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¡Qué encanto este de las
imaginaciones de la niñez,
Platero, que yo no sé si tú tienes
o has tenido! Todo va y viene, en
trueques deleitosos; se mira todo y
no se ve, más que como estampa
momentánea de la fantasía... Y
anda uno semiciego, mirando
tanto adentro como afuera,
volcando, a veces, en la sombra
del alma la carga de imágenes de
la vida, o abriendo al sol, como
una flor cierta, y poniéndola en
una orilla verdadera, la poesía,
que luego nunca más se encuentra,
del alma iluminada.

Platero y yo, J. R. Jiménez,

La ciencia siempre ha tenido para mí el regusto de los juegos infantiles, ese maravillarse
que acompaña el descubrimiento de lo que ocurre más allá de nosotros mismos y que solo
más tarde podemos ordenar, con el tesón y probablemente la sencillez, del que completa un
puzzle, clasifica sus figuritas o colorea escrupulosamente un dibujo. Está, asimismo, en la
fascinación obstinada del que se inventa un nuevo juego o el que busca, en el antiquísimo
escondite, a sus hermanos, con esa certeza tan arraigada de que les encontrará.

El recuerdo de esos momentos me ha visitado a menudo durante la escritura de esta tesis,
y me gustaría pensar que he conseguido condensar algún resto de su brillo –aunque a veces
casi se apagara– en estas páginas. El documento que sigue no deja de ser, porque así se pide
y tal vez así deba ser, el resultado visible y atemperado de las ilusiones y las desilusiones, las
alegrías y las frustraciones, al fin y al cabo, lo aprendido y –muy a mi pesar– lo ignorado
durante los cuatro años que ha durado mi tesis doctoral. También es, sin duda, un reflejo de
las personas que me han acompañado.

Ahora, como les habrá ocurrido a tantos otros antes que a mí, dar por terminado este
ejercicio de desprendimiento despierta una melancolía prematura. Hay quienes detestan la
melancolía por sentimentaloide o improductiva. Muy al contrario, yo creo que del mismo
modo que una fruta una vez azucarada acaba fermentando en un sabor agridulce, sin
melancolía no tendríamos la certeza de haber vivido, aunque sea un instante, algo bueno.
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Abstract

Mutualistic relationships, that in the past had been long overlooked as fascinating but
marginally relevant, are today known to play a crucial role in shaping ecosystems. In this
thesis we look into the complexity of how these ecological relationships are intertwined in
natural systems, or what Darwin famously called the ‘entangled bank’, from the viewpoint
of the network formalism.

In the first part of the thesis, we consider the origin of the architecture of mutualistic
networks. In detail, by applying concepts from information theory and statistical physics,
we address the question of the emergence of a widespread pattern known as nestedness. By
analyzing a large dataset of empirical networks, we show that the interplay of a few minimum
assumptions on the number of mutualistic interactions per species and the effect of chance
are sufficient to reproduce the observed structure, precluding the introduction of selective
pressures or mechanistic processes. In this sense, our results show that the global structure
of mutualistic communities can be explained, in statistical terms, by the lower-order features
of the system. With these result at hand, we then explore how the different metrics proposed
in the literature quantify nested patterns, evaluating their overall performance on real and
synthetic networks. Our results indicate that the ranking and comparison of nested patterns
among different ecosystems is hampered by the presence of undesired dependencies on other
network parameters.

In the second part of this thesis, we continue digging into the organization of mutualistic
communities but tackling another challenge, namely that of moving beyond the still-prevailing
aggregated paradigm. To start with, we characterize a set of empirical networks and assess
how incorporating information about the temporal variability modifies the static network
description. Next, we propose a group of models to generate, under diverse assumptions,
synthetic configurations of phenology for a given network. We find that, while the adequacy of
mechanistic models to produce realistic configurations is highly system-dependent, a statistical
model based on the maximum entropy principle performs generally well independently of the
network details. Elaborating further upon this line of thought, we then briefly explore the
dynamical consequences for species persistence of taking into account the phenology. We
find that species with a short period of activity face a larger uncertainty in their robustness
against perturbations. This preliminary approach, though, calls for further research, specially
in the context of a changing climate.

On the whole, along this thesis we analyze how the network language can be used to
disentangle the complexity of natural mutualistic systems, by assessing on the one hand the
minimum information required to understand the ‘entangled bank’, and on the other hand,
identifying the limitations of the static representation that still predominates in the field.
The works we will present and discuss here relate to the following publications:

• Payrató-Borràs, C., L. Hernández, and Y. Moreno (2019). Breaking the spell of
nestedness: The entropic origin of nestedness in mutualistic systems. Physical Review
X 9 (3), 031024.

• Payrató-Borràs, C., L. Hernández, and Y. Moreno (2020). Measuring nestedness: A com-
parative study of the performance of different metrics. Preprint in arXiv:2002.00534/.
To appear in Ecology and Evolution.

iii



Abstract

• Payrató-Borràs, C., C. Gracia-Lázaro, L. Hernández, and Y. Moreno (2020). Beyond the
aggregated paradigm: characterizing phenology in mutualistic networks. In preparation.

Resumé

Les interactions mutualistes, qui dans le passé avaient longtemps été considérées comme
fascinantes mais marginales, sont aujourd’hui reconnues par le rôle crucial qu’elles ont dans
la formation des écosystèmes. Dans cette thèse, nous examinons comment la complexité de
ces interactions écologiques intervient dans les systèmes naturels, ce que Darwin a appelé le
‘rivage luxuriant’, en appliquant le formalisme des réseaux.

Dans la première partie de la thèse, nous considérons l’origine de l’architecture des
réseaux mutualistes. Dans le détail, en appliquant des concepts du théorie de l’information
et de la physique statistique, nous abordons la question de l’émergence d’une propriété très
générale, connue sous le nom d’imbrication. En analysant un vaste ensemble de données de
réseaux empiriques, nous montrons que la considération de quelques hypothèses minimales
sur le nombre d’interactions mutualistes par espèce et l’effet du hasard sont suffisantes
pour reproduire la structure observée, excluant l’introduction de pressions sélectives ou
de processus mécanistes. En ce sens, nos résultats montrent que la structure globale des
communautés mutualistes peut être expliquée, en termes statistiques, par les propriétés
locales du système. Ensuite, nous explorons comment les différentes métriques proposées
dans la littérature permettent de quantifier le degré d’imbrication, évaluant leur performance
globale sur des réseaux réels et synthétiques. Nos résultats indiquent que la comparaison
et le classement des niveaux d’imbrication entre différents écosystèmes sont entravés par la
présence de dépendances par rapport à d’autres paramètres des réseaux.

Dans la deuxième partie de cette thèse, nous continuons à étudier l’organisation des
communautés mutualistes, mais en se concentrant sur un autre défi: celui de dépasser le
paradigme de l’agrégation temporelle encore dominant. Pour commencer, nous caractérisons
un ensemble de réseaux empiriques et évaluons comment l’incorporation d’informations sur
la variabilité temporelle modifie la description statique du réseau. Ensuite, nous proposons
un groupe de modèles qui génère, sous diverses hypothèses, des configurations synthétiques
de phénologie pour un réseau donné. Nous constatons que, bien que l’adéquation des
modèles mécanistes pour produire des configurations réalistes dépend fortement du système,
un modèle statistique basé sur le principe d’entropie maximale fonctionne généralement
bien, indépendamment des détails du réseau. En développant cette ligne de pensée, nous
explorons ensuite brièvement les conséquences dynamiques de la prise en compte de la
phénologie sur la persistance des espèces. Nous constatons que les espèces qui ont une courte
période d’activité sont confrontées à une plus grande incertitude quant à leur robustesse
face aux perturbations. Cette approche préliminaire, cependant, appelle a des recherches
supplémentaires, en particulier dans le contexte du changement climatique.

Somme tout, nous analysons au long de cette thèse comment le langage des réseaux
complexes peut être utilisé pour démêler la complexité des systèmes mutualistes naturels, en
évaluant d’une part l’information minimale nécessaire pour comprendre le ‘rivage luxuriant’,
et d’autre part, en identifiant les limites de la représentation statique qui prédomine encore
dans le domaine.

Resumen

El mutualismo, que en el pasado había sido considerado durante largo tiempo como un
tipo de interacción fascinante pero marginalmente relevante, es reconocido hoy en día por
desempeñar un papel crucial en la formación de los ecosistemas. En esta tesis analizamos
la complejidad del rico entrelazado que forman estas relaciones ecológicas en los sistemas
naturales, o lo que Darwin célebremente llamó el ‘ribazo enmarañado’, desde el punto de
vista del formalismo de redes.

En la primera parte de la tesis nos centramos en el origen de la arquitectura de las
redes mutualistas. En detalle, a partir de la aplicación de conceptos de la teoría de la
información y la física estadística, abordamos la cuestión de la emergencia de un ubicuo
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patrón estructural, conocido como anidamiento. A través del análisis de un vasto conjunto
de redes empíricas, mostramos que unas pocas asunciones mínimas sobre el número de
interacciones mutualistas por especie junto con el efecto del azar son condiciones suficientes
para reproducir la estructura observada –sin necesidad de suponer la intervención de fuerzas
selectivas o procesos mecanicistas. En este sentido, nuestros resultados muestran que la
estructura global de las comunidades mutualistas puede explicarse, en términos estadísticos,
a partir de las propiedades locales del sistema. En segundo lugar, exploraremos también
cómo las diferentes métricas propuestas en la literatura cuantifican el anidamiento, evaluando
su desempeño tanto en redes reales como sintéticas. Nuestros resultados indican que la
comparación y clasificación de patrones anidados correspondientes a distintos ecosistemas es
entorpecida, sustancialmente, por la existencia de dependencias respecto a otros parámetros
de la red.

En la segunda parte de esta tesis, continuamos profundizando en el estudio de la
organización de comunidades mutualistas pero abordando un desafío distinto, concretamente
el de superar el paradigma de agregación temporal de las redes. Para empezar, caracterizamos
un conjunto de redes empíricas y evaluamos cómo la incorporación de información
detallada sobre la variabilidad temporal modifica la descripción estática del sistema. A
continuación, proponemos un grupo de modelos que permite generar, bajo diversos supuestos,
configuraciones sintéticas de fenología compatibles con una red determinada. Encontramos
que, si bien la idoneidad de los modelos mecanicistas para producir configuraciones realistas
depende en gran medida del sistema estudiado, un modelo estadístico basado en el principio
de máxima entropía se comporta generalmente bien independientemente de los detalles de la
red. Basándonos en estos resultados, exploramos brevemente las consecuencias dinámicas,
específicamente para la persistencia de las especies, de tener en cuenta la dimensión temporal
de las interacciones. En particular, observamos que las especies con un período de actividad
corto se enfrentan a una mayor incertidumbre frente a perturbaciones externas. Este enfoque
preliminar, sin embargo, requiere investigaciones más detalladas, especialmente en el contexto
del cambio climático.

En conjunto, a lo largo de esta tesis analizamos cómo se puede utilizar el lenguaje de
redes para desenmarañar la complejidad de los sistemas mutualistas naturales, evaluando
por un lado la información mínima requerida para comprender el ‘ribazo enmarañado’, y por
otro lado, identificando las limitaciones de la aún predominante representación estática de
los ecosistemas.
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CHAPTER 1

Introduction

1.1 Some definitions of Complex Systems

According to the ‘Concise etymological dictionary of the English language’ (Skeat Walter,
1980), the word complex comes from the ancient Latin word complexus, composed by the
prefix com –which means ‘together’, ‘jointly’– and the past participle form of the root plectere
-which means ‘to plait’, ‘to weave’-. This origin stands in contrast with the etymology of
the word simple from the Latin simplex: the root remains the same but the prefix changes
to sim, that translates into ‘one’ or ‘as one’. Interestingly, this notion of complexity as a
large aggregate of elements intricately tangled, and moreover as multiplicity as opposed
to singleness, is surprisingly close to the modern scientific concept of a Complex System.
Indeed, Simon wrote (Simon, 1991):

Roughly, by a complex system I mean one made up of a large number of parts
that interact in a nonsimple way. In such systems, the whole is more than the
sum of the parts [...] in the important pragmatic sense that, given the properties
of the parts and the laws of their interaction, it is not a trivial matter to infer
the properties of the whole.

This tentative definition already points out several features that are commonly attributed
to Complex Systems, namely: multiplicity of components, non-trivial interactions among
them and emergent behavior. The latter consists in the fact that as the scale of a system
changes (i.e. the number of elements involved increases) novel properties and phenomena
appear. Hence, quantitative differences transform into qualitative ones, or as Anderson put
it, more is different (Anderson, 1972). Thus, we should not expect to be able to explain
the collective behavior of complex systems by solely adding up scientific concepts and laws
that have been derived through a reductive approach, that is, by reducing such systems to a
microscopic description of their parts.

Truth be told, however, there is no agreed-on formal definition of Complex Systems or
Complexity Science (Mitchell, 2009; Kwapień and Drożdż, 2012), neither there exists scientific
consensus about what is the optimal way to quantitatively measure complexity (Lloyd, 2001).
Since it is not our aim to enter in this sort of comparative discussions though, we will instead
elaborate a bit further on the fundamental properties and phenomena that are generally
identified in Complex Systems. In order to do so, we introduce the definition proposed
by Mitchell (2009), which reads:

[...] I can propose a definition of the term complex system: a system in which
large networks of components with no central control and simple rules of operation
give rise to complex collective behavior, sophisticated information processing, and
adaptation via learning or evolution.

This interpretation reiterates several of the aforementioned properties, but it also
introduces some novel ones. First, the capability of these systems to exchange information
with its environment. Indeed, Siegenfeld and Bar-Yam argue that, in order to be efficient, a
system should be at least as complex as its environment (Siegenfeld and Bar-Yam, 2019).
Otherwise, it would not be able to process and respond accordingly to the wide range of varied
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1. Introduction

external stimuli it receives. In a sense, the second feature outlined by Mitchell is related
to this variability: complex systems show generally an adaptive and evolving character. It
must be said, nonetheless, that evolution is not always considered relevant, either because it
does not play a major role in the dynamics, either because its effects are negligible at the
time-scale at which we study the system (Mitchell, 2009).

Admittedly, the set of features that we have discussed so far are some of the more
commonly referred, but there are many more that we are not considering which may be of
special relevance in a particular domain. In fact, the interesting thing about all these general
features is that they are shared by a vast variety of systems of disparate natures: from insect
colonies to the World Wide Web, from the human brain to the natural language (Mitchell,
2009; Kwapień and Drożdż, 2012). All these examples of Complex Systems exhibit, despite
the differences in their microscopic description, similar complex behaviors at a macroscopic
scale.

The question that naturally arises is, then, whether it is possible to describe such
phenomena using a common language. The definition of Complex Systems suggested
by Mitchell also provides a hint in this sense: she calls the web of interactions among
constituents a network. Reviewing the network representation of Complex Systems and how
it can contribute to our understanding of them is, actually, the subject of the next section.

1.2 Through the network glass, and what we found there

Alice through the looking glass, original illustration by John Tenniel (Carroll, 1872).

As discussed before, Anderson criticized the notion of a naive scientific constructivism
according to which macroscopic behaviors may be explained by aggregatively applying
microscopic laws. But what if, in order to explain macroscopic patterns, not only novel
laws and concepts need to be introduced, but also some microscopic details can be safely
neglected? This is, in very general terms, the idea in which the network language is grounded.

In short, a network is a set of components where some of them are pairwise connected.
The components are typically referred to as the nodes or vertexs, while the connections are
called the links or edges. This simple object can be used as an abstract representation of a
strikingly vast range of systems. Indeed, the few examples of Complex Systems we mentioned
before –the brain, human language or financial markets– can all be effectively represented by
networks. In what follows, we will briefly discuss the history and consequences of viewing
complex systems ‘through the networks glass’.

From graphs to networks

The development of network science begins with the birth of graph theory, which is generally
attributed to the mathematician Leonhard Euler (1707-1783) for his solution to the problem
known as the Seven Bridges of Königsberg (Biggs et al., 1986). Königsberg (today Kaliningrad,
Russia) was an old East Prussian city across which flew the river Pregel, spanned by a
total of seven bridges (see Fig. 1.1). The mathematical riddle that occupied Euler may be
formulated as succinctly as follows: is it possible to devise a walk through the city that

2



1.2. Through the network glass, and what we found there

crosses each bridge once, and only once? Despite the simplicity of the question, answering
it is not a trivial task. A brute force attempt would entail, in fact, trying every different
possible path across the map, resulting in an overwhelming combinatorial effort.

Figure 1.1: Map of Königsberg, adapted from Joachim Bering 1613’s original engraving. The
seven bridges are highligted in red, the Pregel river is coloured in blue and the island and
the different mainland portions are named by capital letters.

Nonetheless, Euler showed that there is an alternative, less painful, approach. In an
article published in 1736 (Euler, 1741), he proposed to look at this puzzle from a abstract
perspective, overlooking the individual details of the bridges and portions of lands in order
to work, instead, with an stylized portrayal. In such graph representation (see Fig. 1.2), land
portions are depicted by nodes while the bridges are represented by links. Interestingly, the
puzzle may be solved using one of the key properties of a node: its number of connections,
or in the graph language, the degree. In order of the non-redundant walk to exist, it must
be possible to arrive to a node through one link and leave it from a different one. In other
words, all nodes must have an even degree. This necessary condition is, in fact, not verified
in the Königsberg map. As can be seen in Fig. 1.2, all four nodes have an odd number of
connections, thus implying that a walk that visits each link exactly once, actually called an
Eulerian path, does not exist.

Figure 1.2: Graph representation of the Königsberg’ bridges problem. Each node represents
a portion of land, as named above, while the bridges are depicted by links.

After the death of Euler, the field of Graph Theory continued growing thanks to the
contributions of several mathematicians, like Kirkman, Hamilton or Cayley (Harary, 1969).
Although the bulk of production in the field was undoubtedly primary theoretical, it is still
possible to find some instances of empirical inspiration, as illustrate the Kirchhoff’s studies
on electric networks, the work of Cayley on molecular graphs to represent chemical isomers
or the developments of Sylvester and Brunel on graph chemistry (Harary, 1969). All these
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1. Introduction

examples may be regarded as predecessors of the explosion of network science that started at
the beginning of the twentieth century within the field of Sociology, and then extended in the
most recent decades to an astonishing range of areas as disparate as economics, neuroscience,
epidemiology, genetics or ecology, to mention just a few of a much longer list. Indeed, the
concept behind the term network differs from that of graph in that, in a strict sense, the
graph refers to the pure mathematical object while the network is a representation (or model)
of a real system (Barabási et al., 2016). As we will now see, this common network language
has permitted unveiling some universal properties and behaviors of, otherwise, fairly distinct
systems.

Looking at real systems

According to Bar-Yam (2000), macroscopic systems may be characterized by a ‘complexity
profile’ that indicates how the amount of information needed to describe it changes at various
levels of detail, that is, at different scales. He argues that, broadly speaking, three distinct
types of systems may be distinguished: random, coherent and correlated. The random type
requires the largest amount information at the smallest scale, but this quantity rapidly
declines as the scale grows. On the other hand, describing coherent structures demands a
constant and relatively small level of information across all scales, since the behavior of each
of the parts is exactly known. Finally, correlated systems lie somewhere in between: they
are neither entirely random, neither completely regular, but instead they exhibit significant
emergent complexity at all scales.

