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INTRCDUCTION TO A POTENTIAL THEORY

ON A DIFFERENTIABLE MANIFOLD

Fumi-Yuki MAEDA
Department of Mathematics
Hiroshima University

October, 1968

Consider a uniformly elliptic differential equation
with not necessarily continuous coefficients aij’ Properties
of solutions of such an equation were studied by many authocrs;
cf. [11]}, [12], [13], [8] and [14]. Using them, R.-M. Hervé
[6]1, [7] developed a potential thecory with respect tc this type
of'équation on a bounded domain in the Euclidean space. It was

shown that almost all basic results in the classical potential

theory are generalized to this case.

In this paper, we show how to extend Hervé's results to a
potential theory on a differentiable manifold wifh respect. to
a differential equation which is locally of the form (1).
Since the classical approach is no longer valid in this case,
we employ a different approach, which is essentially due to
Hervé (and to G. Stampacchia; tf. {81, [14]). In the last
part (sections 10 and 11} we alsc give fundamental results
which are necessary in the discussior on boundary value

problems with respect to an ideal bcundary (cf. [9], [10]).
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1. Metric tensor.

We consider a connected non-compact Cl-manifold 2 of

dimension d > 2 and a symmetric covariant tensor (gij) on @
which satisfies |

{G): On each relatively compact coordinate neighborhood U,
each gi; is a bounded measurable function on U and there exists
A > 0 such that

Y giz

A

L g5 (&8,
for all x € U and real numbers El,...,id.

Let G be the determinant of (gij). av = /G dxg .. .dxy

4

efines a measure on U. Thus dV is defined to be a positive
measure on . Let LZ(dV) (resp. Lioc(dv)) be the space of
square summable (resp. locally square summable) functions on Q

with respect to dV.

The space @ with such a metric tensor (gij) is a locally
compact metrizable space, and hence it is countable at
infinity.

We dencte by Cl(Q) the space of continuously differenti-
able functions on @ and by Cé(Q) the subspace consisting of

furctions with compact support.

2. The spaces £(Q) .and _é%(ﬂ).

Given f & Cl (2,

[ ij 5f of
1 = H rv— [ T
DLf] ). Y g s v

(%)
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. . . 13 : . .
is well-defined, where (g 7) is the inverse matrix of 'gij).

Let Ci(Q) = {f ¢ cleay; £l < =}, Obviously cl(a)c cl L.
Let UO be a fixed relatively compact cocrdinate neighbor-
hcod in @ and let
el 2 = J £% av
© U
o

for £ ¢ L (dV) For f ¢ C%(Q), we define a norm
€] = prert/2 « el .

LEMMA 1. (cf. [4]) If £ c%(g) and D[£_] + 0, then

there exist constants c_ such that |[f_+ c_| -+ 0.
n n n'lo

LEMMA 2, If U1 is another relatively compact coordinate

neighborhood, then || f] and D[f}l/2 + (fUlfde)l/z are
equivalent norms on C%(Q).
DEFINITION.
() = the completion of C (Q) with respect to [
490(9) = tﬁe closure of CO(Q) in &0Q).

For any f e JJ§(Q), D[f] and |[[£]| are well-defined; in fact

we Ssee

(i) f is identified with a function in L (dV)

(ii) There corresponds a covariant vector grad f

_ (af 5 f ; . ij af of )1/2 ._ .
= gzz,..., gig such that ‘grad/f[ = Zio Bx ax) is a

function in L2(dV) and D[£f] = j lgrad £]%dv.
Q

2

By (i), we may regard as S(2)CL; _(dV). Thus L)

w
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5
consists of elements f in Lloc

. , 1 - s . 2 . i
exist @né CD(Q) such that @n -~ f in Lloc‘dv) and D[q>n ¢m] >0

(dV) for each of which there

(n, m - «),
Also for any f, g e S(9),

ij 8f 3
D[f, g] = [Q ] g7 55— 35— av
1

is well-defined. J¥(2) is a Hilbert space with respect to the

inner product D[f, g] + fU fg dv.
0
By Lemma 1, we have

LEMMA 3. If 1 £ 496(9), then ”f” is equivalent to D[f]l/2

on 455(9); in fact there exists MO > 0 such that fU fzdv
o

A

M _D[f] for all f € 460(9).

3. The space éﬁoc(ﬂ).

If w is a subdomain of @, then it is a C1=manifold and we
may restrict (gii) to w. Then we have thec spaces {$(w) and

d§0(w) relative to w.

DEFINITION.

