
University of New Hampshire University of New Hampshire 

University of New Hampshire Scholars' Repository University of New Hampshire Scholars' Repository 

NHAES Bulletin New Hampshire Agricultural Experiment Station 

2-1-1968 

A modified general simplex method for solving linear A modified general simplex method for solving linear 

programming problems, Station Bulletin, no.493 programming problems, Station Bulletin, no.493 

Foster, Bennett B. 

Weyrick, Richard R. 

New Hampshire Agricultural Experiment Station 

Follow this and additional works at: https://scholars.unh.edu/agbulletin 

Recommended Citation Recommended Citation 
Foster, Bennett B.; Weyrick, Richard R.; and New Hampshire Agricultural Experiment Station, "A modified 
general simplex method for solving linear programming problems, Station Bulletin, no.493" (1968). 
NHAES Bulletin. 455. 
https://scholars.unh.edu/agbulletin/455 

This Text is brought to you for free and open access by the New Hampshire Agricultural Experiment Station at 
University of New Hampshire Scholars' Repository. It has been accepted for inclusion in NHAES Bulletin by an 
authorized administrator of University of New Hampshire Scholars' Repository. For more information, please 
contact nicole.hentz@unh.edu. 

https://scholars.unh.edu/
https://scholars.unh.edu/agbulletin
https://scholars.unh.edu/nh_ag_ex_station
https://scholars.unh.edu/agbulletin?utm_source=scholars.unh.edu%2Fagbulletin%2F455&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/agbulletin/455?utm_source=scholars.unh.edu%2Fagbulletin%2F455&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:nicole.hentz@unh.edu


iS

A Modified General Simplex Method

For Solving Linear Programming Problems

By

BENNETT B. FOSTER

and

RICHARD R. WEYRICK

Station Bulletin 493

Agricultural Experiment Station

University of New Hampshire

Durham, New Hampshire



Table of Contents

Introduction 1

An Example Problem 2

Technique for solution, p, 3

Rules for the pivoting procedure, p. 4

Minimizing Problems and Problems where Zero Production is

not Allowed 7

Summary of Rules for Determining Pivot Row and Pivot Column
and the Pivoting Operation 10

Equality Constraints and No Solution Situations 12

Equality constraint, p. 12

'No solution" situations, p. 12"T

Computer Program 13

Selected References 13

Appendix A. Fortran II Program with Instructions for Data Cards 15

Appendix B. Derivation of Pivoting Rules and Pivot Row and

Column Selection Rules 19

February 1968

The research project contributing the technique described
'n -liis bulletin is funded through the Mclntire - Stennis

-o.-eracive Forestry Research Act of 1962. The authors
are assistant professors in the Department of Forest
Resources.



Introduction

Most formal explanations and many computer programs for solving

linear programming problems follow the simplex "tableau" method. As

desirable as this method is for enabling the beginning student to see the

"whys" and "hows" of linear programming, it is rather complicated. If

followed in writing an L. P. problem solving program where the origin

(zero production) is not feasible, this method unnecessarily uses up a

sometimes short supply of computer storage space and is vulnerable

to a computer "bug" resulting from an inadequate value "M" for the

slack variable (s) .

This bulletin describes a technique (or algorithm) for solving L. P.

problems that is based on rules derived by simple high school algebra

rather than the intuitive descriptive approach or the more formal math-

ematical approach. It draws on the simple mathematical characteristics

of the derived rules to determine the logical sequences of the problem
solution and also to eliminate the need for artificial variables and high

negative "M" values in problems where zero production is not allowed.

The technique is such that, for a clearer understanding, the ex-

planation will begin with the set-up of a simple problem and proceed

rapidly to the rules of the technique (the algorithm). It is important

to point out that the rules presented herein are specifically oriented to

the method presented for setting up the problem constraints.

The precise point of departure of this technique from those pre-

sented by others (Baumol [1], Heady and Candler [2], Stiefel [3],

Vajda [4, 5] for example) is the placing of the equal sign when the

inequality constraints are changed into equalities.^ This modification in

turn leads to a unique method of handling "greater-than-or-equal-to"

constraints that does not require the use of artificial variables and the

corresponding high negative values.

IS; = EXi ± Ci rather than ZXj ± S; = Ci
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An Example Problem

Given: the following inequality constraints: ^

2X1 + 3X2 ^ 24

.5X1 4- .25X0 ^ 3

Xi ^5
and objective function:

Z = 3X1 + 2X2 (max.)

The inequality constraints are then changed into equalities by add-

ing or subtracting slack variables.

