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Abstract 10 

The previously developed multiscale method for concurrently coupling atomistic and continuum 11 

hydrodynamic representations of the same chemical substance is extended to consistently incorporate the 12 

Langevin-type thermostat equations in the model. This allows not only to preserve the mass and 13 

momentum conservation laws based on the two-phase flow analogy modelling framework but also to 14 

capture the correct local fluctuations and temperature in the pure atomistic region of the hybrid model. 15 

Numerical results for the test problem of equilibrium isothermal fluctuations of SPC/E water are presented. 16 

Advantages of using local thermostat equations adjusted for the multi-resolution model for accurately 17 

capturing of the local water density in the atomistic part of the hybrid simulation domain are discussed. 18 

Comparisons with the reference pure all-atom molecular dynamics simulations in GROMACS show that 19 

the suggested hybrid models are by a factor of 5 to 20 faster depending on the simulation domain size. 20 

1. Introduction 21 

Hybrid multiscale methods, which resolve inter-atomic forces in the region of interest using 22 

Molecular Dynamics (MD) while representing the rest of the fluid by much more efficient Computational 23 

Fluid Dynamics (CFD) models, have a variety of use in many problems of science and engineering[1-4]. 24 

Multiscale approaches coupling MD and CFD methods can be cast into two broad categories, Domain 25 

Decomposition and Heterogeneous Multiscale Methods (DDM and HMM, respectively)[5-6].  26 

HMM typically embeds a micro model described by an interaction potential between discrete particles 27 

in the nodes of a uniform Cartesian grid that covers the entire macroscopic simulation domain where 28 

Navier-Stokes (NS) equations are solved. The same approach can also be extended if the MD part of the 29 

model does not coincide with a grid node of the CFD solver, which is known as Internal-Flow Multiscale 30 

Method (IMM)[7]. Within the HMM approach, a macroscopic solution can be used to enforce a prescribed 31 
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strain rate or a mass flux at the boundaries of the microscopic model. The stresses obtained by averaging 1 

of the MD solution are then fed back to the macroscopic equations.  2 

The DDM approach for coupling of MD equations with CFD was pioneered by O’Connell and 3 

Thompson[8] who coupled MD simulations with the solution of the Stokes equations. Further investigations 4 

along the same line of thought used Landau and Lifshitz Fluctuating Hydrodynamics (LL-FH) Navier 5 

Stokes model[9], which includes not only the simple time means but also statistical variances of thermal 6 

density and velocity fluctuations[10-12]. Depending on how the exchange between the MD and CFD regions 7 

is implemented, DDM approaches can be further classed into flux coupling and state coupling schemes. In 8 

flux coupling schemes, the momentum and mass fluxes of the non-overlapping MD and CFD regions are 9 

exchanged via a boundary condition at the interface to preserve the corresponding conservation laws[13-14]. 10 

In comparison with this, state coupling schemes use a finite overlap region to transfer the mass and 11 

momenta between the MD and CFD zones[15]. The finite overlap region allows for a smooth transition 12 

between the continuum and atomistic parts of the model. The coupling may also be improved by 13 

incorporating multi-resolution discrete particle models – from atomistic to coarse-grained particles[16-17]. 14 

Such refined formulations can be used to obtain sophisticated triple-scale (micro-meso-macro) models 15 

where multi-resolution particles are coupled with continuum flow models[17-18]. 16 

The current work follows the hybrid modelling approach developed in Ref.[19] and [20]. In this state-17 

variable coupling-type method, the macroscopic and the microscopic parts of the model are regarded as 18 

two nominal “phases” of the same chemical substance. The interaction of the two phases is formulated as 19 

the conservation laws of mass and momenta. One phase stands for a continuum flow- and the other phase 20 

stands for a discrete atomistic phase- representation of the same liquid. The concentration of the atomistic 21 

phase is a user-defined function that defines the multiscale model resolution. The continuum phase is 22 

governed by the Landau and Lifshitz Fluctuating Hydrodynamics-type equations. In order to avoid any 23 

artificial phase separation, forcing terms are introduced in the MD particle equations, which are also 24 

included in the continuum flow equations of the model in order to preserve the conservation of mass and 25 

momentum. In Ref.[21] and [22], a simplified one-way coupled version of the original method was 26 

considered, which accounts for the continuum flow effect on microscopic particles without the feedback. 27 

When implemented in GROMACS[23], the approach was found to be sufficiently accurate for modelling of 28 
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a range of problems such as biomolecule diffusion[24], oscillations of a PCV2 virus capsid in water in 1 

equilibrium conditions[25], and the interaction of nano-confined water with material surfaces of an Atomic 2 

Force Microscope[26]. The one-way coupled model can be further refined by coupling it with multi-3 

resolution particles in the framework of the AdResS method[27].  4 

On the other hand, the full computational efficiency of the hybrid multiscale scheme can only be 5 

achieved when the complete two-way coupled scheme is implemented. Most consistently, the two-way 6 

coupled method was implemented by rearranging the governing equations of the two-phase flow analogy 7 

method into the so-called Generalised Landau-Lifshitz Fluctuating Hydrodynamics equations (GLL-8 

