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Coronary artery aneurysms and ectasias 
(CAAE) occur in the course of atherosclerotic or 
connective tissue/inflammatory disease [1]. Focal 
dilations ≥ 1.5 times greater than the adjacent seg-
ments’ reference diameter (RD) are typically de-
scribed as an ‘aneurysms’ (example in Fig. 1A, B),  
whereas the term ‘ectasia’ is usually used for dif-
fuse and long-segmental dilations [2]. 

Coronary artery aneurysms and ectasias are 
mostly incidental findings of conventional coronary 
artery angiography (CAG, 1.2–4.9%) [1]. Some 
CAAEs occur in relation to coronary stenosis [1]. 
CAEAs disturb coronary flow and may enhance 
thrombus formation, serving as a culprit for acute 
myocardial infarction and sudden cardiac death [1, 3].  
Furthermore, CAAE progressive enlargement may 
result in its rupture and cardiac tamponade [1].  
A significant diagnostic and clinical problem 
of CAAE [1] starts with the present lack of  
a standardized definition; an issue largely related 
to limitations of CAAE characterization using CAG 
planar images [2]. Indeed, conventional (catheter) 
CAG characterization of CAAEs may be prone to 
significant errors [2, 4]. 

In a series of consecutive CAGs in our data-
base [5], we evaluated the feasibility of routine 

three-dimensional (3D) CAAE characterizations 
using a commercially available 3D image angio-
graphic reconstruction system (CAAS Workstation 
7.4, Pie Medical Imaging, The Netherlands). The 
system is semi-automated; it involves identification 
of the region of interest and delineation of CAAE 
and reference segments [4]. To enable 3D recon-
struction (3DR), the software requires calibration 
and planar image characteristics including rotation 
and angulation details [6]. Specifically, a ‘green- 
-zone’ for 3DR feasibility needs to be established, 
with the two planes having a difference of at least 
30 degrees as a fundamental requirement [6]. 

Beyond routine CAAE characteristics such as 
the feeding vessel RD, CAAE mean diameter, maxi-
mal diameter and length, several new parameters 
were evaluated such as the length of CAAE seg-
ment, with dilation exceeding the RD > 1.0-fold, 
> 1.5-fold, and > 2.0-fold. Measurements were 
performed with the agreement of two angiographic 
Corelab analysts. 

Out of 20 consecutive CAAE angiograms in 
the sample, 15 (75%) were suitable for 3DR as 
per the software-demanded parameters. The rea-
sons for 3DR unsuitability were as follows: lack of 
the software ‘green-zone’ for any of the available  
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two-dimensional (2D) projections (3 out of 5 cases), 
poor recording quality in one of the two required 
projections (1 case) and CAEA overlap with a large 

branch of another artery in one of the two projec-
tions in the ‘green’ zone (1 case). Table 1 shows, for 
each major coronary segment, suggested projec-

Figure 1. Typical example of coronary artery aneurysms and ectasias (CAAE) raw planar images and three-dimensional  
(3D) reconstruction (3DR), and the individual data charts for all studied CAAEs; A–C. Typical example of an CAAE 
two-dimensional (2D) planar images (A, B) and its 3DR (C); D–E. Relations between the 2D and 3D numeric values for 
CAAE (D) reference diameter, (E) maximal diameter and (F) length.
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Table 1. Guideline on two-dimensional angiography projections spatial distribution to enable three-
-dimensional reconstruction (as per each major coronary segment). According to [6] (modified).  
Note that per-patient optimal angulations may vary, and an adjustment of the projection(s) may  
be needed.

Coronary artery Projection 1 Projection 2

Left main and bifurcation RAO 20, caudal 40 RAO 0, caudal 10

Left circumflex artery LAO 10, caudal 25 RAO 25, caudal 25

LAD and diagonal(s) RAO 0, cranial 40 RAO 30, cranial 15

RCA proximal, RCA mid LAO 40, caudal 0 RAO 0, caudal 0

RCA distal LAO 40, caudal 0 LAO 30, caudal 30

LAD — left anterior descending artery; LAO — left anterior obilque; RAO — right anterior obilque; RCA — right coronary artery 

tions to enable 3DR; these should be considered 
in prospective data acquisition. 