2X1 + 3X2 + Si = 24

.5X1 + .25X2 + S2 = 3

Xi + Sh = 5

In order to fit these equality constraints into this modified simplex

technique, they are restated in terms of the positive slack variables, and

set up in matrix form.

Si =

52 =

53 =

Si =

52 =

53 =

z =

2X1 — 3X2 + 24

.5X1 — .25X2 + 3

+ 5

Restated

Constraints

Xi

Xi X2 KPoi

— 2



The Technique for Solution

In the following explanation each figure in the matrix will he called

an "element."

The problem is solved hy attempting to bring Xj and X2 (the ac-

tivities) into solution. The resources (Sj ) will be used to produce the

activities (Xj). This will be done by mathematically exchanging rows

and columns of the matrix, a row and a column at a time, in a series

of matrix-forming processes called "iterations."

The process of exchanging a row and a column is called "pivoting"

and is accomplished by using a set of rules described on page 4 and

derived in Appendix B. The row and column that are exchanged in a

pivoting process are known as "pivot row" and "pivot column," and the

common element is known as the "pivot element." Under no circum-

stance will the bottom row or last column be considered as the pivot row

or pivot column.

Pivot Column. With the exception of the last column, any column

with a positive bottom element can be used as the pivot column,^ as

long as it contains a potential pivot element (see below). -^ The pro-

cedure outlined in this l)ulletin specifies the pivot column as the one

with the largest positive bottom element, but actually the choice is ar-

bitrary. In the example proljlem the pivot column will be the X^
column.

Pivot Row. The appropriate row or "pivot row" is determined by
the resource that is most limiting in the production of the pivot column

activity. This of course excludes the bottom or objective function row.

According to the constraints of the example problem (and also the

matrix table if signs arc ignored), the available supply of S^ (24)

will allow 12 units of X^ to be produced, the available supply of S^

(three) will allow 6 units of X^ to he produced, and the available sup-

ply of S3 (five) will allow 5 units of X^ to be produced. The limiting

resource then is S3, so the S3 row becomes the pivot row. The element

at the intersection of the pivot column and pivot row is the "pivot

element." This determination of the pivot row can be done quickly by

generating what will be called "Q-values." This is done for each poten-

tial pivot row by dividing the resource value (in the last column) by the

element in the pivot column, and registering this quotient in a "Q-
column" to the right of the table. After all Q's have been determined,

the row with the smallest absolute value of Q becomes the pivot row.

1 The algebraic logic of this is also covered in Appendix B.
2 This is also true if the problem is one of minimization, as will be explained

on page 7.



Potential Pivot Element. For reasons explained in Appendix B,

any potential pivot element must he negative and the resource value in

any potential pivot roiv m-ust be positive; therefore, all the Q-values

that are of concern will be negative.^

The pivot column contains the largest bottom positive element and a po-
tential pivot element (negative).
The pivot row generates the smallest absolute value of Q.



This last rule may seem rather complicated, but it will prove simple
if stepped through slowly. It may be thought of in terms of a rectangle.

The elements involved form a perfect rectangle within the matrix. The
element being changed is one corner of the rectangle, the pivot element

is the opposite corner, and the two elements that are to be multiplied

together complete the rectangle. In the example, the Si resource (24)

becomes 24, minus the value of 5 times minus 2 divided by minus 1, or.

24 [(5) (- 2)/(— 1)] = 24 — (+ 10) = 14

Xi X2 KPo) S3 X2 KPo)

Si =



This final matrix presents all the standard information obtainable

from the more common simplex methods; objective solution, activity

levels, amounts of excess resources, shadow prices, and coefficients from

which other information, such as variable prices and resource program-

ming can be calculated:

Activity levels: 6 units of X2
3 units of Xj

Objective solution: 21

Excess resources: 2 units S3 unused

Shadow prices: Si price is .25

S2 price is 5



Minimizing Problems and Problems

Where Zero Production Is Not Allowed

The preceding example was a case where zero production was

allowed under the given constraints, and the objective function was to

be maximized. A common L.P. problem is one where zero production

is not allowed by the constraints and where the objective function is to

be minimized.

