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Abstract:
We propose a simple scheme to characterize attosecond extreme ultraviolet
(XUV) pulses. A broadband ultraviolet (UV) ∼ vacuum ultraviolet (VUV)
pump pulse creates a coherent superposition of atomic bound states, from
which photoionization takes place by the time-delayed attosecond XUV
probe pulse. Information on the spectral phase of the XUV pulse can be ex-
tracted from the phase offset of the interference beating in the photoelectron
spectra using a standard SPIDER (spectral phase interferometry for direct
electric-field reconstruction) algorithm. We further discuss the influence of
the chirp and polychromaticity of the pump pulse, and show that they do not
spoil the reconstruction process. Since our scheme is applicable for various
simple atoms such as H, He, and Cs, etc., and capable of characterizing
attosecond XUV pulses with a pulse duration of a few hundred attoseconds
or even less, it can be an alternative technique to characterize attosecond
XUV pulses. Specific numerical examples are presented for the H atom
utilizing the 2p and 3p states.
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1. Introduction

The generation of attosecond pulses in the XUV range offers us a novel tool to investi-
gate/control ultrafast electronic processes in the target [1]. Obviously establishing accurate
metrologies for such pulses plays a crucial role in the development of attosecond science [2].
However, a complete characterization of attosecond XUV pulses is a challenging task because
of the lack of an appropriate nonlinear medium and an insufficient intensity to induce any rele-
vant nonlinear processes. Therefore standard ultrashort pulse measurement techniques such as
FROG (frequency-resolved optical gating) [3] and SPIDER [4, 5] can not be directly applied to
characterize attosecond XUV pulses.

By using two-photon ionization as a nonlinear process [6, 7] or by applying a dressing laser
field as a phase-modulation gate [8, 9], FROG can be extended to characterize XUV femtosec-
ond/attosecond pulses. Similarly several schemes have been considered to extend SPIDER into
the XUV range. Generally speaking, they can be classified into two kinds. The first kind is
based on the spectral shear interferometry in which frequency-sheared replicas of the attosec-
ond XUV pulse are generated by manipulating the driving laser pulse [10, 11]. The second kind
utilizes photoionization induced by the attosecond XUV pulse, where information of the XUV
pulse is transferred to the photoelectron spectrum [12, 13, 14]. Although the former methods



are robust, preparation for the frequency-sheared replicas of the attosecond XUV pulse remains
a major difficulty for experimental realization. The latter methods are more commonly used in
attosecond metrology. Clearly such methods may be considered as photoelectron variants of
optical SPIDER. Indeed it was recently shown that the combined use of a near-infrared fem-
tosecond pulse and a time-delayed XUV pulse results in a quantum beat in the photoelectron
spectra of Cs atoms, from which the XUV pulse can be reconstructed using the standard SPI-
DER algorithm (Cs-SPIDER) [15]. Unfortunately, the temporal period of the beat is at best in
the order of tens of fs if one utilizes an atomic fine structure doublet, indicating that the Cs-
SPIDER may not be a good scheme to characterize attosecond XUV pulses. That is, the energy
shear induced in photoelectrons through the coherent preparation of a Cs fine structure doublet
by the pump pulse is too small to characterize attosecond XUV pulses with an enormous band-
width (>a few eV) [16]. Recall that the amount of the frequency shear is quite important for
the case of optical SPIDER, and the similar is true for the Cs-SPIDER and its variant studied
here.

The purpose of this paper is to propose a new scheme similar to the Cs-SPIDER and show that
our scheme is particularly suitable to characterize attosecond XUV pulses. For that purpose we
employ a broadband UV∼VUV pump pulse to create a coherent superposition of electronically
excited states (with different principal quantum numbers) instead of a fine structure doublet
(with the same principal quantum number), resulting in more than one order of magnitude
larger energy shear. There are a few other nice features for the present scheme. The first one
is that the present scheme as well as the Cs-SPIDER can characterize both pulse train and
isolated pulse. The second one is that, as we will explain later on, the (linear or nonlinear)
chirp and the temporal form (isolated pulse or pulse train) of the pump pulse does not influence
the reconstruction process of the XUV probe pulse at all as long as they remain the same
throughout the SPIDER measurement. The third one is that we can employ any simple (one-
electron) atoms such as H and Cs, and also some of the more complex (two-electron) but well-
studied atoms such as He for target atoms, for which wavefunctions are accurately known. The
use of accurately known atoms enables us to carry out the field reconstruction without any
well-established but still big approximation such as strong field approximation employed, for
instance, in FROG-CRAB [8, 9]. The major drawback of our scheme is that the photoelectron
signal will not be as strong as that of FROG-CRAB due to the use of one-photon resonant two-
photon ionization by the UV∼VUV pump and XUV probe pulses in the perturbation regime.
But we believe it will not a big problem in these days, since even nonresonant two-photon
above-threshold ionization of He by XUV (30 eV) photons has been experimentally observed
in recent experiments [17] with a good agreement with a theory. After the derivation of all
necessary equations we perform some analysis from the few different aspects before presenting
numerical results for the H atom as an example. Both of our analysis and numerical results
demonstrate the capability of our scheme for the reconstruction of attosecond XUV pulses.

