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Abstract—Distributed analytics facilitate to make the data-driven services smarter for a wider range of applications in many domains,
including agriculture. The key to producing services at such level is timely analysis for deriving insights from reliable data. Centralized
data analytic services are becoming infeasible due to limitations in the Information and Communication Technologies (ICT) infrastructure,
timeliness of the information, and data ownership. Distributed Machine Learning (DML) platforms facilitate efficient data analysis and
overcome such limitations effectively. Federated Learning (FL) is a DML methodology, which enables optimizing resource consumption
while performing privacy-preserved timely analytics. In order to create such services through FL, there needs to be innovative machine
learning (ML) models as data complexity as well as application requirements limit the applicability of existing ML models. Even though
NN-based models are highly advantageous, use of NN in FL settings is limited with thin clients (with less computational capabilities)
and high-dimensional data (with large number of model parameters). Therefore, in this paper, we propose a novel Neural Network (NN)-
and Partial Least Square (PLS) regression- based joint FL model (FL-NNPLS). Its predictive performance is evaluated under sequential-
and parallel-updating based FL algorithms in a smart farming context for milk quality analysis. Smart farming is a fast-growing industrial
sector which requires effective analytics platforms to enable sustainable farming practices. However, the use of advanced ML techniques
are still at a early stage for improving the effectiveness of farming practices. Our FL-NNPLS approach performs and compares well with
a centralized approach and demonstrates state-of-the-art performance.

Index Terms—Decentralized Machine Learning, Federated Optimization, Neural Network, Data Imbalance, MIRS Milk Quality Predic-
tions.
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1 INTRODUCTION

Rapid adoption of connected technologies such as Inter-
net of Things (IoT) and Cloud Computing are propelling
the advancement of data-driven services in many sectors
such as for sustainable intensification of food production
in agriculture and for personalised/controlled delivery of
drugs in health-care. To deliver such services, data analytic
frameworks are essentially required to be integrated to the
information and communication technologies (ICT) based
infrastructures to extract insights and then to communicate
effectively with the end-users. The reason behind this is such
integrated systems can utilise heterogeneous and massive
datasets while enabling granular analytics with continuous
changes to produce timely and accurate insights. Hence,
an advanced analytical platform coupled with efficient Ma-
chine Learning (ML) techniques is required to improve
reliability and timeliness of such services [1], [2], [3]. There-
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fore, this study focuses on proposing an effective analytical
framework based on Distributed ML (DML) models coupled
with IoT and Cloud Computing infrastructures.

Most sensor technologies and IoT platforms provide
services to collate and store vast quantities of data pro-
duced from geographically distributed sources. As most
computational facilities for analyzing such data reside in
centralized data centers (e.g., cloud), where data will be
consolidated as single large datasets. Then analytics can
subsequently be performed at the central location, which
is referred to as Centralized ML (CML). Numerous studies
have shown that CML is highly advantageous for devel-
oping new hypothesis, as it enables improved learning
accuracy [4] and model acceptability [5]. However, data
centralization is feasible only when the communication
and computational capabilities of the data centers are not
limited. At the same time, if data owners are not reluctant
to sharing data with CML systems due to data privacy,
security, and ownership concerns [6]. These limitations hin-
der real-time decision making, which is crucial in provid-
ing timely services. A promising approach to solve this is
Distributed ML (DML), as it facilitates the development of
more advanced intelligent systems by incorporating various
systems, technologies, and ML techniques in near-realtime.
Therefore, to overcome the limitations in CML, there is a
growing need for effective DML approaches equipped with
functionalities such as data-protection and optimum use of
available resources.

DML synchronously or asynchronously executes data-
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Fig. 1. A FL architecture based on smart dairy farming: (1) Every client (i.e., farm) collects data (e.g., MIRS of milk samples) and trains a ML model
and sends the updated model to the central service unit, (2) The central service unit which derives the final model updates by aggregating the
model updates of clients, (3) Clients download the final model updates and then update their local ML model to perform inferences.

intensive analytical applications across geographically dis-
tributed processing units. Therefore, it captures real-time
dynamics in order to make timely decisions for support-
ing services effectively [7]. For instance, Fog computing
paradigm is emerging as a technological enabler for DML,
since the analytical process is discovered and offloaded to a
node that is in close proximity to the data source [8]. This
has led to a growing interest to focus on developing new
distributed optimization techniques [9]. Such techniques
are Split Learning [10] and Federated Learning (FL) [11].
Among them FL enables optimization algorithms to be fed-
erated in order to make real-time decisions without moving
data away from the source. This also minimises data privacy
concerns and resource consumption (this will be elaborated
in a subsequent section).

The key to practicing such DML techniques is having ef-
fective ML models which can be trained dynamically (some-
times using thin clients with less computational capabilities
like mobiles and tablets) for capturing underlying updated
data. The data collected by modern day sensor technologies
and IoT platforms is usually highly dynamic, complex,
large in size, and highly dimensional which can lead to
noise accumulation, multi-correlation, and heavy compu-
tational costs. Consequently, such characteristics limit the
applicability of commonly used simple ML models such
as Least Square Regression (LSQR), Principal Component
Analysis (PCA), Partial Least Square Regression (PLSR), and
Neural Network (NN). For example, LSQR, PLSR, and NN
techniques have extensively been used in various data ana-
lytical applications, but fails under certain conditions, thus
requiring further enhancements. That is, although PLSR
overcomes the limitations of multi-colinearity and high-
dimensionality in LSQR fitting, the predictive accuracy is
limited due to its inability in capturing complex functional
relationships, such as non-linearity [12]. A promising alter-

native to mitigate such limitations is NN models, as they
are becoming increasingly feasible and also actively being
used for a wide range of applications. However, selecting
optimal NN configurations by using techniques such as grid
search and random search depends on the problem, resource
availability as well as the experience of the users. With
high dimensional data like MIRS milk spectra, minimising
model parameters while training a NN model in a thin client
is also challenging. It may be inefficient in terms of time
and resource consumption as most IoT sensor-based DML
applications are resource constrained and timely delivery of
the outcomes is vital. This means that the NN approach may
not be an efficient alternative in all the cases.

Consequently, modern studies are exploring innovative
ML models which are, for instance, scalable, adaptive, light-
weight, and computationally inexpensive. It has already
been proven that the combined use of NN models with
conventional ML models such as PLSR and PCA (known
as hybrid models) has the potential to alleviate the barriers
that arise when they are used separately, while providing
accurate outcomes. However, this scenario has been used
in a limited number of studies such as [12], [13], and also
under CML settings. To date, there has been no study that
has investigated its use within DML using high-dimensional
data, and in particular under FL. Therefore, in this study,
we propose a joint novel model of coupling NN with PLSR
models that can be used for FL with dimensionality reduc-
tion. It enables overcoming a number of issues when they
are used separately along with limitations in DML such as
data sharing issues. We demonstrated the effectiveness of FL
in the context of smart dairy farming by using Mid-Infrared
Spectroscopy (MIRS) analysis of milk samples, which are
routinely used for the quantification of milk quality (see
Figure 1). Milk quality analysis particularly plays a vital
role in the dairy industry [14], where micro-nutrients of milk



components monitored by robotic milking machines can be
analyzed using ML techniques to determine several impor-
tant insights such as health issues [15], nutrient deficiencies
[16], and social behaviour [17]. These insights provide sup-
port in terms of intensifying sustainable farming practices
such as controlled delivery of nutrients and fertilizers and
reducing cost while increasing the profit. However, MIRS-
based chemometric analysis have extensively used PCA,
LSQR, and PLSR models in earlier studies such as [18], [19].
Joint ML models have not generally been used under FL
settings for any analytical purposes, and particularly in the
field of agriculture. Therefore, our main contributions of the
study is summarized as follows:

e By considering the limitations of the LSQR, PLSR,
and NN techniques, introduce a joint ML model
known as NNPLS, which combines NN and PLSR
techniques, overcoming those limitations.

o Evaluate two federation approaches, which are se-
quential and parallel, where they can be used to fed-
erate the NNPLS model, and apply these approaches
to a Smart Dairy Farming application. Specifically,
the application is for Mid-Infrared Spectroscopy
(MIRS) milk quality data analysis.

o Evaluate and compare the predictive performances
of the NNPLS model under CML and DML (FL)
settings.

e Ensure that the NNPLS model based FL has compa-
rable performance to the state-of-the-art methods by
comparing FL performance of the NNPLS model to
an advanced ML technique, which is Convolutional
NN (CNN) model.

e Discuss the advantages and challenges of the
NNPLS-based FL while proposing an alternative to
overcome the imbalance issues in FL, including few
potential future directions that this study may extend
further.

