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CAUCHY PROBLEMS FOR NON-LINEAR TRANSPCRT MODELS

STEZO UENOC and SCNCYC MUKAIL
Institute of Astrophysics
Faculty of Science
Kyoto University

1. Introduction : In recent years it has been shown tbat’in the fields
of radiative transfer (Ambartsumian (1), Bellman, Kagiwada, Xalaba, and
prestrud (2), Busbridge (3), Chandrasekher (4), Rybicki and Hummer (5),
and Sobolev (6)), and of rarefied gas dynamics (Wing (7)), the trans-
formation of the two~-point boundary-value problems to the initial value
problems.plays an impertant role from tlie anélytical and numerical as-
pects, because the latter problems contain computational advantasmes over
the fqrmer‘anes» Whereas some recent trend in the theéry of invariant
imbedding was in expository manner presented in the 1iﬁéar transnort
processes by Ueno (8), however, im this note it will be shown how nower-
fully to comvert the non-linear boundarv-value problems into Cauehy
problems with the aid of the invariant imbedding and guasilinearization
(Bellman and Kalaba (9)). For the sake of simplicity the rod madel with
coherent scattering is used throughout the analytical treatment.
Recently, the mathematical theory of the invariant imbeddingz in the
non-linear transport processes has been developed by the RAND-USC school
(cf. Bellman and Kalaba (9), Kaziwada and Kalaba (10), and Wing (7))«  On
the other hand, Ambartsumian (11) has in recent vears extended the. in-
variance principle to the solution of non-linear radiative transfer éro-
blems. With the aid of this method some non-linear transport problems
were dealt by Enzibaryan (12) and the vpolychromatic diffuse reflection of
light from an infinitely deep one-dimensional media with three-level atoms
was discussed by Nikogosyan (13), whose theory is presented by the vhysical

method based on *the invariance principle. Furthermore, the Boltzman treate



ment for this problem was provided by Teno (14), allowing for the vhoton
emergence probability.  Similarly, the dissipation function in the non-
iinear s;aﬁtering processes of neut:ons and plasma within the finite rod
' w#slfoﬁnd‘by’Uenb(andfMukai"(ls);
The characteristic feature of the non-linear radiative transfer is

‘f Sﬁch,that thefradiation intensity deéends,nof only upon the local optical
‘praperties. of the. medium, but also‘upon the impinging radiation field.

In §£her~words,,the»non-linearity.comes from the. fact that the parameters
&escribing the optical properties.of the- -medium with scatteringfare ex~
pressed in terms. of the radiation field. The equation for the photon-
emergence probability plays an important role-similar to the-equation of
transfer. The study of radiation-gas-dvnamics is given by the simulta- .
neous solution of the transfer equation and of the Boltzmann equation,.
allowing for the stochastic state of the mediae |

2.  The Boltzmann formulation (see Ref. (7), (9), (10))} : Consider an

one-dimensional model of optical length, x, illuminated by flux F of radi-
ation incident on- the right .end z=x (5335Fi£hxl}m At the left end z=0

the reflection effect: is assumed.
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Fig. 1 The Physical rod model
Let the radiation fluxes at z, directed to#ards*zixfand z=0, be de~
notéd oy u(z, ¥, x) and v{z, T, x), respectively.
The equaticniof transfer appropnriate to this case is written in the

form

Ju , 
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together with the two-point boundary conditions

(3) u(0,F,X) = @(V(0,7, X)),
- (&) V(X F,X) = F.
; On differentiating with respect to F, we gzet
(s) C_¥w _8f 3w, 3£ 57 3u | EEE S
32 ~ a3u af 3V oF ! a?‘zzo“ 3 v ;?§Z=?
: ) o |
IV dg  du 3g BV 3V
(6) - aF&Z L= an aF +* ) a V .’3? . B’F 1'”—{ = }..
. , |7 =)
Similarly, differentiating with respect to x, we have
. , .
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Furthermore, from eg. (2Y, we zet
%
(9) e L TS 25 SN I
: 4 Z=X 7=X
Comparing eqs.-(5) and (6) with-egs.. (7)Y and (8), and assuming the
uniqueness of the solution, we obtain
(10) 3% (2,70 = g(R(F,0),F,0) 2L (2,70
(11) 3V (7 . %) (F.X) y 3 e
Y T}E- (Z‘F,X) = g(R -’X QF’X. —W- Nlgl g ) ¥
\ ,
= - where
(12) - R(F,X) = u (X,F,X), Vv (z,F,X) = F .

Z=X

‘Now, the functional equation for R should be asked.