2. Photoelectron SPIDER with a UV∼VUV pumping

Although our scheme works well for any simple (one-electron) atoms such as H, Rb, and Cs,
and some of the more complicated atoms such as He, we specifically focus on the H atom in
this paper for maximum clarity. The level scheme we consider is shown in Fig. 1. H atoms
in the ground state 1s, labeled as |0〉, are coherently excited to states 2p and 3p, labeled as
|1〉 and |2〉, respectively, by the broadband VUV pump pulse with linear polarization whose
polarization vector is parallel to the quantization axis. Naturally if we use other atoms such as
Cs, |1〉 and |2〉 may be, for instance, 6p and 7p, or 7p and 8p, etc., and the pump pulse is in the
UV range. Note that the fine structure may be safely neglected in our case since the associated
energy splitting results in the very slow modulation in the photoelectron signal when plotted
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Fig. 1. Level scheme of hydrogen atom. The broadband pump (VUV) pulse with an ap-
propriate central photon energy creates a coherent superposition in states |1〉 and |2〉, from
which photoionization takes place by the time-delayed attosecond probe (XUV) pulse. If
the pump pulse is very broad, it may also excite the next neighboring state, |3〉. The possible
ionization continua, | f 〉, are εs and εd where ε represents the energy of photoelectrons.

as a function of delay time between the pump and probe pulses. Which atoms and states are
more appropriate for the measurement depends on the available wavelength of the pump pulse
as well as the bandwidths of the pump and probe pulses. We note that the pump pulse does
not have to be transform-limited. It may have some arbitrary (linear or nonlinear) chirp. The
detailed discussion for the chirp of the pump pulse is postponed until we come to Sec. 4. For
simplicity we assume, for a moment, that both pump and probe pulses are isolated pulses. But
later in this paper we will lift this restriction and argue that either or both of pump and probe
pulses can be a pulse train(s). The wavefunction of the excited states, |ψcoh(t)〉, can be written
as

|ψcoh(t)〉 = ∑
k

Ck exp [−iωkt] |k〉 (k = 1,2), (1)

where Ck and ωk (k = 1,2) are the complex probability amplitude of state |k〉 and its frequency,
respectively. After a time delay, τ , the attosecond XUV pulse induces photoionization into the
continua represented by εs and εd where ε stands for the energy of photoelectrons. For a given
kinetic energy ε and orbital angular quantum number l, the continuum state of the outgoing
photoelectron is expressed as [18]

| f (ε, l,ΩΩΩ)〉 = ∑
ml

il exp [−iσl(ε)]Y ∗
lml

(ΩΩΩ)|Rε l〉|lml〉, (2)

in which σl(ε) is a sum of the Coulomb phase shift given by σC
l (ε) = arg[Γ(l +1− i/

√
ε)]−

lπ/2 with ε being the photoelectron energy in Rydberg units and the non-Coulomb (scattering)
phase shift, σNC

l (ε), for the photoelectron with an orbital quantum number l, i.e., σl(ε) =
σC

l (ε) + σNC
l (ε). Of course σNC

l (ε) = 0 for the H atom. Ylml (ΩΩΩ) is the spherical harmonics
and represents an angular distribution of photoelectrons into the direction given by ΩΩΩ = (Θ,Φ)
for the orbital quantum number l and its projection onto the quantization axis, ml . |Rε l〉 is a
radial wavefunction of the continuum. When there is no temporal overlap between the pump
and probe pulses, the photoionization amplitude into the continuum state, | f (ε, l,ΩΩΩ)〉, reads

Mf (ε, l,ΩΩΩ,τ) = 〈 f (ε, l,ΩΩΩ)|Exuv(ω) · r|ψcoh(τ)〉 , (3)



where Exuv(ω) is the spectral field amplitude of the attosecond XUV pulse to be characterized,
i.e.,

Exuv(ω) =
√

Ixuv(ω)exp [−iφ xuv(ω)] , (4)

with Ixuv(ω) and φxuv(ω) being the spectral intensity and spectral phase, respectively. Given
the photoelectron energy, ε , detection angle, Θ, and time delay, τ , we can calculate the photo-
electron angular distribution, S(ε,Θ,τ), through the relation of

S(ε,Θ,τ) =
dP(ε,ΩΩΩ,τ)

dΩΩΩ
= ∑

l

∣∣Mf (ε, l,ΩΩΩ,τ)
∣∣2

= ∑
l,k,k′

C∗
kCk′M

∗
f k(ε, l,Θ)Mf k′(ε, l,Θ)exp[i(ωk′ −ωk)τ]

≡ S11(ε,Θ,τ)+S22(ε,Θ,τ)+S21(ε,Θ,τ), (5)

where P(ε,ΩΩΩ,τ) is the photoelectron signal, and Mf k(ε, l,Θ) is the monochromatic photoion-
ization probability amplitude from |k〉 to | f (ε, l,ΩΩΩ)〉. Skk(ε,Θ,τ) (k = 1,2) represents the pho-
toelectron angular distribution from state |k〉. Since photoionization takes place from the co-
herently excited state given by Eq. (1), a cross term, S21(ε,Θ,τ), appears in Eq. (5). Clearly
the cross term oscillates as a function of delay time at a frequency ωk′k = |ωk′ −ωk|, which is
nothing but a quantum beat.