The remainder of the paper is organnized as follows.
Section 2 summarizes the state-of-the-art in distributed ma-
chine learning, including the discussion of the FL process
followed by the NNPLS model. FL approaches are discussed
in detail in Section 3. Section 4 presents the performances of
NNPLS under FL settings while Section 5 and 6 discusses
the benefits and limitations of the FL-NNPLS approach and
concludes the paper, respectively.

2 STATE-OF-THE-ART ON FEDERATED LEARNING

The progressive advancements of distributed nature of
IoT and cloud technologies have contributed to develop-
ment of smarter services that are found in various sectors
such as transportation [20], healthcare [21], agriculture [22],
[23], and energy [24]. Therefore, this section provides an
overview of the relevant literature focusing on the attempts
made in advancing DML mechanisms, including the impor-
tance of FL in DML, and the involvement of deep learning
and hybrid ML models in ML.

2.1 Distributed Machine Learning (DML)

CML has traditionally been the dominant ML approach.
However, with the growing prevalence of big data, CML
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approaches are facing increasing challenges in collecting
and processing massive datasets due to constraints in re-
sources in modern ICT platforms [6], and in particular
low powered devices. Consequently, the concept of DML
is gaining traction for a wide range of applications such
as image classification [9], smart healthcare [21], and smart
agriculture [22]. This has led to continued development in
new DML algorithms with high accuracy and fast conver-
gence rates [9]. As a result, most of the CML algorithms were
converted into DML models, e.g., Bayesian networks, deci-
sion trees, and support vector machine [25]. Nevertheless,
to support the ever-increasing complexity of data and their
features, research in ML has focused on incorporating learn-
ing functionalities, and one example is Deep Learning [6].
In employing learning functionalities in a broader spec-
trum of DML applications, the MapReduce computational
model proposed in [26] migrated computations towards the
source of the data, which significantly reduced the commu-
nication requirements of big datasets even when Hadoop
stored data in commodity hardware clusters (sometimes
geographically distributed) and processed data locally in
batches [27]. Today, the Fog and Edge computing paradigms
are emerging as the best enablers for DML algorithms as
they provide opportunities for offloading centralized com-
putations by discovering processing capabilities in close
proximity to the data sources [7]. In employing these DML
methods, data-protection was raised as one of the major
concerns and was even more severe in large-scale data an-
alytic applications [22], [25]. As a result, privacy-preserved
DML solutions such as FL [11] and parameter server-based
DML [28], [29], blockchain-enabled ML [30] and split learn-
ing [10] have been developed. When there is a trusted
third party which can serve as a central service unit, FL
and parameter server-based approaches were recommended
for DML. Other alternative is the use of blockchain but
discovering resource providers is the most critical challenge.

2.2 Federated Learning (FL)

FL is a collaborative ML (and also a distributed optimiza-
tion) concept [31] that was developed by Google researchers
to train distributed datasets in a centralized parameter
server [28]. A shared predictive model is collaboratively
trained without moving data away from the participating
client nodes such as mobiles and gateway devices. Hence,
this approach has a greater potential in using a wider
range applications where there is a need in performing
timely analytics by incorporating widely distributed data.
However, there are critical concerns regarding sharing data
due to ownership, privacy and computational resources. To
minimize the criticality of these concerns, FL process mainly
consists of three steps as follows (also see Figure 1):

1. Each client trains (updates) the model, i.e., computes
the model parameters by using its own data, and
then transmits updated models (local models) to the
central service unit.

2. The central service (coordination) unit (e.g., parame-
ter server) collects the local models (i.e., local model
parameters) and then aggregates them to compute
the updated global model parameters. That is, every



client service contributes collaboratively to train a
common ML model.

3. Every client retrieves global model parameters from
the central service unit and uses them for making
their own decisions and also, for the next model
updating cycle.

These three steps repeatedly execute as FL progresses.

Gradient Descent (GD) algorithms have commonly been
used for computing model parameters [32]. Assume a FL
model that needs to update a parameter matrix of W1 x4z,
The i*" client service (assume C' number of client services
in total) will download the parameters at time ¢, %%
and calculate the gradient H i = W' — W. Then, Wiy =
Wi + nH;, where 7 is the learning rate. According to the
averaging principle, H, = 1 3 H,. There are some variants
of GD algorithms such as mini-batch GD and Stochastic
GD(SGD) [33]. In SGD, a single training sample is used
at a time to train the model while mini-batch GD uses a
small subset of the training dataset. Both have been pro-
posed to overcome the processing burden in deep learning
algorithms using image like data with a vast number of
parameters in the order of 1000s or more. For instance,
structured- and sketched-updating are two FL approaches
that commonly use the SGD for distributed training of a ML
model particularly optimizing the up-link communication
for sending the updated parameters to the server when the
resources are restricted [31].

The quality of the federated ML model and the opti-
mization technique, which is used to train the model, are
as crucial as the quality of the data used. Since a CML
model is transformed into a set of small devices, each using
a subset of a large training dataset, this model achieves
data locality and harnesses the computational power of
distributed edge/fog computing. Also, FL makes use of
idle processing power by facilitating a certain number of
clients to act as model trainers. Since the datasets are located
in the client’s devices, FL has great potential in reducing
communication cost and preserving the data ownership and
privacy issues. Recent research [21], which used FL with the
support vector machine classifier for predicting heart dis-
eases, and preserves the privacy of patients data, is a good
evidence to emphasize the significance of FL. Moreover, the
reasons to use FL as an alternative to current ML techniques
with privacy preserving were broadly discussed in [11],
while highlighting some common issues of FL, such as
data imbalance and misbehaviour (or failure) of the central
service unit, which requires careful attention when selecting
it.
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The involvement of deep learning techniques such as con-
volutional, recursive, and recurrent NNs in advanced ML
research like image recognition, object detection, and video
analysis [12], [34] has intensified in recent years. Conse-
quently, FL has also been influenced by deep learning tech-
niques. For instance, the study in [32] used a CNN model to
study the communication efficiency of their ML model un-
der FL settings. The local Stochastic Gradient Descent (SGD)
optimization technique based Federated Averaging algorithm
proposed in [32] proved that the ML model could train with

Involvement of Deep Learning in modern ML
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minimal communication requirements and that could help
to overcome the communication issues in FL [11]. However,
the applicability of deep learning models was limited par-
ticularly in many resource-limited infrastructures such as
sensor-based analytics.