Interestingly enough, this stylized classification recalls the seminal paper by Watts and
Strogatz about the small world phenomenon, where they show how a complex network
architecture arises in the middle-way among a random graph and a regular graph (Watts
and Strogatz, 1998). In short, the small world structure implies high clustering together
with a small characteristic path length. This combination leads to the peculiarity that any
pair of nodes are typically separated by just a few steps, a situation that recalls the ‘seven
degrees of separation’ hypothesis, according to which any pair of persons in the world are
separated, in average, by only seven links. Such particular structure has singular effects on
the dynamics, as accelerating the spread of dynamical processes like epidemics or rumors.
Watts and Strogatz not only proposed a simple network model that reproduces this effect,
but they also revealed that it naturally arises in a vast myriad of systems, from the power
grid to the neuronal network of C. Elegans (Amaral et al., 2000).

The historical relevance of the Watts and Strogatz’s article stems from the fact that
it is one of the first evidences of how simple models of networks may fail to describe the
complex architecture of real networks. Another example of a rather universal feature that
has been extensively explored across disciplines is the family of scale-free networks, whose
degree distribution follows a power law (Barabási and Albert, 1999). The consequent degree
heterogeneity translates into a considerable diversity in the roles of the network’s components:
many nodes have few links, while a small portion of nodes hold many connections, acting as
hubs. This special topology results into a ‘robust yet fragile’ effect on the dynamics, such
that the network’s connectivity is resilient against random failure but extremely vulnerable
to targeted attacks (Albert et al., 2000). Once again, this particular structural property is
exhibited by a wide variety of systems, although recently some debate took place questioning
whether the power law degree distribution is indeed as ubiquitous as some claim, or instead
empirical degree distributions are merely heavy-tailed (Broido and Clauset, 2019). In any
case, high inhomogeneity in the degrees is, undoubtedly, a key and widely observed feature
of real systems.

In the recent years, the study of real networks has certainly evolved well beyond these
paradigmatic examples. However, reviewing it is fairly beyond the scope of this thesis.
Instead, by shortly introducing the small world and scale free architectures, my aim is to
provide a quick glimpse of how network language can capture some complex features of real
systems. It is as well an attempt of conveying the idea that, although the present work is
mainly concerned with ecological communities, our conclusions will be sometimes translatable
to other systems and disciplines, since the structural patterns and dynamical features we
will study here are more than once shared by a broad range of different systems.
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1.2. Through the network glass, and what we found there

Basic quantities, types of networks and notation

Before continuing, we will introduce, for the sake of clarity, some of the basic concepts and
notation in network theory. We will also summarize, as concisely as possibly, the main types
of networks that can be distinguished, generally speaking, in terms of the link’s properties
on the one hand and the overall network structure one the other hand.

For a given network, the information of the connectivity among nodes is typically enclosed
in an object called adjacency matrix. From now on, we will depict this quantity by the letter
A. In the most simple case, it is defined as a square matrix that fulfills that:

Aij = 1 if node i and node j share a link, (1.1)
Aij = 0 otherwise. (1.2)

The second most basic quantity that we may define in a network is the number of
interactions per node, so-called the degree of a node, commonly represented by the letter k.
Using the adjacency matrix, the degree of a node i is straightforwardly calculated as:

ki =
∑
j

Aij , (1.3)

while the set of degrees of each of the network’s nodes {k1, ..., ki, ...} is what we call the
degree sequence. A closely related measure is the degree distribution, namely the probability
distribution obtained by calculating the fraction of nodes pk whose degree is equal to k.
Despite their elementariness, the degree and the degree distribution can be highly informative
quantities both at an individual and at a global level, and indeed along this thesis we will
pay great attention to them and their relation with other structural patterns.

The picture we have drawn up to now corresponds to the most basic scenario, in which
links only inform about which node is connected to which but not about how they are
connected. At least two fundamental modifications exist that permit incorporating more
complex properties to the link: (i) direction and (ii) weight. When introducing (i), the links
are provided with a direction, which turns the symmetric interaction into an asymmetric
one such that one node acts as the ‘sender’ and the other as the ‘receiver’. By adding (ii),
the connections are pondered by their relative importance or strength in a gradual scale, in
opposition to the binary case where interactions are merely existing (a one in the adjacency
matrix) or not (a zero).

Introducing these two properties of links already brings up four possible types of networks:
directed/undirected and binary/weighted. By moving into a more general perspective on the
structural configuration of the whole network, we may distinguish the following classes of
networks:

• Bipartite networks. A network is said to be bipartite if it can be partitioned into
two separate sets (normally called guilds), such that links exist only among the nodes of
distinct guilds, but not among the members of the same guild (see Fig. 1.3). Moreover,
the separation of nodes into two groups usually represents as well the existence of
two kinds of nodes, distinguished by either their identity, function or role. A typical
example of a bipartite network is that of films and actors: a link is placed between
a movie and an actor if he or she appeared on it (Newman, 2010). Given that no
intra-guilds connections exist, the adjacency matrix of bipartite networks –in the case
of undirected and binary interactions– has the following particular form:

A =
(

0 B
Bᵀ 0

)
, (1.4)

where B is what we call the bi-adjacency matrix. In the most general case, B is
a rectangular matrix of size n ×m, where n and m represent the number of nodes
belonging to each guild. As before, Bkl = 1 when node k and node l share a link
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1. Introduction

and Bkl = 0 when they don’t, with the peculiarity that the nodes k and l belong
to different guilds. Networks which can not be partitioned into two guilds are called
monopartite.

• Multilayer networks. The idea behind multilayer networks is to divide the network
into various layers, in order to incorporate into a sole network different kinds of nodes
and links. Each single layer, in isolation, may be regarded as a network where nodes
are connected between them via intra-layer links, while the nodes in diverse layers
are connected through inter-layer links (see Fig. 1.3 for an example). Such increase
of complexity in the representation permits typifying different kinds of interactions
and nodes through the obvious distinction among layers and inter/intra-layer links, as
well as modeling how the perturbations and dynamics in one layer gets transferred
to the others. A classic example of this class of networks is the network of urban
transport, where each layer represents a different system of public transportation (i.e.
bus, train, subway, etc) and the links represent the connections among lines (Gallotti
and Barthelemy, 2015; Aleta et al., 2017). A particular case of multilayer networks are
the so-called multiplex networks, characterized by the fact that the same set of nodes
is represented in all the layers, yet the type of interactions represented in each layer
differs.

Figure 1.3: Illustration of different network types. In a), bipartite network, where one guild
is represented in teal and the other in red. In b), multilayer network composed by three
layers. The inter-layer links are drawn in grey, while the intra-layer links are depicted in
white.

This classification provides a very basic sketch of how the network representation can be
modified and adapted to address different problems. Having introduced already the basic
notions of complex systems and how the language of networks may offer a suitable framework
to study them, we will now turn our eyes into ecological systems, in order to understand
how the concepts discussed up to now apply to natural ecosystems.

1.3 Complexity in the entangled bank

The notion of complexity we have discussed so far may be certainly recognized in a
bundle of examples, including natural ecosystems. Indeed, Levin argues that ecosystems
in particular and the biosphere in general conform paradigmatic cases of complex adaptive
systems (Levin, 1998), primary characterized by its significant biodiversity and by being
subject to evolutionary change. As such complex systems, they exhibit patterns of aggregation
and hierarchical organization. One crucial question, as Levin remarks, is whether such complex
structures are driven by self-organization processes, contingent environmental factors, or a
path-dependent evolutionary history.
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1.3. Complexity in the entangled bank

In any case, the idea that complexity pervades nature appeared considerably earlier, and
we may trace it back to Darwin’s famous picture of the entangled bank. Indeed, in the last
paragraph of his seminal work On the origin of the species, Darwin wrote:

It is interesting to contemplate an entangled bank, clothed with many plants
of many kinds, with birds singing on the bushes, with various insects flitting
about, and with worms crawling through the damp earth, and to reflect that these
elaborately constructed forms, so different from each other, and dependent on
each other in so complex a manner, have all been produced by laws acting around
us.

Despite its poetic simplicity, this description points out several key aspects of ecosystems:
the presence of a intrinsic heterogeneity of species and functions, interconnected among
them as well as with the environment. Moreover, such organized variety is not the product
of a global design by a chief controller, but the emergent result of what Darwin called the
‘laws’. Although here Darwin surely refers to evolution, we may extend his view to include,
in general, any set of rules which leads to complex behavior.

This intrinsically complex character of natural systems has led ecologist like Odum (Odum,
1977) to advocate for a holistic approach to study them, which would complement the
reductionist researching agenda on the components of ecosystems. With this perspective
in mind, the aim of this subsection is to offer a short introduction to the development of
ecology as a science and, specially, to review the recent incursion of complex networks as a
language for modeling, explaining and predicting the complex structure and functioning of
ecosystems.

A young science

The early historical development of ecology as a science is in fact a disputed subject, and,
like in the best of royal intrigues, there is no agreed consensus on who is the ‘father’ of the
discipline (McIntosh, 1986). Although Darwin (1809-1882) is often credited for unwillingly
setting the basis of ecological theory, some historians of science consider its predecessor
Humboldt (1769-1859) as the real founder, due to his pioneering works on biogeography.
Others track the origin still earlier in time to White (1720-1793) and his observations of the
natural life in Selborne, a fresh view that has often been categorized as ‘Arcadian’.

Curiously enough, the term ‘ecology’ was not coined by any of these authors but by the
zoologist and naturalist Haeckel (1834-1919), who introduced it to German from the ancient
Greek root ‘oikos’ which means ‘house’, ‘habitat’. In this sense, the term was introduced
to name the study of the relation of animals –including humans– with the environment.
Indeed, as anachronistic and incomplete as it might be, the definition given by Haeckel of
the term ecology is still cited in may textbooks and offers a nice picture of what relations
try to capture, in particular, ecological networks:

By ecology, we mean the whole science of the relations of the organism to the
environment including, in the broad sense, all the “conditions of existence.” These
are partly organic, partly inorganic in nature; both, as we have shown, are of
the greatest significance for the form of organisms, for they force them to become
adapted. (...)
As organic conditions of existence we consider the entire relations of the organism
to all other organisms with which it comes into contact, and of which most
contribute either to its advantage or its harm. Each organism has among the
other organisms its friends and its enemies, those which favor its existence and
those which harm it. (...)

On the whole, as the historian of ecology McIntosh argues, this difficulty on re-constructing
the origin of ecological theory is aggravated by the intrinsic problematics in defining the
scope and limits of the very own discipline (McIntosh, 1986). To this, should be added
a long-standing human interest on the composition and functioning of natural systems,
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manifested through history in various manners since, at least, the Ancient Greece. The birth
of ecology at the interface between natural history, evolutionary theory, biogeography and
population dynamics somewhat reflects this lasting plurality, and as McIntosh nicely puts
it: "[...] what I call ‘retrospective’ ecology encounters problems in identifying roots simply
because ecology is, to continue the botanical metaphor, more a bush with multiple stems and
a diffuse rootstock than a tree with a single, well-defied trunk and roots".

In any case, as McLean and May point out (May et al., 2007), during this blurry beginnings
and the latter firsts developments the contributions to the field of ecology remained mostly
observational and descriptive, with punctual exceptions of mathematical incursion like the
Lotka and Volterra work on population dynamics. It was not until the second half of the
twentieth century that this qualitative perspective on theoretical ecology was re-framed into
more analytical terms, mainly thanks to the works of Hutchinson (1903-1991) and MacArthur
(1930-1972). On the methodological side, this shift was followed by major advances in
the fields of non-linear dynamics and chaotic systems, which were often applied to –if
not intertwined with– the study of population dynamics and pattern formation-. Finally,
regarding field ecology, there was as well a transformation from an observational approach to
nature into a more experimental attitude.

All this led to what McIntosh calls theoretical mathematical ecology or, as named in
the sixties, the ‘new ecology’. In addition to the incorporation of statistical, analytical
and computational tools typically employed by physicists and mathematicians, Scoones
(1999) argues that it also entailed a change in the conception of ecosystems. The prior
image of ecosystems as well-balanced, static systems at equilibrium was challenged by
the novel recognition that, in fact, they are stochastic by nature and often placed out of
equilibrium (Scoones, 1999). Such recognition resulted in both an empirical and theoretical
effort to understand the variability of ecosystems across scales, time and space; as well as a
struggle to model and predict their stability. The translation of ecosystems into complex
networks (Heleno et al., 2014), which will be the topic of the rest of this section, partly
contributed to addressing these challenges.

To finish with this short glance at the historical development of ecology, it is wort noting
that in the very recent years, specially with the appearance of the Internet and Big Data,
the field has experienced an unprecedented rise of data gathering and sharing. Carmel et
al. (Carmel et al., 2013) showed that the main research subjects have not, from a general
perspective, notoriously changed during the last 30 years, except for a significant increase in
the number of data-based studies. The complex networks approach, and in particular the
research presented in this thesis, has probably much to do with this latter trend.

A question of scale

One of the key challenges of ecology is tackling the relevant scales to observe and describe
ecosystems. Darwin himself noted, in his afore-mentioned description of the entangled bank,
that species are ‘elaborately constructed forms’ in their own, which in turn compose a complex
web of interactions. What level of description, then, is more appropriate to understand
biodiversity: single-species, the community level, even the planetary scale? Levin argues that
there is in fact not a single, naturally relevant scale, but rather a multiplicity of scales along
which processes take place and across which information is transferred (Levin, 1992). At
lower-order scales, the description of the systems gains in richness of details, due to a natural
increase of the heterogeneity and variability. At higher-order scales, some of these details are
blurred in favor of a simplified view, which unveils sometimes hidden patterns. The scientific
question is, thus, how to balance this trade-off between accuracy and explanatory power in
order to obtain some insights into the mechanisms that determine the ecosystem’s features
and functioning.

The complex networks framework addresses this very same challenge by modeling systems,
as we have discussed before, as a stylized web of nodes and links. Applied to ecosystem,
networks can depict a variety of components’ and interactions’ types, and the choice of one
scale or another will determine this representation as well as the sort of scientific questions
that may be asked. As Levin remarks, the multiplicity of scales does not only refer to space
and time, but also to the organizational level (Levin, 1992). In this sense, when tackling for
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instance the problem of biodiversity, organisms may be grouped following different criteria,
i.e.: by species, by function, by importance in the ecosystem, by body mass, by diet, etc. This
choice of scale can have a decisive role in the observation and measurement of ecosystem’s
patterns. For example, in their review of ecological networks Ings et al. (2009) discuss how
the aggregation of individuals in food webs into different classes affected the quantification of
the predator-prey body mass ratio. In particular, grouping individuals into species (by their
average traits) or trophic species (by their shared predators and preys) masked the allometric
relations, that is, the feeding hierarchy of bigger-eats-smaller, which instead became evident
when analyzing the interactions on a individual-individual basis.

All this serves as a no-free-lunch remainder that ecology is not exempt from the burden
of choosing a non-biased observer, neither the construction of a network is always an obvious
election. Along this text, we will mainly study ecological networks where nodes represent
species and links depict the ecological interactions among them, and accordingly we will
adhere to the simple definition of biodiversity as the total number of species. However, it
is worthy to keep in mind that this representation is not unique or self-evident. Indeed,
understanding on the one hand which patterns remain unchanged across scales -i.e., they
exhibit scaling behavior-, and which instead appear or disappear at different levels of
description is one of the key questions of theoretical ecology.

Ecological networks in a nutshell

Types and more types

Any attempt of reviewing the state of the art of ecological networks should probably begin
with an explanation of the distinctions among its different types. Truth be told, however,
there is not a unique way of classifying ecological networks, and the criteria eventually chosen
will typically depend on which aspect of the network representation is emphasized. Therefore,
we will start by summing up some of the most common classifications of ecological networks,
while keeping in mind that these criteria are neither exhaustive nor mutually exclusive –since
any network representation will certainly fit in different classes at the same time. In any
case, ecological networks might be grouped, at least, by the following four criteria:

• By perspective. Ings et al. (2009) distinguish among two historical trends in the way
of addressing the study of natural ecosystems: those who stress the importance of the
biotic community, like Elton (1927), by prioritizing the study of the relation between
the organisms, and those who place the emphasis on the whole ecosystem, like Odum
(1977), by taking a holistic perspective that tackles the relations between organisms
and the environment in a language of flows and transfers of biomass, nutrients, energy,
etc. Since the focus of this thesis is on mutualistic interactions, in what follows we will
pay special attention to the first approach. Nonetheless, it is important to remind that
interactions within a community also imply transfer of energy and biomass, even if
they are not always explicitly modeled (Ings et al., 2009).

• By interaction type. In this case, the network is primary distinguished by the
ecological interaction(s) captured. Traditionally, three broad types are distinguished:
(i) food-webs, characterized by depicting predator-prey relationships, (ii) mutualistic
networks, where species are engaged in mutually beneficial interactions, and (iii) host-
parasite networks, where one individual is parasitic to another. The first and third types
tackle antagonistic relationships, characterized by being detrimental to at least one of
the agents (i. e. the prey, the host), while in the second case the relationship retrieves a
benefit to both of the participating species, often providing as well an ecosystem service
(e.g. pollination). All in all, it is worthy to remark that the distinction per interaction
type can be sometimes blurry, given that the beneficial or detrimental nature of an
ecological interaction is not always self-evident and may gradually vary in time or
across individuals. By way of example, not only food webs but also mutualistic and
host-parasite networks involve, in fact, trophic exchanges: both the parasite and one
of the mutualistic partners may get feed through their interaction (Ings et al., 2009).
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In addition to the difficulty of classifying interaction types, a major problem is that
communities are composed by an entwine of diverse ecological relationships, being the
predominance of solely one interaction type an exception rather than the rule. We will
come to this again later on, since addressing this limitation poses both a theoretical
and a experimental challenge.

• By dimensionality. As afore-mentioned, ecosystems exhibit significant heterogeneity
in many aspects, including the temporal an spatial variability. Spatial networks attempt
to incorporate spatial effects by embedding the web of interactions into a topological
representation of space, or by weighting the interactions as a function of the distance
among the partners. On the other hand, the representation of ecological systems
as temporal networks aims at describing seasonal or daily turnover of species, as
well as appearance or disappearance of links and changes in interaction strengths.
Spatial networks have been often used to explore landscape biotic composition and
robustness, particularly the patchiness of species’ distribution (Bascompte and Jordano,
2013). Ecological temporal networks, instead, have been scarcely used up to date,
despite a long-lasting ecological concern regarding the seasonal changes in species
abundances and composition. All in all, during the recent years the field has witnessed
an increase of interest in understanding and modeling the temporal dimension of
ecological communities using networks. To finish, in opposition to spatially extended
or temporal networks stand the so-called aggregated networks, where the temporal
and spatial dimensions are simply dismissed by gathering together the observations
made across a region or along a certain timespan. Despite their obvious limitations,
aggregated networks have been extensively used as they already provide us with
remarkable insight into the organization and function of natural ecosystems.

• By network type. To finish, a probably quite obvious way of classifying ecological
networks is according to their overall structure, as defined previously in section 1.2.
Again, this classification may be done generally speaking in: directed/undirected,
weighted/binary, bipartite/monopartite and multilayer/monolayer networks. To start
with, bipartite networks have been extensively used in ecology to represent interactions
among two different groups, distinguished by species’ type (e.g. plants and animals in
mutualistic networks) or by role (e.g. hosts and parasites in antagonistic networks).
Concerning multilayer networks, Pilosof et al. (2017) recently proposed them as a
pertinent framework to refine the description of ecosystems, in particular by increasing
the complexity of their representation. The authors explored a myriad of possible
applications of the multilayer setting, including, for instance, the modeling of spatial
and temporal networks, the codification in a single network of different kinds of
ecological interactions, or, still, the representation of the relations among different
levels of organization. Some of these applications have been already explored, as
illustrated the work by Kéfi et al. (2016) in which they use a multiplex network to
analyze the organization of a highly-resolved empirical network, for which both trophic
and non-trophic interactions had been observed, or the work by Gracia-Lázaro et al.
(2018) in which they convert a bipartite mutualistic network into a bilayer network by
incorporating competitive interactions among members of the same guild.