Minimizing a positive objective function is nothing more than max-

imizing a negative objective function. If an objective function, Z =
SXj -{- 4X2, is to be minimized, it is the same as maximizing — Z r=

—8X^ — 4X->. In this case the bottom row of the beginning matrix would

contain:

(X,) (Xo) (KPo))

—Z = *"

indicating that the objective solution could be reduced by the amounts

shown for X^ and X2. Reducing by a negative amount, however, means

adding to or increasing the objective solution, which would defeat the

minimizing objective. This objective solution can be reduced further

only if a positive value appears in the bottom row, which leaves the pre-

viously stated rule (see page 3, Pivot Column) unchanged. The ob-

jective solution will naturally be a negative, but with a simple sign

change the objective solution becomes an acceptable value. For ex-

ample, if — Z = — 85, then Z = 85.

This minimizing case is directly related to the case where zero ac-

tivity »is not allowed. The first case requires the second, for minimizing

a problem where zero activity is allowed leads to the trivial solution of

zero, no activity.

In the example problem, suppose that the second constraint were

changed to:

.5X + .25X2 ^ 3

(greater than, or equal to). In order to make this into an equality a

slack variable must be subtracted from the left hand side of the in-

equality sign: .5X1 -f .25X2 — S2 = 3. When this equality is restated

in terms of the positive slack variable, a negative sign appears in the

last term:

02 ^^^^ .5Xj -|- .25X2 — o.



Xi



In the new matrix the negative three has been eliminated, however, a

negative one has appeared in the S3 row. For the next pivoting process,

the S;} row will therefore become the pivot row, and the X2 column will

become the pivot column since it contains the only positive element

in the S.-? row. The third and final table.

Si =
Xi =
Xo =
z =

S2



Summary of Rules for Determining Pivot

Rows and Pivot Columns and the

Pivoting Operation
Once the constraints for an L. P. problem are set up in inequality

form, they are made into equalities by adding or subtracting slack vari-

ables. These equality constraints are then restated in terms of the posi-

tive slack variable, and set up in the following matrix form:

X2 KPo)

Si =
82 =



Pivoting Rules

PR-1. Changing the old pivot element to its reciprocal value.

PR-2. Changing all other elements in the pivot column by divid-

ing them by the old pivot element.

PR-3. Changing all other elements in the pivot row by dividing

them by the old pivol element and giving them the oppo-
site sign.

PR-4. Changing all other elements by subtracting from them the

value derived from the "rectangle rule" (see PR-4, page 4) .

This process of determining the pivot row and column and pivoting

matrix is

last column.

the matrix is continued until all negative values are eliminated from the

III. When this is accomplished, or when the initial matrix does not

contain negative values in the last column, and when positive values are

contained in the bottom row (excepting the solution box), the pivot

row and column for successive pivoting processes are determined as

follows :

Rules for Determining Pivot Columns and Pivot Rows

Pivot Column: The column with the largest positive bottom element

and which contains a negative potential pivot element

becomes the pivot column.

Pivot Row: Q-values are generated for all rows where the potential

pivot element is negative. The smallest absolute value of Q
determines the pivot row (it is obvious that again all

values of Q will be negative) .

Once the pivot row and column have been determined, the pivoting

process continues as previously described (see II, page 10).

This method (III) of determining the pivot row and column, and

the pivoting process (II) are continued until only negative values are

contained in the bottom row. The problem is then solved.

11



Equality Constraints and No Solution

Situations

There are two items that warrant hrief coverage due to their special

handling in the specific technique described herein.

The Equality Constraint

Because this technique does not use artificial varial)les as do the

more conventional methods, it is recommended tliat the equality con-

straint he handled as two opposite inequality constraints, adding and

subtracting slack varialiles wliere indicated. Handled in this manner,
one of the two slack variables will equal zero in tlie final solution.

It is also possible to use one of the unknowns as if it were a slack

variable. In the constraint X^ -f X^ = 100, for example. X, or X^
could be used to absorb the "unused" portion of the 100, thus developing
the constraint: Xj = —X2 + 100.

Now that Xi has been "solved" (in terms of Xo ) , however, it be-

comes necessary to restate all other constraints (that contain X, ), and

the objective function, in terms of X2.
In our example problem, the constraint 2Xi + 8X5 — 24, becomes

2(—Xo -\- 100) -|- 3X2 — 24, and the representative equality becomes:

Sj =r —X2 — 176. The objective function. Z = SX^ -(- 2X0 max.) be-

comes X = 3(—X2 + 100) + 2X2, or Z = —Xo + 300. and the ini-

tial solution is no longer zero but 300.

