e′q′+1}, op = triangle and c = cK ;

and ′ := (d1, at, d2, op, c+ 1) otherwise.

(3) For a left edge " = ej ∈ ℰ(B), we have ′ := (d1, at, d2, subdivide, c1) if ej /∈ A(B) ∪

{eq+1}, op = triangle and c = cK ; and ′ := (d1, at, d2, op, c+ 1) otherwise.

(4)-(a) For " = eb = (y, z) with d(z) > d(y) in the case that B has no axial-vertex and ∣V (B)∣

is even, we have ′ := (d1, at, d2, op, c+ 1) if sd(B;G) = stc (Figure 6.6(c)) and c < cK , or,

sd(B;G) = nil, ∣V (B)∣ ≥ 2 and c < c(z) (Figure 6.5(c) and Figure 6.5(f)).

(4)-(b) For " = eb = (y, z) with d(z) > d(y) in the case that B has no axial-vertex and ∣V (B)∣

is odd (Figures 6.5(a)-6.6(a)), we have ′ := (d1, at, d2, triangle, c1) if sd(B;G) = stc,

op = star and c = cK ; ′ := (d1, at, d2, subdivide, c1) if sd(B;G) = stc, op = triangle

and c = cK ; and ′ := (d1, at, d2, op, c+ 1) otherwise.

(4)-(c) For " = eb = (y, z) with d(z) > d(y) in the case that B has axial-vertices and ∣V (B)∣

is even (Figures 6.5(d)-6.6(d)), we have ′ := (d1, at, d2, op, c + 1) if sd(B;G) = stc and

c < cK , or, sd(B;G) = nil, V L
axis(B) ∪ V R

axis(B) ∕= ∅, ∣V (B)∣ is even and c < c(z).

(4)-(d) For " = eb = (y, z) with d(z) > d(y) in the case that B has axial-vertices and ∣V (B)∣

is odd (Figures 6.5(b)-6.6(b)), we have ′ := (d1, at, d2, subdivide, c1) if op = triangle and

c = cK ; ′ := (d1, at, d2, op, c+ 1) otherwise (i.e., if c < cK).

We have completed the analysis of Routine NextCode. Based on the above analysis and

Lemma 7.1, we can easily derive the following result.

Lemma 7.4. Given a block B in the spine of G, an element " ∈ ℰ(B) and a code  ∈ Γ("),

Routine NextCode(B, ", ;G) runs in O(1) time and in O(n) space in the worst case.

By Lemmas 7.1 and 7.2-7.4, we derive the time and space complexities of Algorithm

GENERATE as follows.
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Theorem 7.1. Given an integer n ≥ 1 and a set C = (c1, c2, . . . , cK) of K colors, Algorithm

GENERATE(n, C) enumerates all colored and rooted non-isomorphic outerplanar graphs

with at most n vertices in O(1) time per each graph in the worst case by using O(n) space.
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Conclusion

This thesis is concerned with the problem of generating all colored and rooted outerplanar

graphs with at most given number n(≥ 1) of vertices in a systematical way. We have proposed

an O(n) space CAT algorithm for this problem, i.e., an algorithm that generates all required

outerplanar graphs without repetition in constant time per each and in O(n) space. The

design of the algorithm relies on the careful choices of canonical representation and family tree.

The canonical representation of a colored and rooted outerplanar graph is a unique embedding

of the graph having good properties, which facilitates avoiding isomorphic duplications due

to the symmetric structures of graphs. The family tree is a data structure consisting of

canonical representations of all outerplanar graphs required to be generated: each node of

the family tree corresponds to a canonical outerplanar embedding, and each edge between

two nodes corresponds to the parent-child relationship between two canonical outerplanar

embeddings which have constant-size differences.

The algorithm proposed in this thesis may have potential applications in various areas such

as mathematics, chemoinformatics and computer science. For example, our exhaustive gen-

eration algorithm may be used to solve the random generation problem of colored and rooted

outerplanar graphs. Recall that the family tree defined in this thesis consists of all canonical

outerplanar embeddings with at most given number n(≥ 1) of vertices, where a node at the

i-th depth (i ∈ [1, n]) corresponds to a canonical outerplanar embeddings with i vertices,

and an edge correspond to the parent-child relationship between two canonical embeddings

with constant-size changes. Based on the family tree, for any given canonical embedding G

with i ∈ [1, n] vertices, we can trace all ancestor-embeddings P (G), P 2(G), . . . P i−1(G) of G

by a path P = vi−1 . . . v2v1 in the family tree, where for j = i − 1, i − 2, . . . , 1, the node vj

corresponds to the ancestor-embedding P i−j(G) of G. Then we may randomly generate such

a canonical outerplanar embedding G by randomly generating such a path P in the family

tree.

Besides, in chemoinformatics, the list of colored and rooted outerplanar graphs may be
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used to obtain chemical compounds with desired properties. Recall that the majority of

chemical graphs in the NCI database are outerplanar graphs [73]. The problem of inferring

chemical graphs under given constraints is one of the fundamental and important problems in

chemoinformatics. In the literature, Akutsu and Fukagawa [3] considered the general graph

inference problem from the numbers of occurrences of vertex-labeled paths with length at

most K. In particular, they designed a dynamic programming algorithm for inferring the

graphs in a restricted class of outerplanar graphs [4]. However, the time complexity of their

algorithm is exponential in K and the number of labels. In recent years, various approaches

have been proposed to screen chemical compounds libraries (i.e., a series of stored chemical

compounds) for identifying the compounds with the desired properties. We believe that the

exhaustive list of colored and rooted outerplanar graphs in this thesis may speed up solving

the inference problem of chemical outerplanar graphs. We may design a branch-and bound

algorithm based on the exhaustive generation approach proposed in this thesis, which is

similar with the tree case [60, 75]. That is, starting from a colored and rooted outerplanar

graph consisting of a single vertex, we may obtain all required chemical outerplanar graphs

by recursively generating colored and rooted outerplanar graphs while discarding the graphs

which violate the given constraints.