This generic classification already illustrates the pluralism of approaches in the application
of complex networks to ecology, yet it also brings up some of the current challenges in the
field. Such challenges are mainly related with the limitations of the aggregated, single-
interaction-type network representation, which has lead ecologists to call for an increase in
the complexity of the description by considering, for example, the co-existence of various
interactions types in a community or the presence of temporal and spatial heterogeneity (Ings
et al., 2009; Heleno et al., 2014).

A brief historical account

From the historical point of view, the early development of ecological networks remained
intimately linked to the study of food webs. According to Bersier (2007), the first documented
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food web dates back to 1880 and is attributed to Lorenzo Camerano, who depicted in a
diagram the trophic relation among several functional groups of animals and insects, with
the ultimate aim of pondering the detrimental or beneficial effects of these various species
to human crops. However, the influence of this work was seemingly scarce (Egerton, 2007),
and it was not until the 1910’s that the diagrammatic portrayal of food webs –precursory
of the network representation– was used almost simultaneously by Pierce et al. (1912) (see
Fig. 1.4) and Shelford (1913). From then on, the study of food webs in the form of diagrams
gradually became a commonplace in community and ecosystem ecology, mainly thanks to
Elton in the afore-called community approach, and by the hand of Lindeman and Odum in
the ecosystem perspective (Bersier, 2007).

Figure 1.4: Original food web by Pierce et al. (1912) that focus on cotton pests, primary boll
weevil, and their secondary and tertiary trophic relationships. In a), the original diagram
depicting the various predator-prey relationships. Interestingly, Pierce et al. reported the
pests that affected the cotton plant, secondly its predators and parasites, and in a third place
the predators and alternative hosts of the cotton plant’s parasites. The result is a complex
food-web which includes various trophic levels. Once again, the construction of this food web
was driven by a practical interest on controlling pests that affected crops, by getting some
insight on the natural predators of the pests that could be encouraged in order to eventually
diminish the pest population. In b), a graphic representation of the relationships between
the parasites of boll weevil and their others hosts. This table can be seen as the bi-adjacency
matrix of the host-parasite network -probably the first one to be documented, in historical
terms-. Both images are extracted from the original book, which is now public domain.

These pioneering studies focused on empirical food webs, constructed by reporting the
observed interactions among species or functional groups. The first model of ecological
networks did not appear until 1972, and was proposed by May. The model consisted in a
randomly assembled community where the interaction strengths were randomly assigned (May,
1972). This seminal work advanced the application of mathematical tools to analytically
study the stability of ecosystems, and at the same time promoted the use of synthetic
networks as models of real ecosystems.

The interest in food webs not only has been sustained in time since then, but has exhibited
an astonishing outbreak from the 90’s until now, probably in part related to the simultaneous
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explosion of network science (Heleno et al., 2014). The history of mutualistic networks,
last but not least, exhibits an important temporal delay with respect to that of food webs.
Despite an intermittent interest on mutualistic interactions, specially pollination, since the
middle of the 18th century (Bascompte and Jordano, 2013), the network language was not
used to represent mutualistic communities until the very end of the last century with the
seminal paper by Jordano (1987). Since the discovery of universal patterns no more than
two decades ago (Bascompte et al., 2003) ,the field has witnessed a spectacular growth, and
so has the study of host-parasite networks. Yet, this remarkable increase of popularity has
not sufficed to emulate that of food webs (Ings et al., 2009).

May and beyond

The seminal work by May (1972) presented as well an interesting result: the stability analysis
of the random adjacency matrix depicting the ecological network showed that, as the number
of species or connectance in the system increases, stability is hindered. In particular, when
exceeding a particular critical point the system moves from a dynamically stable state to
an unstable one. Such prediction was thought-provoking all the more it contradicted prior
ecological intuitions: real ecosystems are indeed large and complex, and previous field studies
at the time pointed out that simple communities –like cultivated land– are more prone to
respond with large fluctuations to perturbations than more complex ones (McCann, 2000).

This paradox initiated what is sometimes called the ‘diversity-stability debate’, that has
led both theoreticians and field ecologists to design models and perform experiments that
would confirm –or dismiss– the inverse relationship among diversity and stability (McCann,
2000; Montoya et al., 2006). Several attempts have been made up to nowadays to resolve
this problem, from assuming that ecosystems may naturally work at an out-of-equilibrium
regime (McCann, 2000), to considering that real systems’ dynamics can be described by a
selected set of parameters other than random (Montoya et al., 2006). The approach that
interest us the most, however, is that which challenges May’s assumption that ecosystems
can be explained by a random network of interactions. Empirical observations, in fact,
have revealed that the natural webs of interactions are anything but trivially organized.
In this sense, the study of the structural properties of real ecological networks has often
revealed the existence of common, regular features like the degree heterogeneity or the
compartmentalization of links into modules. Such recognition has resulted in a research
effort for understanding the effect of these complex architectures on ecosystem’s functioning
and robustness (Bascompte et al., 2003; Thébault and Fontaine, 2010). Indeed, this is one
more form of the classic question in network theory about the relation between structure
and dynamics.

As we have reviewed here, the study of ecological networks is a rich and expanding field.
Yet, in this thesis we are particularly interested in the modeling of mutualistic networks, so
in the next section we will focus on the story, organization and challenges behind mutually
beneficial relationships in nature.

1.4 A network perspective on friends will be friends

Mutualistic relationships pervade nature, to the point that it has been claimed that every
living organism is engaged in a mutualistic interaction at least once in a lifetime (Bronstein,
2001). These kind of ecological interactions, characterized by reporting an advantage to both
agents, can occur among individuals of the same species -the so-called conspecific mutualism-,
or among individuals of unrelated species –allospecific mutualism– which will be the one
occupying us here. In both cases, the outcome of the interaction normally translates into
an increase of the organisms’ fitness, either because a resource is consumed or because the
reproduction success of one or both of the agents is enhanced. In addition to positively
affecting the fitness of individuals and, by extension, modulating the dynamics of the whole
community, mutualistic interactions provide essential ecosystem functions worldwide, from
pollination services to nitrogen fixation.

All in all, mutualism often does also involve a cost: the net outcome between the provided
advantage and the damage is what eventually determines the sign and strength of the
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interaction, resulting in a continuous, gradual range of possibilities from pure mutualism
to antagonism (Bronstein, 2001). Therefore, variation in interaction strengths due to these
differences in outcome are expected among individuals of the same or different species, as
well as across time and space.

In any case, mutualistic interactions of different types and grades are ubiquitous
in nature, including both marine and terrestrial habitats. In the case of terrestrial
ecosystems, Bascompte et al. (2003) classify multispecies mutualism into five big groups,
that we summarize below:

• Pollination. In this case, the pollination of flowering plants by animals, mainly
insects, provides the pollinators with nutrients extracted from pollen and nectar, while
pollinated plants enhance its reproductive success.

• Seed-dispersal. This kind of mutualism involves the dispersal of plant’s seeds by
animals, typically birds, that in turn gets feed by consuming the plant’s fruit.

• Protective plant-ant interactions. This represents a particular relationship
between plants and ants, where plants provide ants with shelter, food and other
resources in exchange of ant’s defense from herbivorous animals or competitive plants.

• Harvest mutualisms. This group includes those mutualistic interactions in which
individuals reciprocally obtain and provide nutrients and energy to each other.
Widespread examples are: the gut flora and fauna in vertebrate species, rhizobia
bacteria that fix nitrogen in some plant’s roots, or lichens, which are birthed from the
mutualistic association of a fungi species and an algae or a cyanobacteria.

• Human crops and domestication. Agriculture and animal husbandry can be
also considered as as two instances of human-plants and human-animal mutualistic
interactions.

All these mutualistic interactions can be encoded in a network representation. In this
section, the second-to-last of this introduction, we will briefly review the origin of mutualistic
networks and its main structural characteristics, unveiled thanks to the observation of
empirical communities.

From orchids to webs

As we discussed above, the interest on mutualistic networks arose not more than fifty years
ago. Truth to be told, though, it was not the network translation of mutualistic communities
alone which took long to appear, but the overall attention payed to mutualistic interactions
had been rather scant until recently. Indeed, Bascompte and Jordano (2013) argue that for
a long time mutualistic interactions remained perceived more as a fascinating curiosity than
as a relevant component of ecological communities. Instead, the emphasis was placed on
antagonistic relations, which until the 70’s were believed to predominantly shape and drive
the ecosystem’s dynamics.

This early notion of mutualism under the form of peculiar, singular interactions was
basically influenced by early observational studies, which mostly focused on highly specialized
mutualistic interactions. A renowned example is that of the astounding morphological
matching between the Darwin’s orchid and its pollinator, which was unknown until Darwin
predicted its existence (Darwin, 1877) and it was eventually discovered in Madagascar forty
years later (see Fig. 1.5 for a more detailed explanation). This sort of tightly coevolved
mutualistic relationships offered beautiful examples of extreme adaptive specialization, but
also yield to overemphasizing the importance of specialist-to-specialist interactions that, at
the level of the community, are in fact rare (Waser et al., 1996).

It was in the decade of the seventies that the focus on pairwise interactions was
shifted towards a community-wide perspective (Bascompte and Jordano, 2013). This
viewpoint change was spurred by the recognition that generalism is an ubiquitous feature
of mutualistic communities, which moreover plays an equally important role to that of
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Figure 1.5: a) On the left, illustration of Angraecum sesquipedale, also known as Darwin’s
orchid, and its hypothetical moth pollinator. The orchid has a extremely long nectar spur,
which lead Darwin to hypothesize the existence of an unknown moth, endowed with an
equally long proboscis (the "tongue" of the moths) which would allow it to pollinate the
flower (Darwin, 1877). The moth was discovered in 1903, 21 years after Darwin’s death,
and named Hawk Moth or Xanthopan morganii praedicta which in latin means ‘predicted
moth’ (Arditti et al., 2012). The drawing is extracted by the essay Creation by Law by
Wallace (1867), who supported Darwin’s idea and imagined the form of the hypothetical
pollinator. b) On the right, actual photography of the Xanthopan morgani praedicta kept at
the Natural History Museum of London.

specialized interactions (Waser et al., 1996), in both ecological and evolutionary terms. Here
again, we find an example of how a reductive approach, consisting in disentangling the web
of interactions into its basic components -the pairwise interactions-, is insufficient to account
for the complexity of the whole ecosystem. The introduction of mutualistic networks as
models of mutualistic web in the 90’s aimed at tackling the challenge of considering the
entire community, by exploiting this novel framework and its powerful set of analytical and
numerical tools.

The structure of mutualistic networks

As aforementioned, mutualistic networks are commonly represented in a bipartite embedding
where each guild depicts a different mutualistic partner or group of species, like in the
example in Fig. 1.6 of a plant-pollinator community. Despite the particular characteristics
that each mutualistic system may have, some general features have been identified in terms
of structure. Heterogeneity, modularity, nestedness or asymmetric interactions are some of
these topological regularities, to which we will now pay some attention.

Although we will describe each of this structural features separately, it is worth noting
that most of them co-occur simultaneously in the network, and what is more, they are
sometimes not independent of one another. Indeed, a great bulk of work has been devoted
to explore the interrelations between structural properties, and in this thesis we will as well
address this question for the particular case of nested patterns.
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Figure 1.6: Example of a mutualistic networks composed by plants and their pollinators,
represented in a bipartite setting. The links among the two guilds can be weighted, which
we represent here by varying the thickness of the line.

Degree heterogeneity

Along with the recognition that mutualism can be highly generalized (Waser et al., 1996)
came the acknowledgement that mutualistic networks are significantly heterogeneous, in the
sense that in the same community coexist species that hold many contacts –the generalists,
which consequently have a large degree– with others that interact with just a small subset
of the possible mutualistic partners -the so-called specialists, that have a small degree-.
Accordingly, special efforts have been made to characterize the functional form of the degree
distributions of both guilds. Indeed, it has been claimed that for an important majority
of real systems, their degree distribution can be fitted by a truncated power-law (Jordano
et al., 2003). Nevertheless, the significance of such fit is greatly hindered by the fact that,
since mutualistic networks are in general relatively small, their empirical degree distributions
spans just a few orders of magnitude.

Independently of what the best fitting function might be, what seems clear is that the
pattern of connectivity is significantly heterogeneous, similarly to what happens in many
real systems (see Section 1.2). Nonetheless, here the tail of the degree distributions departs
from that of a scale-free. This implies that several species have a few interactions, while
just a few species hold many interactions but not as many as could be, a priori, possible.
This limitation in the degree of the most connected species has been linked to the existence
of forbidden of links due to ecological barriers determined, for instance, by morphological,
phenological or phenotypical traits (Bascompte and Jordano, 2013).

Besides degree distributions, if the network is weighted one can study the distribution of
strengths. In the context of mutualistic networks, the weight is typically associated to the
frequency or intensity of the ecological interaction, although this quantity may be difficult to
measure and sometimes it is instead estimated from the relative species’ abundances. In any
case, the strength is the weighted analogue to the degree, which provides information about
the connectivity at the species level. The strength’s distributions of mutualistic networks have
been claimed to be even more heterogeneous than the degree distribution (Bascompte and
Jordano, 2013), suggesting that the heterogeneity in the connectivity emerges not only in a
qualitative representation of who interacts with whom, but also when we include quantitative
information on how much they interact.

Asymmetric interactions

The study of quantitative mutualistic networks revealed that the distribution of interaction
weights is significantly right-skewed, reflecting a majority of weak mutualistic connections
against just a few strong interactions (Bascompte et al., 2006). Moreover, the intensity of
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a mutualistic interaction is not necessarily symmetric. This means that, for instance, in a
plant-pollinator community the dependency of a flower on a plant is not, by force, the same
as that of the plant on the flower.

Indeed, the study of empirical systems has shown that this strength heterogeneity is
patterned in a particular way: the few intense interactions present in the network are,
typically, highly asymmetrical. In a plant-pollinator system, this translates into the fact that
if a plant relies significantly on the pollination services of a given animal, this pollinator
depends weakly on the resources of the plant (Bascompte et al., 2006). Such asymmetry may
play an important role in sustaining biodiversity by preventing positive feedback loops, that
can act as amplifiers of possible disturbances in the population.

Small world

Moving from a species-level description of the connectivity to a community-wide perspective,
mutualistic networks exhibit several regularities. One of them is a widespread phenomenon
across real systems, the afore-mentioned ‘small world’ property (see section 1.2 for a more
detailed discussion of its ubiquity in empirical complex networks).

Olesen et al. (2006) studied its prevalence in mutualistic communities by converting
the bipartite network of mutualistic interactions into two one-mode networks of shared
neighbors, one per guild, such that species of the same guild are connected whenever they
share a common mutualistic partner. The analysis of these projected networks revealed that
the majority of species are placed just a few links away from each other, with an average
path length typically smaller than two together with a relatively large clustering coefficient.
Such combination implies that perturbations may spread quickly along the community,
or as Montoya et al. (2006) put it: “Every species is closely linked to every other, so –
metaphorically– when a tree falls in a rainforest, every species in that species-rich, complex
system would seem to ‘hear’ that event quickly”. This has contributed to the paradoxical
notion that natural mutualistic communities may be fragile, yielding to the proposal of the
presence of alternative structural properties or mechanisms that would enhance the system’s
resilience, like the afore-mentioned interaction asymmetry.

Modularity

Another way of inspecting the closeness between species is looking at the presence of modules,
that is, groups or clusters of species characterized by being tightly connected, in the sense
that connections among the members of the same module are significantly more frequent
than links among different modules. The existence of such modules has been related to
the action of environmental, ecological and evolutionary forces, in particular since modules
tend to group together species with convergent morphological traits (Olesen et al., 2007;
Dupont and Olesen, 2009). Accordingly, modules have been advocated to be the building
blocks of mutualistic networks, revealing habitat compartmentalization at the big scale and
coevolutionary pressures at at a closer look.

Nestedness

Besides the general features mentioned so far, the most notorious and widespread property of
mutualistic is probably nestedness. This community-wide pattern entails that the interactions
of a given species result to be a subset of the interactions of more generalized –higher
degree– species. This special organization of the interactions, which has been found to be
ubiquitous across natural ecosystems regardless of their differences in habitat, climate or
species composition (Bascompte et al., 2003), has fueled in the recent years an important
number of works focusing on its causes and consequences. In particular, special efforts have
been made to explain its implications for the assembly and stability of the ecosystem.

Anyway, given that the study of nested patterns is the topic of the first part of this thesis,
we will not elaborate further on it now. Instead, we will devote the entire first chapter of this
thesis to discuss, in greater detail, its definition, origin, dynamical implications and several
ways of measuring it.
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Figure 1.7: Example of a perfectly modular network of plants and pollinators, divided into
four modules.

Mutualism outside ecology

Although the study of mutualism has mainly concerned ecologists, it has also played a role
in the study of human organizations ever since the publication of the book ‘Mutual aid’
by Kropotkin et al. (1902), which explored the prevalence of mutualistic relations in society
as well as the natural world. By challenging the idea that competition dominates nature,
Kropotkin revalued the importance of cooperation and mutualistic interactions as crucial
factors for the survival of human and animal communities. Curiously enough, it has been
argued that its association with anarchist communism may have contributed to the general
dismissal of mutualistic forces, considered almost as incidental until the 70’s (Bascompte
and Jordano, 2013).

Outside ecology, mutualism takes the form of win-win relationships among two
entities or agents, whose identities span diverse contexts and levels of organization,
from individuals to entire countries. In the economic context, some examples of
mutualistic webs are manufacturer-contractor networks (Saavedra et al., 2009) or seller-buyers
networks (Hernández et al., 2018). In sociology, communication networks made of individual
users and memes (e.g. hashtags in Twitter) have been as well studied through the lens of
mutualism (Borge-Holthoefer et al., 2017).

In the recent years, there has been an increasing interest in exploring whether the
structural features and dynamical properties of ecological mutualistic communities hold for
mutualistic networks outside ecology (Burgos et al., 2008; Hernández et al., 2018; Straka
et al., 2018; Mariani et al., 2019). In the light of this, while the focus on this thesis will
be mainly on ecological systems, the conclusions we may attain are expected to often have
an implication, as well, for mutualistic networks of economical, sociological or technological
systems.

1.5 Where we are now, and where we aim to go

In spite of its youth, the field of ecological networks –and in particular that of mutualistic
networks-. has witnessed an impressive growth during the last decades (Heleno et al., 2014),
in parallel with the expansion of network science and, certainly, spurred by an accompanying
increase of data gathering and sharing (as illustrates for instance, the Web of Life project 1).
Nevertheless, several questions remain still unresolved (Ings et al., 2009; Heleno et al., 2014;
Pilosof et al., 2017) calling for a combination of conceptual, methodological and experimental
endeavors. Such challenges can be framed along the lines of the aforementioned trade-off
between explanatory power and simplification, a tension which appears intrinsically attached
to the construction of a network.

1Database of ecological networks, specially mutualistic, available at: http://www.web-of-life.es/
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On the one hand, ecologists have been advocating for ameliorating the realism of
mutualistic networks by adding further information about their temporal and spatial variation,
as well as considering pairwise interactions’ specificities or the existence of differential traits
at the level of the species or even the individuals (Ings et al., 2009; Heleno et al., 2014).
This could yield to a more detailed representation of the natural complexity, at the cost of
increasing the heterogeneity of both nodes and links. All in all, exploring the implications
of changing the level of organization is a necessary step in order to dismiss the presence
of a observer’s bias, which could result in artifacts like those regarding the measure of the
allometric relation in foodwebs (Ings et al., 2009). The aforementioned transformation of
binary, qualitative networks into weighted, spatially extended, or temporal networks, are
all different ways of refining the realism of the network, by paying the price, however, of
potentially complicating the models.