Significant stenoses (> 50% of lumen diame-
ter) were present at the proximal end in 6 and distal 
end in 4 CAAEs, with both in 1 CAAE. One-third 
CAAEs had a maximal diameter > 2 times greater 
than RD. 3DR average values (range) [mm] were as 
follows: RD 2.52 (1.51–3.62), mean diameter 3.90 
(2.45–5.45), maximal diameter 4.89 (3.01–6.71), 
length 13.05 (4.15–25.27), length of segment  
dilated > 1 RD 12.10 (3.52–24.01), > 1.5 RD 7.94 
(2.31–22.11), and > 2 RD 3.89 (3.25–6.49). The 
CAAE volume, as obtained via 3D reconstruc-
tion, was 144.86 (33–402) mm3. The following 
differences between the 2D and 3D parameters 
[mm] were identified: RD 0.05 (0.02–0.09; 2.30%;  
p = 0.0072), mean diameter 0.12 (0.01–0.22; 2.84%;  
p = 0.0312), maximal diameter 0.22 (0.12–0.32; 
4.19%; p = 0.0004), length –0.69 (–1.30 – –0.08; 
–5.50%; p = 0.0284), length of fragment dilated > 1 RD  
–0.77 (–1.32 – –0.22; –7.61%; p = 0.0095), > 1.5 RD  
–0.22 (–0.82 – –0.38; p = 0.4404) and > 2 RD 
0.08 (–0.29–0.14; 11.84%; p = 0.4566). Individual 
relations between the 2D and 3DR numeric values 
for CAAE RD, maximal diameter and length are 
shown in Figure 1. 

Principal findings from this work, evaluating 
performance of an angiographic 3DR software in 
relation to its application for CAAE characteristics, 
are the following: (1) CAAE 3DR appears feasible 
for a majority of CAAEs identified on routine 
CAG; (2) numeric parameters of 3D-reconstructed 
CAAEs are not a “simple” mean of those in 2D 
projections; and (3) not infrequently (> 40%, see 
Fig. 1D–F) the numeric values of 3D assessment 
fall outside the 2D planar values (Fig. 1D–F), sug-
gesting potential new information from 3DR. In 
addition, 3DR enabled evaluation of the CAAE vol-
ume; a parameter not available on 2D projections 

that may have a prognostic value [1, 2]. Despite the 
fact that the 2D and 3D parameters appeared sig-
nificantly correlated, some 3D measurements fell 
below conventional CAG measurements whereas 
others fell above (Fig. 1). Thus, on 3DR, CAEAs 
may tend to appear longer and narrower than on 
plain 2D projections; an observation that requires 
further elucidation.

While these findings require confirmation in  
a larger CAAE series in relation to computed 
tomography angiography (CTA), their consist-
ency in the present sample of unselected routine 
angiograms with CAAE suggests that CAAE 3DR 
based on standard CAG images might provide new 
information relevant to monitoring the course 
of the disease and patient risk. Indeed, autopsy 
data show that CAAEs often have a complex 3D 
structure whose prior knowledge would have, in 
a proportion of cases, affected management [2]. 
Optimizing the methodology of CAAEs qualitative 
and quantitative evaluation based on routine image 
acquisition may play a role in both triggering the 
intervention and selecting the type of intervention 
(percutaneous vs. surgical) [2]. Stent revasculari-
sation of lesions involving CAAE poses particular 
difficulties in relation to stent sizing (diameter, 
length) and the risk (and consequences) of stent 
malapposition [7]. On the other hand, aneurysm 
formation may occur as a late complication of (drug-
eluting in particular) stent use [8].

Computed tomography angiography is today 
the #1 tool to obtain CAAE 3D characteristics [4]. 
CTA, however, it is not performed prior to CAG 
identification of CAAE but, rather, as a subsequent 
step in arbitrarily selected cases [9]. Importantly, 
CTA resolution is > 2-fold lower than that of CAG 
(≈ 0.5 vs. ≈ 0.2 mm) [6, 7], and CTA is prone to 
gating-related (increased heart rate, arrhythmias) 
and calcifications-related artifacts [4]. Further-
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more, CTA following CAG requires another con-
trast medium dose and X-ray exposure [10]. For 
these reasons it would be of interest to employ 3D 
reconstructions as a potential replacement of CTA 
verification or as a guidance to selective CTA use. 
This is one of the major issues of interest today 
[9, 10]; thus CAAE 3D reconstruction against CTA 
in a larger series of patients is required to fully 
validate this method. 

In conclusion, present findings indicate that 
CAAE 3DR using routinely-acquired planar CAG 
images may be feasible for a majority of CAAE 
identified on CAG. In a significant proportion of 
CAAEs, the numeric values of (both the conven-
tional and novel) CAAE parameters may fall beyond 
the 2D projection values. Thus, 3DR may provide 
information quantitatively (and perhaps prognosti-
cally) different from the one based on analysis of 
standard 2D images.
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