2 for any relatively compact subdomain
i}lOC(Q) = {f e L], (dV); w, there exists f e Mw) such that}.
fw = f (a.e.) on w )

It is easy to see that £(Q) c <L (R); for any f e £(9Q),

Yloc

its restriction f to w is well-defined and £, ¢ S(w) .

The following results are proved as in the classical case:

LEMMA 4. Tf £ e & (2) and ¢ e CL(2), then of ¢ & (2).



COROLLARY. If f e «* () and £ = 0 (a.e.) outside a

loc
compact set in Q, then f ¢ x?O(Q).

LEMMA 5. If £ e £ _() and |grad £| e L?(Q), then

£ e &),

4. The lattice structure of () and x?o(ﬂ).

PROPOSITION 1., (cf. [2], [4]) If f, g € {3(R), then
max(f, g), min(f, g) e H(Q) and D[max(f, g)] + D[min(f, g)]
D[f] + D[g].

[}

PROPOSITION 2. For f e L(Q), let £ = max(min(f, n), -n).

Then [ £ - £ [+ ¢ (n » ).

LEMMA 6. (cf. [6]1) If f e &(Q) and £ > 0 (a.e.) on Q and

if g € }90(9), then min(f, g) ¢ d9b(ﬂ).
.Sketch of the proof: Choose ¢n € Ci(Q) such that ”¢r - g”
> 0 (n »~ «)., Then min(f, ¢n) € 490(9) by the corollary to
Lemma 4. We can show that |[min(f, ¢9,) - min(f, gl + 0 (cf.
[61, [2]1). Hence min(f, g) € 4}0(9).
COROLLARY 1. For f e &), f ¢ 4§O(Q) if and only if
12 e B, .

COROLLARY 2. If f ¢ 5(Q) and £

v

0 (a.e.) on Q and if
f < g (a.e.) outside a compact set in Q for some g € 496(9),

then f ¢ 496(9)-

A\

LEMMA 7. - If g ¢ 496(9) and g 0 (a.2.) on @, then there

exist ¢r € Cé(ﬂ) such that ¢n > 0 on @ and H¢n - g![+ 0 (n » ),
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5. Solutions and supersoluticns of Au = 0.

_DEFINITION. (i) u € JSloC(Q) is cal'ed a solution of
1

Au = 0 on Q if Df[u, ¢] = 0 for all ¢ « CO(Q).

() is called a supersolution of Au = 0 on Q

(ii) ue &

loc

if D[u, ¢] 2 0 for all ¢ ¢ Ci(2) suzh that ¢ 2 0.

v

By Lemma 7, we see

LEMWA 8. Tf u is a supersolution on Q and u € A}(Q), then

Dfu, g] > 0 for all g ¢ Q}O(Q) such that g > 0 (a.e.) in Q.

LEMMA 9. Suppose 1 ¢ x&o(ﬂ). If u e H(Q) is a supersolu-
tion on @ and if u > g (a.e.) outside a compact set in Q for

some g € é%(ﬂ), thenu > 0 (a.e.) on Q.
Proof: Since u < g outside a compact set in Q, u-5490(9)

by Corcllary 2 to Lemma 6. Hence, by Lemma 8, D[u, u ! > 0.

Therefore 0 < D[u™, u ]

A

D{u', u ] = 0, which implies u = 0

(a.e.) on Q.

DEFINITION. X (Q) fu e &(Q); u is a solution of Au = 0

on Q}.

PRCPOSITION 3. (Royden decomposition) (i) For any ue Jf(Q)
and g ¢ ij(Q), D{u, gl = 0.

{ii) Anv f ¢ 4?(9) has a decomposition £ = u + g with

ue W#(Q) and g € 496(9). This decomposition is unique if

1g L.

Hereafter we shall assume that 1 ¢ jﬁb(ﬂ). The function

u & #(2) detcrmined by f in the above proposition is denoted
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PRCPOSITION 4, The mapping f - hf is continuous linear

and non-negative on (}(Q).

Procf: The linearity is obvious. If f > 0, then h. > -g.

i

A

Hence hf > 0 by Lemma 9. Obvionsly, D[hf] D[f] and D{g]

A

D[£]. By Lemma 3, ||g]l> < M _D[g] < M_D[£]. Hence |h_

/M;D[f] + Hf“o, so that “hf“ < /1+M0Hf“. Thus the mapping

A

is continuous.

Now we shall extend Lemma 9 to supersolutions which do not

necessarily belong to J[$(Q). We first prove the following two

lemmas which are due to Hervé [6]:

LEMMA 10. Let f ¢ {9(9) and let w be a subdomain of Q.