On the other hand, the observation and study of patterns even in the most simplified
networks has posed several questions, some of which are still open. As Levin recalled, the
detection of patterns is interesting to the extent to which it reflects hidden mechanisms (Levin,
1992), and indeed the implications of structural properties of mutualistic networks, like
nestedness, are controversial up to date. Furthermore, a crucial aspect of the interplay
between pattern and scale is exploring whether a given feature or phenomena is invariant
across scales. Otherwise, the natural question that arises is how information is transferred
and transformed from one level of description to another, in order to lead to the emergence
–or disappearance– of the pattern. In this sense, defining the structural determinants of
mutualistic networks is a long-standing problem in ecology, that concerns community-wide
properties –e.g. nested patterns– as much as species-centered features –e.g., the degree.

The challenges we have mentioned so far call for both theoretical and experimental
advances. Theoretical, since appropriate conceptual and methodological frameworks are
to be developed in order to refine the network representation of ecosystem, as well as to
characterize patterns across scales and investigate the dependency between structural features
at different levels. Experimental, on the other side, because to be able to model details one
needs rich and reliable data, that should moreover take into account spatial and temporal
variability. This requires an increase of sampling effort in quality and quantity terms alike,
together with the elaboration of protocols to measure –and possibly enhance– the degree of
completeness of empirical networks (Ings et al., 2009). All this implies that future advances
in ecological networks are not only an interdisciplinary endeavor, concerning together pure
ecologists, mathematicians or physicists, but also a multi-approach task, since theoretical
advances are intimately conditioned by field work –and vice versa.

In this thesis, we will study mutualistic networks from a theoretical viewpoint, considering
in detail two main topics: (i) the characterization and emergence of nestedness and (ii) the
introduction of temporal information on plant-pollinator networks. This partitioned research
reflects the perennial tension between simplification and realism in models that we have just
discussed here. Indeed, while the in the first part we will focus on explaining nested patterns
that appear in the most basic representation of mutualistic networks -binary, aggregated
and monolayer-, in the second part we will work towards a more realistic characterization of
communities, by modeling their temporal dimension through empirical data on the periods
of activity of plants and pollinators, the so-called phenology. Before definitely beginning
with the main body of this thesis, let us discuss a bit further how these two subjects will be
addressed.

Nested patterns and the three witches

Why is it relevant to look for patterns in ecology? Beyond the search of natural order,
regularities can reflect dynamical process of different kind, concerning either the past, the
present or the future of ecosystems. In a symbolic way, this recalls the figure of the three
witches. In the first part of Skakespeare’s famous play Macbeth, three witches encounter
the main character Macbeth and, when greeting him, each hails him differently: one of
them by his past rank (‘thane of Glamis’), the second by his present position (‘thane of
Cawdor’) and the third witch by his future title (‘the future king’). This has yield to the
interpretation that, while the three witches held Macbeth’s fate in their hands, each of them
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represents a different temporal moment, respectively the present, the future and the past.
In a metaphorical sense, an analogue triad can be defined in the study of the implications
of ecological patterns and what information they convey: about the ecosystem’s past, in
particular its assembly and eco-evolutionary history; about the present state, for instance
how species coexist and function together, leading to the observed biodiversity; and of course
about the possible future, in the sense of how the ecosystem would react against external
perturbations. All three aspects of the triad are equally important to the understanding of
the fate of mutualism.

Figure 1.8: The three witches of the Shakespeare’s play Macbeth, also called the three weird
sisters. Engraving by Lorsay, that appeared in ‘Magasin Pittoresque’ in 1863, after a 1782
drawing by Fuseli.

Nevertheless, not every observed pattern is equally informative, as neither every observed
regularity is forcibly significant. In the first part of this thesis, we will address the question of
the significance of nested patterns in mutualistic networks, or in other words, how lower-order
structural properties of the network can determine the global nestedness. In particular, we
will start with an introductory chapter reviewing the definition and implications of nestedness,
as well as the main metrics that have been developed to quantify it. In the subsequent
chapter we will use null models to try to resolve the aforementioned question of the origin
and significance of nestedness. Finally, in the third chapter of this first part, we will use the
developed methods to investigate the performance of a varied set of nestedness metrics.

The phenos of mutualism

Phenology is the science that studies the timing of biological cycles along the life of organisms,
from seasonal patterns to circadian rhythms. Returning, as we started this introductory
chapter, to etymology, the world phenology is composed by the prefix phenos, that comes
from the Ancient Greek ‘phaino’ which means ‘to appear’, and the conventional suffix ology,
from the Greek ‘logia’ that means ‘the study of’. Phenology, therefore, would translate as
‘the study of appearance’.

Given that an important part of ecological mutualisms takes the form of plant-animal
interactions, they can be greatly conditioned by the seasonal cycles of the partners. In
particular, plants tend to exhibit marked seasonal life events, like leaf-producing, fruiting or
flowering. Although such effects may change considerably among habitats and climates, in
general they are not negligible. In the latter years, the interest in modeling the phenology

19



1. Introduction

of mutualism has been spurred by the fact that climate change may severely affect species’
phenology, leading to a potential disrupt of plant-pollinator or plant-disperser systems.

In this thesis, we will approach this topic in the second part of the manuscript. The first
chapter will be devoted to the characterization of two empirical datasets and the proposal of
some models to generate synthetic configurations of phenology under different constraints.
Subsequently, we will address the question of the dynamical consequences of introducing
phenology by examining a model that incorporates both mutualism and competition for
resources.
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Revisiting Nested Patterns





CHAPTER 2

The three W’s and one H of nested
patterns

Almost two decades ago, a seminal work by Bascompte et al. (2003) revealed that nested
patterns are widespread in mutualistic communities. Indeed, mutualistic networks gathered
across the globe appear to be regularly nested, despite differences in ecosystem’s geographical
location, climate, or species composition. The discovery of such ubiquity awoke considerable
interest within and beyond the ecological community and, as a result, many works have been
devoted since then to understanding the extension, impact and origin of nested patterns.

In this chapter, we summarize the main conclusions of these efforts. We start providing
a exact definition of nestedness (the ‘what’), and continue with the real systems where it
has been detected (the ‘where’). Next, we briefly review some of the hypothesis that have
been handled as possible explanations of its origin, as well as its dynamical consequences
(the ‘why’). Finally, we introduce the main metrics that have been proposed to measure and
quantify nested patterns (the ‘how’).

2.1 The what

Nestedness is a global property of networks that addresses the overlap between interactions,
in particular to what extent the mutualistic partners of a given species are shared by its
more generalized counterparts. Strictly speaking, a perfectly nested structure is defined by
the fact that the interactions of a given node are invariably a subset of the interactions of all
nodes with larger degree (see Fig. 2.1). That is, if B is the biadjacency matrix of a NR×NC
bipartite network, the system will be perfectly nested only if the following conditions are
both true:

Bi,j = 1 and Bi,k = 1 ⇐⇒ given a pair j and k such that
NR∑
i

Bi,j ≤
NR∑
i

Bi,k , ∀i ;

(2.1)

Bi,j = 1 and Bl,j = 1 ⇐⇒ given a pair i and l such that
NC∑
j

Bi,j ≤
NC∑
j

Bl,j , ∀j ;

(2.2)

where NR and NC are, respectively, the number of rows and columns of the biadjacency
matrix B.

The conditions above translate into the fact that specialist species, that is, species with
few interactions and thus a small degree, are seldom interacting with other specialists.
Instead, they tend to exhibit degree disassortativity, appearing attached to generalist species.
Generalists, in turn, have a large degree and hence are connected to a variety of neighbors,
including other generalists. This confers to nested biadjacency matrices its distinctive
triangular shape, composed by a robust core of connections among generalists to which
specialist cling (see Fig. 2.1).
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Figure 2.1: Example of a perfectly nested biadjacency matrix, for a bipartite plant-pollinator
network. Each node represents a different species and black boxes represent a mutualistic
interaction between a plant and a pollinator. It can be observed that the interactions of any
species form part of a subset of the interactions of all species with larger degree.

As we will discuss below in the ‘where’ section, real networks are rarely perfectly nested.
However, the study of hypothetical, maximally nested scenarios is necessary in order to
define the pattern, as well as to set a benchmark against which to compare imperfect systems.
Interestingly enough, if we take a perfectly nested network and order the nodes of one guild by
decreasing (or increasing) degree, the nodes of the other guild appear automatically ordered
in the same way. Additionally, the corresponding bi-adjacency matrix would have all of its
non-zero elements below an ideal curve called ‘isocline of perfect nestedness’ (IPN). This curve
was first proposed by Atmar and Patterson (1993), and later on refined by Rodríguez-Gironés
and Santamaría (2006). Moreover, Medan et al. (2007) examined still a third definition of the
IPN, and proved that this curve, defined in a continuous approximation of the biadjacency
matrix, is closely related to the cumulative degree distribution of both guilds. As we will
review in the ‘how’ section, the interest in properly characterizing the IPN is not merely
theoretical but has a pragmatic justification, since several metrics aimed at quantifying
nestedness rely in its calculation.

A related notion to the IPN is the maximally packed configuration. Given a particular
network, this corresponds to the arrangement of the matrix which better reveals and
maximizes its nestedness. However, there is not a unique choice of what particular quantity
should be optimized, and accordingly various methods to pack the matrix can be found in
the literature (Rodríguez-Gironés and Santamaría, 2006; Domínguez-García and Munoz,
2015; Lin et al., 2018). Indeed, while the strict definition of nestedness explained above
calls for an ordering by degree, it has been shown that this does not necessarily produce the
best ‘packing’ of the matrix -in the sense of clearly separating the regions with and without
interactions of the biadjacency matrix- neither it does maximize the nestedness as measured
by certain metrics (Domínguez-García and Munoz, 2015). Given the role that this choice of
packing may have when ranking the relative importance of nodes for the global nestedness,
we will turn later on to this topic both when reviewing the nestedness metrics and in the
next chapter.

2.2 The where

Although here we will pay special attention to nested patterns in the context of mutualistic
networks, as a matter of fact the concept of nestedness was first introduced among ecologists
in the field of biogeography. According to Ulrich et al. (2009), since the decade of the
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thirties several works independently proposed this property in order to describe the spatial
distribution of species in fragmented habitats, like islands and compartmentalized landscapes.
Nonetheless, the concept did not become genuinely popular until the publication of the
seminal paper by Patterson and Atmar (1986), which examined the geographical composition
of mammal fauna in different locations, unveiling a regular nested structure.

In these early biogeographical studies, the distribution of species is encoded by a bipartite
network where one guild represents the species and the other the geographical sites (i.e.
islands or habitat compartments). Therefore, if a species is observed in a given site, the
corresponding element of the biadjacency matrix is non-zero, particularly a one -in the binary
representation- or the value of its relative abundance -in the weighted case-. In this context,
a nested pattern implies that species present in smaller communities or patches are also part
of larger sites. Various ecological hypothesis have been handled to explain such structure,
concerning the processes of dispersion and extinction of species across the sites.

What interests us the more here is, however, the extension of this concept to the study
of mutualistic networks. As aforementioned, Bascompte et al. (2003) first showed that this
pattern systematically appears in plant-animal mutualistic communities, including both
systems of plant-pollinators and plant-dispersers, and their findings have been ratified later for
other mutualistic systems (Guimaraes Jr et al., 2006; Olesen et al., 2007). Beyond mutualism,
whether ecological networks in general are nested is a debated subject. On the one hand,
host-parasite networks are an example of antagonistic systems that have been shown to
be naturally nested (Vázquez et al., 2005; Poulin, 2010). On the other hand, Bascompte
et al. (2003) and Thébault and Fontaine (2010) claimed that real food webs are significantly
less nested than mutualistic networks, although Kondoh et al. (2010) rebutted the results
of the former by arguing they were biased due to the small size of the systems considered.
Instead, by analyzing an alternative dataset of real food webs, Kondoh et al. (2010) found
that their degree of nestedness was not significantly different to that of empirical mutualistic
communities.

Figure 2.2: Examples of three different kinds of real nested networks, all of them depicting
mutualistic communities. Species are ordered by degree. In a), plant-pollinator network
of a phrygana ecosystem, which is a characteristic Mediterranean scrubland, gathered in
Daphní -near Athens, Greece- by Petanidou (1991). In b), seed-disperser network by Silva
(2002), observed in the natural park of Intervales, near Sao Paulo, Brazil. In c), seller-buyer
network of the Boulogne-sur-Mer fish market, in France, studied by Hernández et al. (2018).

In fact, the detection of nestedness in mutualistic and non-mutualistic systems is jumbled
by its coexistence with other structural patterns, particularly modularity (Fortuna et al.,
2010). Modularity (see its definition in section 1.4 of the first chapter) is theoretically
expected to be more common in antagonistic networks -driven by competition- than in
mutualistic ones -dominated by cooperation- (Thébault and Fontaine, 2010). Such theoretical
divergence, together with the fact that the characterization of real food webs seem to confirm
these dynamical predictions (Prado and Lewinsohn, 2004; Thébault and Fontaine, 2010),
has traditionally promoted the analysis of each pattern separately. All in all, the evidence
that nestedness and modularity do actually coexist in many real systems (Lewinsohn et al.,
2006; Olesen et al., 2007; Fortuna et al., 2010), has recently motivated the refinement of
appropriate methodology to asses them conjointly (Solé-Ribalta et al., 2018).
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Finally, in the latter years the study of nested patterns has permeated other areas of
complex systems, as varied as economy, sociology or anthropology. Indeed, nestedness has
been detected as well in trading networks between countries (De Benedictis and Tajoli, 2011;
König et al., 2014) and individuals (Hernández et al., 2018), in manufacturer-contractor
relationships (Saavedra et al., 2009), communication systems (Borge-Holthoefer et al., 2017),
cultural assemblages (Kamilar and Atkinson, 2014) and even scientific production (Cimini
et al., 2014). Although along this text we will focus in the case mutualistic systems, we will
surely return to some of these non-ecological examples which illustrate the ubiquity and
generality of nested patterns.

2.3 The why

As we discussed in the introduction, the increase of attention in nestedness is better explained
by the interest in its causes and consequences rather than in the pattern itself. Accordingly,
different hypothesis describing the origin of nested patterns have been proposed over the
recent years (Vázquez et al., 2009; Ulrich et al., 2009). In general terms, we can classify
these explanations in two main groups: first, those that emphasize the role of ecological
factors, like species’ abundances, the matching of traits or the spatio-temporal distribution of
species; second, those that explore the evolutionary processes that have led to the observed
patterns, like its natural selection, its emergence as a byproduct of assembly processes or its
relation to the phylogeny of species. Given the existence of an important interplay between
the results we will be presenting in the next chapter and the different justifications of the
origin of nestedness, we now briefly discuss the most relevant of such explanations. Of course,
although the separation between ecological and evolutionary factors may be an illustrative
simplification, both causes are often not independent from one another.

Regarding the role of ecological factors, one of the first hypothesis that was explored as a
possible justification for the origin of nested patterns is related to species’ abundance. In
particular, several studies have examined the role of the relative abundance of species as a
predictor of the probability that two species interact. This assumption, sometimes called the
passive sampling hypothesis (Ulrich et al., 2009) or neutrality (Krishna et al., 2008; Vázquez
et al., 2009), postulates that more abundant species are prone to have more contacts, in a
rich-get-richer fashion determined by the number of individuals of each kind. In other words,
as a result of the fact that some species are more frequent in the system, they are ‘easier to
find’ by mere statistical sampling and gather a larger number of interactions. However, this
process alone has been shown to be insufficient to account for the macroscopic structure of
real mutualistic networks (Vázquez et al., 2007; Krishna et al., 2008). Instead, including
additional information regarding the phenology of species or their spatial overlap allows
predicting the macroscopic structural properties, but not the frequency of occurrence of
pairwise interactions (Vázquez et al., 2009; Olito and Fox, 2015). Altogether, these works
suggest that abundance might be an important factor driving the structure of mutualistic
networks, but certainly not the only one.

The neutrality hypothesis is often confronted with the existence of the so-called forbidden
links (Jordano et al., 2003). This concept refers to the existence of biological constraints that
hinder certain mutualistic interactions to occur, mainly due to mismatching traits or the lack
of spatio-temporal overlap among the species. Such restrictions contradict the aforementioned
neutral assumption that any two species can virtually interact, and several studies have
examined how they may shape the structure of a network. For instance, Santamaría and
Rodríguez-Gironés (2007) studied two different kinds of mechanistic constraints related to
traits: (i) the presence of complementary traits, such that only those species that share them
interact, like the Darwin’s orchid and its pollinating Hawk moth; and (ii) barrier traits, that
explicitly forbid certain species to profit from particular resources, like a pollinator that is
unable to access the nectar of a certain flower. They concluded that the first mechanism
alone produces highly unrealistic patterns, and that the best predicting model was a mixed
compound of both effects. In a similar fashion, Eklöf et al. (2013) studied the number of
traits needed to reproduce the real structure of ecological networks, and concluded that
such number is rather small (<10) but increases with the size of the network. Moreover,

26



2.3. The why

such minimal set of traits greatly depends on the type of ecosystem considered. To finish, it
is worth mentioning that some works have incorporated both the effect of matching traits
and the abundance (for instance, morphological traits related to body size), showing that it
enhances the predictions made by considering the passive sampling mechanism alone (Stang
et al., 2007). Therefore, although traits seem to play an important role in determining
ecological interactions, and by extension nestedness, there is still no general indications on
which minimal group of traits is needed to reproduce the observed nested patterns.

While ecological effects may play an important role in explaining the emergence of
nestedness, another important set of determinants that has been largely explored is
evolutionary history. To start with, some early attempts had been made to relate nestedness
with the phylogeny of species. Phylogenetics studies how heritable traits are transmitted
and transformed over the evolutionary history of organisms, resulting in that species whose
historical evolutions are close, are told to be phylogenetically related. In this sense, Bascompte
and Jordano (2013) discuss two possible consequences of phylogenetical proximity: related
species may exhibit strong similarities in their pattern of interactions, and, on the other
hand, a given species may only interact with species that are phylogenetically close among
them. Rezende et al. (2007) explored the possibility that such relatedness accounts for the
structure of mutualistic networks, including nestedness. Although they reported a significant
phylogenetic signal in some empirical networks (a quarter part of the set analyzed), it
correlated poorly with the observed interactions. Indeed, Perazzo et al. (2014) showed later
that the empirical structure of real networks differs greatly to the one obtained by producing
synthetic networks which minimize phylogenetic distances, in particular among species that
share a common mutualistic partner.

A second justification of the emergence of nestedness that takes into account its
evolutionary history, posits that it may arise as the outcome of natural selection. A good
example of this line of thought is the work by Suweis et al. (2013), who showed that nested
patterns naturally appear when applying an optimization principle which seeks to maximize
the individual abundance of species as well as the total abundance of the community, and
moreover that the degree of nestedness of networks correlates positively with the total
number of individuals. Therefore, nestedness could also be understood as resulting from
evolutionary pressures that select those properties that carry out advantageous functions. Or,
as Suweis et al. (2013) put it: ‘nested architectures in mutualistic communities could emerge
from different initial conditions as a result of a rewiring of the interactions according to a
variational principle aimed at maximizing either the fitness of the individual insect/plant
(...) or the fitness of the whole community (...)’. It is important to note that this assumption
approaches the problem from a different perspective in comparison with the aforementioned
explanations. Here, the origin of the pattern is not related to the identity of the species,
understood in a broad sense -i.e., involving its ecological, phenotypical or phenological
characteristics-, but is sought instead on the dynamical role of the pattern. The nature of
such role remains in fact a debated subject, since the study of the consequences of nested
patterns for biodiversity persistence and stability has led to mixed conclusions. Indeed, on
the one hand and similarly to the results we have presented up to now, several works have
supported the idea that nestedness promotes species coexistence (Memmott et al., 2004;
Bastolla et al., 2009; Thébault and Fontaine, 2010). On the other hand, more recent works
have challenged such results by arguing that nestedness does not correlate with community
persistence (James et al., 2012; Feng and Takemoto, 2014; Grilli et al., 2017) or, even more,
that it may be negatively influenced by it (Allesina and Tang, 2012; Staniczenko et al., 2013).
Admittedly, during the recent years the latter hypothesis has gained increasing evidence,
triggering, as we will discuss in the next chapter, a reconsideration of the relevance of
nestedness in favor of other network parameters.