The work in this thesis also simulates some interesting problems. For example, it would be

interesting to characterize what kinds of graphs or other combinatorial objects which admit

CAT algorithms. The characterization of such combinatorial objects may have the following

advantages: 1) it may allow us to find patterns hidden in the structure of combinatorial

objects which may lead to a more thorough understanding of these objects; and 2) it may

produce a new and systematic framework of CAT algorithms for exhaustively generating

these objects. The generation algorithm of colored and rooted outerplanar graphs in this

thesis is generalized from that of colored and rooted trees [121]. The common key idea in

the algorithms of rooted outerplanar graphs in this thesis and that of rooted trees in [121]

is to find good canonical representations for them such that the canonical representation

of any given graph can be obtained from the canonical representation of another graph

by making constant-size changes without generating duplications. The discovery of such

canonical representation of objects under study depends on the structures of these objects.

An interesting but already very complicated class of graphs is the class of colored and unrooted

outerplanar graphs. Comparing with colored and rooted outerplanar graphs studied in this

thesis, it is much more difficult to design a CAT algorithm for unrooted outerplanar graphs

because of much more complicated symmetric structures.
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During the enumeration, we only maintain the data structures for each block and each vertex

for a canonical embedding defined in Section 7.2. Note that these defined data are parts

of data involved in the algorithm. There are other data for the embedding involved in the

algorithm but are not defined in Section 7.2. Appendix will show how these undefined data

are computed by the defined data. Let G be the current canonical embedding.

The following lemma is used to determine whether the bottom vertex bv(B) of a cyclic

block B exists or not and compute bv(B) if exists.

Lemma 8.1. Given a cyclic block B, its bottom vertex bv(B) can be calculated in O(1) time.

Proof: By definition of the signature of G, the code of the bottom vertex bv(B) is next to

the code of the last right core-vertex y∗ if bv(B) ∕= ∅, that is, idx(bv(B)) = idx(y∗) + 1. Note

that y∗ is the vertex with the largest index in V R
head(B) ∪ V R

axis(B). Besides, we can check

whether any given vertex u ∈ V ′(B) is the bottom vertex of B or not in O(1) time. From

the definition of type(u), u is the bottom vertex of B if and only if all entries of type(u) are

equal to zero. Based the above analysis, B has the bottom vertex bv(B) = u if and only if u

is the vertex of B such that idx(u) = idx(y∗)+1 and such that the first six entries of type(u)

are equal to zero. Thus, bv(B) can be calculated by type(u) and data(B) in O(1) time.

Clearly, an edge e = (u, v) belongs to a block B if and only if u, v ∈ V (B). No data for

edges of an embedding will be maintained in the algorithm. In the following Lemmas 8.2 and

8.3, we will show that we can compute the information of such an edge e including the edge

type, orientation and depth can be calculated by the data of its two end-vertices u and v and

the data of the block B.

Lemma 8.2. Given a block B and an edge e = (u, v) ∈ E(B), whether e is a head-edge or

axial-edge of B can be inferred in O(1) time.

Proof: Recall that type(u′) for each vertex u′ ∈ V ′(B) contains the information whether

u′ is left/right head-/axial-/wing-/cut-vertex of B, and B contains the index of the vertex

u among the same type of vertices in B. Then we can check whether the given edge e is a

head-edge, axial-edge or the bottom edge of B as follows. Without loss of generality, assume
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that d(u) < d(v). If u = r(B), then e is a head-edge of B. If u ∕= r(B), and either (1) u is

the last head-vertex and v is a axial-vertex on the same side of B, or (2) both u and v are

axial-vertices of B, then e is an axial-edge of B. In particular, if u ∕= r(B), bv(B) = ∅, and

u and v are the last left and right core-vertices of B, respectively, then e is the bottom edge

of B.

Lemma 8.3. Given a block B with Ẽ(B) ∕= ∅ and a left (resp., right) edge e = (u, v) of B,

both the orientation and the depth of the edge e can be determined in O(1) time.

Proof: By definition, e = (u, v) is a left (resp., right) edge of B if and only if its endvertices

u, v ∈ V L
core(B) ∪ {bv(B)} ∪ V L

wing(B) (resp., u, v ∈ V R
core(B) ∪ {bv(B)} ∪ V R

wing(B)). Without

loss of generality, assume that idx(u) < idx(v).

We can compute the orientation and the depth of the edge e = (u, v) by the data type(u),

type(v) and pre(v). Specifically, if both u and v are core-vertices on the same side of B,

i.e., u, v ∈ V L
core(B) ∪ {bv(B)} (resp., u, v ∈ V R

core(B) ∪ {bv(B)}), then the edge e = (u, v) is

directed from u to v. By definition, the depth of the edge e is calculated as follows. If u is

the last vertex in V L
core(B) (resp., V R

core(B)) and v = bv(B), then d(e) = 1; if u and v are the

ith and (i+ 1)st vertex in V L
core(B) (resp., V R

core(B)), respectively, then

d(e) = ∣V L
core(B) ∪ {bv(B)}∣ − i = ∣V L

head(B) ∪ V L
axis(B) ∪ {bv(B)}∣ − i

(resp., d(e) = ∣V R
core(B) ∪ {bv(B)}∣ − i = ∣V R

head(B) ∪ V R
axis(B) ∪ {bv(B)}∣ − i).

Otherwise, at least one of u and v is a wing-vertex of B. Due to idx(u) < idx(v), the vertex

v must be a wing-vertex of B. Let e′ = (v′, v′′) be the edge directed from v′ to v′′, to which

is applied code (v) to generate the wing-vertex v, where v′ is the first entry of pre(v) and

v′′ = wgedge(v). Due to idx(u) < idx(v), we have u = v′ or u = v′′. Then e = (u, v) is

directed from u to v if u = v′ is the first entry of pre(v), and e = (u, v) is directed from v

to u if u = v′′ = wgedge(v). By definition, the depth of the edge e is calculated as follows.