For simplicity we assume that the attosecond XUV pulse is also linearly polarized with a
polarization vector parallel to that of the pump pulse. Then the final continuum states can have
s and d symmetries as shown in Fig. 1. Since these continua are associated with the spheri-
cal harmonics, Y00 and Y20 in Eq. (2), respectively, which have different angular distributions,
we can collect the photoelectron signal from the s wave only if we set the detection angle at
Θ0 = cos−1(1/

√
3) or π − cos−1(1/

√
3) (magic angle). Setting the detection angle at Θ0, we

can simplify Eq. (5). The most important term is the cross term, and it can be recast into the
simplified form of

S21(ε,Θ0,τ) ∝ Rs1Rs2|C∗
1C2|

√
Ixuv(ω)Ixuv(ω −ω21)cos [ω21τ +φc −Δφ xuv

21 (ω)] , (6)

in which Rsk (k = 1,2) is the radial component of the bound-free dipole moment between |k〉
and |εs〉, and φc = arg[C∗

1C2]. In Eq. (6), ω represents a frequency component of the attosecond
XUV pulse, and it is connected to the photoelectron energy, ε , through the relation of

ω = (ε +EIP)/h̄−ω1, (7)

with EIP = 13.6 eV being the ionization potential of H, and the phase offset, Δφxuv
21 (ω), phys-

ically represents a spectral phase difference of the attosecond XUV pulse with a frequency
interval of ω21 = ω2 −ω1, i.e.,

Δφ xuv
21 (ω) = φ xuv(ω −ω21)−φ xuv(ω). (8)

Once the spectral phase difference, Δφxuv
21 (ω), has been measured at a discrete set of frequencies

{ωi,ωi ∈ [ωmin,ωmax]} where ωmin and ωmax represents the minimum and maximum frequency
having nonzero spectral intensity, respectively, the spectral phase of the XUV pulse, φxuv(ω),
can be obtained with the standard algorithm for the optical SPIDER [15, 19], i.e.,



φ xuv(ω) .=
1

−ω21

ω−ω21/2

∑
ωmin

Δφ xuv
21 (ωi)Δωi. (9)

In the above equation Δωi is determined by the frequency resolution of the measurement. To-
gether with the information on the spectral intensity, Ixuv(ω), which can be obtained from a
separate optical measurement, we have now sufficient information to reconstruct the temporal
electric field of the attosecond XUV pulse through the Fourier transform of the spectral electric
field.

In the above discussion we have implicitly assumed that the acceptable angle of a detector set
at the magic angle is infinitely small. In reality, however, any photoelectron detector has a finite
width for the detection angle. In order to take into account the finite width for the detection
angle around the magic angle, Θ0 ± δ , where δ is the maximum deviation from Θ0, we must
derive a general expression for the beat signal detected at an arbitrary angle, Θ. It reads

S21(ε,Θ,τ) ∝ S21(ε,Θ0,τ)+B(ε,τ)(3cos2 Θ−1)2 +A(ε,τ)(3cos2 Θ−1), (10)

where

B(ε,τ) =
5
4
Rd1Rd2|C∗

1C2|
√

Ixuv(ω)Ixuv(ω −ω21)cos [ω21τ +φc −Δφ xuv
21 (ω)] , (11)

and

A(ε,τ) = −
√

5
2

|C∗
1C2|

√
Ixuv(ω)Ixuv(ω −ω21)

× {(Rs1Rd2 +Rd1Rs2)cos [σd(ε)−σs(ε)]cos [ω21τ +φc −Δφ xuv
21 (ω)]

− (Rs1Rd2 −Rd1Rs2)sin [σd(ε)−σs(ε)]sin [ω21τ +φc −Δφ xuv
21 (ω)]} . (12)

In the above equations Rdk (k = 1,2) is the radial component of the bound-free dipole moment
between |k〉 and |εd〉. Note that we now have a contribution of the d wave in addition to the s
wave. From Eqs. (11) and (12), we can see that the beat pattern of B(ε,τ) is exactly the same
with that of S21(ε,Θ0,τ) [see Eq. (6)], while that of A(ε,τ) is different. The beat pattern of
A(ε,τ) is related to the values of the phase shifts, σs(ε) and σd(ε), and the radial components
of the bound-free dipole moments, Rsk and Rdk (k = 1,2), all of which are differently behaving
functions of photoelectron energy, ε . Because the spectral phase difference, Δφxuv

21 (ω), which
is the main physical quantity of our interest, is also a function of ε , neglecting the A(ε,τ) term
would bring an error in the determination of the spectral phase if the width of the detection
angle is finite.

Once the beat signal at an arbitrary angle Θ has been obtained, we can perform the solid angle
integration of Eq. (10) for the beat signal at the detector with a finite width for the detection
angle, i.e., Θ0−δ < Θ < Θ0 +δ . The beat signal at the detector, P21(ε,τ), can now be evaluated
through the following integration:

P21(ε,τ) =
∫

Ω
S21(ε,Θ,τ) dΩ

= 2δ
∫ Θ0+δ

Θ0−δ
S21(ε,Θ,τ)sinΘ dΘ



∝ Rs1Rs2|C∗
1C2|

√
Ixuv(ω)Ixuv(ω −ω21)

×cos
[
ω21τ +φc −

(
Δφ xuv

21 (ω)+Δβ̃ (δ ,ω)
)]

, (13)

where Δβ̃ (δ ,ω) is an additional spectral phase difference originated from the finite width for
the detection angle. Therefore, the spectral phase of the XUV pulse reconstructed from the beat
signal at the detector is