Such aim of revisiting the importance of nested patterns is related to the last -but not
least- of the interpretations that has been given to the origin of nestedness in evolutionary
terms. In particular, it has been proposed that this pattern may actually emerge as a
byproduct of an assembly process that, in opposition to the mechanism described above,
does not explicitly seek to generate nestedness. Two recent works have shown that, indeed,
some structural properties like nestedness may be network spandrels, which result from
simple mechanisms of assembly alone, precluding any evolutionary selective force (Valverde
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et al., 2018; Maynard et al., 2018). The notion of ‘spandrel’, that we will in fact discuss in
more detail in Chapter 3, attempts to enclose the fact that such patterns are often -and
misleadingly- presupposed to be selected due to their complex appearance.

2.4 The how

To conclude this chapter on the basic notions of nested patterns, we will address the question
of how it is measured, that is, which methods exist to quantify the degree of nestedness of a
given network. Since the proposal of this patterns in biogeography studies, the arousal of
interest in nestedness has been reflected as well in an increase in the number of nestedness
metrics -with their corresponding indexes- coexisting in the literature. A review of the early
nestedness metrics is due to Ulrich et al. (2009), while a more recent review by Mariani
et al. (2019) provides a very detailed and updated summary of the most common nestedness
metrics. In what follows, we will explain the functioning of several nestedness metrics,
involving both the most popular indexes together with recent or less known proposals. All in
all, it is worth noting that, even if this review attempts to be fairly exhaustive, including all
the nestedness metrics present in the literature would be a massive task, and hence some of
them have been left out of this description.

At least two basic distinctions can be made when it comes to classify nestedness metrics.
The first and most basic one is according to its means of calculation: (a) analytically, that
is, with an expression that depends on the biadjacency matrix, and (b) algorithmically,
i.e. through a numerical procedure that often involves reorganizing the interactions of the
network. Although this differentiation may seem rather naive, we will see in Chapter 3 that it
actually plays a role. Secondly, nestedness metrics may be grouped by their conceptual basis,
particularly which network property they emphasize in order to characterize the pattern.
Both Ulrich et al. (2009) and Mariani et al. (2019) distinguish between the following types
of metrics: (i) gap-counting metrics, which quantify the number of missing or unexpected
interactions in the real configuration as compared to its perfectly nested equivalent matrix;
(ii) overlap metrics, which quantify the amount of redundancy in the interactions between
neighbors; (iii) distance-based metrics, that weight the relevance of the deviations from a
perfectly nested network by pondering their distance to the isocline of perfect nestedness;
and (iv) spectral metrics, which rely on the spectral properties of the biadjacency matrix.
We would add to this classification a fifth category: (v), robustness metrics, which are based
on the study of the effects of node-removal.

This final section will provide helpful information for the following chapters. Indeed, in
chapter 3 we will use two of the described metrics to address the question of the emergence of
nestedness. Furthermore, in chapter 4, we will examine the performance of all the reviewed
metrics, by quantifying their dependencies and flaws. Therefore, a pragmatic reader may
chose to read only the descriptions of the NODF and spectral radius before going through
chapter 3, and the rest of metrics when reading chapter 4.

The Atmar and Patterson temperature

This nestedness metrics is based on the idea of quantifying the deviations of a real matrix
from a perfectly nested matrix by measuring the distance of the misplaced interactions from
the IPN curve (see Fig. 2.3).

In particular, the mathematical basis of this metrics relies on the mapping of the maximally
packed version of a m× n bipartite adjacency matrix into a continuous rectangle (Medan
et al., 2007), leading to the analytic expression of the IPN in terms of two continuous variables
a ∈ [0, n] and p ∈ [0,m], which constitute the continuous approximation to the discrete
labels of the columns and rows of the biadjacency matrix, respectively. This approximation
is expected to be correct in the limit of very large systems. Then, the non zero elements
of the biadjacency matrix correspond, in the rectangular surface of size m× n, to an area
proportional to the density of contacts φ = E/(m×n), where E is the total number of edges.
This area may be assumed to be coloured and so the empty area represents the amount of
zero elements of the adjacency matrix. The IPN can be analytically expressed as a function
of m, n and φ (Medan et al., 2007).
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Because real systems are not perfectly nested, the temperature (TAP from now) measures
the distance, along the diagonal of the unit square, of the misplaced points (presence or
absence of a contact above or below the IPN) (Atmar and Patterson, 1993). Various
implementations of this metrics can be found in the literature (Rodríguez-Gironés and
Santamaría, 2006; Atmar and Patterson, 1995; Guimarães and Guimaraes, 2006), however
the most popular nowadays is probably BINMATNEST, developed by Rodríguez-Gironés and
Santamaría (2006). Indeed, in this work the authors proposed to quantify the unexpectedness
of a given interaction of the matrix, mapped into the unit square, by the following function:

uij =
(
dij
Dij

)2
, (2.3)

where dij and Dij correspond, respectively, to the distance between the unexpected
interaction and the IPN in the first case and to the total length of the diagonal in the second
(see Fig. 2.3). The final temperature is then calculated as follows:

TAP = 100
Umax · n ·m

∑
uij , (2.4)

where the sum runs over all the unexpected interactions and Umax is a constant given
by Atmar and Patterson Atmar and Patterson (1993). Accordingly, the TAP will be large if
there are several ′1s′ and ′0s′ on the wrong side of the IPN. It will be even larger if those
misplaced points are located far from the IPN. Then, the lower the measure of the TAP of a
given system, the more nested it is.
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Figure 2.3: Distances and continuous approximations for measuring nestedness.
Figure a) shows the scheme of a non-perfectly nested network. Green squares depict the
interactions and the black curve represents the Isocline of perfect nestedness (IPN) which
separates, in an ideally perfect nested matrix, the region where all the nodes are connected
from the region with no interactions. The unexpected interactions above the IPN are
highlighted in blue, while absent interactions below the IPN are highlighted in red. Figure b)
represents the mapping of a matrix into the unit square. The black curve corresponds to the
IPN, and unexpectedly present (absent) interactions are highlighted in blue (red). The figure
shows two different kind of distances that may be used for measuring nestedness: D, D′, d
and d′ (traced in dashed lines) are used in the calculation of the temperature, while DM and
D′M (represented by solid arrows) are used by the nestedness index based on Manhattan
distance (NMD).

The nestedness index based on Manhattan distance (NMD)

This metrics by Corso et al. (2008) follows the same idea as the TAP metrics, in the sense
that it counts the number of unexpected presences or absences with respect to a nested
matrix of the same characteristics (size and fill) as the studied matrix, when both are brought
to their maximally packed form. Again, it introduces a mapping of the matrix into the unit
square. On this rescaled continuous approximation, it measures the distance to the corner of
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the matrix where the nested core is expected (see Fig. 2.3 for an example). Distances are
measured in terms of the Manhattan distance, which means that the distance between a
rescaled element bi,j of the matrix and the origin is di,j = xi + yi. This nestedness index is
given by:

τ = d− dnest
drand − dnest

, (2.5)

where d is the sum over all the elements’ distances d =
∑
di,j of the real matrix (maximally

packed) and dnest represents an analogous sum but over the corresponding perfectly nested
matrix with the same size and fill as the empirical one. Their difference is then normalized
by the maximum difference in average distances between a null model and the perfectly
nested matrix. There are various options for the null model used to calculate drand, but a
common choice is to keep constant size and fill. In this way 0 ≤ τ ≤ 1, and the smaller τ the
more nested the system is.

The nestedness metrics based on overlap and decreasing fill

This index (hereafter NODF), introduced by Almeida-Neto et al. (2008), involves two
contributing factors to nestedness: decreasing fill, that quantifies to what extent, after
ordering the rows and columns of the matrix, the degree sequences strictly decrease; and
paired overlap, that accounts for the number of shared partners between all pairs of columns
(rows), normalized by the smaller degree. By gathering together the operational definition
indicated by Almeida-Neto et al., we proposed the following compact expression to calculate
NODF (Payrató-Borràs et al., 2019):

NODF(B) = 1
K

NP∑
i<j

[1− θ(vj − vi)] ·

NA∑
a=1

biabja

vj

+

1
K

NA∑
k<l

[1− θ(hl − hk)] ·

NP∑
p=1

bpkbpl

hl

 ,

(2.6)

where K = NP (NP − 1) +NA(NA − 1)
200 . (2.7)

Here we have used the following notation: vp is the degree of plant p and ha the degree
of animal a. The double sums run over two indexes and we consider that the bipartite
adjacency matrix is labeled such that row i is placed above row j and column k at the left of
column l. The K factor contains the normalization over the number of all possible pairs,
and the fact that NODF is defined to take values between 0 and 100. Finally, the θ stands
for the Heaviside step function, which is zero when its argument is negative, and one if its
argument is positive or zero. As a result, the 1− θ(vj − vi) term encapsulates the decreasing
fill condition.

As can be seen, the NODF metrics separately informs on the contribution of rows and of
columns to the observed nestedness. It is important to emphasize that the overlaps between
all the possible pairs of rows (columns) are only taken into account if the considered pair is
ordered in decreasing degree, otherwise it assigns a null value to the overlap. Moreover, the
higher the index, the more nested the system is.

The NODF metrics correctly assigns a very low nestedness value to modular networks
because, in general, elements within the same block have similar degree. However, as
remarked by Staniczenko et al. (2013), it may give a false negative in the case of a nested
network with multiple rows or columns with the same degree. This is due to the decreasing
fill factor, which heavily penalizes degree degeneracy. Unfortunately, this situation is quite
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common for mutualistic ecosystems which are in general very sparse and often eccentric,
with typically much more animal species than plant species, which altogether leads to a non
negligible degree degeneracy. For this reason, a variant of this metrics called stable-NODF
has recently been proposed by Mariani et al. (2019). The definition of this index (also named
s-NODF) is analogous to the classic metric NODF except for the decreasing fill term. In
particular, keeping the same notation, it reads:

s-NODF(B) = 1
K

NP∑
i<j

NA∑
a=1

biabja

vj
+ 1
K

NA∑
k<l

NP∑
p=1

bpkbpl

hl
,

(2.8)

where K = NP (NP − 1) +NA(NA − 1)
200 . (2.9)

Note that the definition above requires the network B to be ordered by decreasing degree
in both guilds. This variant does not incorporate the decreasing fill term and hence does
not penalize the degree repetition, therefore solely measuring the number of shared partners
among pairs of rows and columns. This results in this metric being more robust against
slight variations in the degree sequence and, importantly, in solving the drawbacks outlined
by Staniczenko et al. (2013).

The Brualdi and Sanderson discrepancy

This metrics is, after the temperature, one of firstly proposed indexes. Instead of focusing on
the distances, though, it is based on the gap-counting approach mentioned above. Indeed,
starting from the real matrix in its maximally packed state, this metrics counts the number
of misplaced absences or presences of contacts, called discrepancies, that should be ‘corrected’
in order to produce a perfectly nested matrix with equal size and fill (Brualdi and Sanderson,
1999).

Since such measure is based on the comparison of the real matrix with a perfectly nested
one of the same parameters (number of rows, number of columns and number of links), it is
independent of any particular null model. However, given that there may be some ambiguity
on the maximally packed configuration, the result depends on the chosen one. Therefore,
an optimal calculation would involve averaging over the different initial maximally packed
configurations, which can be however a quite demanding process in computational terms.

Furthermore, given that the number of possible discrepant links is directly proportional
to the total number of links, the result greatly depends on the network’s fill. To prevent
such dependency, it has been proposed to normalize the discrepancy by the total number of
links (Greve and L. Chown, 2006). As it was the case of the temperature TAP , the definition
of this metrics implies that the lower the value of the index, the more ordered the system is.

The nesting index based on network’s robustness

This metrics (shortened as NIR hereafter) is based on the notion of the robustness of a
network, that is, the capacity of the system to remain connected when subject to node
removal (Burgos et al., 2007; Memmott et al., 2004). This metrics uses two extreme node
removal procedures, or attack strategies, whose outcomes reveal the amount of nestedness of
the network. On the one hand the nodes of one guild are removed in decreasing degree order
(DDR strategy), and of the other in increasing degree order (IDR strategy). The fraction of
species of the other guild that still keeps contacts (survive) as the counterparts are removed
leads to the Attack tolerance curve (ATC).

Once the attack strategy is fixed, the ATC depends on the degree of nestedness. Fig 2.4
illustrates three different typical behaviors of the ATC for each strategy, when the procedure
is applied on a perfectly nested network, on a real network and on a null model with the
same size and fill. The DDR strategy better reveals the differences of structure of the three
networks.
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Figure 2.4: Attack Tolerance Curves for three different networks having the same
parameters. Triangles correspond to the real mutualistic ecosystem of Clements and Long
(1923), squares to a randomization of this system and circles to an artificial perfectly nested
network with the same parameters (size and number of links). Open and full symbols
correspond to the IDR and DDR attack strategies, respectively.

It can be easily shown that, for the perfectly nested network, the area under the ATC
is RIDR = 1 for IDR strategy, while it is RDDR = φ for the DDR (Burgos et al., 2009).
Thus, this index is normalized by the area between two extreme curves, which is maximum
for a nested network. Moreover, the area is minimum for a random network, while for the
real networks the area lies between these two extremes. Altogether, the contribution to the
nestedness coefficient of rows or columns is defined as:

NIR = RIDR −RDDR
1− φ , (2.10)

which measures, like NODF, the contribution to nestedness of rows and columns,
separately. NIR looses sensitivity as the density of links increases, which is not a problem
for ecosystems that are, in general, very sparse. Finally, this index may in principle slightly
depend on the chosen matrix ordering with respect to the degrees of the guild being suppressed.
As such order is not unique due to degree degeneracy, averaging over a set of equivalently
ordered matrices would preclude any possible biases.

The spectral radius

The spectral radius was recently proposed by Staniczenko et al. (2013) as an alternative
metric for nestedness that directly relies on the spectral properties of the adjacency matrix.
Let us call I the identity matrix and A the adjacency matrix of a bipartite matrix B, such
that:

A =
(

0 B
Bᵀ 0

)
, (2.11)

which is a square, symmetric and non-negative matrix, given that ai,j ≥ 0. The spectral
radius of the matrix A (also called dominant eigenvalue or largest eigenvalue) is defined as
follows:

ρ(A) = max{ |λi| }. (2.12)
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Where λi i ∈ {1, ..., n} are the eigenvalues of A, thus the roots of the equation:
det(Iλ−A) = 0 . Since A is a symmetric matrix, λi ∈ Re ∀i.

The capability of the spectral radius for quantifying the degree of nestedness of a network
is rooted in a theorem by Bell et al. (2008), that states that within the set of networks having
the same number of links and nodes, the one yielding the maximum spectral radius will be
perfectly nested. In fact, Staniczenko et al. (2013), showed that more nested networks tend
to have larger spectral radius. However, importantly, this relation is only true in statistical
terms. Indeed, their results reveal that, if we take two slightly different networks, the one
with a largest spectral radius is not, necessarily, the most nested (see, for instance, Fig. 1
from Staniczenko et al. (2013)). Therefore, the sensibility of the spectral radius at a fine scale
(i.e. to distinguish between small differences in the degree of nestedness of two networks) is
rather limited. This important flaw, however, is scarcely -if at all- reported in the literature,
and to our knowledge we were the first one to draw attention to it in Payrató-Borràs et al.
(2019).

Another caveat of the spectral radius is, furthermore, that it is not normalized. This
implies that nestedness measures are affected by network properties like the density of
links or the size, thus hindering the comparison among networks which do not share those
characteristics. We will explore with more caution this characteristic in Chapter 4, and
propose -and study- a possible normalization.
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CHAPTER 3

Nestedness and chance

Non omne quod nitet aurum est
(All that glitters is not gold)

Ancient Latin Proverb

Hopefully, the previous chapter would have served to illustrate, at least partly, how the
discovery of nested patterns stirred an avid interest not only among ecologists, but among
network scientists in general. Admittedly, this resulted in a growing number of evidences of
their ubiquity, reflected as well in the quantity of hypothesis and observations brought out
regarding its causes and consequences. Along the present chapter, perhaps paradoxically,
we will attempt to undo this constructed notion of nestedness. Indeed, we will try to show
that nested patterns are not independent, significant patterns in their own, but just the
macroscopic result of imposing certain constraints in the level of generalization of each
species. That is, nestedness emerges from the combination of lower-order properties of the
network with chance, a result that calls for revisiting its overall relevance.

From the point of view of a busy reader, it may seem a pointless roundabout to elaborate
so much upon the importance of nestedness, in order to subsequently argue that it is not, in
fact, a relevant pattern. However, only by doing so it is possible to account for the extent
of the implications of such result, since, as the popular saying typically attributed to Mark
Twain says: ‘It is easier to fool people, than to convince them that they have been fooled’.

In particular, we will show how nested patterns can emerge in real systems as an entropic
consequence of the degree sequences alone, i.e., of the number of contacts held by each species.
The discussion of this result, which has been published in Payrató-Borràs et al. (2019), will be
the central part of this chapter (section 3.3). However, before addressing this core problem,
we will introduce in section 3.1 the effect of chance in the structure of ecological networks,
which will require a general -yet short- account of the main principles of evolutionary theory.
Secondly, in section 3.2, we will summarize the different types of null models that have been
proposed to deal with -and possibly rule out- the effect of chance in determining the structure
of a network. Finally, this chapter will be closed exploring the ecological interpretation, as
well as the potential applications, of a meaningful set of parameters of the null model that
are empirically determined -the so-called Lagrange Multipliers-.

3.1 Nature does play dice

In 1926, Einstein wrote a letter to Max Born where he famously said: ‘The theory yields
much, but it hardly brings us closer to the Old One’s secrets. I, in any case, am convinced
that He does not play dice’. The ‘theory’ mentioned by Einstein is Quantum Mechanics, about
which, despite having contributed to it himself, he held serious doubts. In his celebrated
quote, Einstein criticizes the inherent probabilistic nature of the quantum theory, arguing
that its embracing of chance and the resulting challenge of traditional determinism was
merely epistemological -but not ontological. In other words, he argued that the probabilistic
basis of the quantum description of reality was due to the incompleteness of the theory, and
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not a property of the physical world 1. Despite the undeniable commotion that Quantum
Mechanics supposed to the scientific conception of reality, truth to be hold the importance
of the role of chance in shaping nature had been made evident some years before, with the
introduction of the theory of evolution. Darwin, who casts a long shadow across this thesis
-or to inverse the negative meaning of the phrase, a long-lasting glow-, is at the heart of the
scientific revolution which transformed the conception of the origin of life, including that of
humans. Indeed, his theory has been sometimes considered as a complementary stage of the
Copernican Revolution, which set the basis of the modern scientific view of the world (Ayala,
2007).