{h? on w

Then_fw =
f on - w

belongs to {}2). Furthermore there
exists M} >0 independent of w such that
£, < Myl Il

Proof: It is easy to see that £ - f e ac%(Q). Hence

fe S(2). By Lemma 3, ”fw - f“é < MD[f - f]. Hence

E

A

(1+M_)D[f - £] = (1+MO)Dm[h? - f]

A

(1+MO)Dw[f] < (1+MO)D[f].

Therefore,
£, s @« /)l

LEMMA 11. Let f e 43(2) and let {w_ } be an exhausticn of



Ju

Q. Then fw tends to.hf weakly in 49(9}.
n

Proof: By the above lemma, {fw } is bounded, so that it is
n

weakly relatively compact.' Let u be any weak limit of {fm }.
n

For any ¢ eCé(Q),'D[u, ¢] = lim D[fm , 9] = 0. Hence u € M (9Q).
n-w n

I+

Fy

Since £ -
w
n

£ 49b(ﬂ}, u - £ ASO(Q). Thus, u = h; by
Proposition 3. Hences we have the lemma.

Now we prove

w

PROPOSITION 5. (cf. [6]) If u is a supersolution on @ and

if there exists g e ‘BB(Q) such that u

vy

g (a.e.) outside a

compact set in Q, then u > 0 (a.e.} on Q.

Procf: Choose an exhaustion {w } of @ in such a way that

u > g (a.e.) outside a compact set in W, for each n. Since

€

w
u-hte 49(wn) and g - hgn £ 4}o(mn), Lemma 9 implies that

n
u - h

(o B S e ]
v

0 on w . By Lemma 11, gwn - 0 weakly in %(Q),

since. g ¢ g}b(ﬂ). Hence, for any ¢ ¢ Cé(ﬂ) such that ¢ > 0,
we have
0= 1in g ¢ av < Ju¢ av..
1> .j mn

Hence u > 0 (a.e.) on Q.

COROLLARY. If u is a supersolution on § and if

1imx»id(9)u(X} > 8, thenu > 0 (a.e.) on Q.
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6. The harmonic structure.

PRCPOSITION 6. (See [11]}, [12], [13]) Any solution of

Au = 0 on a coordinate neighbcrhoeod is HOlder continuous.

PROPOSITION 7. (See [13]) 1If u is a non-negative solution
of Au = 0 on a coordinate neighborhood U, ther for any compact

set X in U

sup u ¢ c inf u
K K

with ¢ depending only on U and K.
From this proposition we obtain

PROPOSITION 8. If u is a non-negative solution of Au =0

on a domain w, then either u = 0 on w or u > 0 everywhere on w.

DEFINITION. For any domain w of @, let

H(w) = {u; continuous solution of Au = 0 on w}
and for any open set w with decomposition w = kjwi into com-

ponents, let
H(w) = {u; uiwi e H(w;) for all i}.

THEOREM 1. (cf. [6]) {H(w)} gives a harmonic

wiopen
structure satisfying the axioms 1, 2 and 3'(= 3) of M. Brelot

(1.

Axiom 1: {H(w)} is a sheaf of linear spaces of continuous

functions (Definition and Proposition 5).

Axiom 2: Regular dorains form a base of open sets; in fact

any ball in a coordinate neighborhood is regular {cf. [8], [11],
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[14]1).

Axiom 3': The statement ol Proposition 7 is true and
{u e H(w); u > 0, u(x) = 1} is equi-continuous at x = x, for
anvy domain w and X, € w (shown by Hervé [6] (using Proposition

6) in case w is a ccordinate neighborhood).

Thus functions in H(w) are called harmonic on w and we
have notions of superharmonic functions and potentials with

respect to this harmonic structure (see [1]).

7. Superharmonic functions belonging to a®iociﬂ)'

PROPOSITION 9. (Hervé [7]) 1If u is superharmonic on Q
and if u ¢ °$1OC(Q)’ then u is a supersolution of Au = 0 on Q.

Conversely, for any supersolution v on @, there exists a uni-

que superharmonic function u on Q such that u = v a.e. on Q.

LEMMA 12. If u is superharmonic on @ and if u e L, (@),

then u is a potential.

“Proof: By Proposition 9, u is a supersolution. Hence by
Lemm& 9 u > 0 on . Let h be the greatest harmonic minorant of

u. Them 0 ¢ h < u. By Propcsition 5, we conclude that -h 0.

v

Hence h'= 0, sc that u is a potential.