φ xuv
dector(δ ,ω) = φ xuv(ω)+ β̃ (δ ,ω), (14)

where

β̃ (δ ,ω) .=
1

−ω21

ω−ω21/2

∑
ωmin

Δβ̃ (δ ,ωi)Δωi. (15)

is a spectral phase error.
In order to quantitate the spectral phase error β̃ (δ ,ω) due to the finite width for the detec-

tion angle, i.e., Θ0 − δ < Θ < Θ0 + δ , we numerically reconstruct the spectral phase of the
attosecond XUV pulse using Eqs. (13)-(15). Note that the spectral phase error retrieved from
the spectral phase difference error, Δβ̃ (δ ,ω), is a relative quantity. Therefore, by recalling Eq.
(10), we realize that the reference point to evaluate the spectral phase error can be chosen at
any energy point to retrieve the spectral phase distribution as functions of photoelectron energy
and time. Specifically we choose the reference point at the central photon energy of the XUV
pulse to be characterized, which is assumed to be 30 eV. In Fig. 2 we plot the spectral phase
error as a function of photon energy for the three different angle widths, δ = 5o, 10o, and 20o.
We can see that the spectral phase error arising from the finite width for the detection angle is
rather small even for δ = 20o. Based on this result, from now on we will neglect the influence
of the finite width for the detection angle.

In this section we have shown the scheme for the reconstruction of the temporal field of at-
tosecond XUV pulses. Compared with the one described in Ref. [15] utilizing the fine structure
doublet of Cs, the present scheme benefits from the much larger energy shear arising from the
much larger energy separation between the two different electronic states, which enables us to
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Fig. 3. Probe pulse shapes employed for the error estimation of the reconstructed pulses.
The temporal intensity (blue solid line) and temporal phase (green dashed line) are shown
for the (a) transform-limited, (b) linearly chirped, and (c) quadratically chirped pulses. In
each graph the inset shows the corresponding pulse spectrum (black solid line) and spectral
phase (red dashed line). All pulses are assumed to have the identical Gaussian spectrum
with a FWHM of 20 eV and the central photon energy of 30 eV.

characterize attosecond XUV pulses with much better accuracy through the much faster quan-
tum beat in the photoelectron signals. The reason can be explained using Eq. (8): It shows that
the spectral phase of the attosecond XUV pulse to be characterized is sampled by the quan-
tum beat at a frequency interval of ω21. The fine structure doublet in Ref. [15] can provide
a small energy shear (0.069 eV) through the quantum beat. To reconstruct attosecond XUV
pulses whose bandwidths are naturally broader than 2 eV, such a small sampling interval would
lead to large phase errors under the presence of experimental noise, since the spectral phase
difference at φxuv(ω) and φxuv(ω −ω21) would tend to approach zero as ω21 becomes small.
In contrast, as long as the Whittaker-Shannon sampling theorem is satisfied, a larger sampling
interval can reduce the ambiguities in determining the spectral phase. As for the maximum en-
ergy shear, it is limited by the Whittaker-Shannon sampling theorem. Namely, the energy shear
h̄ω21 should be smaller than the spectral bandwidth of the XUV pulse to be characterized. The
minimum energy shear is more complicated. As shown in Eq.(17) of the following section,
when the noise contribution exceeds the real spectral phase difference, the reconstruction fails.
As a result, the minimum spectral shear depends on the noise fraction and the spectral phase
shape of the XUV pulse to be characterized. More detailed comparisons of the present scheme
and the Cs-SPIDER will be given in the next section under the presence of experimental noises.

3. Error Estimation under Noisy Environments

In order to show the merit of our scheme we will do the error estimation under noisy environ-
ments in this section. Since the pulse shape may affect the reconstruction fidelity, we consider
three different pulse shapes for the attosecond XUV probe which are shown in Fig. 3, where
we plot the temporal intensity and temporal phase. The inset of each graph shows the corre-
sponding spectral intensity and spectral phase. All pulses have a Gaussian spectral shape with
a FWHM of 20 eV, corresponding to the transform-limited (TL) pulse duration of 91 as. Their
spectral phases can be generally described by a polynomial,

φ xuv(ω) = a(ω −ωxuv
0 )2 +b(ω −ωxuv

0 )3, (16)

where ωxuv
0 is the central frequency of the probe pulse. Specifically we choose h̄ωxuv

0 = 30 eV
based on the recent experimental work at this photon energy [17], and additionally assume a
20 eV spectral bandwidth. Of course our scheme is rather general, and can be applied to any
other XUV photon energies. The pulse in Fig. 3(a) corresponding to the case of a = 0 and b = 0
is transform-limited with a constant phase. The pulse in Fig. 3(b) corresponding to the case of
a = 6×10−3 rad/eV2 and b = 0 (quadratic spectral phase) is linearly chirped by a factor of two



in terms of pulse duration. Similarly, the pulse in Fig. 3(c) corresponding to the case of a = 0,
b = 5×10−4 rad/eV3 (cubic spectral phase) is quadratically chirped. Now we will reconstruct
these three different pulse shapes in the time domain, compare them with the original input
pulse shapes, and estimate the error in terms of the temporal intensity and temporal phase
under the possible experimental noises.