FH)[28]. In comparison with the standard Fluctuating Hydrodynamics (FH) model, which is a statistical 9 

representation of molecular liquids at mesoscale, the GLL-FH equations reduce to the FH model at 10 

mesoscale but also exactly converge to control-volume averaged MD fields at microscale.  11 

In the previous publications, fully coupled two-phase analogy model has been implemented first for 12 

an idealised 2D Mercedes-Benz water model[29] and then for a 3D liquid argon in GROMACS at both 13 

equilibrium and the non-equilibrium conditions[28]. Importantly, in each of the previous implementations 14 

an external MD thermostat was used to enforce the correct global temperature on MD particles and which 15 

effect was not consistently accounted for in the continuum part of the same model. Hence, the goal of the 16 

present article is to extend the hybrid MD-FH method to incorporate thermostat equations in both the MD 17 

particles’ and the continuum field’ part of the model. On the way, we will also investigate the importance 18 

of using a local thermostat model, which in comparison with the constant thermostat can be adjusted to the 19 

local resolution of the multiscale model.  20 

2. Computational Method 21 

2.1 Two-phase analogy equations 22 

In the framework of the hybrid continuum-atomistic model[19], the computational domain is 23 

decomposed into three zones: a pure molecular dynamics particle zone (MD), a pure fluctuating 24 

hydrodynamics continuum zone (FH) and a hybrid continuum-particle region (MD-FH). A nominally two-25 

phase fluid is considered. A user-defined concentration function, s is introduced that determines the model 26 

resolution – from atomistic (s = 0) to continuum (s = 1). In the intermediate MD-FH region the model 27 
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resolution smoothly varies, 0 < s < 1. MD particle equations are solved in both the purely atomistic and 1 

the intermediate region. Continuum field equations are solved throughout the entire computational domain 2 

including the pure hydrodynamics region (s = 1). For numerical solution, the entire domain is covered by 3 

a Eulerian computational grid. Assuming an isothermal and electrically neutral flow process, the mass and 4 

momentum equations are decoupled from energy[11], and, following the standard two-phase modelling 5 

approach[30], the conservation laws of the continuum and particle phases are as follows: 6 

for mass,  7 
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and for momenta:  10 
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Here i=1, 2, 3 denotes x, y and z components, variables with sub-index p correspond to particle phase while 13 

the continuum cell-volume and cell-flux averaged values do not contain the particle sub-index.   14 

corresponds to one of the six faces of the hexahedral control volume of the computational grid, V . m  and 15 

 are the local mass and density of the continuum phase per given control volume. 
p

m  and 
p p

m V 16 

are the particle mass and its effective density per control volume, respectively. 
pu  and u correspond to 17 

particle velocity and velocity of the two phase ‘mixture’, which is given by 18 

 
1

1
N

i i p p ip

p
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  
 
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 . The mixture density is defined as  
1

1
N

p

p

s s  


    . N  is the 19 

number of particles per cell volume and N


 denotes the number of particles crossing the cell face in the 20 

direction of the area normal d


n , t  represents the change of each quantity over one time step. MD

ipF  refers 21 
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to the MD particle force exerted on each particle. The continuum force, ( )
i j ij ij

F     includes both 1 

the deterministic and stochastic continuum Reynolds stress forces in accordance with the Landau-Lifshitz 2 

Fluctuating Hydrodynamic model[9]: 3 

1

1

( ) ( 2 )

= + ( 2 )

ij ij i j j i ij
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wherein i, j = 1,2,3, are the spatial coordinates x, y and z.   and   are the shear and bulk viscosity 5 

coefficients, respectively. D is the dimension of the system and 
ij  is the Kronecker delta function. 

ij  is 6 

a random Gaussian matrix with zero mean and covariance 7 

1

1 1 2 2 1 2 1 2
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For computational purposes, the stochastic stress tensor 
ij  is represented explicitly by 9 
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where G  is a random Gaussian matrix with zero mean and covariance ij kl ij kl
G G   ,11 

[ ]
2

T

ij ijs

ij ij

G G
G tr E D


  G  is a random symmetric matrix with zero trace, E is the identity matrix with 12 

the components ijE , [ ]tr G  is the trace of the matrix G , Bk  is the Boltzmann constant, and FHt is the 13 

continuum hydrodynamics integration time step. T  is the thermodynamic temperature, which is equal to 14 

the target MD temperature 
0

T . For isothermal processes of interest in this work, a suitable isothermal 15 

equation of state (EoS), 
0

( , )p p T  is used which relates thermodynamic pressure and density of the 16 

continuum phase. Parameters of EoS are calibrated from a separate all-atom MD simulation. 17 

The hybrid model is closed by specifying the source and sink terms, 1J  and 2J  in the mass and 18 

momentum equations. These terms are the effective forcing functions, which need to be calibrated 19 

appropriately. The terms depend on the user-defined phase concentration function s and serve to prevent 20 

the solution of the nominally two-phase fluid from artificial phase separations. These functions are defined 21 
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so that the residuals corresponding to the differences of the cell-averaged particle density and momenta 1 

from the same of the two-phase mixture , 
1

N

p

p

  


    and 
1

N

i i p ip

p
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Notably, neither calibration of the 1J  and 2J functions, nor the definition of the phase concentration 3 

function s, affect the total conservation laws of mass and momenta, which are governed by equations (1)-4 