While the theory was originally conceived to explain, primary, the evolution of living
organisms, it has been later applied as well to the selection of relationships among species,
particularly cooperation (Nowak, 2006), and even more, to the study of non-biological systems
like culture, technology or language (Arthur et al., 1993; Solé and Valverde, 2020) –all of
which have been often defined as complex adaptive systems, as discusses in the introductory
chapter. Of course, the latter forms of evolution can not be exactly translated from the
original theory, but may still involve, at least in part, analogous principles or rules. In what
follows we will briefly summarize the general notion of evolutionary theory in order to better
frame the importance of chance in ecology, and particularly the emergence of the so-called
spandrels.

God as a gambler

The part played by chance in biological evolution may seem trifling when compared to that
of quantum physics, yet Darwin had to face an established preconception of his time: that
there could not be ‘design without designer’ (Ayala, 2007). The existence of organs that
performed complex tasks, moreover seemingly appropriate to their environment, yield the
predecessors of Darwin, like William Paley (1743-1805), to think that, in words of Ayala:
‘The purposeful function reveal, in each case, an intelligent designer, and the diversity,
richness, and pervasiveness of the designs show that only the omnipotent Creator could be
this Intelligent Designer ’. Darwin challenged this view by arguing, not only that species
evolve over time -which was already a sound idea at his time-, but also that the eventual
complexity of organs and organisms is the result of an unsurveilled and unplanned process
called natural selection, or what Dawkins famously called ‘the blind watchmaker’. In this
process, chance is present in the appearance of random mutations which may increase, or
decrease, the fitness of a species. In fact, if Paley’s God was to be seen as the bettor in this
mutation game, he would be a rather a spendthrift, since it is estimated that more than 99%
of the species that have ever lived have become extinct (Ayala, 2007).

In principle, this selection-of-the-fittest mechanism may shape as well the observed
networks of interactions, particularly in mutualistic communities. As discussed in the
previous chapter, natural selection can manifest itself at a system-wide level by filtering out
less resilient configuration (Suweis et al., 2013). Besides, it may also act upon individual
traits that regulate inter-species interactions -for instance, those that determine exploitation
barriers pr those that determine the eventual benefit and cost of a mutualistic relationship-,
reinforce certain pairwise interactions through the effect of coevolution or even sculpt the
structure of the entire network (Nuismer et al., 2013).

Selection on the eye of the beholder

Natural selection offered a scientific answer to the problem of design. Nevertheless, just as
the observation of a particular complex element does not entail the existence of a creator,
such complexity does not necessarily imply, likewise, the presence of selective pressures. In
a seminal paper, Gould and Lewontin (1979) criticized what they called ‘panselectionism’,
that is, the belief in ‘the near omnipotence of natural selection in forging organic design and
fashioning the best among possible worlds’. Gould and Lewontin prevented against the fallacy

1This lead Einstein to propose, together with Podolsky and Rosen, his famous EPR paradox, which
hypothesized the existence of some local hidden variables.
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of assuming that, since natural selection is able to produce evolved complex structures, every
evolutionary process or complex structure is forcibly the product of natural selection. In
short, the whole criticism can be summed up by the popular saying that goes: ‘if all you
have is a hammer, everything looks like a nail’

In particular, Gould and Lewontin proposed the existence of the aforementioned spandrels,
defined as structures that could seem to be evolutionary selected –but are not. The term
spandrel originally refers, in fact, to an architectonic element, namely the void space between
an arch and a transversal frame or between two (or more) adjacent arches (see Fig. 3.1).
Such empty space has no primary use and is merely a byproduct of the configuration of the
supporting structural elements. Yet, architectonic spandrels are usually filled with ornaments
such as paintings or sculpted reliefs, which may trick the observer into thinking that such
space is intentionally designed and carries out a key purpose.

Figure 3.1: Example of an architectural spandrel in the doorway of the Saint Georges Church
in Great Bromley (Essex, UK). The spandrel is decorated with a Dragon, as part of the
representation of Saint Geroge’s legend. Picture adapted from an original photography by
Michael Garlick (CC BY-SA 2.0)

In the analogy proposed by Gould and Lewontin (1979), the architectonic constraints
related to the construction of the building are translated as biological constraints that may
drive and restrict the evolution of an organ or an organism through non-selective mechanisms.
In what concerns us here, the notion of spandrels was introduced from evolutionary theory
into the network language by Solé and Valverde (2006). In their article, the authors proposed
that motifs found in cellular networks are in fact network spandrels. Indeed, while certain
network motifs are significantly abundant in comparison to random models (Milo et al.,
2002), Solé and Valverde reviewed several evidences pointing at the fact that no particular
selective pressure seem to work upon such motifs, and moreover simple models of random
duplication and mutation can reproduce their observed abundances. More recently, Valverde
et al. (2018) in the first place, followed by Maynard et al. (2018), showed that the structure
of ecological networks, including mutualistic systems, can emerge as a by-product of the
assembly process. Therefore, non-trivial topological properties of such networks, like degree
heterogeneity of nestedness, could be network spandrels that are not specifically optimized
through natural selection.

In the next sections we will try to show that, from a purely structural point of view,
empirical nested patterns of mutualistic systems turn out to be non-significant when taking
into account information about the degree sequences. This view is complementary to the
one exposed up to now, where the notion of spandrel is justified by exploring the dynamics
of assembly and evolution of mutualistic systems. Instead, in what follows we will focus on
studying the properties of static, aggregated networks, in order to show that nestedness is an
entropic effect, in the sense that it appears as the most probable macroscopic configuration
of the interactions given certain constraints on the number of contacts of each species.
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3.2 Null models or how to filter chance

The concept of null model is closely related to the notion of null hypothesis, a term that was
coined by Fisher (1935). In his seminal book, Fisher illustrated the idea with a simple, yet
well-known experiment: the lady tasting tea. In such thought experiment, a woman declares
to be able to differentiate whether an English cup of tea has been prepared by pouring first
the tea and secondly the milk, or vice-versa. Fisher proposed to challenge her claim by
carrying out a blind tasting test, involving several cups of tea differently mixed. Such test is
based on a simple null hypothesis, namely that the lady’s statement is false and, in fact, she
is guessing the order of the mix haphazardly. In order to reject this hypothesis -i.e. to show
that her ability to distinguish the tea taste is not simply a matter of luck- we would need
to know how many cups she could correctly identify when playing randomly. Then, if in
comparison to that quantity she actually does a sufficiently large number of correct guesses,
we can dismiss the option that she is just tossing a coin to decide.

Following this line of thought, the idea of a null model originates in the context of network
theory, where we need to test a particular null hypothesis on a graph –typically whether a
given property can be produced by the effect of chance alone. In this sense, the null model is
used to produce a set -or ensemble- of randomizations, traditionally synthetic networks where
a certain number of parameters have been constrained, against which to compare the original
network. This permits assessing whether a particular observation, for instance community
structure (Barber, 2007) or degree assortativity (Newman, 2002; Park and Newman, 2003;
Johnson et al., 2010), is a relevant property generated by non-trivial mechanisms of network
formation, or, on the contrary, it can be merely explained by statistical correlations naturally
emerging from other restrictions on the graph, e.g. the network’s finite size, a particularly
high or low density of links, or the presence of degree heterogeneity.

In what follows, we will use a null model in order to determine whether, as aforementioned,
nestedness can emerge as an entropic consequence of the degree sequences. In fact, the
application of null models to the analysis of ecological networks is not new. Far from it, there
is a long history of debate about which null model is more suitable to assess the significance
of patterns –including nestedness– dating back to the first studies in biogeography (Connor
and Simberloff, 1979; Gotelli and Graves, 1996) followed by a later extension to interaction
networks– (Bascompte et al., 2003), which has remained a lively topic until today (see for
instance Strona et al. (2018) for a recent contribution and the review of the topic by Mariani
et al. (2019)).

The majority of the early null models rely on algorithmic procedures that numerically
randomize the network by strictly keeping some constraints, what we will call the hard
constraints approach. On the other hand, it is also possible to relax such conditions, what
results in a general family of null models based on soft constraints. Within this group, a
particular class of null model has been recently proposed (Squartini and Garlaschelli, 2011),
that the authors named canonical ensemble following statistical mechanics terminology. It
consists in constructing a statistical ensemble where constraints are kept only on average, by
imposing some key conditions on the entropy and likelihood of the distribution of probability
of existence of each graph in the ensemble. Such novel framework offers several technical
and conceptual advantages with respect to former methods, which is why we will exploit it
to test whether nestedness is a significant pattern. Before doing so, we summarize below
the main families of null models with their characteristics and flaws, keeping in mind that
we are specially interested on ecological networks and in keeping the degree sequences as
constraints.

Hard constraints

As aforementioned, this family of null models is characterized by enforcing a set of constraints
strictly. Given that statistical mechanics terminology is often used to describe different types
of network ensembles –a practice that was inaugurated, likely, by (Park and Newman, 2004)–
we could also identify this class of null models with the micronanical ensembles (Squartini
and Garlaschelli, 2011). Indeed, just like some constraints on the network parameters are
preserved exactly, in physics the micronanical ensemble includes the set of all microstates
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that share a precise, completely specified total energy. In theory, the number of conditions
that one could impose to the null model is virtually as large as the number of observable
quantities, ranging from the most basic properties to elaborated and system-wide patterns.
Nonetheless, in most cases we are interested in understanding whether fundamental network
properties –that we may also call lower-order features– are able to determine global –or
higher-order– ones. Accordingly, most null models are constructed by controlling one or
various of the following parameters: (i) network size, (ii) number of links and (iii) degree
sequences.

In the particular case of bipartite networks, it is important to note that both (i) and
(iii) can be disentangled per guild, that is, not only the total number of nodes is given but
also how many of them belong to each kind. Likewise, we do not have one but two degree
sequences. This bipartite character of mutualistic networks multiplies as well the spectra
of possible combinations of constrains, because a particular condition may be applied to
just one guild, its counterpart, or both. Following Ulrich and Gotelli (2007), the subsequent
classification can be made:

• Equiprobable model. In this null model only the size of the network and the number
of links is preserved. Consequently, the ensemble is constructed by imposing that,
within a guild, each node has in theory the same probability of having a link (hence
the name equiprobable). Since both guilds are randomized fulfilling this condition, this
null model is traditionally named in short as EE (equiprobable-equiprobable).

• Fixed models. In this case, not only the size and density of links are kept, but also
the degree sequences are conserved strictly (that is, the degrees are fixed). The most
restrictive null model, the so-called fixed-fixed (FF), constraints the degree sequences
of both guilds to meet strictly the original ones. Nonetheless, it is also possible to relax
this condition upon one of the guilds, resulting on the fixed-equiprobable model (FE)
or its complementary equiprobable-fixed (EF), depending on which of the two degree
sequences (rows or columns) is kept constant.

This classification was originally developed in the context of biogeography (Connor and
Simberloff, 1979; Gotelli, 2000), but was rapidly adapted and adopted in the context of
mutualistic networks (Bascompte et al., 2003; Ulrich et al., 2009). In the bigger picture,
similar null models are used in the analysis of network structure. Indeed, the EE model
produces Erdős-Rényi random graphs with a fixed number of edges m and nodes n, a
model that in graph theory is often named as G(n,m) (Newman, 2010). A straightforward
implementation of this methods is to take the original network and randomly rewire the
interactions, picking and reshuffling them following a uniform distribution. Alternatively, it
is possible to ‘fill’ the network, assigning interactions randomly among not-previously linked
nodes, until the number of links matches the empirical one (Gotelli, 2000). However, as
discussed in the introduction, this sort of null models produce synthetic graphs that are in
general very different from real examples, given that they show very low clustering –that
tends to zero in the limit of large networks– and virtually no community structure or degree
correlations. Therefore, the EE null model is traditionally regarded as a loose benchmark
against which to challenge empirical observations.

In what regards the FF null model and its variants, there is a rather prolific literature
on what is the optimal –or in other words less statistically biased– implementation. Here
again we find that this question is not exclusive to ecology, since network scientist have been
for long interested in generating more realistic degree sequences, particularly resembling
the heterogeneous, right-skewed degree distributions that are typically found in empirical
systems (Newman, 2010). Despite this multiplicity of methods, we can find, fundamentally
speaking, two principal ways of attacking the problem of constructing a network matching a
specific degree sequence:

• Swapping algorithms. In a sense, this approach pursues fairly closely the notion of
randomization proposed by Fisher, conceived as disordering a given system in order

39



3. Nestedness and chance

to compare the resulting, decorrelated structure with the originally observed pattern.
Indeed, this implementation starts with the real biadjacency matrix and exchanges pairs
of links between nodes of different guilds, as shown in Fig. 3.2 –what is called rewiring.
This can be visualized as interchanging two pairs of elements in the biadjacency matrix,
each pair composed by a zero and a one, in such a way that the total row and column
sums are unaltered (Gotelli and Entsminger, 2001). Moreover, interactions are chosen
and replaced according to a set of conditions: first, newly connected nodes must not
be previously linked, which hinders the introduction of double edges, and second, the
rewiring must occur only among nodes of different guilds, which preserves the bipartite
character of the network and avoids the appearance of self-loops. It is important to
note that such impositions go beyond the mere preservation of the degree sequences,
since in fact neither introducing self-links or double edges would violate the condition
of keeping the degrees constant. Hence, this sort of requirements reduces the size of the
ensemble of compatible randomized networks. Furthermore, in the specific challenge
of assessing the significance of nested patterns, Ulrich and Gotelli (2007) remarked
on two major limitations when using the FF null model. First, the number of novel
configurations available is small for networks that have either a remarkably high or a
remarkably low degree of nestednes Ulrich et al. (2009). Secondly, even for medium
values of nestedness, the number of possible reshufflings is very much influenced by
finite size effects. This means that the search in the phase space is confined to a
reduced set of possible reconfigurations, which turns to be smaller as the networks’ size
decreases or the density of links increases.

Figure 3.2: Example of the swapping algorithm for a plant-animal bipartite
network. The links of two pairs of nodes, represented in pink for plants and in green
for animals, are exchanged. Some hypothetical degrees (kP1 ,kA1 ,..., etc) are shown, illustrating
that the degree sequences are kept constant.

• Configuration model In this approach, we start with a disconnected network where
initially only the ‘half-links’, also called ‘stubs’, are assigned in such a manner that
the degree sequences are already fixed. The challenge is then to connect, randomly, all
pairs of stubs in order to complete the network, as illustrated in Fig. 3.3. Here again,
this simple process can break down if one wishes to avoid the appearance of self-loops
and multi-edges, which may lead to a non-uniform sampling of the ensemble of null
networks (Newman, 2010).

As can be seen, the major difference between the two approaches is the initial configuration:
in the swapping algorithm, we take the real network and attempts to randomize it by
sequentially rewiring pairs of links, while in the configuration model we start working with a
‘voided’ network where all links have been cut and thus has to be entirely reconnected. In
ecology, the most popular methodology is probably the swapping algorithm, which has been
used in numerous papers dating back to its proposal in 1979 (Connor and Simberloff, 1979),
to its later application to study mutualistic networks (Bascompte et al., 2003; Ulrich et al.,
2009; Joppa et al., 2010; Saavedra and Stouffer, 2013; Staniczenko et al., 2013). All in all,
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Figure 3.3: Example of the functioning of the configuration model for a plant-
animal bipartite network. Each node is assigned a number of stubs, depicted in black,
according to the degree sequence that has to be kept. Then stubs are matched randomly, as
shown in blue dashed lines. Some particular matchings are forbidden, represented here in
red dashed lines, to avoid the presence of self-loops and double-edges.

the limitations we have mentioned above may translate into several drawbacks that introduce
undesired correlations and statistical bias into the ensemble. That is why in the following
subsection we introduce another family of null models that prevent some of these problems
by relaxing the constraints and keep them only in average, the so-called soft constraints.

Soft constraints

By softening the constrains we mean that enforced network parameters are no longer strictly
kept but they are allowed to vary across the ensemble, with the condition that the average is
still controlled for. Here again, several different network properties could be imposed, but
building upon the previous subsection we will focus mainly on two cases: the restriction of
the number of nodes and links, in analogy to the EE null model; and the preservation of the
degree sequences of both guilds, equivalently to the FF null model.

The softening of the EE null model would lead, in the graph’s language, to a modification
of the Erdős-Rényi random graph proposed by Gilbert, and typically referred to as G(n, p).
At variance with the G(n,m) model, here the probabilities of placing a link between any
two nodes have all the same value p and, importantly, they are independent of one another.
This entails that the ensemble can be directly constructed by performing a sampling of the
probabilistic biadjacency matrix, and randomized networks will differ in their number of
connected nodes and links while the average will be kept.

On the other hand, it is also possible to adapt the FF model by enforcing the dependence
on the degree through the probability of having a link, what is often called the proportional-
proportional (PP) null model (Gotelli, 2000; Ulrich and Gotelli, 2012). This approach is
characterized by assigning a link between a species i and j –from different guilds– according
to the following probability:

pi,j = kikj
L2 , (3.1)

where ki is the degree of node i, kj the degree of node j and L the total number of
links. This dependence on the product of the degrees resembles the classical form of the
encounter rate between particles in a homogeneous, well-mixed system, which in a first
order approximation is a direct function of the product of their concentrations. Moreover,
it represents as well the theoretical probability that two nodes have a link in the hard
configuration model (Newman, 2010), although here sampling this probability will of course
produce randomized networks where the number of links and degrees are not exactly kept.
This null model is a fairly common choice not only in ecology (Gotelli, 2000; Ulrich and
Gotelli, 2012; Jonhson et al., 2013; Solé-Ribalta et al., 2018) but also among network scientists
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in general (Caldarelli et al., 2002; Chung and Lu, 2002; Garlaschelli and Loffredo, 2008).
Nevertheless, we will argue later that, regardless of its popularity, this null model has some
relevant limitations as well, and it is not exempt of statistical bias even if it already resolves
some of the problematics of the FF null model.

A third null model that stands in the midway between the random graph G(n, p) and
the PP null model is the one proposed by Bascompte et al. (2003). Unlike in the G(n, p)
model, here each link has a different probability of appearance that depends on the degrees
of the two species considered. Nevertheless, this probability differs from the one shown in
Eq. 3.1, and reads instead:

pi,j = ki
2NR

+ kj
2NC

, (3.2)

where NR is the number of rows and NC the number of columns of the biadjacency matrix.
It is straightforward to see that, despite this null model introduces a certain dependence
between the degree and the interaction probability, it does not preserve the degree sequences,
and instead tends to homogenize their distribution in a similar fashion to the EE null
models (Saavedra and Stouffer, 2013). This is mainly due to the fact that, given that
the probability here depends on the sum rather than on the product of the degrees, the
term will be dominated by the largest degree. Therefore, in the randomized versions of the
matrix, specialist species will tend to become more generalists and generalists will tend to
become more specialists. All in all, what exact information is conveyed by this particularly
form of the probability remains rather unclear. Indeed, this was made manifest in the
debate between James et al. (2012, 2013) and Saavedra and Stouffer (2013). Despite these
shortcomings, we can find still several examples of applications of this model in the ecological
literature (Bascompte et al., 2003; Saavedra et al., 2009, 2011).

On the whole, in the three classes of soft null models we have discussed so far the only
constraints that are imposed concern the link probability among nodes. Nonetheless, it is also
possible to enforce additional conditions that warrant that the ensemble has maximum entropy
and thus it is statistically non-biased. This is what we will explore now, by introducing the
so-called canonical approach.

The canonical approach

The family of canonical null models is constructed by adopting a statistical mechanics
perspective, as proposed by Park and Newman (2004). In such framework the null model is
completely defined by the probability of appearance of each graph in the ensemble. That is,
if we refer to the ensemble’s graphs by the general name G, then the probability of existence
of each of its elements is given by P (G). The null ensemble is then composed by a large
set of graphs, {G}, including the real network that, adhering to the notation introduced
by Squartini and Garlaschelli (2011), we will name G∗.