Let v be the ith vertex in V L
wing(B) (resp., V R

wing(B)), and L1 = ∣V L
core(B) ∪ {bv(B)}∣ (resp.,

L1 = ∣V R
core(B) ∪ {bv(B)}∣). Then

d(e) =

{

2i+ L1 − 1 if u is equal to the first entry of pre(v);

2i+ L1 − 2 if u = wgedge(v).

In summary, we can compute the orientation and the depth of a left (resp., right) edge of

given block in O(1) time.

Lemma 8.4. Given a block B of the spine of G, the tip t(B) of B can be calculated in O(1)

time.
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Proof: By definition, t(B) is the vertex with the largest index in array A, where A = V R
cut(B)

if V R
cut(B) ∕= ∅, A = V R

wing(B) if V R
cut(B) = ∅ and V R

wing(B) ∕= ∅, A = V L
cut(B) if V R

cut(B) =

V R
wing(B) = ∅ and V L

cut(B) ∕= ∅, A = V L
wing(B) if V R

cut(B) = V R
wing(B) = V L

cut(B) = ∅ and

V L
wing(B) ∕= ∅, and A = Vcore(B) if V R

cut(B) = V R
wing(B) = V L

cut(B) = V L
wing(B) = ∅. Clearly,

we can compute the tip of any given block in O(1) time.

Lemma 8.5. Given a block B and a vertex u ∈ V ′(B), let  be a code and let " be the element

to which is applied the code  to generate the vertex u. Then both the code  and the element

" can be calculated in O(1) time.

Proof: The number ∣V ′(B)∣ of non-root vertices of B is calculated by

∣V ′(B)∣ = ∣V L
head(B)∣+∣V R

head(B)∣+∣V L
axis(B)∣+∣V R

axis(B)∣+∣{bv(B)}∣+∣V L
wing(B)∣+∣V R

wing(B)∣.

We compute the code  and the applicable element " based on ∣V ′(B)∣ and the vertex

type of u as follows.

If ∣V ′(B)∣ = 1, then " is the root r(B) of B, and  = (d(B)−1, at, d(r(B)), new-block, c(u)),

where d(B), d(r(B)) and c(u) have been maintained into data(B), data(r(B)) and data(u);

and at can be computed by type("). Specifically, at = ∗ if " = rG, or, " ∕= rG and all entries

of type(") are equal to 0; at = hL if the first, third or fifth entry of type(") is larger than 0;

and at = hL if the second, fourth or sixth entry of type(") is larger than 0.

If ∣V ′(B)∣ = 2, then " is the edge e = (r(B), u′) with idx(u′) = idx(u) − 1, and the code

 = (d(B), ∗, d(u′), triangle, c(u)), where d(B), d(u′) and c(u) have been maintained into

data(B), data(u′) and data(u).

If ∣V ′(B)∣ ≥ 3 and u is a core-vertex of B, then " is the edge e = (u′, u′′) with idx(u′) =

idx(u)−1 and idx(u′′) = idx(u)−2, and the code  = (d(B), ∗, d(e), op(u), c(u)), where d(B),

op(u) and c(u) have been maintained into data(B) and data(u), and d(e) can be calculated

by Lemma 8.3.

If ∣V ′(B)∣ ≥ 3 and u is a left (resp., right) wing-vertex of B, then " is the edge e = (u′, v′),

where u′ is the first vertex in pre(u) and v′ = wgedge(u), and  = (d(B), wL, d(e), op(u), c(u))

(resp.,  = (d(B), wR, d(e), op(u), c(u))). Similarly, the three entries d(B), op(u) and c(u)

of (u) have been maintained into data(B) and data(u), and d(e) can be calculated by

Lemma 8.3.

Based on the above analysis, we can compute code and element that are used to generate

a vertex of a block in O(1) time.

Recall that corresponding vertices with respect to a block of G with cs(G) = pfx are

particularly useful for efficiently generating the critical child-embedding of G in the algorithm.

The following Lemmas 8.6 and 8.7 will show the calculation of corresponding vertices based

on the left-sibling-heaviness and left-side-heaviness, respectively.
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Lemma 8.6. Given a block B with a sibling B̂ preceding it, the corresponding vertex �+(u; r(B))

for u ∈ V (G(B̂))−{r(B)} and �−(u; r(B)) for u ∈ V (G(B))−{r(B)} are calculated, respec-

tively, by

�+(u; r(B)) = idx(u) + idx(ℓv(B))− idx(ℓv(B̂)) for u ∈ V (G(B̂))− {r(B)},

�−(u; r(B)) = idx(u)− idx(ℓv(B)) + idx(ℓv(B̂)) for u ∈ V (G(B)) − {r(B)}.
(8.1)

Proof: By definition, we can derive the above formulas of �+(u; r(B)) for u ∈ V (G(B̂)) −

{r(B)} and �−(u; r(B)) for u ∈ V (G(B)) − {r(B)}.

By Equation (8.1) in above Lemma 8.6, we can compute the corresponding vertices with

respect to a block having a sibling block in O(1) time.

Lemma 8.7. Given a cyclic block B with V L
wing(B)∪V L

cut(B) ∕= ∅ and V R
wing(B)∪V R

cut(B) ∕= ∅,

let uL be the first vertex in V L
wing(B) if V L

wing(B) ∕= ∅, or let uL = ℓv(B′

1) for the leftmost block

B′

1 ∈ ℬ(u′) of the first vertex u′ in V L
cut(B) if V L

wing(B) = ∅ and V L
cut(B) ∕= ∅. Let VL(G(B))

denote the set of left vertices of B and their descendants if V L
wing(B)∪V L

cut(B) ∕= ∅. Similarly,

let uR be the first vertex in V R
wing(B) if V R

wing(B) ∕= ∅, or let uR = ℓv(B′′

1 ) for the leftmost block

B′′

1 ∈ ℬ(u′′) of the first vertex u′′ in V R
cut(B) if V R

wing(B) = ∅ and V R
cut(B) ∕= ∅. Let VR(G(B))

denote the set of right vertices of B and their descendants if V R
wing(B) ∪ V R

cut(B) ∕= ∅. Then

the corresponding vertex �(u; r(B)) for a vertex u ∈ V (G(B)) − {r(B)} is calculated by

�(u; r(B)) =

⎧













⎨













⎩

idx(u) + 1 for u ∈ V L
core(B)

idx(u)− 1 for u ∈ V R
core(B)

idx(u) for u ∈ V (G(bv(B)))

idx(u) + idx(uR)− idx(uL) for u ∈ VL(G(B))

idx(u)− idx(uR) + idx(uL) for u ∈ VR(G(B)).