(4) where the sources and sinks of the two phases cancel out in the mixture mass and momenta [28]. 5 

2.2 Generalised Landau-Lifshitz model 6 

The modified MD coordinate and velocity equations are defined by adding the relevant forcing terms 7 

to the pure MD equations, 
ip
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11 

where i, j = 1,2,3 are Cartesian coordinate components, 
1

N

p

p
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1

N

i i p ip

p

q u u 
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   , p is the 12 

particle sub-index which refers to the value defined or interpolated to the particle location, and , 0    are 13 

the adjustable constants which need to be obtained from the model calibration. 14 

Forcing terms on the right-hand side include control-volume-averaged gradient f , which is 15 

computed in accordance with the Gauss-Ostrogradski (Divergence) theorem, 
1,6

fd

V



  n
. The same 16 

compact notation will be used in further places of the article.  17 
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The source/sink terms 1J  and 2J  in (1)-(4) are implicitly defined by specifying the equations for mass 1 

and momentum residuals. The latter are driven to zero using the convection-diffusion-reaction type 2 

equation, 3 
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Following Ref.[28] , by substituting the modified MD equations (8) and (9) in the following conservation 6 

laws of mass and momenta of MD particles,  7 
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after some re-arrangement and introducing the dependent variables *     and 
i i i

q u q   , the so-10 

called Generalised Landau-Lifshitz Fluctuating Hydrodynamics (GLL-FH) equations are obtained 11 
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The right-hand-side terms of the above equations include the control averaged mass and momentum terms 14 

corresponding to the feedback from the MD particles to the continuum hydrodynamics phase, 15 
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The GLL-FH equations (10), (11), (14)-(17) are solved by the finite-volume method on a uniform 1 

computational grid with control volume V . The integration time step, FHt  is 10 times larger in 2 

comparison with the MD time step, 
MDt  as discussed in Ref.[28]. In the two-way coupled solution, the 3 

hydrodynamic fields are driven by the collective dynamics of MD particles while coordinates and 4 

velocities of the MD particles are concurrently updated in accordance with (8) and (9). 5 

2.3 Langevin dissipation in MD particle equations and its effect on the conservation laws 6 

The modified MD particle equations are solved by the standard Leapfrog algorithm[31] and using 7 

appropriate central finite-volume approximation for the continuum forcing terms for the MD particle 8 

coordinate, 9 
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where, i, j = 1, 2, 3, 
MDt  is the MD time step, and superscript n stands for the time discretisation of the 13 

continuum flow equations (10), (11), (14)-(17). 14 

In order to stabilise the time-integration of the particle equations (18), (19), one standard choice is to 15 

apply the Berendsen thermostat[32] at each MD time step so that the ensemble-averaged temperature of MD 16 

particles always satisfies the prescribed value of T0=298.15 K. This is achieved by solving an additional 17 

dissipative equation for the MD particle velocity after the update step: 18 
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where 
,

final

i pu  is the finally updated velocity value at the new time level and the rescaling parameter is  1 
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In the above expression,   is a characteristic relaxation time of the thermostat, and 
refT  is the target MD 3 

temperature. T  is the instantaneous temperature of MD particles for the relevant ensemble averaging that 4 

is directly related to the ensemble-averaged kinetic energy of MD particles in accordance with the 5 

equipartition. 6 
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where the sum is taken over the entire simulation domain.  8 

The hybrid method described by equations (10), (11), (14)-(21), where the particle temperature is 9 

measured by averaging over the entire computational domain corresponds to the model considered in 10 

Ref.[28]. It will be further referred to as Global Thermostat model (GT). 11 

In MD simulations, thermostat generates additional dissipation, which is added to the discrete particle 12 

system in order to counterbalance the increase of fluctuation energy occurring due to the numerical 13 

integration of the particle equations. The same can be achieved by incorporating the thermostat model 14 

directly in the modified MD particle momentum equations, and Eqs.(18), (19) become 15 

*ip

i

dx
u

dt
   (22) 16 

*ip

ip i

du
u

dt
F     (23) 17 

where 
1

MD
t








, 
1

*
(1 ) (1 )

N
ip

p ip p ip p p p

p

i

i

dx
u s u s u s s

xdt


 




     


 , 18 

and 19 
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 

 

1

1 1

1

1

*

1

(1 )

1

N

p p jp pN N
pMD

p jp p p jp p pN

p pi
p

p

N

j p

p

i

jF

s s u
x

s F s F
x

s s m


 

  



 



 









   



 

   
   

   
  
  
  

  


 





 (24) 1 

In turn, by substituting the modified MD velocity equations (23) into the particle momentum equation (13), 2 

and following the same steps outlined above, an additional dissipative source term appears in the 3 

momentum component of the continuum hydrodynamics equation (15),  4 

    
6

1 1 1 1

1
1 1

NN N
MD

i p ip p jp p ip j ip p

p p p

Q s F s u u dn u
V







  
   