Now the fcllowing thecrem is an immediate consequence of

this lemma:

THEOREM 2. If u is superharmonic on @ and u e [HQ), then
u has a harmecnic minorant in Q and hu is the greatest harmonic

minorant of u.

10



COROLLARY. If u;, u, ¢ A(9), then the least harmonic
majorant v of max(ul, uz) and the greatest harmonic minorant w

of min(uy, u,) both belong to H(Q) and

D[v] + D[w] < D[ul] + D[uz].

(Cf. Proposition 1)

8. Measures associated with supersolutions.

Let u be a supersolution on Q. .Then there exists a non-

negative Radon measure p on Q such that
pfu, 61 = Jo au

for all ¢ € Cé(Q). We call u the measure associated with u.

LEMMA 13. Given y e C (Q), ¥ 2 0, there exists a
continuous potential gw belonging to/}ég(ﬂ} such that ¢dV is

its associated measure,.

Proof: Since‘the linear functional g - {gw dv 1is
continuous on é%(ﬂ) (Lemma 3), there exists gw £ °Sb(Q) such
that D[gw, g] = ng dV for all g e J}O(Q). If g > 0, then
D[gw, gl > 0. Hence gw is a supersolution on Q. On‘eaéh
coordinate neighborhood, g, is a solution of

T ogld 2u ) .
2 /G gt | = .
1 1

L >
VG j

ey

3X .
J

Therefore, by the results in [11] or in [14], we may assume
that gy is continuous. Then gy is superharmonic, and hence

it is a potential by Lemma 12.

11
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REMARK. By the above lemma, we see that there exists a
positive potential on Q. Note that this fact essentially

relies on the assumption 1 ¢ X}O(Q).

9. Green functions,

It is shown in [7] that for any coordinate neighborhood U
in @, there exists the Green function gg(x) on U, uniquely

determined by the following two conditions:

(iy For each y €. U, gg is a potential on U and is harmonic
on U - {y};
(i1) If u € q&(U) and 1s a supersolution on U and if u is

the associated measure, then

a0 = [ gy + me

a.e. on U.
Also it is shown that if p is a measure on U such that
U 1
W(U) < =, then [Ugydu(y) e L.
From this result we obtain

PROPOSITION 10. There exists a uniquely determined

function gy(x) defined for x € Q, y ¢ Q such that

{i) For each y € Q, gy is a potential on Q and is harmonic

on 2 - {y};

(i1} For each coordinate neighborhood U, gy - gg is

harmonic on U.

Furthermore, we have

12
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(i1i) (x, y) ~ gv(x) is lower semi-continuous on § x Q,

continuous on £ x Q - {(x, x); x & Q}.

Sketch of the proof: First remark that there is a posi-
tive potential on @ (cf. the remark after Lemma 13). The
uniqueness of gg for each coordinate neighborhood U implies
the proportionality of two potentials supported by {y}. Hence,
by Théoréme 18.1 in [5], there exists a function pv(x) on 0xQ
such that for each y € @ p 1is a potential supported by {y} and
the mapping y ~ py(x) is continuous on Q - {x} for each x & Q.

On each coordinate neighborhood U, we can write
p, () = A ,gY(x) + b (x)
y YTy y

for x, ye U, where hy is harmonic on U. It is easy to see that
y - xy is continuous on U and xy does not depond on U as long
as yre U. Then gy(x) = py(x)/Ay satisfies (i) and (ii) of the
proposition and y - gy(x) is continuous on Q - {x} for each

x € Q. The uniqueness of gy(x) is easy to see. The property

{(iii) follows from Proposition 18.1 in [5].

PROPOSITION 11. 1If u is a superharmonic function on Q
having the greatest harmonic minorant h on @, then there

corresponds a unique measure u such that
ue) = | g 0 + heo
Q 7

for all x ¢ 9. If, furthermore, u ¢ dﬁioc(Q), then py is the

measure associated with u.

The integral representation follows from Théoréme 18.2 of

13
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[S]. The last assertion of this proposition is a consequence
of condition (ii) for gg and g .

COROLLARY. Any superharmonic function on £ belongs to

1
Lioc (dV)

PROPOSITION 12. gy(x) = gx(y) for any x, y & Q.

Proof: Let by, wz € CO(Q), by, ¥y 2 0. By Lemma 15 and

the above proposition we have

D[gwl, ngl = [gwlwz dv

[, 0w, 1wy aveaaven.