Since the photoelectron quantum beat given by Eq. (6) is the experimentally measurable
quantity in our scheme, reconstruction errors would come from the experimental fluctuations
in the photoelectron signals. The fluctuations may be intensity as well as phase fluctuations in
the beat signals. The noisy quantum beat signal can be expressed as

Sxuv
noisy ∝ (

√
Ixuv(ω)Ixuv(ω −ω21)+ In)cos

[
ω21τ +φc −Δφ xuv

noisy(ω)
]
+Sn (17)

where Δφ xuv
noisy(ω) is the noisy spectral phase difference, In is the multiplicative amplitude (in-

tensity) noise, and Sn is the additive amplitude (intensity) noise. In and Sn are caused by the
fluctuation of the signal intensity which arises from the electronic and thermal noises in the
detector, etc. A good thing for the reconstruction scheme from the quantum beat is that the
reconstructed result is not very sensitive to the fluctuation of the signal intensity. This is so,
since, if we want to extract the spectral phase difference, the quantum beat signal expressed in
Eq. (17) needs to be Fourier-transformed to the frequency domain (energy domain) where only
the peak at frequency ω21 is selected for the determination of the phase difference, Δφxuv

noisy(ω).
During this selecting process, the additive amplitude noise, Sn, which serves as a background
noise around the peak, can be filtered out. As for the multiplicative amplitude noise, In, it does
not influence the phase offset of the beat signal, although it does influence the beat signal am-
plitude. In contrast, the phase noise is produced when separate measurements with different
delay times, τ , are performed by separate probe shots. Clearly it cannot be easily filtered out in
our scheme, and therefore the phase noise is the major source of reconstruction errors.

After these considerations, we add a pseudo-random number to each measured spectral phase
difference in order to simulate their effects [20], i.e.,

Δφ xuv
noisy(ω) = Δφ xuv

21 (ω)+
α
n

η , (18)

where Δφ xuv
noisy(ω) is the spectral phase difference of the XUV probe pulse to be characterized

with a phase fluctuation, Δφxuv
21 (ω) is the ideal (fluctuation-free) spectral phase difference, α is

the noise fraction, and η is a pseudo-random number assuming a Poisson distribution of mean
value n. In this simulation, we set n = 3.14 and the noise fraction α = 0.2 (20 %). Assuming
three different probe pulse shapes introduced in Fig. 3, we carry out the reconstruction proce-
dure described in Sec. 2 using two different amounts of the energy shear, ΔEe = 0.069 eV and
1.9 eV. The results are shown in Figs. 4(a)-(f) and Figs. 4(g)-(l), respectively. To compare the
reconstruction fidelities with these two energy shears quantitatively, we now introduce εI and
εφ to describe the temporal intensity and phase errors, respectively. The temporal intensity error
εI is defined by [20]

εI =

√√√√ 1
N

N

∑
j=1

[Iinput(t j)− Inoisy(t j)]2. (19)

where N is the number of elements in the temporal list. The value of N is equivalent to the
number of sampling points in the energy domain. In our numerical simulation, N = 120 and
the spectral range for Fourier transformation is set from 0 eV to 60 eV. Iinput(t j) is the input
temporal intensity for the j-th element of the corresponding list to time slot t j, and Inoisy(t j) is
the reconstructed temporal intensity for the j-th element. Since the input pulse has been scaled
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Fig. 4. Comparison of reconstructed probe pulses by noisy beat signals with two different
energy shears, (a)-(f) ΔEe = 0.069 eV and (g)-(l) ΔEe = 1.9 eV. The solid and dashed lines
in each graph correspond to the input pulse and reconstructed pulse under noise with α =
0.2. The definitions and the physical meanings of εI and εφ are given in the text. (a) and (g)
Temporal intensity for the transform-limited (TL) pulse input. (b) and (h) Temporal phase
for the TL pulse input. (c) and (i) Temporal intensity for the linearly chirped pulse input. (d)
and (j) Temporal phase for the linearly chirped pulse input. (e) and (k) Temporal intensity
for the quadratically chirped pulse input. (f) and (l) Temporal phase for the quadratically
chirped pulse input. The central photon energy and the spectral bandwidth of the probe
pulse is h̄ωxuv

0 = 30 eV and 20 eV, respectively.

to have a unit amplitude, the temporal intensity error εI may be regarded as a percentage error.
The definition of the temporal phase error εφ is [20]

εφ =

√
1
N ∑N

j=1 I2
input(t j)[φinput(t j)−φnoisy(t j)]2√

1
N ∑N

j=1 I2
input(t j)

, (20)

where φinput(t j) is the input temporal phase for the j-th element in the temporal list, and φnoisy(t j)
is the reconstructed temporal phase for the j-th element. Note that the phase error has a unit of



radian.
By comparing the results shown in Fig. 4 with the ΔEe = 0.069 eV and 1.9 eV energy shears,

we can see that the use of the large energy shear proposed in our scheme (ΔEe = 1.9 eV) is a
better choice for the more accurate reconstruction of attosecond pulses.

4. Effects of the Chirp of the Pump Pulse

For the case of optical SPIDER, what is measured is optical interference between the pulse
to be characterized and its frequency-sheared replica. In our case, we measure interference
(quantum beat) in the photoelectron spectrum induced by the UV∼VUV pump and attosecond
XUV probe pulses as a function of time delay. That is, our scheme as well as the one described
in Ref. [15], both of which are the variants of photoelectron SPIDER, require the use of a
pump pulse. A natural question is whether and how much the chirp of the pump pulse affects
the reconstruction of the attosecond XUV pulse. This question is particularly relevant from the
experimental point of view, since a relatively low-order HHG pulse, which are known to be
more or less chirped, may be immediately used as a pump pulse. In this section we will show
that the chirp of the pump pulse does not at all spoil the reconstruction of the attosecond XUV
pulse.