   
 

    
 

     (17a) 5 

which can be compared with the original expression (17). 6 

2.4 The new local thermostat consistent Langevin version of the hybrid MD-FH model 7 

Following Ref.[27], Eq.(23) can be exactly integrated to  8 

 
/2

/2

*
e e e

2 2

t
t t t

ip ip
t

i

t t
u t u t t t dtF

  
     



 
     

   
   
   

  (25) 9 

Furthermore, by approximating    * *

i iF Ft t t    in Eq.(23), substituting the obtained expression for10 

 ipu t t  to the modified MD coordinate equation (23), and analytically evaluating the integrals in the 11 

coordinate and momentum equations with retaining only the leading order terms, the modified Leapfrog 12 

scheme is obtained, 13 

    * e 1
ip ip

t

ix txt ut







 


    (26) 14 

/2 3

* e e
e

2 2

t t

t

ip ip i

t t
u t u t F

 





   

   
   

   
   
   

,  (27) 15 

which converges to the original Leapfrog method (18), (19) in the limiting case of deactivating the 16 

thermostat model 0  . 17 
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The modified GLL-FH method based on equations (10), (11), (14)-(16), (17a), and (22)-(27), where 1 

the particle temperature is measured by averaging over the entire computational domain as in the 2 

previously considered GT model, will be further referred to as Langevin Constant Thermostat (LCT). 3 

The next step is to further adjust the thermostat term to make it sensitive to the phase concentration 4 

parameter s, which determines the local resolution of the hybrid MD-FH model. Such adjustment may be 5 

needed since, for example, as discussed in the introduction, the kinetic energy of MD particles does not 6 

represent the true temperature of the two-phase mixture in the hybrid MD/FH domain where the continuum 7 

hydrodynamics effect on temperature is important. For instance, in the hydrodynamics-dominated region, 8 

where s tends 1, the ‘coarse-grained’ MD particles move with a characteristic velocity that is equal to the 9 

ensemble-averaged thermal velocity fluctuation in control volume V  and with time step 
FH

t . However, 10 

because of the averaging, the ensemble-averaged velocity fluctuation is much smaller in comparison with 11 

the thermal velocity of individual atoms.  12 

In the absence of a precise definition of temperature of the hybrid MD-FH system, the local thermostat 13 

model is adjusted by introducing a variable temperature function ( )
ref

T s  that is equal to the target MD 14 

temperature, 
0

T  = 298.15 K in the pure MD region and decreases with s increasing. In order to derive a 15 

suitable expression for ( )
ref

T s , let us consider a balance equation for enthalpy of the two-phase fluid 16 

corresponding to a mixture of the continuum hydrodynamics phase and the discrete MD phase which 17 

partially occupy the same control volume V , 18 

2

(eff)

0 0

1

1

3

N

p p p

pB

V u sT T
Nk




    (28) 19 

Here the first term on the left-hand-side is the partial volume contribution of the discrete particle phase, 20 

the second term on the left-hand-side is the partial volume contribution of the continuum phase, and p
u  21 

is the particle velocity magnitude. The thermodynamic temperature of the continuum phase is equal to the 22 

target temperature of the system. 23 

(eff)

0pV V  V is some effective partial volume occupied by each particle in control volume V , which 24 

needs to be defined. As s increases with coarsening the hybrid model resolution, MD particles become less 25 
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mobile thereby occupying a smaller part of the control volume. On the other hand, particle velocities 1 

contribute to the local temperature, which can be measured via the ensemble-averaged kinetic energy of 2 

the particles (21a). To close the model, the effective control volume (eff)

pV  occupied by each particle can 3 

be related to the control volume V . For example, a simple-minded approach would be to assume that 4 

(eff) (1 )pV s V   in accordance with the geometrical reduction of the effective volume of the MD particle 5 

phase as s increases in the hybrid MD-FH region. Substituting this definition of the effective volume to the 6 

enthalpy equation (28) will result in the previously considered LCT model, where the reference 7 

temperature ( )
ref

T s  is equal to 
0

T  for all s (see also Eq.(31)).  However, because of the non-local particle-8 

particle interactions and the particle inertia effect, it can be expected that MD particles do not strictly obey 9 

the geometrical law of the MD phase volume reduction as a function of s but remain mobile over a larger 10 

part of the volume, 11 

   (eff) ,1 1pV f s s f s      (29) 12 

Numerical experiments (Appendix A) show that good choices for the shape function  f s  include 13 

  (1 )f s s    (30a) 14 

and 15 

  (1 2)f s s    (30b) 16 

which correspond to the same leading term in the atomistic part of the hybrid simulation domain at s<<1. 17 

By combining Eq.(28) with (30a) (or (30b)) and using Eq.(21a) to express the volume averaged kinetic 18 

energy via the temperature, the final expression for the resolution-dependent reference temperature in the 19 

thermostat exponent Eq.(21) is given by 20 

 
0

1
ref

s
T T

f s


   (31) 21 

The s-dependent thermostat modification of the LCT model, where instead of ( )
ref