(8.2)

Proof: Recall that given a block B of a canonical embeddingG, the code sequence �(G(B);G)

consists of �core(G(B);G), �b(G(B);G), �L(G(B);G) and �R(G(B);G), respectively.

By definition, a pair of left and right core-vertices x and y having the same depth in

B are corresponding vertices, where idx(y) = idx(x) + 1; besides, the corresponding vertex

of a vertex u ∈ V (G(bv(B))) is itself. Thus, the corresponding vertex �(u; r(B)) for u ∈

Vcore(B) ∪ V (G(bv(B))) is calculated by

�(u; r(B)) =

⎧



⎨



⎩

idx(u) + 1 for u ∈ V L
core(B)

idx(u)− 1 for u ∈ V R
core(B)

idx(u) for u ∈ V (G(bv(B))).

For u ∈ V (G(B))− Vcore(B)− V (G(bv(B))), the corresponding vertex �(u; r(B)) can be

computed if V L
wing(B)∪V L

cut(B) ∕= ∅ and V R
wing(B)∪V R

cut(B) ∕= ∅ as follows. By definition, the
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code of uL (resp., uR) is the first one in �L(G(B);G) (resp., �R(G(B);G)). Then ∣VL(G(B))∣ =

∣�L(G(B);G)∣ = idx(uR)− idx(uL). Hence

�(u; r(B)) =

{

idx(u) + idx(uR)− idx(uL) for u ∈ VL(G(B))

idx(u)− idx(uR) + idx(uL) for u ∈ VR(G(B)).

By Equation (8.2) in above Lemma 8.7, we can compute the corresponding vertex of a

vertex in V (G(B))− {r(B)} in O(1) time.

Recall that only a canonical embedding G with cs(G) = pfx has a unique critical child-

embedding; and the critical child-embedding of such an embedding G is the child-embedding

obtained from G by applying the critical code ∗ to the critical element "∗ of G. The following

lemma will show how to compute the critical element "∗ and the critical code ∗ of G by the

maintained data for G.

Lemma 8.8. Given a canonical embedding G with cs(G) = pfx and the dominating block

Bℓ of G, both the critical element "∗ and the critical code ∗ of G can be calculated in O(1)

time.

Proof: Suppose that G has N ≥ 1 vertices, and uN is the vertex with idx(uN ) = N . Let v′

be the succeeding-copy-vertex of G and "′ be the element to which is applied the code (v′)

to generate v′.

By definition, the critical element "∗ corresponds to the element "′ with respect to Bℓ,

i.e., both "∗ and "′ are corresponding vertices with respect to Bℓ, or both "∗ and "′ are edges

such that their endvertices are corresponding vertices with respect to Bℓ; besides, the critical

code ∗ is defined based on (v′).

Specifically, if the copy-state of G is given by sbl(Bℓ;G) = pfx, then v′ = �−(uN ; r(Bℓ))

can be calculated by Equation (8.1) in Lemma 8.6, and "′ and (v′) can be calculated by

Lemma 8.5. If "′ is a vertex, then "∗ is the corresponding vertex of "′ calculated by Equa-

tion (8.1) in Lemma 8.6. If "′ = (u′, v′) is an edge, then "∗ = (u∗, v∗) is the edge such that

u∗ and u′ are corresponding vertices, and v∗ and v′ are corresponding vertices with respect

to Bℓ, where u∗ and v∗ can be calculated by Equation (8.1) in Lemma 8.6. Besides, by

definition, the critical code ∗ of G is equal to (v′).

If the copy-state of G is given by sd(Bℓ;G) = pfx, then v′ = �(uN ; r(Bℓ)) can be

calculated by Equation (8.2) in Lemma 8.7, and similarly "′ and (v′) can be calculated by

Lemma 8.5. Similarly, the corresponding element "∗ of "′ can be calculated by Equation (8.2)

in Lemma 8.7. Besides, by definition, ∗ = (v′) if (1) v′ is a left wing-vertex of Bℓ, or (2) v′

is a child vertex of a left vertex of Bℓ, and ∗ = (v′) otherwise.

From the above analysis, we can compute the critical element "∗ and the critical code ∗

of canonical embedding G with cs(G) = pfx in O(1) time.
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By Sections 6.1 and 6.2, we can generate child-embeddings of G by applying codes in

Γ(") of elements " in ℰ∗(G). To systematically generate child-embeddings of G, we expect

that we can automatically gain the next element for a given element in ℰ∗(G) and the next

code of a given code with respect to lexicographical order. The following Lemmas 8.9 and

8.10 serve for this purpose.

Lemma 8.9. Given a cyclic block B in the spine of G, let "ifst(B) and "ilst(B) be the first

element and the last element of ℰ(B) ∩Xi for

X1 = VR(G(B)), X2 = ER(y1;B), X3 = VL(G(B)), X4 = EL(x1;B), X5 = {eb, bv(B)},

where x1 and y1 are the first left and right head-vertex of B. Then "ifst(B) and "ilst(B) for

i = 1, 2, . . . , 5 can be computed in O(1) time, respectively.

Moreover, the first and last element in ℰ(B) can be computed in O(1) time, respectively.