An equality constraint handled in this manner reduces the number
of constraints by one, and reduces the number of iterations by two, but,

as is quite evident, requires a great deal more time in setting up the

problem.
This increased "set up" time and the increased probability of mak-

ing simple mathematical errors while restating the constraints and ob-

jective function, appear to the authors as justification for handling an

equality constraint in the first described manner. Therefore, unless the

cost of the additional "solving time" is prohibitive, or the additional re-

quired constraint causes the problem to become too unmanageable, it is

recommended that an equality constraint be handled as two opposite

inequality constraints.

The "No Solution" Situation

The two most common "no solution" situations that occur in an

L. P. problem are: (1) when a function is to be maximized, but there

is no upper-limit constraint ("unljounded solution"), and (2) when

12



two or more constraints contradict each other ("mathematical incon-

sistency") .

When either of these situations occur following this technique, defi-

nite and unique events will stop the iteration process. If a maximum

objective is called for when no upper limit is set hy the constraints, the

matrix-iteration process will run into a dead end hy having a positive

value in the l)ottom row. indicating that the solution can he made larger,

and positive values in tlie last column, but there will be no negative

elements to qualify as a pivot element (negative Q-values cannot he gen-

erated I .

If two or more constraints contradict each other, the pivoting pro-

cess will dead-end hecause a negative value will appear in the last col-

umn, but there will be no positive element to qualify as a pivot element

(again, no negative Q-values can he generated).

Thus, tests for "l>oundedness" and mathematical consistency are

built into this technique. In the accompanying computer program (Ap-

pendix A), error messages to this effect are included.

Computer Program
A Fortran II program for this L. P. problem solving technique is

presented in Appendix A.

It is arljitrarily dimensioned for a 14 x 14 matrix which wovild be

the maximum size prol)leni that could be run in a 20,000 unit storage

capacity computer if numerical tables and/or other management rou-

tines have reduced the storage area to approximately 8.000 units.

The output gives the initial matrix, the activities being pivoted and

the objective function for each iteration, the final solution activity

levels, the final objective function (solution) and the shadow prices.

Selected References

(1) Bauniol, William J., Economic Theory and Operations Analysis.

(Englewood Cliffs; Prentice-Hall Inc., 1961).

(2) Heady, Earl O. and Wilfred Candler, Linear Programming Methods.

(Ames: The Iowa State University Press, 1963*.

(3) Stiefel, Eduard L., An Introduction to Numerical Mathematics.

(New York: Academic Press, 1963).

(4) Vajda, S., An Introduction to Linear Programming and the Theory of Games.

(New York: John Wiley & Sons, Inc., 1960).

(5) Vajda, S., Mathematical Programming.
(Reading, Mass.: Addison-Wesley Publishing Company, Inc., 1961).
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COMMENT- THIS PORTION OF THE PROGRAM READS IN
THE PROBLEM DATA AND PRINTS IT OUT IN TABLE FORM,

DIMENSION A(14,14), KR ( 1 4 ) , KG ( 1 4 .'i

30 FORMAT (1615)
40 FORMAT (IH ,39H NO SOLUTION, CONTRADICTING CONSTRAINTS///)
50 FORMAT (IH , 32H NO SOLUTION, INFINITE OBJECTIVE///)
60 FORMAT (IH , I 5 , 7F 1 . 4 )

70 FORMAT (IH , 1 OX , 2 I 1 , 5X , F 1 . 4 )

80 FORMAT ( 1 HO » 5X , 7 I 1 )

90 FORMAT ( 8F 1 • 4 )

READ 30* M, N
DO 1 I = 1,M

1 READ 90,(A(I,J), J = 1,N)
READ 30, (KR( I ) , I = 1 ,M)
READ 30,(KC(J), J = 1,N)
PRINT 80, (KC(J), J = 1,N)
DO 2 I = 1 ,M

2 PRINT 60, KR ( I ) , ( A ( I , J) , J = 1,N,
MI = M-1
NI = N-1

COMMENT- THE FOLLOWirJG STEPS ASK THE QUESTION,
IS THERE A NEGATIVE VALUE IN THE LAST COLUMN.