T s  equal to 
0

T  the 22 

above derived expression (31) is used will be further referred to as Local Langevin Thermostat model 23 

(LLT). In comparison with the previously considered GT and LCT models, the local thermostat is also 24 

based on measuring the particle temperature by averaging over each local control volume, V . In this 25 
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paper, all presented results corresponding to the local thermostat are based on the shape function defined 1 

by Eq.(30b). 2 

2.5 The choice of the thermostat model  3 

It can be noted that the constant dissipation term makes the particle momentum equation (23) similar 4 

to the stochastic thermostat of Brownian dynamics. Indeed, the forcing term 
*F  in Eq.(24) incorporates 5 

the fluctuating hydrodynamics force F , which corresponds to a gradient of the corresponding stochastic 6 

Reynolds stress 
ij  (5), and which becomes partially balanced by the Langevin damping. However, in 7 

comparison with the stochastic thermostat model driven by Brownian dynamics[33], the stochastic 8 

hydrodynamic term of the suggested model is only active in the hybrid part of the domain ( 0s  ) while 9 

the Langevin damping vanishes in the particle-free part of the domain (see Eq.(17a)). Furthermore, the 10 

produced dissipation does not violate the total momentum conservation because of the two-phase flow 11 

analogy formulation, where the sources and the sinks of the two phases (equations (3) and (4)) cancel out 12 

for the mixture momentum, which corresponds to  
1

1
N

p

p

s s  


     and 13 

 
1

1
N

i i p p ip

p

u s u s u  


  
 

   
 

 . By the same virtue, the suggested approach is also different from 14 

other hybrid coupling schemes based on Langevin dynamics, for example, such as[34], where a Langevin 15 

damping term together with a random force term were added to the MD equations of motion between the 16 

pure atomistic and the continuum flow regions. 17 

An important advantage of the Berendsen thermostat is simplicity. However, although this thermostat 18 

equilibrates the system to a desired temperature in the pure atomistic region ( 0s  ), it cannot generate a 19 

correct canonical ensemble unless a large molecular system is considered. Notably, the suggested 20 

modelling framework can be extended to the Nose-Hoover thermostat model[35] which is free from the 21 

above drawback. For example, one can consider replacing the dissipation exponent in Eq.(23),  
1

MD
t








 22 

by the Nose-Hoover evolutionary equation for ( )t , 23 
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2

1

3 1

2 2

N
p p

B ref

p

m ud N
k T

dt






 
  

 
 

   (23a) 1 

where 0   corresponds to a friction coefficient. 2 

 At the equilibrium state, 0
d

dt


  the kinetic energy is equal to 

3 1

2
B ref

N
k T


 as required by the 3 

equipartition, and wherein the additional degree of freedom in comparison with (21a) comes from  .  4 

The continuum equations of the model including (17a) will remain unaffected by Eq.(23a) but the Leapfrog 5 

scheme (18)-(20) will need to be modified accordingly, which modification will be the subject of future 6 

work.  7 

 8 

3. Numerical example: thermostat consistent modelling of equilibrium fluctuations of water 9 

3.1 Test problem  10 

As a benchmark test case, isothermal water fluctuations in a cubical water volume at equilibrium 11 

conditions are considered. The problem configuration is similar to the one considered in Ref.[28] but 12 

instead of the idealised Lennard-Jones liquid, SPC/E water is used here.  13 

Fig.1 shows the entire computational domain which includes a larger hydrodynamic box domain 14 

which overlaps with a smaller particle domain. Continuum flow equations are solved in the entire 15 

computational domain and the MD particle equations are solved in the inner particle domain based on NVT 16 

ensemble. 17 

Two computational domains are considered, which correspond to 9×9×9 and 17×17×17 elementary 18 

control volumes, V . The two domains will be further referred to as the small and the large simulation 19 

boxes, respectively. Each elementary control volume is filled with 243 water molecules at the normal 20 

atmospheric pressure and room temperature conditions. The size of the MD particle box corresponds to 21 

5×5×5 control volumes. Periodic boundary conditions are used for both the continuum and interior particle 22 
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domains. Outside the internal particle domain s is set to 1. Inside the particle domain, a spherically 1 

symmetric s-function is specified, 2 

min

max min min

max

0,

( ) ( ) ,

,

MD

MD
MD FH

FH MD

FH

S r R

r R
s r S S S R r R

R R

S r R

  



    


 

, (32) 3 

which corresponds to the pure MD region in the centre and the hybrid continuum-atomistic region at the 4 

periphery of the particle box. Here r  is the distance from the centre of the box, and RMD and RFH are the 5 

radii of the pure MD zone and the hybrid MD/FH zone in the particle domain. Values of these and other 6 

model parameters are obtained from a suitable calibration of the hybrid model. Table 1 provides a summary 7 

of the model parameters. 8 

It can be noted that while the two-phase flow analogy modelling framework permits any shapes of the s-9 

function including multiply-connected[26] and time-dependant regions[24], accuracy of the hybrid model 10 

remains generally sensitive to this function. Hence, in the current work, a simple spherical s -function is 11 

used. 12 

 13 

Fig. 1. Computational setup for the simulation of water fluctuations at equilibrium isothermal 14 
conditions: the overlapping continuum and particle box domains. Insert shows the outline of the 15 

spherical pure MD zone (s = 0) inside the particle box. 16 

 17 

Table 1. Simulation parameters used in GROMACS for SPC/E water and the viscosity values used 18 
in the LL-FH code. 19 