As an alternative, hybrid ML models, i.e., the combined
use of deep learning models with conventional ML models,
were developed. For instance, the study [13] proved that
a combined use of NN and PLSR has the potential to
generate more robust outcomes as well as optimize the
resource consumption compared to using the algorithms
separately. Similarly, different versions of hybrid models
such as PCA combined with NN (PCANet) [35], PLSR
with NN (PLSNet) [36], CNN based PLSR (CNN-PLS or
stacked PLS) [34], and Hybrid-DBSCAN model to optimize
clustering throughput in GPU and CPU [37] have been
proposed and applied in various applications. Some of the
applications include failure diagnosis of railway infrastruc-
tures [13], traffic incident detection [12], inland water quality
evaluation [38], and image analysis [39]. Use of hybrid
models is always limited to deep learning applications and
has been realized in many other purposes. For example, [40]
proposed a hybrid mathematical formulation for optimizing
the computational energy required at data centers intending
to reduce the ecological impact arising from data processing
(i.e., Greenhouse gas emission). Also, [41] proposed a hybrid
energy harvesting system and proved that the proposed
system has better performances when compared to a single
source harvesting approach. However, there is no evidence
that such hybrid models have been used under DML set-
tings, and in particular for FL framework.

2.4 Smart Dairy Farming

With the growing adoption of modern technologies such
as milking robots and remote sensing in smart farming,
more data-driven and data-enabled services are available
today. Timely recommendations and relevant management
strategies based on analyzing the information collected play
a crucial role in accelerating the sustainable intensification of
food production while optimizing resource utilization [22],
[42]. This is a major requirement to address the challenges
that will result from limited land availability, high labour
cost, as well as climate change, aiming to support food
demand for the 9 billion world population by 2050 [43].
This not only emphasises the need for effective computing
services equipped with ML mechanisms that are trained
dynamically, but have the capacity to be distributed and
cooperative [42], [44]. However, most farms operate in iso-
lation, which in turn, limits their interoperability. Resource
constraints, functional incompatibility of the existing IoT
platforms hamper such analytics. Besides these limitations,
farmers are reluctant to share their data due to privacy and
ownership issues. In this context, FL can provide effective
services for deriving decisions by integrating insights ex-
tracted from a large number of distributed data sources.

In general, FL has been beneficial for supporting ser-
vices for different applications and particularly where data
privacy, constraints in resources, and ownership becomes
major concerns in performing data analytics. At the same
time, the use of hybrid ML models have received consid-
erable attention for a wide range of analytical applications.



The importance of FL, however, has not been thoroughly
realized yet in smart agriculture where communication and
computational resources and also data-privacy are signifi-
cant issues.

3 FEDERATED LEARNING WITH A NN-BASED PAR-
TIAL LEAST SQUARE REGRESSION

This section, first, briefly describes the NN and PLSR meth-
ods and then explains how these two methods are combined
to derive the joint ML model known as NNPLS. Next, the
two approaches to federate the derived joint models are
discussed. Finally, the evaluation metrics used for assessing
the FL performances are described.

3.1 Partial Least Square Regression (PLSR)

Least square regression (LSQR) fails when the predictor
variables are strongly correlated with each other and the
number of informative features is larger than the number of
data points. PLSR is a projection method [45], and considers
not only the correlations between the predictor variables
(X), but also the correlations among the predictor and the
response (y) variables. By doing so, PLSR overcomes the
limitations of the LSQR method, transforming the dataset
into a lower dimensional space (latent space), where the
LSOR can be used. Therefore, the general procedure of
PLSR consists of two steps; dimension reduction and the
application of LSQR, and are listed as follows:

1. The PCA technique is used for the dimension reduc-
tion by deriving the PLS factors (or Latent Variables
(LVs)), which explain most of the variation in X and
Y.

That is, PCA decomposes X and y using the singular

value decomposition method as: X = GxP¥ and

y = GyPyT , where G and P represents the score

and loading matrices (their subscript stands for the

matrix which they are derived from), respectively.

Suppose ¢ LVs are selected, where normally cross-

validation technique is used, the X can be repre-

sented as:

X = gx1px1+t9x 2Pk ot +9x.Pk.qFEx.qr (1)

where {gx;}i, € Gx, {p§)i}3:1 € Py, and Ex ,
is the error matrix when the first k¥ LVs are used to
form the PLSR model.

2. LSQR is used to derive the PLSR model as follows,

Y =py19x,1 +Dy29x,2+ - +Dyve9x,q+Ey,g (2)

where {py;}?_, € P, {gxi}L, € Gx and Ey,, is
the error vector.

Further details on the PLSR process can be found in [45].

3.2 Neural Network (NN)

Suppose a simple NN with n nodes in the input layer
with a single hidden layer, which consists of [ nodes, and
the output layer has only one node (see Figure 2) and
named as (n,[,1) NN model. {W" , b% ,} and {W?,,,b°}
are respectively the input and hidden layer weight (W)
matrices, including the bias (b) term. The incoming and
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Fig. 2. PLSR model as a naive NN with one hidden layer. The top and
bottom of each vertical color bar explains the entities of the NN and
PLSR models, respectively. The weights in the hidden layer corresponds
to the k*» node/LV.

the outgoing information, denoted as hf, and hl,, of the
k*" hidden layer nodes, are computed as follows (Figure 2
provides the description of the process at the top of each
colored bars):

h’]i;n = Wgo+ x1w1}§,1 =+ afsz,Q +oot x"w;};n &)
n
= Z xiwz’i
i=0
= k), @

where f;, is the hidden layer activation function, {wy, ;}!_; is
the k" column of the matrix W", and wy, ¢ is the k" element
of the vector b". The input data sample is represented as
T1,T2," " ,Tpn € XN><n-

The same procedure is repeated for all other nodes in order
to compute their outputs that will represent the inputs for
the output layer (y;,). Based on this, NN calculates the
output (You:) as follows:

Vin = wi+h{"w] + g wE 4o+ By (5)
l
= Y hwy
=0
Yout = fo(yin) (6)

where w§ = b° and {w?}!_, € W° are the output layer bias
and weight matrix, respectively, and f, is the output layer
activation function.

In order to improve the robustness of y,,:, NN optimizes



the weights as well as the bias by minimizing the errors
between the actual y and y,,; during the training process.
The most extensively used training algorithm is the back-
propagation and the process explained above presents the
forward propagation step as it required for explaining the
process of deriving the joint model only. Whereas, the back-
propagation technique is used for training the joint model.
There are other different optimization techniques for learn-
ing rules such as SGD. f(z) = z (linear), f(z) = H%
(Sigmoid) are some of the frequently used activation func-
tions.

3.3 NNPLS Model

When the number of hidden nodes is equal to the number
of LVs (i.e., [ = g), and the input and output layer weight
matrices (i.e., W" and W°) is equal to the score and loading
matrix of X (G%)and y (P;f ), respectively, the computations
represented by equation 3 and 5 are respectively equal to the
equation 1 and 2. In other words, one forward propagation
step of the (n,!,1)NN model given in Figure2 is equal to
the PLSR model with ¢(= [) number of latent variable.
On the other hand, the PLSR model can be considered as
a NN model with one hidden layer (number of hidden layer
nodes is equal to the number of latent variables). The single
node in the output layer is illustrated in Fig 2. This is the
basic concept behind the joint PLSR and NN techniques
for deriving the NNPLS model. Then the derived NNPLS
model is trained in four steps, which are as follows (see
Figure3):

1. Apply suitable pre-processing on a given dataset
[X, Y] such as PCA, scaling, and centering.

2. The optimal number of hidden nodes required for
the NNPLS model is the number of LVs, which is
derived from the PLSR-based cross-validation tech-
nique.

a. Different PLSR models are fitted to the data by
varying the number of LVs. In each fitting, the
cross-validation error (RMSEcy - explained
later) is computed by repeating the 10-Fold CV
for 103 iterations.

b. The number of LVs corresponds to the mini-
mum RMSEcy and is selected as the optimal
number of LVs, which is also the number of
hidden nodes (I) for the NNPLS model. For
instance, in order to get an idea about selecting
optimal LVs, Figure 4 represents the behav-
ior of RM SEcy with respect to the LVs for
Fat milk percentage using the MIRS dataset
discussed in Section 4.1. As observed in the
graph, the minimum RMSEcy occurs at 6
LVs, which is the number of hidden nodes
required for NNPLS model.