3 DC 4 I
= 1 , M I

IF ( A( I ,N) ) 5, 4, 4

4 CONTINUE
GO TO 11

COMMENT- IF THE ANSWER IS YES, THE FOLLOWING STEPS
DETERMINE THE APPROPRIATE PIVOT ROW AND COLUMN,

5 = 0.
DO 1 J = 1 ,NI
DO 9 I = 1 ,MI
IF (A(I,J)) 9, 9, 6

6 IF (A(I,N)) 7, 9, 9
7 IF (Q - A ( I ,N )/A( I , J) ) 9, 9, 8
8 = A(I,N)/A(I,J)
KROW =

I

KCOL = J

9 CONTINUE
IF (Q) 20, 10, 20

10 CONTINUE
PRINT 40
GO TO 95

COMMENT- IF THE ANSWER IS NO, THE FOLLOWING STEPS
ASK THE QUESTION, IS THERE A POSITIVE VALUE IN
THE BOTTOM ROW,

= 0.
14 J =1 ,NI
(A(M,J)) 14, 14, 12
(QT - ACM, J)) 13, 14, 14
= A (M, J )

KCOL = J
14 CONTINUE

IF (QT) 95, 95, 15
COMMENT- IF THE ANSWER IS NO, THE PROBLEM IS SOLVED
AND THE SOLUTION IS PRINTED OUT,
IF THE ANSWER IS YES, THE FOLLOWING STEPS DETERMINE
THE APPROPRIATE PIVOT ROW AND COLUMN,

15 0= -99999999,
DO 18 I = 1 .MI
IF ( A( I ,KCOL) ) 16, 18, 18

1 1



16 IF (Q - A( I ,N)/A( I ,KCOL) ) 17, 18, 18
17 O = (A( I ,N)/A( I ,KCOL) )

KROW = I

18 CONTINUE
IF (Q + 99999999,) 20, 19, 20

19 PRINT 50
GO TO 95

COMMENT- ONCE THE APPROPRIATE PIVOT ROW AND COLUMN
ARE DETERMINED THE FOLLOWING STEPS ARE THE
PIVOTING PROCESS. THE OPERATION THEN RETURNS
TO THE FIRST QUESTION (STEP NO. 3).

20 KEEP = KR(KROW)
KR(KROW) = KC(KCOL)
KC(KCOL) = KEEP .

DO 23 11= 1 ,M

IF (II- KROW) 21, 23, 21

21 DO 23 JJ= 1 ,N
IF (JJ- KCOL) 22, 23, 22

22 A(II,JJ) = A(II,JJ) -
( A(KROW, JJ)*A( I I ,KCOL) )/A(KROW,KCOL)

23 CONTINUE
DO 25 11= 1 ,M

IF (II- KROW) 24, 25, 24
24 A( I I, KCOL) = A( I I ,KCOL)/A(KROW,KCOL)
25 CONTINUE

DO 27 JJ= 1 ,N

IF (JJ- KCOL) 26, 27, 26
26 A(KROW,JJ) = (-1 . )*(A(KROW, JJ)/A(KROW,KCOL) )

27 CONTINUE
A(KROW,KCOL) = 1 . /A ( KROW , KCOL )

PRINT 70, KR(KROW) ,KC( KCOL ) , A ( M,N)
GO TO 3

COMMENT- THE FOLLOWING STEPS PRINT OUT THE FINAL
SOLUTION AND END THE OPERATION.

95 DO 96 I = 1 ,M

96 PRINT 60 , KR(I),A(I,N)
DO 97 J = 1 ,NI

97 PRINT 60 , KC(J),A(M,J)
END



Data Cards

The preceding program calls for data cards to be arranged in the

following order; each punched according to the indicated format.

/code nos. or letters for unknowns (Xj, X2, X3, etc.) and the resource Col.

/code nos. or letters for slack variables (8^,82, 83, etc. and Obj. Funct.)

objective function

/etc.

etc.

third row etc.

second row of original table

first row continued (if necessary)

first row of original table

/number of rows number of columns

18
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Appendix B

Derivation of Pivoting Rules and

Pivot Row and Column Selection Rules

I. Pivoting Rules

The pivoting process is a method of solving simultaneous equations.

By algebraically solving two such equations and following the steps with

the coefficient matrix, rules for the pivoting process are developed.

Given: two general equations, and the corresponding coefficient

matrix :

Si = aXi + bXa + ki

S2 = cXi + dX2 + k2

Si =:

S2 =
a b

c d



PIVOTING RULES

PR-1. The pivot element (a) becomes its reciprocal value (1/a).

PR-2. The other elements in the pivot column (c) become them-

selves divided by the pivot element (c/a) .

PR-3. The other elements in the pivot row (b and k^ ) become
themselves divided by the pivot element and given the

opposite sign (
— b/a and — kj/a).

PR-4. Each element in the remaining part of the matrix (d and

k2 becomes itself less the quantity derived by multiplying
the element in the same row and in the pivot column by
the element in the same column and in the pivot row, and

dividing this product by the pivot element: d —
c(b/a)

and k^ — c(ki/a) .