 LLT LCT GT 
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Number of atoms (molecules) 91125 (30375) 

Molecular mass (g·mol−1) 18.015 

Temperature (K) 298.15 

MD box volume (nm3) 9.686×9.686×9.686 

MD time step (ps) 0.001 

Continuum solver time step (ps) 0.01 

Average density (amu·nm−3) 602.18 

Shear viscosity (amu·nm−1·ps−1) 409.496 

Bulk viscosity (amu·nm−1·ps−1) 933.41 

Maximum concentration of the hydrodynamic 

phase in the particle domain 
max

S  
0.5 

Number of control volumes in the MD box 

domain 
5×5×5 

Number of control volumes in the continuum 

box domain 

9×9×9&17×17

×17 

9×9×9&17×17

×17 

9×9×9&17×17

×17 

Dimensionless radius of the pure MD zone, 
1/ 3

2
MD

R V
  

0.5 

Dimensionless radius of the pure MD/FH zone, 
1/ 3

2
FH

R V
  

0.8 0.9 

MD/FH coupling parameters, α (nm2·ps−1), β 

(ps-1) 
100, 50 40, 40 

Thermostat relaxation time, (ps) 0.36 0.1 

 1 

3.2 Analysis of the model results 2 

Tables 2a and b summarise results of the GT, LCT, and LLT models for the standard deviations of 3 

density and velocity fluctuations. Both the solutions of the MD particle and the continuum hydrodynamics 4 

phase of the models are shown. The fluctuations are ensemble-averaged over each control volume V  of 5 

the entire 9×9×9 or 17×17×17 computational domains. Analytical solutions based on the grand-canonical 6 

ensemble fluctuating hydrodynamics theory are provided in each case, 
1 0

( )
T B

T
STD c k

V
 


  and 7 

0
( )

B

T
STD u k

V
  for comparison, where 

1

Tc
 is the isothermal speed of sound. 8 

For each hybrid model solution (apart from the GT model in the small box which diverges), the 9 

standard deviations of the MD and the continuum hydrodynamics part of the multiscale model are very 10 

close. This confirms the absence of artificial phase separations thereby confirming that the coupling 11 

parameters of the model have been specified correctly. 12 
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The GT model is found to be extremely sensitive to the size of the hydrodynamic simulation domain. 1 

Its solution becomes stable for the large 17×17×17 domain, once the continuum hydrodynamics boundary 2 

is moved further away from the particle zone. However, the model still notably overestimates the standard 3 

deviations of the density and velocity fluctuations (Tables 2a and b) by 60-70% for both the MD particles 4 

and the continuum part of the solution.  5 

The thermostat consistent LCT and the LLT water models are much more robust in comparison with 6 

GT. The accuracy of their solutions tends to improve as the hydrodynamics domain becomes larger, which 7 

can be good news for engineering applications where macroscopically large hydrodynamic domains are 8 

used. LCT captures the fluctuations particularly accurately (within 7-11% error for density and less than 9 

2% error for velocities). In comparison with this, the error of the LLT model somewhat larger: it 10 

underestimates fluctuations by 18-26% for density and 18-20% for velocities. The lower fluctuations of 11 

LLT are explained by the fact that the local thermostat is designed to adjust to the particle-to-continuum 12 

resolution of the hybrid model, which reduces the reference particle temperature in the hydrodynamics 13 

dominated regions thereby reducing the ensemble-averaged fluctuation result over the entire system. What 14 

is most important in the simulations is to accurately capture fluctuations in the pure MD zone. Hence, 15 

Table 3 shows standard deviations of density and velocity fluctuations computed in control volume 16 

corresponding to the pure MD zone, s=0. In this case, the standard deviations are defined based on the 17 

fluctuation of the MD particle densities and velocities from the cell-averaged MD quantities, where the 18 

averaging is performed over the same pure MD control volume. In this case, comparisons with the 19 

statistical theory are problematic because of the small ensemble size. However, in comparison with the 20 

pure all-atom MD solutions the accuracy of the LLT model corresponds to less than 0.2% error for density 21 

and 11% for velocity fluctuations. 22 

TABLE 2 (a). Standard deviations of the density in the MD-FH domain. 23 

 
_ MDSTD   

(amu·nm-3) 

_ FHSTD   

(amu·nm-3) 

GT  

(FH cells 

17×17×17) 

17.687 16.714 

LCT  

(FH cells 9×9×9) 
8.868 8.928 

LCT  9.312 9.369 
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(FH cells 

17×17×17) 

LLT  

(FH cells 9×9×9) 
7.409 7.460 

LLT  

(FH cells 

17×17×17) 