3. The score matrix of X and the loading matrix of ¥’
that correspond to the optimal LVs are taken as the
initial weights of the input and output layers that are
required for starting the NN training process with
selected activation functions and the optimization
technique. The rectified and linear activation functions
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Fig. 3. Workflow of the NNPLS model for data pre-processing and model
development steps.

0110

0.105

0.100

0,005

RMSEcvy

0,090

0.085

B 10 i i
Nubmer of latent variables (lvs)

Fig. 4. Determination of the optimal number of LVs (i.e., hidden layer
nodes) by using the MIRS dataset explained in Section 4.1 with Fat milk
quality parameter; the optimal value of LV corresponds to the minimum
RMSEcy .

were respectively used for fj, and f,. The optimiza-
tion technique used was the ADAM method.

4. Perform model updating based on a preferred ap-
proach and here we explain the sequential and par-
allel updating under FL settings in the next section.

3.4 NNPLS model based Federated Learning (FL-
NNPLS) architecture

In the NNPLS model based FL, the set of parameters that
has to be federated is the NN weights derived from each
client located in distributed locations. Each client service
trains a common NNPLS model by using the weights
downloaded from the central service unit. After training,
the client service will send back the updated weights to
the central service unit. The central service unit aggregates
them and computes the final updated weights, and sends
back to every client unit in order for them to update their
models and perform predictions. In this process we assume
that all client services contribute to updating the model at
each federation step as well as accepting the final model
updates. This means that the NNPLS model is dynamically
updated based on the new datasets collected from each
client over time. This is the core functionality of the FL-
NNPLS architecture, which updates the model sequentially
as well as in parallel.

3.4.1 Parallel Updates

The process for parallel updates follows the three steps as
illustrated in Figurel, and is as follows:



1. Each client service independently trains a common
NNPLS model using the available data.

2. The central service unit collects the NNPLS model
weights sent by each client then averages it in order
to get the final updated global weights

3. Each client service unit downloads the global
weights and updates the model to perform predic-
tions accordingly.

In the next federating step, which is the updating pro-
cess, the global weights from the previous federating step
are combined with the new loading metrics derived from
the PLSR method by using the new dataset. This is then
used as initial weights for training the NNPLS model.

Let us assume there are C client service units. Then at the
(t — 1)*" federating step, the final input and output NNPLS
model weights are denoted as W, ' and W}, respectively,
and are derived by averaging the weights received from the
C client services as follows:

-1 _ 1 c t—1 -1 _ 1 c t—1
I/Vi,n = 5 Z Win,i W(;ut = 6 Z Wo/ut,i
i=1 i=1

where sz;il and W(f;th are the input and output NNPLS
model weight matrices of the i‘" client.
These weights are then sent back to all the client services
to assess their model performance and is also used for
computing the initial weights for the next federation step
(t*"). At the t*" step, the i*" client service applies the PLSR to
its new dataset { X/, Y,'} and derives the score and loading
matrices of X; and Y; respectively as G% ; and (P¥,)".
Following this process, the initial weights for training the
NNPLS model are computed by averaging these loading
matrices with the final model weights from the (¢t — 1)
step, which is represented as follows:

G, + Wit (P)T;,i)t + Wi

t,init __ t,init __
Win,i - 9 ’ Waut,i - 2
This computation is performed for ¢ = 1,--- ,C and aggre-

gated in order to obtain the updated weights that are used
to evaluate the FL performances at the t'* federation step,
assuming W2 = 0and WJ,, = 0.

o

3.4.2 Sequential Updates

In the case of sequential updates, the process is performed
in a sequential manner. Three steps of the updating process
are as follows:

1. The NNPLS model training process starts at a ran-
domly selected client service, assuming that this
client has sufficient data to start the training process.

2. The central service unit collects the model weights
sent by that client service.

3. The next client service unit, which is ready to per-
form the model training process, downloads the
weights from the central service unit and update its
NNPLS model.

This process continues sequentially and one federating
step is completed when the model at all the client services
are up-to-date. The weights from the client service that is
used for performing the last training is used as the final
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weights of the FL-NNPLS system, which will be utilized for
the next federation step.

Let us assume the final NNPLS model weights from the
(t — 1)*" federation step are W}, ' and W/ ,'. At the t'"
federation step, the first model training is performed by
the i client, where i € {1,---, C}. The initial weights are

computed as follows:

t t—1
pytinit _ Gx,+ W,

n,t 2 )

Wwhinit _ M

out,i 9

where GY% ; and (Pg,ji)t are respectively the score and
loading matrices of X} and Y;! of the ' client service at
the ' federation step. The NNPLS model is then trained
to compute the final weights. The t'" federation step is
completed once all client services have finished updating
the model. This procedure is continued for t = 1,---,T
assuming that att = 1, W2, = 0 and W2, = 0.

U

3.5 Evaluation Metrics

The metrics, Residual Sum of Square (RSS) and coefficient
of determination (R?) are used to evaluate the predictive
accuracy of the LSQR, PLSR, and NNPLS models under the
federated and non-federated (i.e., CML) settings.

The RSS quantifies the square sum of the residuals and
computed as:

N
RSS = (yi — 4:)°,
i=1

where y and ¢ are actual and the predicted response vari-
ables and N is the sample size.

R? depicts the proportion of variance in the response
variable y, which is related to the predictor variables in X.
Therefore, we use R? as the accuracy measure to represent
how accurate a ML model can predict a response variable y
in our evaluations and compute as:

S (yi — )

Y (i — 9)?

where y, 9, N have the similar meanings as explained under
RMSE.

R*=1-

4 PERFORMANCE EVALUATIONS

In this section, we explore the NNPLS model performances
compared to the ML models of LSQR and PLSR and also,
compare the learning performances of the NNPLS model
based FL and non-FL (i.e., CML) settings. To perform these
experiments, we use a dataset of MIRS from bovin milk.
Initially, the dataset is briefly introduced, including the
pre-processing steps. Based on the predictive performance
obtained using a LSQR model, we explain the different char-
acteristics of FL. This is followed by a discussion on the non-
federated CML performance of the NNPLS model relative
to LSOR and PLSR models using three different predictive
parameters. Finally, we examine the performance of the FL-
NNPLS approach for the same predictive parameters, and
also compares them with the existing FL approaches.
Although our MIRS data explained below collected from
different farms, it is available as a single dataset without



any information about the locations (i.e., farms) where the
data samples were collected. So, in order to prepare it for
validating the proposed approach, the following process
was used to create a distributed data environment. When
the dataset is used for distributed learning (i.e., training
the NNPLS model under FL settings), we divide the MIRS
dataset among five distributed clients. The number of clients
was limited to 5 in order to have a sufficient number of
samples per client (means client service) to perform the
learning. This is because the original MIRS dataset consists
of 712 samples only (each subset has 712/5 ~ 140 samples).
In a real-world scenario, this is feasible because in general,
the herd size of an average dairy farms is around 100-150.
The sub-samples are collected from client services into a
central location (e.g., Cloud infrastructure) when perform-
ing CML. This is assuming no privacy concerns are raised
for communicating data. In each analysis task explained
below, 80% of the total samples were randomly selected
for model training and the remaining samples were used
to texting. Also, the learning performance presented below
is also correspond to the learning accuracy derived from the
test dataset.