Proof: In the following, based on cases in Section 6.1, we first present the formulas for "ifst(B)

and "ilst(B) for i = 1, 2, . . . , 5, and then show how to calculate them, respectively.

Let t(B) be the tip of the block B, which can be calculated by Lemma 8.4. Let x2 and

y2 be the second left and right core-vertex of B, respectively. Let uL (resp., uR) be the first

vertex in V L
wing(B) (resp., V R

wing(B)) if V L
wing(B) ∕= ∅ (resp.,V R

wing(B) ∕= ∅), or uL = ℓv(B′

1)

(resp., uR = ℓv(B′′

1 )) for the leftmost block B′

1 ∈ ℬ(u′) (resp., B′′

1 ∈ ℬ(u′′)) of the first vertex

u′ ∈ V L
cut(B) (resp., u′′ ∈ V R

cut(B)) if V L
wing(B) = ∅ and V L

cut(B) = ∅ (resp., V R
wing(B) = ∅ and

V R
cut(B) = ∅).

1. The first vertex "1fst(B) and the last vertex "1lst(B) for ℰ(B)∩X1 = VR(G(B)) are given by

"1fst(B) =

⎧



⎨



⎩

t(B) for Case-1

y1 for Case-2-4 or Case-5(c)

∅ for Case-5(a)-(b),

(8.3)

"1lst(B) =

⎧



















⎨



















⎩

ypR for Case-1(a)-(b), Case-2(a)-(c), Case-3(a)-(c), Case-4 or Case-5(c)

t(B) for Case-1(c)

yj for Case-1(d)

yℎ for Case-2(d)

yj for Case-3(d)

∅ for Case-5(a)-(b).

(8.4)

Clearly, "1fst(B) can be computed in O(1) time. Now we show how to compute "1lst(B) in

the above cases, respectively. For Case-1(a)-(b), we have "1lst(B) = ypR is the vertex with

idx(ypR) = idx(uR)− 1.

For Case-2(a)-(c) (Figure 6.2(a)-(c)), we have "1lst(B) = ypR is the last vertex in V R
wing(B).
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For Case-3(a)-(c) (Figure 6.3(a)-(c)), Case-4 (Figure 6.4) or Case-5 (Figures 6.5-6.6), we

have "1lst(B) = ypR is the last right core-vertex of B.

For Case-1(d) (Figure 6.1(d)), we have "1lst(B) = yj, where xi = �(t(B); r(B)), which can

be calculated by Equation (8.2) in Lemma 8.7, xj is the next vertex with the same vertex

type as xi, which can be calculated by type(xi) and data(B), and yj = �(xj; r(B)) can be

calculated by Equation (8.2) in Lemma 8.7.

For Case-2(d) (Figure 6.2(d)), we have "1lst(B) = yℎ, where xℎ is the first vertex in V L
cut(B),

and yℎ = �(xℎ; r(B)), which can be calculated by Equation (8.2) in Lemma 8.7.

For Case-3(d) (Figure 6.3(d)), we have "1lst(B) = yj, where xj is the first vertex in V L
cut(B),

and yj = �(xj ; r(B)), which can be calculated by Equation (8.2) in Lemma 8.7.

2. The first edge "2fst(B) and the last edge "2lst(B) for ℰ(B) ∩X2 = ER(y1;B) are given by

"2fst(B) =

{

e′1 for Case-2(a)-(c), Case-3(a)-(c), Case-4 or Case-5(c)

∅ for Case-1, Case-2(d), Case-3(d) or Case-5(a)-(b),
(8.5)

"2lst(B) =

⎧









⎨









⎩

e′q′+1 for Case-2(a);

e′q′ = (y′, y′′) for Case-2(b)-(c), Case-3(c) or Case-4(b)

e′q′ = (y1, y2) for Case-3(a)-(b), Case-4(a) or Case-5(c)

∅ for Case-1, Case-2(d), Case-3(d) or Case-5(a)-(b).

(8.6)

Now we show how to calculate the edges "2fst(B) and "2lst(B), respectively. For Case-2(a)-

(c) (Figure 6.2(a)-(c)), Case-3(a)-(c) (Figure 6.3(a)-(c)), Case-4 (Figure 6.4) or Case-5(c)

(Figures 6.5(c)-6.6(c)), the edge "2fst(B) is the right edge e′1 = (u, v) of B directed from u to

v, which can be calculated by data(B) and pre(v). Specifically, the bottom vertex bv(B) of

the block B can be calculated by Lemma 8.1. If bv(B) ∕= ∅, then the head v of the edge e′1
is bv(B), and the tail u of the edge e′1 is equal to the second entry of pre(v) if the last entry

of pre(v) is not ∅, and the tail u of the edge e′1 is the last right core-vertex of B otherwise.

For example, in Figure 7.1(a), we have pre(bv(B)) = [x6, y5], and hence e′1 = (y5, bv(B)); and

in Figure 7.1(b), we have pre(bv(B)) = [x6, ∅], and hence e′1 = (y7, bv(B)), where y7 is the

last right core-vertex of B. If bv(B) = ∅, then the head v of the edge e′1 is the last right

core-vertex of B, and the tail u of the edge e′1 is the last second of pre(v). For example in

Figure 7.1(c), x7 and y7 are the last left and right core-vertex of B, respectively. We have

pre(y7) = [y6, y6], and hence e′1 = [y6, y7].