8.208 8.254 

Analytical 

solution 
10.049 

TABLE 2 (b). Standard deviations of the velocity fluctuations in the MD-FH domain. 1 

 
_ x_MDSTD u  

(nm·ps-1) 

_ y_MDSTD u  

(nm·ps-1) 

_ z_MDSTD u  

(nm·ps-1) 

_ x_FHSTD u  

(nm·ps-1) 

_ y_FHSTD u  

(nm·ps-1) 

_ z_FHSTD u  

(nm·ps-1) 

GT  

(FH cells 

17×17×17) 

0.0314 0.0314 0.0312 0.0305 0.0309 0.0315 

LCT  

(FH cells 9×9×9) 
0.0239 0.0238 0.0234 0.0243 0.0241 0.0238 

LCT  

(FH cells 

17×17×17) 

0.0234 0.0235 0.0234 0.0238 0.0239 0.0238 

LLT  

(FH cells 9×9×9) 
0.0198 0.0197 0.0197 0.0200 0.0201 0.0199 

LLT  

(FH cells 

17×17×17) 

0.0197 0.0197 0.0197 0.0200 0.0200 0.0203 

Analytical 

solution 
0.0238 

TABLE 3 (a). Standard deviations of the effective particle density in the pure MD domain. 2 

 
_STD   

(amu·nm-3) 

LLT 0.9707 

Pure MD 0.9718 

TABLE 3 (b). Standard deviations of the particle velocity fluctuations in the pure MD domain. 3 

 
_ xSTD u  

(nm·ps-1) 

_ ySTD u  

(nm·ps-1) 

_ zSTD u  

(nm·ps-1) 

LLT 0.8687 0.8671 0.8675 

Pure MD 0.9678 0.9664 0.9567 

Fig.2 shows cell-averaged density and temperature computed in the pure MD zone for all three 4 

models, GT, LCT and LLT. For LCT and LLT, the solutions for two domain sizes, 9×9×9 and 17×17×17 5 

are presented.  6 

Consistently with the previously reported results of the GT model for fluctuations, it predicts a much 7 

higher temperature and a lower density in the pure MD zone. In contrast to this, both the LCT and the LLT 8 

models capture the local temperature in the MD zone quite well. Furthermore, the LCT solution 9 
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overestimates the cell-averaged water density by 12% while the LLT error for the same quantity is within 1 

4%. Recalling that water is a highly incompressible substance, the reduced error in density suggests that 2 

the LLT model is also much more accurate in preserving the reference pressure locally in comparison with 3 

the LCT model. 4 
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 7 

Fig. 2 Fluctuation properties of SPC/E water averaged over the pure MD part of the simulation 8 
domain: density fluctuations (a), (c), (e) and temperature fluctuations (b), (d), (f). (a) and (b) 9 

correspond to the comparison between the GT and LCT models in the 17×17×17 domain. (c) and 10 
(d) correspond to the comparison between the LCT and LLT models in the 9×9×9 domain. (e) and 11 
(f) are the same as (c) and (d) but for the 17×17×17 domain. The reference analytical solutions are 12 

shown for comparison. 13 
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Fig.3 shows distributions of the local temperature of the MD particles across the particle box in the 1 

x, y, and z directions for all three models and the two domain sizes. In all cases, the local temperature 2 

peaks in the pure MD zone, which corresponds to cell 0 on the plots and then decays to the periphery where 3 

the hydrodynamic effects dominate. Notably, both the LCT and the LLT model correctly capture the 4 

reference temperature in the pure MD zone. 5 
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Fig.3 Control volume-averaged temperature distributions across the box simulation domain in the 9 
x, y, and z directions for different hybrid models and domain sizes. Cell 0 corresponds to the pure 10 
MD region. (a) and (b): LCT and GT results for the domain size 17×17×17. (c) and (d): LCT and 11 



21 
 

LLT results for the domain size 9×9×9. (e) and (f) are the same as (c) and (d) but for the domain 1 
size 17×17×17. The reference temperature is shown by the dashed line. 2 

Finally, Fig.4 shows the radial distribution function (RDF) for O-O atoms produced by the same three 3 

models and for the two simulation domain sizes. The reference pure all-atom MD solution is shown on the 4 

same plots for comparison. It should be pointed out that RDF directly influences interatomic forces in MD 5 

simulations and is one of the critical microscopic distributions which need to be accurately reproduced in 6 

atomistic scale-resolving simulations.  7 

Notably, the GT model completely fails to predict the correct distribution which is related to the 8 

spurious overheating effect it generates in water. The LCT model correctly captures the first hydration 9 

layer but the subsequent dip associated with repulsion is smeared. This is likely due to a notable 10 

compression (12% error in the mean density) of the water state this model produces. In comparison with 11 

this, the local thermostat based LLT model leads to the most accurate RDF solution which captures well 12 

both the first hydration layer and the following repulsion dip of the RDF curve.  13 
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Fig. 4. Radial distribution functions of O-O atoms for different models and simulation domain 15 
sizes: GT in the 17×17×17 domain, LCT in the 9×9×9 and 17×17×17 domains, and LLT in the 16 