Differentiate eg. (12) with resvect to x to obtain
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On making use-of eqs.. (1) and (10); we have the required partial

' differential equation given by

(1) 2B (px) = £(RFD,FX) + g(R(F,X,BX) S5,

IR
X

together with the initial conditiom
(15) . R(P,O) = Q(F)y .

~ Then, eés..(loy and (11) are the desired partial differential equa-
tiansngoverking w and v, together with the initial condition (12). In
other words they give. the solution for the Cauchy oroblem under coﬁsider?-
tionm. It is noteé that this requires anly integratiﬁs’in the direction of
increasing value of x. |

3. Polychrom&ticiéiffuse=reflection (see Ref. (1%) and (14)) : Consider

a_semi-infinite rod consisting of three~level atoms, whose end z=x is il-
luminated by the constant flux of radiations at the frequencies i(i=1, 2

and 2%){see Fig. 2 and 3).
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Fig. 2. The Physical rod model Fige. 3 Cyclical Transition

Thesevthree states arevéonnected with each other by possible random
transition, but coﬁnected with no other state. The redistribution of
atoms with respect to‘levels under the influence of the incident fluxes
results in the change in the transparency‘of the medium at some frequencye.

For the sake of simplicity we assume the pure polychromatié,scatter-
ing. - Now we-ask for the reflected fluxes R3{i=1,2,3) as functions of the

fluxes 7j incident .on the medium. TFor this purpose it is sufficient to

&
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find the Ri at one particular freguency, because of the law of the con-

servation of the photon number.

¢

@ T R =3
i i — ] 21 IR P s T
(16) 'ny,‘ N nvj - ;'lyi * T, PTRG TR e
J

In eqe. (16) it is stated that the total number of photons in the:

-incident fluxes at two frequencies is conserved in the reflected fluxes

by the rod. In what follows, starting with the transfer equation, we
shall find an equation for Ry(Fy, F2, 3, x) at the first frequency.
It is assumed that scattering of light in either direction is equally
probable.

The equation of transfer takes the form

(17 Awlzxi gy M (e v)
= Yo z

L _awizex) 4 . \

(18) - P e ‘ﬁﬁ‘i - ‘2}\;6‘-‘( u;"" V; ) >

where § and Ai{i: 1,2,3) represent respectively the. absorvtion co-
efficient and the albedo for single scattering, together with the

boundary condition

) -

{ 1T 2
(19) v.‘\x,x, = F; ) ( Imi g2 o

The albedo for single scattering demotes the: survival prebabili%y of 2
photon after an elementary act of scattering.

Write -

(20) R;(z.V§z,x))=u;(z.x) (3=1,2,3) «

From eq. (19) we have

(21) v . 2V = 0

¥z z =X Xl

Assuming the linearity of the perturbation equation and unique-

ness of solution, and usine egs. (17), (1R) and (21}, we get
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where x; =X and Xi and d‘i/ Y depend upon the radiation field. On

making use of eq. (16), we have

/_’- G ReB v - ¥: & ) ‘
SR FNGER) S = <i~z\‘)3‘g—43f SsBug (1=2,3)
Then, eg. (22) reduces to
R __, _.;_Es jBeR | E-R. & y Vi 2R
() ==K (p-&nZ((i— e N Yy

where f= -1 for 4=i and §&y=1. It Ry (F,, x) = ﬁl(xn-* , then

A
33 _ A A X Az
(25} 3x, ~2 * (n-2 R+ 5 Ry,

which is equivalent to the Riccati type equation. Eq.(2k) reduces to that
ziven by Nikogosyan (Ref.{13)).
Let the steady-state condition for the number density of atoma in

the first and third states be ziven by
‘B - B . - ,
(26) ﬁi\Bﬁ?F}*Bi}PI}-ﬂzsiaia(fi*ﬂ-j)*n,_sé’sijw‘ﬂrx} ’

where n, is the number density in the i-th state, P is the radiation

density at y = vy given by (Fi + Ri)/c, Bij is the Einstein coeffi-
cient of the transition probability of an atom from a lower state i to
the higher stater j’(i is- equal to ﬁm‘thB/“c} and g5 is the statisti-
cal weight of the i-the state, Eq. (26) states that in non-local thermo-
dynamical equilibriuni the number of atoms leaving the l-th state coin-
ciedes with the number arriving at it.