Besides, for Case-2(a) (Figure 6.2(a)), the edge "2lst(B) is the edge e′q′+1 = (y∗, t(B)),

where y∗ is the first entry in pre(t(B)). For Case-2(b)-(c) (Figure 6.2(b)-(c)), Case-3(c) (Fig-

ure 6.3(c)) or Case-4(b) (Figure 6.4(b)), we have "2lst(B) = e′q′ , where ê = (x′, x′′) is the edge

such that x′ is the first entry in pre(xpR+1) and x′′ = wgedge(xpR+1); and e′q′ = (y′, y′′) is the

corresponding edge of ê, i.e., y′ = �(x′; r(B)) and y′′ = �(x′′; r(B)), both of which can be

calculated by Equation (8.2) in Lemma 8.7.
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3. The first vertex "3fst(B) and the last vertex "3lst(B) for ℰ(B)∩X3 = VL(G(B)) are given by

"3fst(B) =

⎧



⎨



⎩

t(B) for Case-3

x1 for Case-4 or Case-5(b)-(c)

∅ for Case-1, Case-2 or Case-5(a),

(8.7)

"3lst(B) =

{

xpL for Case-3, Case-4 or Case-5(b)-(c)

∅ for Case-1, Case-2 or Case-5(a).
(8.8)

Clearly, the first vertex "3fst(B) of ℰ(B) can be computed in O(1) time. It remains to show the

calculation of "3lst(B) = xpL for Case-3 (Figure 6.3), Case-4 (Fig. 6.4) or Case-5(b)-(c) (Fig-

ures 6.5(b)-(c)-6.6(b)-(c)). For Case-3 or Case-4, we have xpL is the vertex with idx(xpL) =

idx(uL)− 1, and for Case-5(b)-(c), we have xpL is the last vertex in V L
head(B) ∪ V L

axis(B).

4. The first edge "4fst(B) and the last edge "4lst(B) for ℰ(B) ∩X4 = EL(x1;B) are given by

"4fst(B) =

{

e1 for Case-4 or Case-5(b)-(c)

∅ for Case-1, Case-2, Case-3 or Case-5(a),
(8.9)

"4lst(B) =

⎧



⎨



⎩

eq+1 for Case-4

eq = (x1, x2) for Case-5(b)-(c)

∅ for Case-1, Case-2, Case-3 or Case-5(a).

(8.10)

We calculate the edges "4fst(B) and "4lst(B) as follows. For Case-4 (Figure 6.4) or Case-5(b)-(c)

(Figures 6.5(b)-(c)-6.6(b)-(c)), the edge "4fst(B) is the left edge e1 = (u, v) of B directed from

u to v, which can be calculated by data(B) and data(v). Specifically, if bv(B) ∕= ∅, then

the head v of the edge e1 is the bottom vertex bv(B), and the tail u of the edge e1 is the

last left core-vertex of B if the first entry of pre(v) is ∅, and u is equal to the first entry of

pre(v) otherwise. For example in Figure 7.1(a), we have pre(bv(B)) = [x6, y5], and hence

e1 = [x6, bv(B)]. If bv(B) = ∅, then the head v of the edge e1 is the last left core-vertex of

B, and the tail u of the edge e1 is the last entry of pre(v). In Figure 7.1(c), the vertex x7 is

the last left core-vertex of B with pre(x7) = [x6, x6]. Hence we have e1 = [x6, x7].

Besides, for Case-4 (Figure 6.4), we have eq+1 = (u, xpL), where xpL is the vertex with

idx(xpL) = ∣V (G)∣, and u is the first entry in pre(xpL). For example in Figure 6.4 (a), suppose

that pre(xpL) = [x∗, x∗]. Then we have eq+1 = (x∗, xpL).

5. The first element "5fst(B) and the last element "5lst(B) for ℰ(B) ∪ X5 = {eb, bv(B)} are
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given by

"5fst(B) =

{

bv(B) if Case-5 occurs and bv(B) ∕= ∅;

∅ if Case-1-4 occurs, or, Case-5 occurs and bv(B) = ∅.
(8.11)

"5lst(B) =

{

eb if Case-5 occurs and ℬ(bv(B)) = ∅;

∅ if Case-1-4 occurs, or, Case-5 occurs and ℬ(bv(B)) ∕= ∅.
(8.12)

By Lemma 8.1, we can calculate the bottom vertex bv(B) in O(1) time. Besides, let x∗ (resp.,

y∗) be the last left (resp., right) core-vertex of B. By definition, eb = (y∗, bv(B)) if bv(B) ∕= ∅,

and eb = (x∗, y∗) otherwise. Thus, we can calculate the edge eb in O(1) time. Based on these,

we can calculate both "5fst(B) and "5fst(B) in O(1) time.

Moreover, we can compute the first and last element in ℰ(B) in O(1) time. Specifically, "

is the first (resp., last) element in ℰ(B) if and only if " is the first non-empty element in the

sequence "1fst(B), "1lst(B), "2fst(B), "2lst(B), "3fst(B), "3lst(B), "4fst(B), "4lst(B), "5fst(B) and "5lst(B)

(resp., the sequence "5lst(B), "5fst(B), "4lst(B), "4fst(B), "3lst(B), "3fst(B), "2lst(B), "2fst(B), "1lst(B)

and "1fst(B)).

Lemma 8.10. Given a block B in the spine of G and an element " ∈ ℰ(B), let s and l

be the smallest and the largest code in Γ(") with respect to lexicographical order, respectively.

Then both s and l can be computed in O(1) time.

Proof: In the following, we will calculate these two codes s and l in Γ(") based on cases

in the definition of code set in Section 6.1.

(1)-1. For " = v ∈ V ′(B)−Vcut(B) such that v is not yj in Case-1(d) (Figure 6.1(d)) and 3(d)

(Figure 6.3(d)), we have s = (d(B), at, d(v), new-block, c1) and l = (d(B), at, d(v), new-block, cK).

Note that all entries excluding the second entry at of s and l can be known by the main-

tained data, but at can be calculated by type(") in O(1) time. In this case, both s and l

can be computed in O(1) time.

(1)-2. For " = yi in Case-1(c) (Figure 6.1(c)), let ℎ = ∣blocks(yi)∣, xi be the correspond-

ing vertex of yi with respect to the block B, which can be calculated by Equation (8.2)

in Lemma 8.7, and B′

ℎ+1 be the (ℎ + 1)st block in the array blocks(xi). We have s =

(d(B), hR, d(yi), new-block, c1) and l = (d(B), hR, d(yi), new-block, c(ℓv(B
′

ℎ+1)).