Recall that Eq. (6) has been derived for the pump and probe pulses with an arbitrary temporal
shape and spectral phase, and such information for the pump pulse is reflected in the complex
probability amplitudes, C1 and C2, and their relative phase, φc(= arg[C∗

1C2]). By realizing this
fact, it is rather obvious, without any analysis, that a chirp of the pump pulse would not affect
the determination of the spectral phase, since those terms simply remain constants through the
repeated measurements by changing the delay, τ . However, the chirp of the pump pulse does
influence the contrast of the beat signal, which is also obvious from Eq. (6). We now carry out
some analysis to find the relation between the beat contrast and the linear chirp rate of the pump
pulse.

Assuming that the pump pulse is linearly chirped, the electric field amplitude of the pump
pulse is given by

Epump(t) = E0 exp

[
−iωpump

0 t − t2

2τ2
p(1− iξ )

]
, (21)

where E0 and ωpump
0 are the peak field amplitude and the central frequency of the pump

pulse, respectively, and ξ is a dimensionless chirp parameter where positive (negative) ξ
means that the instantaneous frequency increases (decreases) with time. The time duration
for the FWHM (full width at half maximum) of the linearly chirped pump pulse is given by
τpump = 2τp

√
ln2

√
1+ξ 2 with 2τp

√
ln2 being the pulse duration of the transform-limited

pulse with the same spectral width. Note that the peak of the pump pulse always arrives at
t = 0. As for the atom, we assume that it is initially in the ground state. The time-dependent
amplitude equations for the system consisting of |0〉, |1〉, and |2〉 irradiated by the pump pulse
read

Ċ0(t) = i
μ01

2h̄
Epump(t)C1(t)exp[−iω1t]+ i

μ02

2h̄
Epump(t)C2(t)exp[−iω2t]

Ċ1(t) = i
μ10

2h̄
Epump(t)C0(t)exp[iω1t]

Ċ2(t) = i
μ20

2h̄
Epump(t)C0(t)exp[iω2t], (22)

where ωk (k = 1,2) represents the eigen frequency of state |k〉, and μk0 is the bound-bound
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Fig. 5. Population of each excited state as a function of time under the weak pumping con-
dition. The pump pulse is a (a) transform-limited pulse (ξ = 0), (b) positively chirped pulse
(ξ = 2), and (c) negatively chirped pulse (ξ =−2). The solid lines (blue for |C1|2 and green
for |C2|2) are the numerical results obtained by numerically solving the time-dependent
Schrödinger equation for H atoms, and the dashed lines (red for |C1|2 and cyan for |C2|2)
are the analytical results obtained by Eq. (24). The pump pulse parameters employed for
all the calculations are, I0 = 1011W/cm2 for the peak intensity, τpump

TL = 2τp
√

ln2 = 2 fs
for the transform-limited pulse duration (FWHM), and h̄ωpump

0 = 11.4 eV for the central
photon energy, respectively.

dipole moment between states |0〉 and |k〉.
If we assume that the low-order HHG is used for the pump pulse, the peak intensity would

be rather modest, say, 1011W/cm2 [17, 21, 22], for which |C1,2(t)| 
 1 and C0(t) ∼ 1 for all t.
Under this weak pumping condition, we can simplify the expressions for the excited states as

Ck(t) = i
μk0

2h̄

∫ t

−∞
Epump(t ′)exp[iωkt

′]dt ′ (k = 1,2). (23)

When the pump and probe pulses are well separated in time (t � τpump), we can analytically
solve Eq. (23). Namely, after the pump pulse is over and before the probe pulse arrives, the
complex probability amplitude of state Ck(k = 1,2) is obtained to be

Ck � i
μk0

2h̄
Ẽpump(ωk) (k = 1,2), (24)

where Ẽpump(ωk) is the electric field amplitude of the pump pulse at frequency ωk, i.e.,

Ẽpump(ωk) = E0τp

√
1− iξ

√
2π exp

[
−τ2

p(1− iξ )
2

(ωk −ωpump
0 )2

]
. (25)

In Fig. 5 we plot representative results for the population of each excited state as a function
of time by numerically solving the time-dependent Schrödinger equation to compare with the
analytical solutions given in Eq. (24). The solid curves in Fig. 5 are associated with the coherent
transients [23]. The pump pulse parameters employed for all calculations are, I0 = 1011W/cm2

for the peak intensity, 2τp
√

ln2 = 2 fs for the pulse duration (FWHM) of the transform-limited
pulse, and h̄ωpump

0 = 11.4 eV for the central photon energy, respectively. Clearly under the weak
pumping condition the analytical solutions for |C1|2 and |C2|2 agree well with the numerical
solutions. Substitution of Eq. (24) into Eq. (6) leads to the following equation for the beat
signal at the magic angle:

S21(ε,Θ0,τ) ∝ Rs1Rs2R10R20

√
Ipump(ω1)Ipump(ω2)

×
√

Ixuv(ω)Ixuv(ω −ω21)cos [ω21τ +φc −Δφ xuv
21 (ω)] , (26)

in which Rk0 (k = 1,2) is the radial component of the bound-bound dipole moment between



|0〉 and |k〉, and Ipump(ωk) represents the spectral intensity of the pump pulse at the frequency
ωk (k = 1,2), i.e.,