4.1 MIRS Dataset and Pre-processing

The data used in this study originated from the Teagasc re-
search dairy farm at Moorepark, Ireland where MIR spectra
of milk were collected. The composition of milk was deter-
mined using the FOSS MilkScan [46]. The dataset consists of
MIR spectra of 712 different milk samples in the wavenum-
ber region 925 — 5005¢m ! with a resolution of 3.853cm 1.
The wavenumbers were rounded to the nearest integer. As
a result, the given spectrum contained 1060 transmittance
data points. Hence, the original gold standard MIRS spectra
used for FL was a 712 x 1060 size matrix. We converted them
to absorbance values by taking log;o from the reciprocal of
the transmittance values. The absorbance values in the milk
samples indicate the amount of absorption of the electro-
magnetic radiation when the MIR light penetrates through
the milk sample. Higher absorbance values indicate that the
MIR light penetrates less at certain wavenumbers according
to the molecular bonds. In addition, the percentages of the
selected milk nutrient components (MQTs), Lactose, Fat, and
Protein, corresponding to each milk sample were stored in
a matrix (Y, xx, where n = 712 and k = 3).

In spectrometry-based data analysis, pre-treatments are
necessary as MIRS data contains large quantity of redun-
dant data which adds variability in the wavelengths. Also,
the higher dimensionality and multi-collinearity among the
wavelengths limits the use of simple ML models. Conse-
quently, these factors could affect the resulting predictive
accuracy. The original milk spectrum indicated two random
sharp fluctuation regions, which occurs in the wave number
regions 1500 — 1800cm~! and 2900 — 3800cm ! per visual
observation (see Figure 5). These regions are the water
absorbance regions according to the pure water spectrum at
25°C, which corresponds to O = H bonds in the spectrum.
We identified these two regions based on PLSR model
calibration, which was conducted on our gold standard
data and removed it in the pre-processing stage. Then the
water absorbance regions removed were 1607 — 1734cm ™!

Absorbance

TR R B N L P T T R

925-1603 = 1738-3017 3711-5005 cm-!

Fig. 5. Water absorbance regions removed MIR spectra of 712 milk sam-
ples within the wave number region 2500 — 25000nm,(900 — 5000cm 1)
of the electromagnetic spectrum.
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Fig. 6. Federated and centralized prediction accuracy of MQTs in the
MIRS dataset (DML with 5 clients).

and 3021 — 3707cm~! [18], [19]. By removing these two
regions, the dimensionality of water free spectrum (X) was
712 x 847. Figure 5 represents the water absorbance regions
removed spectra.

Scaling MIRS data was not a compulsory approach
since all the features were in the units of absorptions.
Therefore, the water-removed MIRS data was then fed into
PCA dimension reduction stage and the PCs corresponding
to the reconstruction error less than 1074 were selected.
Reconstruction-error is the I3 norm of (X — X), where X
is the reconstructed X by PCA. These pre-processing steps
could precisely remove the wavenumbers from the original
spectra to obtain pre-processed MIR spectra (say X) for use
in FL. We used Python scikit-learn and TensorFlow libraries
for all the analytical work.

4.2 FL performance of MIRS Data with a LSQR model

A LSQR model was formed including all the parameters in
X (i.e., PCs with reconstruction error < 10~%) and then fed-
erated once by equally distributing the 712 samples among
the 5 clients (=140 samples per client). With a 10~ learning
rate, the SGD algorithm was then used to train the model at
each client for 10 iterations. The predictive performance of
the FL (i.e., DML) approach (parallel) was compared with
the non-FL (CML) approach. Figure 6 shows the accuracy of
CML and DML approaches for three MQTs. The predictive
and actual MQT values under the DML approach are dis-
tributed around the straight line (i.e., actual y and predicted
y (9) should be linearly correlated as y = mg, where m = 1)
compared to those under the CML approach. That is, the
DML (FL) predictive performance is better than that of the
CML with LSQR model.
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Following the similar procedure used above, the vari-
ability in predictive performance of FL with increasing
number of clients was studied with the results summarized
in Figure 7. The FL approach achieved higher accuracy and
converged faster than the CML approach. Therefore, having
many clients contributes to improving the FL efficiency by
speeding up the model training process. The effectiveness of
the FL approach mainly depends on the number of clients
as well as the number of samples used by each client to train
the ML model. Having a set of suitable initial model param-
eter values generally guarantees better accuracy when com-
pared to their optimal values. So the updated set of model
parameters that are available at the central processing unit
is sent to the next client(s) as initial parameter values. The
convergence of SGD gradually becomes faster as federation
progresses.

These results confirm that FL performs better than the
CML approach, but the performance can be improved fur-
ther with increasing number of clients as well as using
larger training samples. However, the limitations of LSQR
mentioned in Section 3.1 might cause a poor predictive
performances for some MQTs [18]. The next section explains
how to overcome those limitations based on the compu-
tational evidence derived from using PLSR and NNPLS
models.

4.3 Centralized and FL performances with NNPLS
model

In this section, non-federated (CML) performance of the
NNPLS model is compared to the LSQR and PLSR models.
Then the performance of FL-NNPLS is explored.

Prior to exploring learning performance, in order to
guarantee the convergence of the optimization algorithm
(SGD), we experimented variability in error loss (as in RSS
Loss - Residual Sum of Square Loss) with increasing number
of clients under both the Federated and Non-Federated
settings. For instance, Figure 8 depicts the convergence of
RSS Loss up to three clients with the NNPLS model for
10? iterations only. It can be seen that the convergence is
faster with more clients under federated settings than the
centralized settings.

Table 1 represents the non-FL predictive accuracy ob-
tained from the LSQR, PLSR, and NNPLS models for each
MQT, including the number of LVs. The CNN model is
explained in the next section. The replacement of the LSQR
model by the PLSR and then the NNPLS models contributed
to improve the predictive accuracy of all MQTs; the largest
improvement was for Protein, followed by Lactose. This is
highly likely attributed to the PLSR and NNPLS models
taking into account the multi-collinearity in the MIRS data,

0.6

— Centralised

— Client (Fed)=1

- - Client (Non-Fed)=1
— Client (Fed)=2
== Client (Non-Fed)=2
— Client (Fed)=3

- - Client (Non-Fed)=3

0.5

RSS Loss

O.GO

200 400 600 800
Number of Iteration

1000

Fig. 8. Convergence of the optimization method (i.e., SGD) under non-
Federated (i.e., CML) and Federated settings with the NNPLS model
(the convergence was quantified by using RSS Loss - Residual Sum of
Square Loss).
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Fig. 9. NNPLS model-based FL performance for different MQTs under
the sequential and parallel model updating approaches.

which is not considered in the LSQR model. Also, the
NNPLS model is capable of capturing non-linear functional
relationships in addition to multi-collinearity in MIRS data.
Moreover, NNPSL model follows the SGD optimization to
select the optimal parameter values, which is not considered
in the PLSR model. That is why the accuracy of each
MQT obtained from the NNPLS model is better to that of
the LSQR and PLSR models. Thus, the NNPLS model is
computationally more effective compared to the traditional
NN models and also able to provide more precise learning
outcomes compared to LSQR and PLSR.