These rules may be checked by completing the solution, that is,

exchanging S2 and Xo, thus solving for the X's in terms of the S's.

II. Determining Pivot Rows and Pivot Columns

Given: the generalized coefficient matrix:

Xi Xo Xo ... Xq ... Xn l(Po)

s„-= 'pq

Sv =
k.

C^ (Initially

C* = 0)

21



In this generalized matrix, Sp is our eventual pivot row and X q

is our eventual pivot column (i.e. a p, is our eventual pivot element).

There are two requirements on which we will insist:

A. Only solutions that are acceptahle values will be considered

(Xi ^0, X2 ^0, ...X„ ^0, 81^0,82^0 S^^O),

therefore, the C's (last column values) must remain or become

B. During each exchange, C* (the objective solution) must in-

crease (at least not decrease).

IF ALL C'S ARE NON-NEGATIVE

From the above requirements and the pivoting rules (assuming all

C.s are non-negative), three conclusions can be drawn:

1-1. 8ince Cp -^ (becomes) —
C,, /pivot (pivoting rule #3),

which must remain ^s:0, we must choose a pivot element

that is negative.

1-2. 8ince C* —» C* — (Cpaq)/pivot (pivoting rule 4^4), which

must be non-decreasing, we must choose a pivot column so

that the quantity (CpEq ) /pivot is — 0, i.e. aq must be posi-

tive.

1-3. Since Ck —> C ^
— (Cpakq ) /pivot (pivoting rule 1^4:) which

must remain :^0, we must choose a pivot row so that C,^^^

(Cj. aikq ) /pivot.

Conclusion 1-3 is automatically satisfied if
a^^^

^^ 0.

However, if there is more than one a
jq

in the pivot column which

is negative, we will gain by being more cautious.

Suppose a ^ is negative, then Conclusion 1-3 can be written:

Ck /a k,j
^ C p /pivot, or C k /a kq ^Cp/a pq

If we call C^/an,,| , "Qn," (the kth "characteristic quotient"), then the

gain comes by choosing the pivot row so that Q ],
is the largest of the Q's,

for this will prevent any of the positive C's from becoming negative.

Since the Q's in which we are interested are all negative, we can con-

clude that our pivot row is the one which has the smallest absolute

value of Q.

From these three conclusions, three rules can be made for deter-

mining the appropriate pivot row and pivot column for the pivoting

process if all C's are non-negative.

22



Pivot element: The pivot element must be negative.

Pivot column: The bottom element in the pivot column must be

positive.

Pivot row : Among rows with negative a
i,, 's, the pivot row is the

row which has the smallest absolute value of (}.

IF SOME C'S ARE NEGATIVE

A linear programming problem that contains greater-than-or-equal-
to constraints will have negative values appearing in the last column
of the initial table. These negative values must become non-negative

(see requirement A, page 22). Given this situation and considering
the pivoting rules, three conclusions can be drawn:

2-1. Since we are only concerned with the negative C's, only rows

with negative C's will be considered for the pivot row.

2-2. Since C
,,

—^ — C
,, /pivot, we must choose a positive pivot

element (i.e. a
,„,

> 0).

2-3. If there is only one row that contains a negative C and at

least one positive element in that row, there is no problem
of determining the appropriate pivot row and pivot column

for the pivoting process (the choice of a pivot column is ar-

batrary). However, if there are two or more rows containing

negative C's, we will gain by being cautious.

Suppose that C
^^

is negative and a
i^q

is positive (see generalized

table page 21) .

Since C
I,

-^ C ^
— (C ,,

a
k,, ) /pivot, it would be desirable if

(C|, a
kq ) /pivot were ^ C k since this would cause Ck to become

non-negative also. This can be modified to read : C p /pivot — C
,^ /a kq

or Cp/a^^i
i^ Ck/akq or even further Qp— Q^. Since again the Q

values we are dealing with are all negative, we can conclude that we
would gain if the pivot row is one which has the largest absolute value

of Q.i

From these three conclusions (2-1, 2-2, and 2-3), four rules can be

made for determining the appropriate pivot row and column for the

pivoting process if some C's are negative.

^ It is possible that a previously non-negative C may become negative during
a pivoting process. This is of no concern, however, since it will eventually be
eliminated in the same manner as the other negative C's.
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Neg-1. Only rows with negative C's will be eligible for the pivot

row.

Neg-2. The pivot element must be positive.

Neg-3. The pivot row is the row which has the largest absolute

value of Q.

Neg-4. The choice of a pivot column is arbitrary, provided the

first three rules are satisfied.

24
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