Putting

(27) Xy = B \
§ =n 31"1 / (n n351/83,313p£ y

and
_ hy g B, 5, oy 1) o}
(28) g, = E—‘( n\;‘)_;} . T = El}nﬁ_wﬁ_:,.B_z; . &= Ly, (n,-n. f—‘\ 12
oI e SR BN oaw TR



where A“% is the effective width of the corresponding absorption line.
In the atom Ai and 6; devend upon R..
On making use of eas. (27) and (28), we have the ter~s for Sé/ 83,
63/ 81 and 1 - A, being functions of Rl' Substituting theses derived
expressions into eq. (24), after some transformations, we get the equa-
tions of the characteristics for the Cauchy problem. It is shown that,
after some manipulations, the solution depends upon the atomic constants.
Finally, we obtain the functional equation for the photon emersence

probability at the frequency Vl.

3 4 Y { 3 4 N . Y 3 £ o™ I 4
(29) S-El.( 2o %) ==BlZy X +p{Z, %) RiX,X )+ T {~F+5 A

b=i o , aFi *

where

(303 Blxx)= B (REEEx) .

It represents such a probability that a photon absorbed at zy at a
frequency Hl uiil appear from the medium at Xy at the same frequency
after one or more scattering processes, zllowing for the cyelic transi~
tion between these three levels. If we take into account the collision
process, the equation of the photon emergence probability makes the basis
of the study of radiation-~gas~dynamics in connection with the 3oltzmann
equation.

Lk, Dissipation function of the non-linear transvort process [see Ref(15)}):

Consider an inhomogeneous rod of the length x, where each second a
single left moving particle is injected into the rod at z=x and no parti=-
cle enters at the left end. We assume that the expected number density
of particles lost per second in (z, z+dz) due to interaction between
moving particles is ‘

¢ (ulz,x),v(z,x)) A + 0(A),
where the particle speed is considered to be unity. In the case of anni-

hilation of particle é -function is provortional to the product of the
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opposite stream fluxes (see Fir.1). Let the expected number density of
particles at z and moving to the right be denoted by u{z,x) 3 similarly,
let the expected number density of varticles at z and moving to the left
be denoted by v(z,x).

The equation of transport takes the form

a4 . P N \ ,

(31) S§=¢xiz)ukz,x;*,B(z)v(z,x)- $lu,v)
dv \ ) N own f Y i 0

(32) = Blzlulz, x)+voc (2)v(z,x)=¢ (uav)

together with the boundary conditions

(33) u{C,xJ=0 v(x%x)gfrx,

Prom eq. {33} we get

Putting
(35) = Rlviz,x),x)=ulz,x) 3

where R is the expecied number density of pvarticles per second moving
to the.right at z due to an input of F varticles per sencond at x, and

differentiating u with respect to x in the limit z=x, we have

‘ Q;Eg’ _*s (- 2%
(36)  3x) 3 F Tazoz=x .

On making use of eq. (36), differentiating R with respect to x, we.

obtain
?R{be} u 3 u ey . B ,
(37 S 35 + S5 =R+ (Bl Rea(x)F-9(R, F)) 220k (x) -
zZ=X zZ=X -

-$ (R,F).

when &=0 and u{x,x)=RF, eg. {37) reduces to the Riccati equation. _

In a manner similar to that =ziven in the derivation of the reflec~
tionrcoefficient R, we shall find the eauation for the transmission co-
efficient T-func.tion.‘i Put

(38) T(v(z.x),z)J:x = viz,x)

2=0 ,



On differentiating eq. (38) with respvect to z and vassingz to the
1imit z=0, we have the required vartial differential eaua*ion

m
i

3 TLF, L) IV 3 Vi o - -
(329) ;; :3—Z—§ T ey WU, TS X R xS F+E X FLo -
. z=C 7 Tz=C
9T
-6 (F,R))5= + ¢ (1,00,

The law of the conservation of the pfobability for the multiple-
scattering of particles takes the form
40y viz,x)=(u(z,x)+v(0,x))= Llz,v(z,x)) v(z,x)

where L-function is called the dissipation function. On differentiating

with respect to 2z and passing to the limit at z=x, we get

el AT
et
@

(41) . izg 4_au§ LN 3¥ )y s Lixevix,xen 2L
: ) SRR = Lix, vix,x))—
z z : ryz fzexl T z -
d Z=X 4 Z=X R ?, g:x
From eg. (41) we obtain the desired .equation for the L=-function
3 T S UG RN
(‘*36);_ . F. }—;(x,,z 1ol () F+R{x )50, x) )L+l g \x)F+B{x /B~ ¢ (2, 7)) 5=

(ot {x)}+B{x}}(R+F)-2 (R, 7},

Such'a,eéﬁation will be useful for the study cf.thé=narticle-
particle interactions in the theory of neutron diffusion and plasma

dynamics.
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