With five clients, the NNPLS model of each MQT was
federated for 10 times under the sequential and parallel
updating approaches separately, assigning 140 (= 712/5)
samples randomly for every client at each federation. This
approach is used in the same training and validation set-
tings, which were used under the non-FL approach. Figure 9
depicts the variability in the average predictive accuracy
over the five clients obtained from both updating proce-
dures at each federation step. In general, with increasing
number of federation steps, the predictive accuracy of all
MQTs increased in both updating approaches. The accuracy
obtained from the sequential updating was, however, higher
than the parallel updating approach. Furthermore, after
ten federation steps, all MQTs achieved higher accuracy
compared to the non-FL accuracy given in Table 1 for both
updating approaches.

In general, the NNPLS model performed better than
the LSQR and PLSR models with MIRS milk data. At the
same time, the FL-NNPLS approach achieved greater per-
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MQT LSQR (%) LVs PLSR (%) NNPLS (%) CNN(%)
Train:  Vali: Train:  Vali: Train:  Vali: Train:  Vali:
Lactose 9243 91.62 12 94.05 90.86 9641  93.39 97.85  92.58
Fat 9349 87.50 5 9395 9144 96.11 91.12 96.36  92.21
Protein  83.86  66.87 5 75.62  69.44 87.46  83.09 82.05 77.66
TABLE 1

Centralized (non-FL) training (Train:) and validation (Vali:) accuracy (R%2%) of LSQR, PLSR, NNPLS, and CNN models for different milk quality
parameters (MQTSs).

FedAvg FL-NNPLS

1). Clients contributes to Subset All
global model derivation

2). Local model aggregation for ~ Weighted Arithmetic
computing global model mean mean

3). Global model updating Parallel Parallel and
methods Sequential

4). Local model optimization SGD SGD +
methods (PCA + PLS + NN)

TABLE 2

Comparison of properties between FedAvg and FL-NNPLS methods.

formance compared to the performance obtained from the
CML approach. Moreover, the sequential updating based
FL performance has better performance compared to the
parallel updating based FL approach.

Moreover, we explored the learning capability of the
FL-NNPLS method and compared with already existing
FL methods Federated-Averaging (FedAvg) and Federated
Stochastic Variance Reduced Gradient (FSVRG). In terms
of global model updating procedure, the FedAvg approach
is similar to the FL-NNPLS under the parallel updating
method discussed in section 3.4.1. Whereas, the local model
aggregation method at the central service unit (or server)
is different. The FL-NNPLS uses the arithmetic mean while
the FedAvg uses the weighted mean for aggregating local
models. That is because, in the present study, since we
assumed that all clients have equal sized datasets, the
arithmetic mean was used to aggregate local model up-
dates for computing the global model. However, FedAvg
does not necessarily make the same assumption. Because
FedAvg uses only a set of clients to update the global
model updating process though FL-NNPLS uses the model
updates from all clients to compute the global model. This
in turn makes the Fed Avg particularly useful for application
where there is a variability in data generation speed among
clients. In addition, the FL-NNPLS uses SGD along with
PCA, PLSR and NN methods for computing local model
updates, but Fed Avg mostly uses SGD only. So the chance of
achieving greater performance from the FL-NNPLS method
may be relatively higher than the FedAvg. It may, however,
vary depending on application-specific requirements such
as availability of data and computing resources. Table 2
summarises these similarities and differences.

Considering the FSVRG method, the global model
derivation procedure is also similar to the FL-NNPLS-based
parallel model updating process discussed in section 3.4.1.
Also, local model aggregation in the FSVRG method is
similar to the Fed Avg method. However, the main difference
from both the FL-NNPLS and FedAvg methods is one full
gradient computation is performed centrally, followed by
many distributed stochastic updates over the distributed

clients. Most importantly, the FSVRG is originally designed
for taking into account spare data in the sense that detecting
seldom features represented in local datasets through a data
scaling procedure. Therefore, FSVRG could be an important
method for applications where there is greater sparsity in
local datasets. However, integrating models which have a
large number of parameters with the FSVRG is challenging
due to scaling issues that arise through mismatching be-
tween input and output model parameter dimensions. More
details about the FedAvg and FSVRG can be found in [47].
Table 3 compares the predictive learning performance
of FL-NNPLS (after 10 federation steps with 5 clients) with
FedAvg and FSVRG methods using the above MIRS dataset
(D-1) and another publicly available MIRS dataset (D-2)
consists of 960 MIR milk samples. The difference between
the FL-NNPLS and FedAvg approaches is that the FL-
NNPLS takes the model updates from the all clients to
compute the global model, while the FedAvg uses only a
set of clients for updating the global model. Whereas, in the
FSVRG method, one full gradient computation is performed
centrally, followed by many distributed stochastic updates
over the distributed clients. More details about the D-2
dataset can be found in [48]. So, to set up similar settings
as the FL-NNPLS method (i.e., 712/5 ~ 140 samples per
client), with the the FedAvg method, total seven clients were
considered (960/7 ~ 140 samples per client) and only 5
of them were contributed to the model updating process
in each updating cycle. FL-NNPLS achieves comparable
learning performance to the FedAvg and FSVRG with D-
1 dataset though, it slightly less with the D-2 dataset. That
is because the D-2 dataset contains almost 250 more MIRS
samples than the D-1. Therefore, this comparison shows
that the FL-NNPLS method has comparable performances
to the already existing FL. methods. Moreover, higher per-
formances can be achieved with larger datasetes. However,
lack of domain knowledge about other datasets (e.g., multi-
collinearity) and also diverse application specific require-
ments are some of the critical challenges that could be raised
in applying the FL-NNPLS method for the analysis of data.

5 DiscussION

The FL method can be considered as a realization of the
concept of Data Gravity proposed by Dave McCrory in 2010.
He pointed out that with increasing data sizes, the compu-
tational power should be shifted towards the data sources.
Fog/edge computing and Cloudlets are two popular DML
enablers where this concept is being practiced [19], [49]. In
these distributed computing environments, FL is one of the
latest optimization approaches which can be used to per-
form analytics. Therefore, in this section, first we discuss the
state-of-the-art performances of the FL-NNPLS approach,
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MQr  _FLNNPLS (%) FedAvg (%) FSVRG (%)
D-1 D2 D-1 D2 D-T D2
Lactose 95612063 9598 £ 0.63 92.94EF 012 9447+ 032 O9LI7E 054 9645+ 0.64
Fat 94914090 9298 +2.87 8523+ 024 8523+ 043 86.04+ 047 8217+ 0.17
Protein 82444196 85.62+ 450 82.80+ 025 69.44+ 058 83.05+ 054 88.79+ 0.38
TABLE 3

Comparison of sequential updating-based learning accuracy (i.e., (mean =+ std) of R2% ) of FL-NNPLS, FedAvg and FSVRG obtained with 5
clients and 10 federation steps using datasets D-1 and D-2.

which uses Convolutional NN (CNN). The common issues
of the DML approach are then discussed, including some of
the challenges in FL-NNPLS technique. Subsequently, one of
the critical challenges, which is data imbalance and finally,
directions for future research under FL are discussed.