Since D£g¢1’ ng] = D[ng, gwl] and ¥y, ¥, are arbitary, we
have gy(x] =g, (.

Using this proposition, we obtain the following result as

in the classical case:

LEMMA 14, If y is a non-negative measure on o with

finite total mass, then ( gy(x)du(y) is a potential.
Q

J.

10. Dirichlet problem with respect to an ideal boundary.

Let Q% be a compactification of Q2. For an extended real

alued function ¢ on T = Q* - Q, let

superharmonic on Q, bounded below]

;§¢ = {u; UA{=}
limx+£u(x) > ¢(g) for all £ e T
and:§¢ = {-u; u E_zi¢} By a general theory (cf. [1], [3]) it
is known that.each of ﬁ¢ = inf E@ and E¢ = sup=§¢ is either

14



harmonic on @, = + © or = - » and that H, < H . If H = H

b = ¢ )

and are harmonic, then ¢ is called resolutive and the common

function is denoted by H Let R(T') be the set of all resolu-

e
tive functions on I'. We have ([1], [3]; cf. [2])

PROPOSITION 13. (i) R(Tr) is a linear space and the

mapping ¢ -~ H¢ e H(Q) is non-negative linear on R(T); H1 = 1.

(ii) H

max(¢1,¢2) = the least harmonic majorant of

x(H H

max ( oy’ ¢2),
H . = the greatest harmonic minorant of
min(¢;,¢,) &

min(H H .

mincH, , Hy )

If every finite continuous function on I' is resolutive,
then we call Q* a resolutive compactification (with respect to

(gij)). In this case we have the harmonic measure w _ on I for

each x & Q, which is defined by
J¢ dmx = H¢(x)
for all ¢ € C(T). Obviously wx(r) =1,
11. The space RD(F).
We assume that Q% is a resolutive compactification. Let
Rp(r) = {6 e R(T); H, e J(D)}.

This is a linear subspace of R(T).

PROPOSITION 14. If ¢,, ¢, € RD(F), then max(¢1, 950

min(d)l, ¢z) € RD(F) and

15



Dlnax e, 0,0 = Plningoy 0,01 < Dy 1 # DIH, T

in particular, if ¢ ¢ RD(F), then [¢] ¢ RD(T) and D[H|¢']
!

< D[H®]. (C£f. the corollary to Thecrem 2 and Proposition 13;

also cf. [10])

n=

1,2,... . Then D[H

PROPOSITION 15. For ¢ ¢ RD(F), let ¢n = max(min(¢, n), -n),

- H¢] - 0 (n » =), (Cf. Proposition
n

2; alsc cf. [10])

THEOREM 3. (Doob's lemma) For fixed x, € Q, there exists

a constant M > 0 such that for any ¢ ¢ RD(P)

f¢2dwx < M”Héﬂz;

(0]

The proof of this theorem is similar to the classical case

(see e.g., [9], [10]) once we obtain the following lemma:

2
-u

Eijo

LEMMA 15. If u ¢ H(Q), then the superharmonic function

has a harmonic minorant and

wl(x) = 2 j g, () lgrad u|2(nav(y) + heo),
Q

where h is the greatest harmonic minorant:of - uz;
Proof: Since u is continuous, we easily see that' - uz;
3(-ul du 1
C(Q) and —£§§;l~= - 2u 5;; . Hence, for-any ¢ ¢ CO(Q),
2 ij du 9
D[-u®, o] = -2 [ > gt G [Sij u]dv

-2D[u, éu] + 2J|grad ul?eav.

Since ¢u ¢ “90(9) (Lemma 4), D[u, ¢u}] = 0. Hence u

16
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2|grad u}de is the measure associated with -u’. Since

e L), u(Q) < ». Therefore, by Lemma 14, p(x)

[+

1]

2 . . .
ZJ gy(x)lgrad u|“(y)dv(y) is a potential on Q. Obviously,
Q
—u? - p is harmonic on Q. Thus we obtain the lemma.

COROLLARY 1. {H¢; ¢ € RD(F)} is a closed subspace of
HQ).

COROLLARY 2. 1If A is an w-measurable subset of: T such
that w(l" - A) > 0. Then there exists a constant MA > 0 such
that:

2. . ,
J¢ dw, < M; D[H]

5
for any ¢ ¢ RD(P) such that ¢ = 0 w-a.e. on I - A.. Thus

{Hys ¢ € Rp(T), ¢ = 0 w-a.e. on T - A}

is. a closed subspace of }CLQ). (cf. [9}, [10])

17
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