(1)-3. For " = yj in Case-1(d) (Figure 6.1(d)) or Case-3(d) (Figure 6.3(d)), let xj be the

corresponding vertex of yj with respect to the block B, which can be calculated by Equa-

tion (8.2) in Lemma 8.7, and let B′′

1 be the first block in the array blocks(xj). We have

s = (d(B), hR, d(yj), new-block, c1) and l = (d(B), hR, d(yj), new-block, c(ℓv(B
′′

1 )).
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(1)-4. For " ∈ Vcut(B) not in Case-1(c), let B′

1 denote the last block in the array blocks(") in

G. We have s = (d(B), at, d("), new-block, c1) and l = (d(B), at, d("), new-block, c(ℓv(B′

1))),

where at is calculated by type(") in O(1) time.

(2)-(i) For " = e′q′ in Figure 6.2(b)-(c), Figure 6.3(c) and Figure 6.4(b), let xpR+1 be the

(∣V R
wing(B)∣+1)st left wing-vertex of B. Note that e′q′ is the corresponding edge of the edge ê, to

which is applied the code (xpR+1) to generate xpR+1. We have s = (d(B), wR, d(e′q′), triangle, c1),

and l = (d(B), wR, d(e′q′), triangle, c(xpR+1)) if op(xpR+1) = triangle, or l = (d(B), wR, d(e′q′),

subdivide, c(xpR+1)) if op(xpR+1) = subdivide. Note that all entries excluding the third en-

try d(e′q′) of s and l can be known by the maintained data, and that by Lemma 8.3, d(e′q′)

can be calculated in O(1) time.

(2)-(ii) For " = e′ that is not the edge e′q′ in Case-2(b)-(c) (Figure 6.2(b)-(c)), Case-3(c)

(Figure 6.3(c)) and Case-4(b) (Figure 6.4(b)), recall that A(B) is the set of axial-edges in

B. We have s = (d(B), wR, d(e′), triangle, c1), and l = (d(B), wR, d(e′), triangle, cK) if

e′ ∈ A(B) ∪ {e′q′+1}, or l = (d(B), wR, d(e′), subdivide, cK) if e′ /∈ A(B) ∪ {e′q′+1}, where by

Lemma 8.2, we can check whether e′ ∈ A(B) in O(1) time.

(3) For a left edge " = ej ∈ ℰ(B), we have s = (d(B), wL, d(ej), triangle, c1), and l =

(d(B), wL, d(ej), triangle, cK) if ej ∈ A(B)∪{eq+1}, or l = (d(B), wL, d(ej), subdivide, cK)

if ej /∈ A(B) ∪ {eq+1}, where by Lemma 8.2, we can check whether ej ∈ A(B) in O(1) time.

(4)-(a) For " = eb = (y, z) with d(z) > d(y) in the case that B has no axial-vertex and

∣V (B)∣ is even, if sd(B;G) = stc (Figure 6.6(c)), then s = (d(B), ∗, d(z), star, c1) and

l = (d(B), ∗, d(z), star, cK); if sd(B;G) = nil and ∣V (B)∣ = 2 (Figure 6.5(f)), then s =

(d(B), ∗, d(z), triangle, c1) and l = (d(B), ∗, d(z), triangle, c(z)); if sd(B;G) = nil and

∣V (B)∣ ≥ 3 (Figure 6.5(c)), then s = (d(B), ∗, d(z), star, c1) and l = (d(B), ∗, d(z), star, c(z)).

(4)-(b) For " = eb = (y, z) with d(z) > d(y) in the case that B has no axial-vertex and

∣V (B)∣ is odd, we have s = (d(B), ∗, d(z), star, c1), and l = (d(B), ∗, d(z), subdivide, cK)

if sd(B;G) = stc (Figure 6.6(a)), or l = (d(B), ∗, d(z), subdivide, cK) if sd(B;G) = nil

(Figure 6.5(a)).

(4)-(c) For " = eb = (y, z) with d(z) > d(y) in the case that B has axial-vertices and

∣V (B)∣ is even, s = (d(B), ∗, d(z), subdivide, c1), and l = (d(B), ∗, d(z), subdivide, cK) if

sd(B;G) = stc (Figure 6.6(d)), or l = (d(B), ∗, d(z), subdivide, c(z)) if sd(B;G) = nil,

V L
axis(B) ∪ V R

axis(B) ∕= ∅, and ∣V (B)∣ is even (Figure 6.5(d)).
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(4)-(d) For " = eb = (y, z) with d(z) > d(y) in the case that B has axial-vertices and

∣V (B)∣ is odd (Figures 6.5(b)-6.6(b)), we have s = (d(B), ∗, d(z), subdivide, c1) and l =

(d(B), ∗, d(z),

subdivide, cK).

By the above analysis, given a block B ∈ ℰ∗(G) and an element " ∈ ℰ(B), we can compute

the smallest code s and the largest code l in Γ(") in O(1) time, respectively.
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[73] T. Horváth, J. Ramon, and S. Wrobel. Frequent subgraph mining in outerplanar graphs.

In Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Dis-

covery and Data Mining, Philadelphia, PA, USA, pp. 197-206, 2006.



BIBLIOGRAPHY 103

[74] H. Imai, T. Masada, and F. Takeuchi. Enumerating triangulations in general dimensions.

International Journal of Computational Geometry & Applications, vol. 12, no. 6, pp. 455-

480, 2002.

[75] Y. Ishida, L. Zhao, H. Nagamochi, and T. Akutsu. Improved algorithms for enumerating

tree-like chemical graphs with given path frequency. Genome Informatics, vol. 21, pp. 53-

64, 2008.

[76] F. M. Ives. Permutation enumeration: Four new permutation algorithms. Communica-

tions of the ACM, vol. 19, 68-72, 1976.

[77] M. Jerrum. Random generation of combinatorial structures from a uniform distribution.

Lecture Notes in Computer Science, vol. 194, pp. 290-299, 1985.