5.1 Comparison of FL-NNPLS model performance to a
deep NN model

Considering different CNN models (e.g., LNet, Vgg-19, and
Resnet), which are explained in [19], [50], [51], CNN model
was selected based on LNet-5 and Vgg-19 models such that
they are deeper (i.e., number of layers) than the LNet-5, but
not as deeper as Vgg-19. This means that the CNN model
consisted of three convolutional and three dense layers.
Each convolutional layer contained a 3 x 3 sized kernel.
The number of features extracted from each layer was 20,
30, and 40, respectively. Also, each convolution layer was
followed by a max-pooling layer with a kernel of size 2 x 2.
A flatten layer was included after the last convolution layer.
Then the dropout layer dropped out by 20% neurons of the
flatten layer. The first dense layer contained 30 neurons. The
number of neurons in the second dense layer was equal
to the number of LVs of the predictor variable used for
learning. The last dense layer contained only one neuron
and used the linear activation function. All other layers of
the CNN model used the rectified activation function. ADAM
optimization technique was used to train the CNN model.
The reason behind selecting a CNN architecture between
LNet-5 and Vgg-19 was that training large deep learning
models like Vgg-19 under the FL settings may not be feasible
under certain circumstances, such as limited resources and
low complexity.

Under the CML settings, the water-free MIRS dataset
was first compressed by applying PCA with 10~* recon-
struction error Then the compressed dataset fed into the
CNN model. The model was trained for 10® times by
selecting the initial network weights from the uniform dis-
tribution. The predictive accuracy for each MQT was then
computed and given in Table 1. It is clear that the NNPLS
model has state-of-the-art performance because the CNN
model outcomes are comparable to the NNPLS model.

To train the CNN model under the FL settings, the same
procedure which was used to train the NNPLS model in Sec-
tion 4.3 was followed. However, the initial network weights
were selected from the uniform distribution. If the square
root of the selected number of PCs was not an integer, then
the PCA compressed data could not reshape it to feed to the
CNN model for training and validation. Therefore, the zero
padding technique was used to adjust the number of feature
variables in the compressed dataset before reshaping. The
number of samples per client was increased up to 250, but
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Fig. 10. CNN model-based FL performances under the sequential and
parallel updating techniques.

the federation steps were limited to five as over-fitting is a
common issue with the CNN model due to the small data
size. Figure 10 represents the validation accuracy for each
MQT with increasing number of federation steps under the
sequential and parallel updating approaches. As shown in
the results, the accuracy improved for all MQTs under two
updating approaches.

Comparing the CNN-based FL performance to the FL-
NNPLS outcomes, NNPLS model achieved higher accuracy
for all MQTs compared to the CNN model under similar
FL settings. Moreover, the convergence efficiency of NNPLS
was faster than the CNN model, as CNN requires longer
training time to achieve similar performance to FL-NNPLS.
Therefore, these results prove that the NNPLS model re-
sults in greater performance compared to the CNN model
under similar experimental settings. Figure 11 depicts the
sequential and parallel updating performances based on the
validation accuracy of each MQT obtained from the NNPLS
and CNN models. While the variability in the predictive
accuracy of all the MQTs at each client is displayed in
Figure 11(a), Figure 11(b) represents the change in predic-
tive accuracy for each MQT with each federation steps.
In general, the predictive performance from the sequential
updating method was higher than the parallel updating
method for both models. Also, under the sequential up-
dating technique, NNPLS model based predictive accuracy
was comparable to that from the CNN model for all MQTs.
However, considerable differences were observed for certain
MQTs with the parallel updating approach. Therefore, it can
be concluded that FL with the sequential updating performs
well compared to the parallel updating. Also, the NNPLS
model has comparable performance to the state-of-the-art
CNN-based deep learning model based on the predictive
performance obtained for the MIRS data of milk.

5.2 Advantages of FL-NNPLS

The DML framework based on FL-NNPLS approach can
handle most of the issues mentioned heretofore. Since data
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Fig. 11. Sequential and parallel updating based FL performances obtained from NNPLS and CNN models for three different MQTs.

will not migrate from the data sources, and ML model up-
dates do not store them in the server, FL-NNPLS optimizes
resource consumption as well as data privacy, security, and
data ownership. Also, as every client integrates updated ML
model immediately after each federation, they can make
timely decisions effectively. In many applications, NNs are
the state-of-the-art though selecting a proper network con-
figuration is time and resource-consuming. However, mod-
ern deep learning models ResNet and GoogleNet can be
easily optimized and gain higher accuracy with increasing
depth of the models and can control the computational cost
required with deep learning models [50]. Employing them
in Fog/Edge computing based DML systems might not be
possible particularly in smart farming, because such systems
mostly rely on resource limited sensor nodes which cannot
train those models. However, considering the applicability
of modern DML frameworks such as Horovod ! will be a
good alternative to handle such limitations.

Since NN-based FL-NNPLS approach is associated with
the PLSR technique in selecting suitable NN configurations,
the learning process is faster and preserves the computa-
tional power. Having a proper set of initial network weights
speeds up the network convergence, cuts down the com-
putational burden required for deciding the NN configu-
rations, provids a faster convergence rate. Since the PLSR
technique provides these pre-requirements, NNPLS-based
ML can provide computationally inexpensive, robust, and
scalable solutions for a broader range of applications. Fur-
thermore, PLSR effectively overcomes the multi-collinearity
and higher dimensionality, while NN enables capturing
complex functional relationships in the data. Therefore, the
scalability of the FL-NNPLS approach is better compared to
the NN or PLSR methods.

5.3 Data imbalance issue in FL-NNPLS

The ultimate purpose of this DML is for deriving meaning-
ful and timely insights from massively distributed datasets.
Hence the necessity for efficient FL frameworks has a grow-
ing demand with the growing prevalence of big data in a
broad range of applications. Nevertheless, there are some

1. https:/ / github.com /horovod /horovod

common critical issues associated with it, and some are
listed as follows:

1. The FL framework is used for learning from large-
scale distributed data, but finding resources in order
to respond to the ever-increasing data volume (e.g.,
online sensor data) is challenging.

2. The datasets involved in FL are typically heteroge-
neous and that brings up constraints such as aggre-
gating the FL model parameters and defining a com-
mon representation for data to be able to apply ML.
Also the datasets are not complete, balanced, and
uncertain due to a number of reasons such as missing
data or their unavailability, and the un-verifiability
of all data sources. As a result, most ML algorithms
cannot be applied directly so that deriving precise
insights from such data could be challenging.

3. The FL system is totally dependent on the coordina-
tion device which provides services to the collection
by the local model updates and using this to produce
the global model updates. Any functional failure (or
misbehaviour) of this entity could result in a collapse
of the entire system.

4. It has been already warned that significant infor-
mation can be extracted by tampering the model
updates [52]. Hence, extra security efforts are now es-
sential, particularly in smart farming applications for
performing safe communication of model updates
between the clients and the central service units.

5. The FL system is lacking a proper mechanism to
examine the validity of the clients” data and model
updates as they can inject false information into the
FL system.

Therefore, FL systems should have the potential to under-
stand these factors and be equipped with the necessary
tools in order to efficiently overcome them. For example,
to overcome the data imbalance issue in FL, we propose an
approach by using the FL-NNPLS method and explore its
performance based on the MIRS dataset.

Data imbalance is commonly encountered in many ML
applications most notably in data classification and DML.
This happens when the number of clients that have small



quantity of samples is significantly higher compared to the
total number of clients. Consequently, ML outcomes are
most likely biased towards the clients which have larger
samples. ML algorithms such as data classification consider
the clients are having a small number of samples (minority
samples/classes) as noises and tends to neglect them during
the learning process. In fact, minority classes are usually
more critical. For instance, in dairy herds, there could be
very few sick cows relative to the number of healthy cows,
and this minority group plays a crucial role when identify-
ing animals which are affected. Hence, data imbalance is an
important topic in advanced ML research with the growing
interest in DML. According to a recent study [53], there
are two main approaches to overcome this issue; data-level
and algorithm-level approaches. While the first approach
overcomes data imbalance by using re-sampling techniques,
different techniques such as adding penalty constants are
used in the second approach to overcome the data imbal-
ance issue. Many experimental attempts have proved that
re-sampling, i.e., over-, under-, and hybrid-sampling, is a
promising way to manage data imbalance [53]. However,
the best-suited technique depends on the characteristics of
the imbalanced datasets.