9×9×9 and 17×17×17 domains. The reference pure all-atom MD solution is included for 17 
comparison. 18 

 19 

3.3 Computational efficiency  20 

All the three hybrid multiscale models, GT, LCT and LLT correspond to virtually the same 21 

computational cost in terms of the number of hours required to calculate the solution for 1 nanosecond 22 

simulation time using the same GROMACS version on the same workstation computer. This cost is 23 

compared with the computational cost of performing the pure all-atom MD simulations in the same 9×9×9 24 
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and 17×17×17 computational domains. The results are summarised in Table 4. Notably, for the smaller 1 

computational box, the suggested hybrid models are already about a factor of 5 faster that the pure all-atom 2 

MD simulation. Once the simulation domain is increased to 17×17×17, the speed-up factor in comparison 3 

with the pure MD method grows to 20. This illustrates potential benefits of using the suggested hybrid 4 

methods to significantly reduce the computational time of atomistic-scale simulations of large molecular 5 

systems. 6 

Table 4. Simulation costs of the hybrid multiscale methods against the all-atom molecular 7 
dynamics for different computational domains, hours per nanosecond (h/ns) in each case. 8 

Simulation size Small domain (9×9×9) Large domain (17×17×17) 

Cost of the all-atom simulation 

(h/ns)/cost of the hybrid method (h/ns) 
5.93/21.24=0.28 7.54/138.34=0.05 

4. Conclusions 9 

A thermostat-consistent hybrid method is developed that fully couples Molecular Dynamics (MD) 10 

equations with continuum flow fields. The formulation follows the framework of the Generalised Landau-11 

Lifshitz Fluctuating Hydrodynamics (GLL-FH) method based on the two-phase flow analogy approach for 12 

multiscale modelling. The increased consistency is achieved by incorporating the dissipation terms in the 13 

governing MD particle equations in accordance with the standard Berendsen thermostat model and 14 

subsequently re-deriving the effective source terms of the hydrodynamics part of the model in order to 15 

preserve the conservation of mass and momenta. In comparison with the previous MD-FH models based 16 

on the same two-phase flow analogy approach[19, 28], which used Global Thermostat (GT) models, the 17 

suggested Langevin thermostat-based method does not require any external MD thermostat to keep the 18 

simulation stable. A possible extension of the suggested modelling framework to the Nose-Hoover 19 

thermostat is also discussed.  20 

Two versions of the new Langevin thermostat-consistent model are implemented: with and without 21 

applying a local definition of the reference temperature of the particles depending on the local contribution 22 

of the continuum hydrodynamics region in the hybrid simulation domain. These are called Langevin Local 23 

Thermostat (LLT) and Langevin Constant Thermostat (LCT) models, respectively. Both the models are 24 

implemented in GROMACS for the test problem of SPC/E water fluctuations at equilibrium isothermal 25 

conditions based on NVT MD ensemble. The results are compared with those obtained for the same hybrid 26 
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method based on the GT model and with the reference pure all-atom MD solutions for different simulation 1 

domain sizes.  2 

In contrast to the GT model, the suggested LCT and LLT models are less sensitive to the numerical 3 

domain size and reproduce not only correct velocity and density fluctuations but also capture the local 4 

temperature in the pure MD region of the computational domain. Furthermore, LLT is also shown to 5 

accurately capture the reference water density in the pure MD region, hence, the pressure, which leads to 6 

correctly capturing both the first hydration layer and the following repulsion deep of the radial distribution 7 

function of water atoms. 8 

All three hybrid models, GT, LCT, and LLT and demonstrate a considerable reduction of the 9 

computational cost in comparison with the pure all-atom MD model. Depending on the simulation domain 10 

size, the suggested hybrid models are faster by a factor of 5 to 20. This illustrates potential advantages of 11 

using the suggested hybrid methods to significantly reduce the computational time of atomistic-scale 12 

simulations of large biomolecular systems. Implementation in the popular open-source code such as 13 

GROMACS makes the suggested models available to other researchers working in the same area. 14 
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 1 

Appendix A: Effect of the shape function  f s  on the local thermostat model 2 

To illustrate the effect of the shape function, three types of functions have been tested,   (1 )f s s  , 3 

  (1 2)f s s  , and   1(1 )f s s   . In comparison with the first two choices, the third option, 4 

  1(1 )f s s    does not satisfy Eq.(29). Fig. A1, shows the resulting ensemble-averaged temperature 5 

time history in the pure molecular dynamics zone of the hybrid simulation domain. Both   (1 )f s s   6 

and   (1 2)f s s   lead to satisfactory temperature fluctuations around the target reference 7 

temperature. In contrast to this, the choice of   1(1 )f s s    leads to a lower temperature and larger 8 

fluctuations in the centre of the simulation domain thereby resulting in the model divergence before 9 
reaching the target time step (106).  10 
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Fig.A1. Temperature fluctuations for different shape functions: (a)   (1 2)f s s   (b) 12 

  (1 )f s s   , and (c)   1(1 )f s s   . 13 

 14 