[78] S. M. Johnson. Generation of permutations by adjacent transpositions. Mathematics of

Computation, vol. 17, pp. 282-285, 1963.

[79] D. S. Johnson, M. Yanakakis, and C. H. Papadimitriou. On generating all maximal

independent sets. Information Processing Letters, vol. 27, pp. 119-123, 1988.

[80] J. T. Joichi, D. E. White, and S. G. Williamson. Combinatorial Gray codes. SIAM

Journal on Computing, vol. 9, no. 1, pp. 130-141, 1980.

[81] R. Kannan, P. Tetali, and S. Vempala. Simple Markov chain algorithms for generating

bipartite graphs and tournaments. In Proceedings of the eighth annual ACM Symposium

on Discrete Algorithms, New Orleans, Louisiana, United States, pp. 193-200, 1997.

[82] S. Kapoor and H. Ramesh. Algorithms for enumerating all spanning trees of undirected

and weighted graphs. SIAM Journal on Computing, vol. 24, pp. 247-265, 1995.

[83] T. Kashiwabara and S. Masuda. Generation of maximum independent sets of a bipartite

graph and maximum cliques of a circular-arc graph. Journal of algorithms, vol. 13, pp.

161-174, 1992.

[84] S. Kawano and S. Nakano. Constant time generation of set partition, IEICE Transac-

tions, vol. 88-A, no. 4, pp. 930-934, 2005.

[85] S. Kawano and S. Nakano. Generating all series-parallel graphs. IEICE Transactions,

vol. 88-A, no. 5, pp. 1129-1135, 2005.

[86] R. A. Kaye. A Gray code for set partitions. Information Processing Letters, vol. 5, pp.

171-173, 1976.



104 BIBLIOGRAPHY

[87] L. Khachiyan, E. Boros, K. Borys, K. Elbassioni, V. Gurvich, and K. Makino. Enumer-

ating spanning and connected subsets in graphs and matroids. Lecture Notes in Computer

Science, vol. 4168, pp. 444-455, 2006.

[88] J. V. Knop, W. R. Muller, Z. Jericevi, and N. Trinajstic. Computer enumeration and

generation of trees and rooted trees. Journal of Chemical Information and Computer

Science, vol. 21, pp. 91-99, 1981.

[89] J. V. Knop, W. R. Muller, and K. Szymanski. Computer enumeration and generation of

physical trees. Journal of Computational Chemistry, vol. 8, no. 4, pp. 549-554, 1987.

[90] J. Knopfmacher and R. Warlimont. Asymptotic isomer enumeration in chemistry. II.

Journal of Mathematical Chemistry, vol. 26, pp. 95-99, 1999.

[91] D. E. Knuth. The Art of Computer Programming, Volume 4, Fascicle 2: Generating All

Tuples and Permutations. Addison-Wesley Professional; First Edition, 2005.

[92] D. E. Knuth. Art of Computer Programming, Volume 4, Fascicle 4: Generating All

Trees–History of Combinatorial Generation. Addison-Wesley Professional; First Edition,

2006.

[93] B. Korte and J. Vygen. Combinatorial Optimization: Theory and Algorithms. Springer,

4th Edition, 2007.

[94] V. G. Kulkarni. Generating random combinatorial objects. Journal of Algorithms, vol.

11, no. 2, pp. 185-207, 1990.

[95] E. L. Lawlers, J. K. Lenstra, and A. H. G. Rinnooy Kan. Generating all maximal indepen-

dent sets: NP-hardness and polynomial-time algorithms. SIAM Journal on Computing,

vol. 9, no. 3, pp. 558-565, 1980.

[96] Z. Li and S. Nakano. Efficient generation of plane triangulations without repetitions. In

Proceedings of the 28th International Colloquium on Automata, Languages and Program-

ming (ICALP’01), Lecture Notes in Computer Science, vol. 2076, pp. 433-443, 2001.

[97] G. Li and F. Ruskey. The advantage of forward thinking in generating rooted and free

trees. In Proceedings of the 10th Annual ACM-SIAM Symposium on Discrete Algorithms,

pp. 939-940, 1999.

[98] V. A. Liskovets and T. R. Walsh. Ten steps to counting planar graphs. Congressus

Numerantium, vol. 60, pp. 269-277, 1987.

[99] H. Liu and J. Wang. A new way to enumerate cycles in graph. In Proceedings of the

Advanced International Conference on Telecommunications and International Conference

on Internet and Web Applications and Services (AICT/ICIW’06), pp. 57, 2006.



BIBLIOGRAPHY 105

[100] J. Lucas. The rotation graph 01 binary trees is hamiltonian. Journal of Algorithms, vo.

8, pp. 503-535, 1987.

[101] J. M. Lucas, D. Roelants van Baronaigien, and F. Ruskey. On rotations and the gen-

eration of binary trees. Journal of Algorithms, vol. 15, pp. 343-366, 1993.

[102] J. E. Ludman. Gray code generation for MPSK signals. IEEE Transactions on. Com-

munications, vol. COM-29, pp. 1519-1522, 1981.

[103] N. Lygeros, P. Marchand, and M. Massot. Enumeration and 3D representation of the

stereo-isomers of alkane molecules. Journal of Symbolic Computation, vol. 40, pp. 1225-

1241, 2005.

[104] K. Makino and T. Uno. New algorithms for enumerating all maximal cliques. Lecture

notes in computer science, vol. 3111, pp. 260-272, 2004.

[105] P. M. Marcus. Derivation of maximal compatibles using Boolean algebra. IBM Journal

of Research and Development, vol. 8, pp. 537-538, 1964.

[106] L. M. Masinter, N. S. Sridharan, J. Lederberg, and D. H. Smith. Applications of arti-

ficial intelligence for chemical inference. XII. Exhaustive generation of cyclic and acyclic

isomers. Journal of the American Chemical Society, vol. 96, no. 25, pp. 7702-7714, 1974.
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