On the other hand, there is another problem associated
with FL-NNPLS approach due to data imbalance; the num-
ber of LVs varies with the data size, and consequently the
NNPLS model configurations vary over the clients and it
hampers aggregation of model updates. That is, feature
variables are heterogeneously distributed over clients and
DML system aggregates different ML models in order to
perform learning. In some studies, DML with different ML
models has been named as vertically partitioned data or
dimensionally distributed data [54]. However, these ML
models that include the re-sampling methods cannot solve
the imbalanced data issue alone in FL-NNPLS approach.
Hence, a technique, which can control both issues at the
same time, is required. Therefore, in the present study, a re-
sampling and zero-padding based joint approach was used
to overcome the issue.

Five clients were federated for 5 times under the sequen-
tial updating FL approach since it performed well compared
to the parallel approach. In each federation step, the number
of samples of every client was allowed to vary randomly
between 50-250. PCA reconstruction error was set to 10~
in order to select the optimal number of PCs. The same
procedure was used in Section 3.4.2, but two additional
steps were used here. The first one is to balance sample
sizes of the clients. The random re-sampling was applied to
the current FL participator only if its sample size was less
than the previous client which performed model updating.
Randomly selected samples from its own samples were used
to balance the current sample size to the sample of the
previous client (i.e., random up-sampling). The second step
was added to the NN weight aggregation stage in which
zero-padding was applied to equalize the sizes of the NN
weight matrices. The variability in predictive accuracy was
computed under both the CML and FL approaches.

Figure 12 represents the federated and non-federated
predictive accuracy obtained for the milk Fat at each fed-
eration step for every client, including the original sample
sizes and LVs. The predictive accuracy from the FL approach
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Fig. 12. The federated and non-federated NNPLS model performances
with imbalance data.

is generally higher than the non-FL. Therefore, it seems
that the re-sampling and zero padding based approach has
the potential of mitigating data imbalance issues. However,
further research is essential to study the validity of this
approach in different applications.

5.4 Future Research Directions

Our future research directions can be considered in two
ways; 1) finding solutions to overcome the challenges men-
tioned in Section 5.3 and 2) exploring novel approaches
to enhance the performances of FL-NNPLS in distributed
services.

Some of the possible solutions could be explored further
to overcome these challenges are:

1. Exploring novel cooperative computing (resource
sharing) approaches such as offloading computations
to neighbouring devices with services as explained in
[55] for minimizing the constraints in resources. Also,
research in effective data compression techniques for
compressing training data as well as communica-
tion over the FL system would be an interesting
approach for minimising the computing and com-
munication costs. In addition, incorporating the dis-
tributed cloud service model for resource allocation
proposed in [56] and mobile edge computing ap-
proach presented in [49] would be better approaches
to minimize resource limitations.

2. Designing techniques for FL with dynamically
changing central service unit based on factors such as
resource availability and communicability with the
client’s services would also contribute to improving
the stability of the FL system, resulting in the min-
imization of the impact of failure (or misbehaviour)
of the central service unit. The concepts about opti-
mizing the node failure in connected devices given



in [57] would be beneficial exploring a path for
mitigating the impact of central service unit failure
in FL.

3. In order to prevent tampering the model updates of
the services traversing over the FL system, public-
private key based data encryption techniques such as
the authenticated symmetric encryption with Diffie-
Hellman (D-H) key exchange service can be incorpo-
rated with FL. Further exploration on how they fa-
cilitate to improve data privacy and communication
resources will be required.

4. Proposing techniques for integrating FL with
blockchain services, for validating model updates
and also minimizing the misbehaviour of any FL
participant.

5. Performing FL by selecting only a set of clients’
services, who have good history of providing valid
model updates, to update the final ML model will
also be a promising solution to control the injection
of false information to the FL system.

There are different ways for developing novel ap-
proaches to enhance the FL performance in distributed
services.

1. One of the main goals of the FL approach is to
achieve high accuracy with a minimum number of
federated communication rounds. This goal can be
achieved by using the ML algorithms which have
faster convergence rates. Hence, developing a bet-
ter theoretical understanding about the convergence
properties of such algorithms will be an interesting
future research direction.

2. Since FL is an optimization framework, a convex op-
timization function is essential to guarantee the con-
vergence of the model parameters. However, NN-
based ML yields non-convex function so there is no
evidence regarding the guarantee of convergence of
the optimization algorithm. Therefore, studies of the
FL problems for non-convex objectives is another
direction that may contribute to the efficient applica-
tion of FL for solving even more complex problems
in advanced applications such as object detection and
image processing.

3. Developing a business model based on a token-based
FL approach. This means that the clients who con-
tributes to update the ML model can rent the model
for outsiders who want the model for practicing
different services such as making decisions. In return,
they have to pay a certain amount of tokens, through
a form of currency, to the FL client(s). This method
will facilitate FL-based platforms to provide greater
services to wider range of application domains.

4. The present study assessed the predictive perfor-
mance of the NNPLS model based CML and DML
only. However, exploring the computational effi-
ciency would be an interesting extension of this work
by taking into account various factors. Some of the
factors, which could contribute towards improving
the efficiency of the FL-NNPLS approach, are re-
source availability at the client services and central
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service unit, frequency of data collection, and model
update transmission cost.

5. This study considered parallel and sequential updat-
ing processes by taking the whole parameter space
in each client service unit, but in some cases, that
may not be feasible. For instance, the available data
at some clients may not be sufficient to update
the whole parameter space, but only a part of it.
In such cases, the parameter-server based approach
presented in the study [29] incorporated with the ap-
proach presented to solve the data imbalance above
could be an alternative as it enables updating the
parameter space by partitioning it over a distributed
worker groups. Therefore, extending this study with
vertically partitioned parameter space over the dis-
tributed clients is another potential future study.

6 CONCLUSION

This paper presents the applicability and benefits of us-
ing a hybrid model of FL and ML models for distributed
services. A particular application of the services is a case
study on spectral data generated from milk samples, which
essentially operates as a tool to predict three milk quality
parameters. The NNPLS model developed for the FL model
based on the limitations of the LSQR, PLSR, and NN models
was used for predictions under the CML and DML settings.
Under the CML settings, the NNPLS model contributed
to improvement of the predictive performance compared
to LSQR and PLSR models and also achieved comparable
performances to the state-of-the-art CNN model. Therefore,
the NNPLS model is a good fit for performing predictive
analytics on milk quality data. Under the FL configurations,
our NNPLS model achieved similar performance when
compared to the CML approach, and by only using a few
federation steps. Moreover, with the similar FL settings,
FL performance of the NNPLS model was similar to the
state-of-the-art CNN model. Therefore, FL-based NNPLS
model can provide timely insights regarding the compo-
sition of milk while preserving data privacy and owner-
ship with minimal resource requirements, which are critical
challenges in providing effective services in modern day
smart farming applications. The sequential updating based
FL approach is a good fit for analyzing milk composition as
it achieves better performance with both NNPSL and CNN
models compared to the parallel updating approach. The
re-sampling and zero-padding based approach contributed
to mitigate the impact of data imbalance in FL. However,
further investigation is required to improve the performance
further.
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