Ipump(ωk) = 2πE2
0 τ2

p

√
1+ξ 2 exp

[−τ2
p(ωk −ωpump

0 )2] . (27)

Using Eq. (24) the phase offset, φc, can also be rewritten as

φc = τ2
pξ ω21(ωav −ωpump

0 ), (28)

where ωav = (ω1 + ω2)/2 represents the averaged frequency of the excited states. From Eq.
(28) we see that the phase offset, φc, becomes zero if there is no chirp (ξ = 0) or the photon
energy of the pump pulse coincides with the averaged frequency of the excited states. However,
as we have briefly mentioned in the beginning of this section, we emphasize that the value of
φc itself does not affect the reconstruction process of the spectral phase of the attosecond pulse:
Once the excitation by the pump pulse has been completed, φc serves as a constant term in the
quantum beat signal [see Eq. (26)]. Since what matters for the reconstructed spectral phase is
a relative phase distribution in the frequency/energy domain, a constant phase offset would not
affect this relative phase distribution. We would like to mention that, although we have carried
out the detailed analysis for the pump pulse with a linear chirp, it is clear that the presence of
the nonlinear chirp in the pump pulse would not affect the determination of the spectral phase
distribution of the attosecond pulse, either.

With the aid of simple expressions obtained above, we can now define the beat contrast for
the case of linearly chirped pump pulse. According to Eq. (26), the ratio of the two-photon
ionization probability amplitudes through the bound states |1〉 and |2〉 is

r12 =
Rs1R10

Rs2R20
exp

[
τ2

pω21(ωav −ωpump
0 )

]√
Ixuv(ω)

Ixuv(ω −ω21)
. (29)

Note that the last coefficient associated with the XUV in Eq. (29) is reduced to unity if
Ixuv(ω) ∼ Ixuv(ω −ω21). As we expect, the beat contrast turns out to be high if the two ion-
ization probability amplitudes have comparable magnitudes, and naturally it reaches maximum
when they are exactly equal. Eq. (29) implies that the beat contrast has nothing to do with the
chirp of the pump pulse, but it is related to the central frequency of the pump pulse. That is,
if we could adjust the central frequency of the pump pulse, we can obtain the maximum beat
contrast which would lead to the better experimental accuracy.

5. Effects of the broad bandwidth of the pump pulse

Since we have assumed that the pump pulse has a broad bandwidth so that it can coherently
excite two bound states with an energy separation of a fraction of eV to a few eV, more than
two states may be coherently excited, depending on the choice of atoms and the bandwidth as
well as the central photon energy of the pump pulse. Naively we can argue that the coherent
excitation of more than two states would not spoil the reconstruction process for the spectral
phase, since it simply brings new beat frequencies in the photoelectron signals when plotted
as a function of delay time between the pump and probe pulses, which can be easily removed
by applying an appropriate frequency filter. That is indeed the case, and in this section we will
show how it actually works through numerical simulations.

Specifically we assume that the central photon energy and the bandwidth of the pump pulse
is h̄ωpump

0 = 11.4 eV and h̄Δωpump = 2 eV (FWHM), respectively. We also assume that the
attosecond XUV pulse to be characterized has a central photon energy at h̄ωxuv

0 = 30 eV with a
bandwidth of h̄Δωxuv = 6 eV (FWHM), and ξ =

√
3. As shown in Fig. 1, the 4p state labeled
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Fig. 6. Reconstruction of the electric field for the case in which the pump pulse coherently
excites three states instead of two. (a) Numerical simulation of the photoelectron spectra as
functions of delay time and electron energy. Note that the signal contains the contribution of
three beats, i.e., 2p-3p, 3p-4p, and 2p-4p beats. (b) Beat signals at the photoelectron energy
of ε = 28 eV (blue solid line) and 26 eV (green dashed line). (c) The Fourier transform of
the beat signal shown in graph (b) at ε = 28 eV. (d) Applying the frequency filter, only the
selected spectral peak for 2p−3p is seen. (e) The Inverse-Fourier transform of the selected
2p-3p peak in the time domain. (f) The reconstructed temporal envelope function (blue
solid line) and the temporal phase (green dashed line), with the corresponding spectral
intensity (black solid line) and spectral phase (red dashed line) shown in inset.

as |3〉 are now excited by the spectral wing of the pump pulse. Therefore the coherent super-
position prepared by the pump pulse consists of three states, |1〉, |2〉, and |3〉, leading to the
appearance of the three beat frequencies in the photoelectron spectrum, which we call 3p-4p
and 2p-4p beats in addition to the 2p-3p beat. The numerically obtained photoelectron signal
at the detection angle of Θ0 is shown in Fig. 6(a). Fig. 6(b) presents two representative beat sig-
nals obtained at two different photoelectron energies, ε = 28 and 26 eV. Clearly these two beat
signals exhibit slightly different modulations due to the presence of the three beat frequencies
with different weighting factors and phase factors, as one can easily imagine from Eq. (6) for
the case of two states. By taking a Fourier transform of Fig. 6(b), we find three peaks in the
energy domain, as shown in Fig. 6(c). Since we have set the central photon energy of the pump
pulse at h̄ωpump

0 = 11.4 eV, the population probability in |3〉 is much smaller than those in |1〉
and |2〉. Hence the Fourier amplitudes for the 3p−4p and 2p−4p beats are much smaller than
that for the 2p−3p beat. By applying an appropriate frequency filter on Fig. 6(c) to select the
2p−3p beat only, we obtain Fig. 6(d). After taking an Inverse Fourier transform of Fig. 6(d),
we uniquely obtain the beat signals back in the time domain, which are shown in Fig. 6(e).
From the phase offsets in these beats we can retrieve the phase differences between every two
frequency components of the attosecond XUV pulse, and subsequently reconstruct the spectral
phase. The reconstructed spectral field and temporal field are shown in Fig. 6(f). Thus we have
demonstrated that our scheme works well even if the broadband pump pulse excites more than
two states.