Following Park and Newman (2004), the present methodology can be regarded as an
analogy, in network language, of the construction of the canonical ensemble in statistical
physics. Such ensemble is characterized not only by the soft constraining, but also by the
fact that the entropy is maximized. In particular, the Shannon-Gibbs entropy is defined as:

S = −
∑
G

P (G) lnP (G), (3.3)

where the sum runs over all the graphs G in the ensemble. The optimization of this
quantity under some given set of constraints ~C leads to the Exponential Random Graph
model, which reads:

P (G/~θ) = e−H(G,~θ)

Z(~θ)
, (3.4)

being H the graph Hamiltonian such that H(G, ~θ) = ~θ · ~C(G), and Z the normalizing
partition function Z =

∑
e−H(G). The set of variables ~θ are the Lagrange multipliers, issued
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from the maximization of Eq. 3.3 under the chosen constraints ~C. In particular, these
constraints represent, in the first place, a normalization condition:∑

G
P (G) = 1 (3.5)

and, secondly, the preservation of the average of a certain property, that following the
standard notation we will call X:

〈X〉 =
∑
G

X(G)P (G), (3.6)

and which can be extended to include a set of multiple properties {X1, ...Xi, ...}. This
second requirement represents, in fact, the soft enforcing of the desired constraints, translated
now into a maximum entropy framework.

This particular condition on the entropy ensures that the ensemble is maximally disordered,
or in terms of information theory, contains maximal uncertainty. Moreover, it is equivalent to
the Boltzmann distribution with conserved mean energy, that in statistical physics provides
the distribution probability of microstates in a system at equilibrium with a thermal bath.
The general idea behind this choice is that, in the absence of better insight into the particular
microstates –in our case of other network parameters–, the best distribution is that which
maximizes the disorder while still keeping, as averages, the observed properties –in our case,
some particular network properties. Here, by the best we mean that it entails a minimal
number of assumptions about the uninformed and hence unconstrained properties of the
graphs across ensemble, which translates into a maximization of the uncertainity (Jaynes,
1957; Newman, 2010).

Exponential random graphs have been extensively used in the latter years, specially in
the field of social networks where they also receive the name of p∗ models (Robins et al.,
2007). Nonetheless, the ensemble as defined in Eq. 3.4 is not fully determined. The Lagrange
multipliers, whose introduction is required to constrain the optimization with the conditions
of Eqs. 3.5-3.6, are a priori unknown and hence stand as hidden variables (Garlaschelli
and Loffredo, 2008), that need to be fixed in order to complete the definition of the null
model. As a matter fact, several methods to estimate these parameters can be found in
the literature 2, ranging from considering these parameters as fitness values and extracting
them from either empirical or theoretical distributions (Caldarelli et al., 2002), to fitting
the observed properties using generative models like Markov random graphs (Robins et al.,
2007). Here, we will follow the procedure developed by Garlaschelli and Loffredo (2008)
and Squartini and Garlaschelli (2011) in order to construct a maximum entropy ensemble
that, specifically, is aimed at randomizing the real network, represented by the graph G∗.
Given that we are interested in constructing a null model to evaluate the significance of
empirical nested patterns, this seems indeed the most sensible choice.

According to Garlaschelli and Loffredo (2008) and Squartini and Garlaschelli (2011), a
correct randomization of a real network entails that the model parameters are those for
which the real network is found in the ensemble with maximum probability. To illustrate
this procedure, let us start defining the log-likelihood of observing the real network:

L(~θ) = ln(P (G∗ | ~θ)), (3.7)

which, replacing the exponential graph model in P (G), can be rewritten as:

L(~θ) = −H(G∗, ~θ)− lnZ(~θ). (3.8)

The proposal of Garlaschelli et al. is to maximize the quantity in Eq. 3.8, which leads to
a set of optimal values for the Lagrange Multipliers that we will call ~θ∗. With this values at
hand, the maximum entropy ensemble is fully determined, with the peculiarity that the real

2Truth to be told, there is a huge literature on how to estimate the model parameters on Exponential
Random Graphs, including as well several packages to construct the ensemble. However, reviewing them is
beyond the scope of this thesis and we will focus on reviewing the method proposed by Garlaschelli and
Loffredo (2008) and Squartini and Garlaschelli (2011).
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network –or to be more precise, the observed properties we aim to enforce– will be found
with maximum probability. This ensures not only that the constraints are met on average,
but also that they are the most expected value, which is a warranty of non-bias, in particular
always fulfilled by the exponential random graph model but not generally true for other
types of ensembles.

The framework we have described up to now is a general approach that could serve, in
principle, to construct a wide variety of null models concerning different network types and
constrains. Nonetheless, given that we are particularly concerned with bipartite networks
with softly fixed degree sequences, we will now explain the details of how this methodology
applies to this special case.

Bipartite networks and local constraints

The adaptation of the maximum-entroyp and maximum-likelihood framework for bipartite
networks is due to Saracco et al. (2015), who applied it to the study of the international
trade network. Although the general scheme remains mostly the same to the monopartite
case, some peculiarities arise.

To begin with, we construct the Hamiltonian for a bipartite network, whose biadjacency
matrix we call B. Differently to the monopartite case, we confront two degree sequences (one
for each of the guilds) which need to be taken into account separately. Although the scheme
is equally valid for any mutualistic network (seed-dispersers, ant-plants...), for the sake of
clarity we restrict our notation to the paradigmatic case of plant-pollinator communities.
Thus, we will speak of systems with NP number of plants and NA pollinating animals.
Accordingly, the real degree sequences will be represented respectively by ~v and ~h, where
vp is the diversity of visiting animal species that a plant species p receives, while ha is the
number of different hosting plant species with which a pollinator species a interacts.

As aforementioned, the Hamiltonian could virtually enclose any network constrain, yet
for the sake of continuity we will explore two basic types of soft constraints: the density of
links –in analogy to the EE model–, and the degree sequences –similarly to the FF model–.
In the first case, that is, if the number of links is kept on average, it is straightforward to see
that one recovers the G(n, P ) model, i.e. the soft random graph model (Park and Newman,
2004). Instead, introducing the degree sequences leads to a more complicated case, that we
will now derive in detail.

To begin with, in order to enforce both distributions as constraints we introduce two sets
of Lagrange multipliers, ~α for plants and ~β for animals. Subsequently, the graph Hamiltonian
can be written as:

H(B, ~α, ~β) = ~α · ~v + ~β · ~h. (3.9)

This means that the probability of encountering a bipartite graph B in the exponential
random graph ensemble of Eq. 3.4 becomes:

P (B | ~α, ~β) = e−~α·~v−
~β·~h∑

B e
−~α·~v−~β·~h

. (3.10)

To simplify the notation we introduce the variable change xp = e−αp and ya = e−βa , as
suggested by (Squartini and Garlaschelli, 2011). After this modification, the log-likelihood of
encountering the real network reads:

L(~x) =
NP∑
p=1

vp ln(xp) +
NA∑
a=1

ha ln(ya)−
NA∑
a=1

NP∑
p=1

ln(1 + xpya), (3.11)

which, as discussed above, we need to maximize in order to find the optimal variables
~x∗ and ~y∗ that ultimately define our ensemble. By doing so we are enforcing that both the
degree sequences of plants and animals are found, in the maximum entropy ensemble, with
maximum probability. Indeed, by requiring that ~∇L(~x, ~y) = ~0, we obtain the following set of
equations:
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vp =
NA∑
a=1

xpya
1 + xpya

for p = 1, ..., NP , (3.12)

ha =
NP∑
p=1

xpya
1 + xpya

for a = 1, ..., NA. (3.13)

It can be easily shown that these equations are equivalent to imposing that the average
degrees (right hand side) are equal to the degree sequence from the real network (left hand
side). Firstly, we need to note that the ensemble probability can be factorized in terms of
the probability of existence of a link between a plant species ‘p’ and animal species ‘a’, which
we call ppa. In effect, by taking:

ppa = xpya
1 + xpya

, (3.14)

replacing it into Eq. 3.10 and doing some little algebra, one finds:

P (B | ~α, ~β) =
∏
p,a

ppa
bpa (1− ppa)1−bpa , (3.15)

where bpa is the (p,a) element of the bipartite matrix of interactions. Then, using
expression 3.15, it is almost immediate to see that 〈bpa〉 = ppa, and thus in turn, the average
matrix element reads:

〈bpa〉 = xpya
1 + xpya

. (3.16)

This demonstrates that, as we had said, the right hand-side of equations 3.12-3.13 is
a sum over the column or row of expected values of the randomized bipartite matrix. It
is noteworthy to observe that this form of the link probability is radically different to the
ones proposed in other soft null models, like the configuration model of Eq. 3.1 or the linear
model of Eq. 3.2. Indeed, Garlaschelli and Loffredo (2008) showed that the popular form of
the probability in 3.1 is in fact a biased choice, since it produces non-maximum likelihood
ensembles, that is, ensembles where the degree sequences are kept in average but, strikingly,
they are not the most probable outcome.

Furthermore, the possibility of factorizing P (B | ~α, ~β) essentially entails that the
probabilities ppa of having a link are independent among them. In other words, when
the constraints enforced are local –like the degrees, the probability of existence of different
links can be disentangled. This was already assumed in previous models that softly constrain
the degree, but this maximum-entropy and maximum-likelihood scheme provides a theoretical
derivation showing that it is indeed possible to do so.

Therefore, this factorization automatically permits the construction of the exact expected
randomized matrix of interactions across the ensemble:

〈B∗〉 =


p11 p12 ... p1a ... p1NA

p21 p22 ... p1a ... p2NA

... ... ... ... ... ...
pp1 pp2 ... ppa ... ppNA

... ... ... ... ... ...
pNP 1 pNP 2 ... pNP a ... pNP NA

 (3.17)

To sum up, we have described a randomizing framework that allows enforcing some soft
constraints on the degrees while ensuring that the ensemble is statistically well-behaved,
offering some solid basis as compared to other, simpler null models. With these results at
hand, we will show now, following Squartini and Garlaschelli (2011), how it is moreover
possible to estimate the average and standard deviation of networks properties using either
analytical approximations or numerical methods.

45



3. Nestedness and chance

General analytical expressions of the first two moments of the distribution
of a given property of the network.

The randomizing scheme discussed up to now may be exploited to achieve the final goal
of this whole procedure: to measure a given network property across the statistical ensemble.
As aforementioned, in general there are two possible ways of performing this calculation. On
the one hand, as long as the property that we aim to evaluate can be analytically formulated
in terms of the elements of the bipartite adjacency matrix, Squartini and Garlaschelli (2011)
showed that it is possible to obtain, at first order, the analytical expression of the first and
second moments of the corresponding distribution. These expressions depend only on the
link probabilities. In other words, it is not necessary to sample the ensemble, instead the
mean and the standard deviation of the nestedness index can be analytically calculated. On
the other hand, one can always sample the ensemble in order to study the statistics of the
target property on a generated, unbiased sampling (Squartini et al., 2015)

Let us start reviewing the analytical procedure. We will call a network property by X
and its average across the statistical ensemble by 〈X〉∗. The asterisk superscript indicates
that the statistical ensemble is built for a given real bipartite matrix B∗. If this property
X can be calculated through an analytical expression –that is, as a function of the matrix
elements of B–, then Squartini and Garlaschelli (2011) showed that it is possible to perform
an approximate but accurate measure of the first and second moment of X, directly on
〈B∗〉. In particular, for the bipartite case, the expressions for the average and the standard
deviation of X read:

〈X〉∗ ' X(〈B∗〉), (3.18)

σX '

√√√√NP∑
p=1

NA∑
a=1

(
∂X(B)
∂bpa

)2
σ2
bpa
, (3.19)

where σbpa is the standard deviation for the bipartite matrix element bpa. These two
expressions can be regarded as the result of linearly approximating the dependence of X on
the matrix elements, where second-order terms are neglected. In particular, Squartini and
Garlaschelli (2011) showed that this estimation is accurate as long as that the property X is
gaussian-distributed in the random ensemble, which warrants that higher order corrections
will be comparatively small.

Secondly, any property –having an analytical expression or not– can always be measured
in a sample of the statistical ensemble. The sampling consists in generating networks by
placing links among species according to the probabilities provided by the matrix elements
of 〈B∗〉 (Eq. 3.17). The fact that the probabilities ppa are independent from one another
offers a great advantage with respect to other randomizing methods, like the swapping
algorithm described above. Moreover, given that these probabilities are obtained imposing
the maximum-entropy and maximum-likelihood conditions, the resulting sample will be
significantly less biased than other choices (Squartini et al., 2015).

We have described in great detail this randomizing framework since it will be the basis of
calculations in the rest of this chapter, as well as part of chapter 4. Indeed, in what follows
we will apply these results to the study of nested patterns, in order to elucidate whether
nestedness is –or is not– an independent, significant property. Besides, the description of
alternative null models will have hopefully provided a glimpse of the bigger picture, and
certainly will help us explain how our work relates to prior investigations on the relevance of
nested patterns.

3.3 Breaking the spell of nestedness

As it has been discussed in Chapter 2, recently the pertinence of nestedness as a suitable
indicator to characterize the dynamics of mutualistic communities has been challenged
by various works. In fact, it has been argued that either nestedness has no significant
impact on the coexistence of mutualistic communities (James et al., 2012; Grilli et al., 2017),
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either it detrimentally affects local stability (Allesina and Tang, 2012; Staniczenko et al.,
2013). Moreover, other properties of the observed networks have been claimed to be key
drivers of the community dynamics (James et al., 2012; Feng and Takemoto, 2014). In
particular, the networks’ degree assortativity or the degree heterogeneity have been identified
as determinants of biodiversity persistence. This leads to the aforementioned key question of
whether nestedness, conceived as a global trait of the emerging architecture, is actually a
genuine and independent property, or contrarily, it just derives from lower order features
of the interaction network. In what follows we will attempt to answer this question from
a structural point of view. In particular, this section starts with a brief discussion on
previous works that addressed a similar problem; next, we will describe how we implemented
the maximum-entropy and maximum-likelihood framework to construct a null model for
ecological networks; and, finally, we will apply this scheme to evaluate the significance of the
nestedness of a large dataset composed by 167 empirical networks representing diverse types
of plant-animal mutualistic communities across the globe.

Predecessors

Earlier investigations on the structural determinants of nestedness were concurrent on the
relevance of the degree sequences. Firstly, Medan et al. (2007) theoretically showed that the
isocline of perfect nestedness can be ultimately related, in the continuous limit approximation,
to the degree distributions of both guilds. On the other hand, Joppa et al. (2010) identified
the degree sequences as a feature that considerably explains empirical nestedness, although
they still claimed to find ‘a statistically significant excess of networks with unusual nestedness
patterns’. Last but not least, Jonhson et al. (2013) explored the emergence of correlations in
a finite size configuration model, and notably argued that degree heterogeneity together with
dissasortativity are two crucial determinants of nestedness, or in their words: ‘... most of the
empirically found nestedness stems from heterogeneity in the degree distribution. Once such
an influence has been discounted – as a second factor – we find that nestedness is strongly
correlated with disassortativity and hence – as random networks have been recently found to
be naturally disassortative – they also tend to be naturally nested just as the result of chance’.
Indeed, the results derived in this section have much in common with their conclusions,
although we take a different methodological path in order to demonstrate such dependencies.

Furthermore, in the context of building null models to measure the significance of empirical
nested patterns, other works had been confronted to the relationship between nestedness
and heterogeneity of degrees, yet without fundamentally addressing it. Instead, the majority
of such studies placed the focus on the technical capability of each family of null model to
‘detect’ nestedness –resulting into the well-known classification between conservative and
non-conservative tests, and the arousal of Type I and Type II errors– and leaving aside
any further, conceptual implications of the obtained nestedness significance. Moreover, the
actual existence of randomizing issues often monopolized the discussion. A good example of
this situation is the debated about the aforementioned fixed-fixed model, which has been
extensively used to assess nested patterns. A common caveat of this model is that the number
of null networks compatible with the constrained degree sequences might be highly limited.
For instance, Ulrich and Gotelli (2007) and Ulrich et al. (2009) observed poorly significant
nested patterns when using this null model. Howbeit, they explained such result arguing that
the FF null model induces a bias in the sampling, due to the fact that the generated null
matrices closely resemble the real network, contrarily to the case where a randomization that
relaxes the degree sequences –for instance the EE model– is applied. In the words of Ulrich
and Gotelli (2007): ‘This similarity makes it more difficult for the FF algorithm to detect
nestedness’. Likewise, Staniczenko et al. (2013) pointed out the limitations of the FF model,
given that the number of possible null networks decreases as the nestedness or density of
links of the real network increases.

In spite of all these different hints pointing at the crucial question of the structural
relevance of nestedness, the debate still remains open (Allesina, 2012). On the whole, the
difficulty in obtaining a definitive answer to this problem is related to the nature of the
methodology followed in previous studies. As it has been explained, such methodology mainly
relayed on statistically correlating the observed degree of nestedness in real systems with the
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expectation provided by the null model(s) of choice. Given that, as discussed above, previous
null models typically randomize algorithmically the observed network under some constraint,
they are more often than not flawed by the emergence of undesired bias —enhanced, in
turn, by the typical small size of ecological networks. In what follows, we take a different
methodological path that allows us to test, in a non-biased randomizing framework, the
significance of nested patterns.

Construction of the statistical ensemble

The maximum-entropy and maximum-likelihood ensemble introduced above solves many
of the drawbacks of alternative null models that, either softly or hardly, constrain the
degree sequences. In the particular case of ecological data, this canonical approach has
the advantage that possible missing links or overrated interactions, which might lead to
impoverished ecological data (Blüthgen et al., 2008; Olesen et al., 2010), are dealt with in a
proper way. In other words, from a theoretical perspective relaxing such constraints reflects
the fact that the observed degree sequences may provide imperfect information, i.e., the
reported network may be incomplete or contain noisy data like mislead interactions. Indeed,
enforcing the randomized degree sequences to be equivalent to the empirical ones only on
average limits the possible impact of these shortcomings, while assuring that results are not
dependent on specific details. Moreover, from a methodological viewpoint, the fact that this
null model provides an analytic expression for the probability of interaction between species,
results in the computational generation of null networks being fast, efficient and demanding
few numerical resources (Squartini and Garlaschelli, 2011).

In order to apply the framework described above to the study of mutualistic networks,
first we need to construct a maximum entropy statistical ensemble for each one of the
empirical networks we aim to examine, under the constraint that the degree sequences in
the ensemble match on average the empirical ones –this being true for the two guilds of the
corresponding bipartite graph. Eventually, this provides a set of coupled equations to solve for
the Lagrange multipliers (Eqs. 3.12-3.13 above). Hence, determining the statistical random
ensemble for each real mutualistic network entails solving the corresponding optimization
problem. In particular, for each network in the empirical dataset we numerically found
the Lagrange multipliers that maximize the likelihood using two different, independent
algorithms: (i) simulated annealing, which is a global, pseudo-random numerical method
for optimizing the likelihood, and (ii) a deterministic, gradient-based algorithm for solving
non-linear systems of equations. Further details on how these methods are implemented are
given in the Appendix B. Moreover, the codes to produce this ensemble for any network are
published as an open repository named nullnest in github (see Appendix G).

As it has already been discussed, a primary advantage of constructing a maximum
likelihood and maximum entropy ensemble is that, in the case of local constraints, the
probability of existence of a graph in the ensemble can be exactly factorized into the
probabilities of existence of a link between any two species (see Eq. 3.15). Therefore, after
numerically determining each optimal set of Lagrange multipliers, we built the matrix
containing the average probability of interaction corresponding to each empirical network, as
illustrated in Fig. 3.4 for the empirical network reported by Inoue et al. (1990). The resulting
dataset, comprising 167 probabilistic networks, is as well made public as part of the nullnest
repository.