6. Applicability for a pulse train and other atoms

So far we have assumed isolated pulses for both pump and probe pulses. Since HHG may be
conveniently used as a source for both pump and probe pulses, either or both of them may be
in the form of a pulse train(s). It is worthwhile to discuss whether our scheme is applicable for
such cases.

First we consider the case of an isolated pulse for the pump and a pulse train for the probe.
If the bandwidth of each subpulse to be characterized is sufficiently wider than the sampling
interval, ω21, the quantum beat(s) can be seen and the present scheme should work as already
discussed in Ref. [15]. However, in some case the bandwidth of each subpulse in the probe pulse
train may be relatively narrow. For such a case, we could use a pair of bound states, say, 3p and
4p (ΔEe = 0.66 eV) instead of 2p and 3p (ΔEe = 1.9 eV), to make the energy shear smaller.
Alternatively, the use of an even smaller energy shear, ΔEe = 0.069 eV, with the Cs-SPIDER
[15] may be a good choice.

Now consider the case of a pulse train for the pump and isolated pulse or pulse train for
the probe. We would often face this situation if we use low-order harmonics of a Ti:Sapphire
laser as a VUV pump pulse, since not-very-selective optics are usually employed to avoid the
loss of pulse energy of harmonics. As a result, the VUV pump pulse consists of more than one
harmonic order with a photon energy interval of ∼3 eV and the associated spectral bandwidth
of ∼2 eV or less. Recalling the fact that the energy separation between the two beating atomic
levels is 1.9 eV in our specific example, it is now clear that, when one harmonic component
of the pump pulse is near resonant with the atomic transitions, all other harmonic components
are far off-resonant without making any contribution to the beat signal. Therefore our scheme
should work even if the pump pulse is a pulse train. We note that, as we have recently shown,
interactions of atoms and a pulse train in the weak field (multiphoton ionization) regime can be
most easily understood in the frequency domain rather than in the time domain [24]. Another
important remark is that the well-defined phase relationship between the neighboring harmonics
of the VUV pump pulse is not required unless the energy interval between the neighboring har-
monics is so small that more than one harmonic contribute to the pump process. Obviously this
is not the case if the VUV pump pulse is provided by the low-order harmonics of a Ti:Sapphire
laser.

Before closing this section, we would like to emphasize that, although we have specifically
presented our numerical results for the H atom, our scheme should work for other atoms such
as He and Cs atoms. Which atom and states we should employ to apply our scheme depends
on the photon energy of the VUV pump pulse, and if the VUV pump pulse is provided by the
low-order harmonics of a Ti:Sapphire laser, we must a little bit tune the fundamental photon
energy. In our case, we have assumed that the 11.4 eV VUV pump pulse is provided by the 7th
harmonic of the Ti:Sapphire laser at 761 nm. On the other hand, if we choose 2p and 3p states
of He, we could produce the 22.5 eV VUV pump pulse by the 15th harmonic of a Ti:Sapphire
laser at 826 nm. Similarly, if we choose 7p and 8p states of Cs, the second harmonic of a
Ti:Sapphire laser at ∼800 nm can be conveniently used for the UV pump pulse. Of course the
energy shear we can obtain by using 7p and 8p of Cs is smaller. But it is still 25 times larger
than the case of a Cs fine structure doublet, and we receive benefit from the large energy shear
to improve the fidelity of attosecond pulse reconstruction.

7. Conclusions

In conclusion, we have presented a new variant of photoelectron SPIDER which is suitable to
characterize attosecond XUV pulses. A UV∼VUV pulse from the low-order HHG may be con-
veniently used as a pump pulse to coherently excite two bound states with an energy separation
of a fraction of eV to a few eV, which serves as a energy shear in the photoelectron signal. The



most important property of our scheme is its capability to characterize attosecond XUV pulses
down to a few hundred attoseconds or even less with a sufficient accuracy. The reconstruction
algorithm is very similar to that of the optical SPIDER, which is simple and robust against
noise.

We have quantitatively examined the capability and also the limitation of the present scheme
from a few different aspects. Perhaps most importantly we have shown that the chirp of the
pump pulse does not spoil the reconstruction of the attosecond pulse, and the beat contrast in
the photoelectron spectrum can be maximized by adjusting the central photon energy for the
pump pulse. We have also studied the influence of the finite width for the detection angle of
photoelectrons. It is interesting to point out that, although the detection angle should be ideally
at the magic angle with an infinitely small angle width, a rather large detection angle (as much
as ± 20o) only introduces the spectral phase errors of about 1o in the spectral phase distribution
for the XUV probe photon energy up to ∼60 eV for the case of H atom. We have also found
that, although the broad bandwidth of the pump pulse may excite more than two bound states,
undesired frequency components in the beat signal can be easily filtered out in the frequency
domain and hence does not spoil the reconstruction of the attosecond pulse. We hope that our
scheme will serve as an alternative method to characterize attosecond XUV pulses.
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