Statistical measures of nestedness

We performed the statistical measures on the ensemble applying both the analytical and the
numerical approach described in the section 3.2. In what follows, though, we focus on deriving
the analytical expressions for the mean and the standard deviation of the distribution of
nestedness across this ensemble. In particular, we do so for the two indices of nestedness for
which this is possible: the well-known nestedness metric based on overlap and decreasing fill
(NODF) (Almeida-Neto et al., 2008), and the recently proposed spectral radius (Staniczenko
et al., 2013). The measures performed by numerically sampling the ensemble are detailed in
Appendix E.
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Figure 3.4: Comparison between empirical mutualistic interactions and probabil-
ity of interacting in the ensemble. The probability of interaction between species in
the statistical ensemble given by 〈B∗〉 is shown as a color heat map, for the plant-pollinator
network recorded by (Inoue et al., 1990). The empirical corresponding bipartite matrix of
interactions B∗ is superimposed in black. Both plants and pollinators species have been
ordered in decreasing order of their degrees (from top to bottom and from left to right).
As it can be seen at a glance, the obtained probabilities are consistent with the observed
interactions, with the dark regions delimiting an upper left triangle, as in an ideally nested
structure. Note that the color legend is in logarithmic scale.

Derivation of the analytical expressions for NODF

In this subsection, we derive the analytical expressions for the average and the standard
deviation of nestedness measured by the index known as nestedness metric based on overlap
and decreasing fill (NODF). We chose this metric among the vast range of indices in the
literature due to a variety of reasons: first, it can be calculated through an analytical and
compact expression in terms of the matrix elements; second, and contrarily to other metrics,
its definition is based on a clear and explicit quantification of conditions in Eqs. 2.1-2.2,
precluding any type of geometric or algorithmic approach; and finally, it is widely used not
only in ecology but also in network applications to economics (Saracco et al., 2015; Hernández
et al., 2018) or sociology (Borge-Holthoefer et al., 2017).

Definition and distribution of NODF

As we explained in Chapter 2, the NODF index quantifies two aspects of nestedness: on
the one hand, the decreasing fill, that quantifies the variation in the degree sequence; and on
the other hand the paired overlap, that weights the overlap of interacting partners among
the nodes of a guild. To encapsulate this calculation, we will use the analytical definition
proposed in the previous chapter (see Eq. 2.6), which, for the sake of clarity –and at the
expense of some redundancy–, we remind:

NODF(B) = 1
K

NP∑
i<j

[1− θ(vj − vi)] ·

NA∑
a=1

biabja

vj

+ 1
K

NA∑
k<l

[1− θ(hl − hk)] ·

NP∑
p=1

bpkbpl

hl

 ,

(3.20)
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Figure 3.5: Example of an ordered matrix of interactions, not perfectly nested. Species of
both guilds have been ordered in decreasing degree, and the numbered labels indicate their
rank (the larger the degree, the smaller the rank). The indexes i, j, k and l illustrate our
notation for rows and columns.

where K = NP (NP − 1) +NA(NA − 1)
200 . (3.21)

Here we consider that the bipartite adjacency matrix is labeled as shown in Fig. 3.5,
such that row i is placed above row j and column k at the left of column l. The K factor
introduces the normalization and the θ stands for the Heaviside step function.

In fact, from now on we will use the following abbreviations for the decreasing fill term:

DFij = 1− θ(vj − vi)
such that, if vj ≥ vi then DFij = 0,

and if vj < vi then DFij = 1
(3.22)

DFkl = 1− θ(hl − hk)
such that, if hl ≥ hk then DFkl = 0,

and if hl < hk then DFkl = 1
(3.23)

Despite being a popular metrics, some authors have raised concerns about the use of
NODF to measure nestedness. In particular, as discussed in Chapter 2, Staniczenko et al.
(2013) argued that, due to the DF factor, the NODF is unable to detect nested patterns
when the proportion of repeated degrees in the network is large. In order to ensure that
our results are not affected by this limitation in the sensibility of NODF, we obtained as
well the analytical expressions of the first two moments of the alternative version of the
metric called stable-NODF, proposed by (Mariani et al., 2019). As discussed in Chapter 2,
this variant relaxes the decreasing fill condition and hence solves the drawbacks outlined
by Staniczenko et al. (2013). The analytical expressions of the first two moments of its
distribution in the ensemble can be found in Appendix C. Still, we keep our main focus
in NODF given its widespread use for measuring nestedness, together with the fact that
the mentioned lack of sensibility is not particularly relevant but for small or highly dense
networks (see Appendix C).

We next verify that NODF is Gaussian-distributed in the ensemble, as required if we
aim to apply Eqs. 3.18-3.19, by performing a check on a subset of the empirical networks.
To this end, for each of the corresponding statistical ensembles we generated a sample of
104 networks obeying the probability of link existence given by 〈B〉∗. We then computed
the nestedness of each sampled network, using NODF, in order to generate the nestedness
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Figure 3.6: Nestedness distribution, measured by NODF, for a sampling of the statistical
ensemble corresponding to the empirical networks by (Small, 1976). In blue, fit of a gaussian
function using the mean and standard deviation extracted from the distribution (mean
µ = 45.8 and standard deviation σ = 4.2). In grey, values of the nestedness of the real
network and of the analytical average, which corresponds to the average computed using the
analytical expression in Eq. 3.24.

distribution. In all cases we could successfully fit a Gaussian function (see Fig. 3.6 for an
example).

Analytical expression for the first moment of NODF

The analytical and packed expression for NODF that appears in Eq. 3.20 can then be
plugged into Eq. 3.18. Accordingly, we obtain that the first moment of the randomized
NODF for a given real bipartite matrix B∗ reads:

〈NODF(B)〉∗ = 1
K

NP∑
i<j

DFij ·
NA∑
a=1
〈bia〉 〈bja〉

NA∑
a=1
〈bja〉

+ 1
K

NA∑
k<l

DFkl ·
NP∑
p=1
〈bpk〉 〈bpl〉

NP∑
p=1
〈bpl〉

 .

(3.24)

Note that
∑NA

a=1 〈bpa〉 = vp and
∑NP

p=1 〈bpa〉 = ha, given that the randomized matrix
necessarily fulfills the enforced constrains. Additionally, this warrants that the ordering of
the matrix is equal to the original one, which is important since NODF is ordering-dependent
through the decreasing fill terms. It is also of interest to remark that the previous expression
can be understood in probabilistic terms. Indeed, given that 〈bpa〉 = ppa, where ppa are
independent link probabilities, the overlap term might be seen as a joint probability of
two independent events, divided by a normalizing factor which is the union of independent
probabilities. For example, for the pair of animal species k and l, the overlap term results in:

NP∑
p=1
〈bpk〉 〈bpl〉

NP∑
p=1
〈bpl〉

=

NP∑
p=1

ppk ppl

NP∑
p=1

ppl

. (3.25)
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Analytical expression for the second moment of NODF

The standard deviation is given by Eq. 3.19, which for NODF reads:

σNODF =

√√√√NP∑
p=1

NA∑
a=1

(
∂NODF(B)

∂bpa

) ∣∣∣∣∣
2

B=<B>∗
σ2
bpa

with σ2
bpa

= ppa (1− ppa) ,

(3.26)

where we have used the fact that the existence of a link in the network is a Bernoulli process.
Furthermore, the derivative with respect to a general matrix element brc (the index r stands
for rows and c stands for columns) can be split into the contributions of plants and of
animals:

∂ NODF(B)
∂brc

=
∂ NODF(B)plants

∂brc
+
∂ NODF(B)animals

∂brc
. (3.27)

After deriving, we obtained that:

K
∂ NODF(B)plants

∂brc
=

NP∑
j=r+1

DFrj
bjc
vj

+
r−1∑
i=1

DFir
bic
vr
−

r−1∑
i=1

NA∑
a=1

DFir
bia bra
vr2 (3.28)

K
∂ NODF(B)animals

∂brc
=

NA∑
l=c+1

DFcl
brl
hl

+
c−1∑
k=1

DFkc
brk
hc
−

c−1∑
k=1

NP∑
p=1

DFkc
bpk bpc

hc
2 , (3.29)

which after being plugged into Eq. 3.26 provides an analytical expression for the standard
deviation of the distribution of NODF in the ensemble.

Derivation of the theoretical expressions for the spectral radius

In this subsection, we derive the theoretical expressions for calculating the average and
standard deviation of nestedness using the so-called spectral radius (Staniczenko et al., 2013).
We performed the statistical measures using this metric due to its increasing popularity
among nestedness indices, and, moreover, to its computational advantages: firstly, it is a
mathematical property of the graph which does not depend on the ordering of the matrix
and, secondly, its numerical calculation is fast. Nonetheless, it is worthy to remind well
that the measures obtained with the spectral radius should be handled with care, since as
discussed in Chapter 2 this metric does not reliably quantify nestedness at a fine scale and,
moreover, it is not normalized.

Definition and distribution of the spectral radius

The spectral radius was recently proposed by (Staniczenko et al., 2013) as an alternative
metric for nestedness that directly relies on the spectral properties of the adjacency matrix.
Although we already introduced this metrics in Chapter 2, to improve the readability of
this thesis we will remind its definition here. Let us call I the identity matrix and A the
adjacency matrix of a bipartite matrix B, such that:

A =
(

0 B
Bᵀ 0

)
, (3.30)

which is a square, symmetric and non-negative matrix, given that ai,j ≥ 0. The spectral
radius of the matrix A (also called dominant eigenvalue or largest eigenvalue) is defined as
follows:
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Figure 3.7: Distribution of the spectral radius over the ensemble calculated for the real
network collected by Small (1976), for a sampling made of 104 networks. In blue, fit of a
gaussian function using the mean and standard deviation extracted from the distribution
(mean µ = 8.8 and standard deviation σ = 0.4). In grey, values of the nestedness of the real
network and of the theoretical average, which corresponds to the average computed using
the theoretical expression in Eq. 3.33.

ρ(A) = max{ |λi| }. (3.31)

Where λi i ∈ {1, ..., n} are the eigenvalues of A, thus the roots of the equation:
det(Iλ−A) = 0 . Since A is a symmetric matrix, λi ∈ Re ∀i.

In order to apply the analytical expressions for the first two moments of its distribution,
first we checked whether the spectral radius is Gaussian-distributed over the ensemble. In
particular, for each network in our dataset, we generated a sample of 104 networks obeying
the probability of link existence provided by 〈B〉∗. Then, we calculated the spectral radius
of each sampled network algorithmically using the R package rARPACK (Qiu and Mei, Qiu
and Mei). Finally, we verified that the resulting distribution is indeed normal, as can be
seen in Fig. 3.7.

Theoretical expression for the first moment of the spectral radius

Given that ρ(A) is a function of the matrix entries of A, we can apply the linear
approximation proposed by Squartini and Garlaschelli in Eq. 3.18, in order to estimate the
average over the ensemble computed for a real bipartite matrix B∗:

〈ρ(A)〉∗ ≈ ρ (〈A〉∗) , (3.32)

where:

〈A〉∗ =
(

0 〈B〉∗
〈B〉∗ᵀ 0

)
(3.33)

This means that the average spectral radius can be found as:

ρ(〈A〉∗) = max{ |〈λi〉| }, (3.34)

where 〈λi〉 are the roots of the equation:
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det(I〈λ〉 − 〈A〉∗) = 0 . (3.35)

In practice, Eq. 3.35 has to be solved numerically, which implies that no analytical
expression for the average of the spectral radius exists. In particular, we numerically
implemented the calculation of the spectral radius of each matrix 〈A〉∗ using again the R
package rARPACK (Qiu and Mei, Qiu and Mei).

Analytical expression for the second moment of the spectral radius

Using Eq. 3.19, the standard deviation of the spectral radius over the ensemble can be
estimated by:

σρ '

√√√√NP∑
p=1

NA∑
a=1

(
∂ρ(A)
∂Apa

) ∣∣∣∣∣
2

A=<A>∗
σ2
Apa

. (3.36)

Here, the calculation of the derivative of the spectral radius, ∂ρ(A)
∂Apa

|A=<A>∗ , is non-trivial,
given that there is no general analytical expression for the spectral radius because Eq. 3.35
needs to be solved numerically. Nonetheless, we will now show how is it possible to obtain
such derivative by applying the results by Deutsch and Neumann (1984).

Let us start by assuming that M is a square, non-negative and irreducible matrix. Then,
it has been shown that its spectral radius ρ(M) is a simple eigenvalue and it is equal to its
Perron root. Since ρ(M) is a simple eigenvalue, it has multiplicity one and it is possible to
obtain its first derivatives with respect to Mij . Indeed, if we denote by D the matrix whose
matrix elements are:

Dij = ∂ρ(M)
∂Mij

, (3.37)

then, following (Deutsch and Neumann, 1984), D can be computed using the expression:

D =
(
I −QQ#

)ᵀ
. (3.38)

Here, Q is a special type of matrix known as M-matrix (Kirkland and Neumann, 2012)
and defined as:

Q = ρ(M) I − M, (3.39)

while Q# is the group inversion of Q (Ben-Israel and Greville, 2003). The group inversion
is a more general type of inverse that can be applied as well to singular matrices. For a certain
type of matrices, the group inverse is equivalent to another class of inversion known as Moore-
Penrose inverse. This is true if and only if the matrix of study is range-Hermitian (Ben-Israel
and Greville, 2003). One of the conditions that warrants that a matrix is range Hermitian is
the following:

range (Q) = range (QH) (3.40)

where QH is the conjugate transpose (also called Hermitian conjugate) of Q. If we now
assume that Q is range-Hermitian, expression 3.38 can be rewritten into:

D =
(
I −QQ†

)ᵀ
, (3.41)

where Q† represents the Moore-Penrose inverse of Q.
Let us show now that Eq. 3.41 can be used to calculate the derivative with respect to our

matrix of interest A, in particular in the case where A = 〈A〉∗. Firstly, we will show that
〈A〉∗ fulfills the conditions that allow us to apply equation 3.38. Next, we will prove that a
matrix QA defined as:

QA = ρ (〈A〉∗) I − 〈A〉∗, (3.42)
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is a range-Hermitian matrix and, consequently, Q#
A = Q†A.

First, we know already that 〈A〉∗ is a square and non-negative matrix, yet it remains
to be shown whether it is irreducible. A matrix is said to be irreducible if and only if
its corresponding graph is strongly connected, that is, if it is possible to find a path that
connects any pair of nodes of the network. Because 〈B〉∗ is a complete bipartite graph
(〈bij〉∗ > 0 ∀i, j), then it is clear that it is strongly connected and therefore 〈A〉∗ is an
irreducible matrix.

Second, the condition for the matrix QA to be range-Hermitian is provided by Eq. 3.40.
In our case, ρ(A) ∈ Re and Aij ∈ Re ∀i, j, therefore QA,ij ∈ Re ∀i, j. From this follows
that:

range (QH
A ) = range (Qᵀ

A) (3.43)

Where we have used that the conjugate transpose of a real matrix is simply its transpose.
We still need to prove that:

range (Qᵀ
A) = range (QA). (3.44)

This condition is equivalent to:

row space of QA = column space of QA. (3.45)

Note that this is not true in general. In our case, given that QA is a square and symmetric
matrix, its row and column spaces are equal and therefore Eqs. 3.44 and 3.45 are verified.
This proves that QA is range-Hermitian and consequently its group inverse is equivalent to
its Moore-Penrose inverse. With this we have shown that a matrix DA defined by:

DA,ij = ∂ρ(A)
∂Aij

∣∣∣∣∣
A=<A>∗

, (3.46)

can be computed using the following expression:

DA =
(
I −QAQ

†
A

)ᵀ
, (3.47)

which completes Eq. 3.36 and thus provides an analytical expression for the calculation
of the standard deviation of the spectral radius. We implemented Eq. 3.47 using the R
MASS package (Venables and Ripley, 2002), in particular the function ginv to calculate the
Moore-Penrose inverse.

Significance of empirical nested patterns

With these analytical expressions characterizing the nestedness’ distribution at hand, one can
now attempt to examine how the nestedness of real networks relates to its null expectation.
Indeed, we do so for each of the 167 empirical networks in our dataset. This empirical set
includes three different kinds of mutualistic communities –plant-pollinator, seed-disperser
and plant-ant–, covering a wide variety of geographical locations, climate conditions and
species composition (see Appendix A for further details).

Using expressions 3.24 and 3.26 it is possible to compute the expectation value of
nestedness measured by NODF, 〈NODF(B)〉∗, and its standard deviation, for each empirical
network in our dataset. A comparison between the expected value of nestedness calculated
over the statistical ensemble corresponding to each real network and the actual nestedness
of the real network shows a striking agreement, see Fig. 3.8. As reported in Table 3.1, the
absolute difference between these two quantities is less than one standard deviation for 100
out of 167 networks (59.9%), raising to 158 out of 167 networks (94.6%), if we account for
two standard deviations. After performing a multiple testing correction (see Appendix D),
we find that only 3 out of the 167 empirical networks show significant nestedness (corrected
p-value < 0.01). The three of them, which are of a relatively small size (≤ 55 species), were
found to be less nested than predicted by the statistical ensemble.

Moreover, we verified that these results are not affected by the shortcomings related to
the decreasing fill factor, by repeating the above calculations using the index stable-NODF,
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3. Nestedness and chance

Figure 3.8: Significance of the nestedness of real networks. The figure shows the empirical
measure of nestedness against the average value of nestedness in the generated statistical
ensemble (red dots) for the 167 real mutualistic networks. The 3 panels correspond to
different kinds of mutualistic systems as indicated. The shadowed areas represent one (teal)
and two (light gray) standard deviations of the mean. Further details about the number of
networks whose nestedness are within these boundaries are provided in Table 3.1. A detailed
significant test results in only 3 networks having a statistical significant (in all cases under
represented) nestedness value. Overall, the results indicate that the nestedness of these
mutualistic networks is not significant.

Type of community Fraction of ntws with |z-score| ≤ 1 Fraction of ntws with |z-score| ≤ 2

plant-pollinator 82 out of 133 61.7% 126 out of 133 95.5%

seed-disperser 16 out of 30 53.3% 28 out of 30 93.3%

plant-ant 2 out of 4 50.0% 4 out of 4 100.0%

Table 3.1: Results, disentangled into communities, showing the fraction of networks
(abbreviated above as ’ntws’) whose discrepancy between the real and randomized nestedness
is less or equal than one or two sigma. Nestedness is measured with NODF.

as detailed in the Appendix C. In fact, the mentioned conclusions not only hold but are also
strengthen when using this metric, since we find 118 out of 167 networks (70.7%) within a
distance of one standard deviation to the mean, and 162 out of 167 networks (97.0%) within
two standard deviations.

Additionally, in order to ensure that our findings are not an artifact of using the NODF
metric, we have performed the same analysis for the spectral radius using the analytical
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Figure 3.9: Significance of the nestedness of real networks, measured with the spectral radius
ρ. The figure shows the theoretical average value of nestedness in the statistical ensemble
against the empirical measure of nestedness (red dots) for the 167 real mutualistic networks.
The shadowed areas represent one (teal) and two (light gray) standard deviations of the
mean.

expressions in Eqs. 3.34- 3.36. As shown in Fig. 3.9 and Table 3.2, this supplementary
analysis produces results that are generally in agreement with those reported above for the
NODF metric. After performing the multiple testing correction, we found 22 out of 167
networks unexpectedly nested (corrected p-value < 0.01). Although this proportion is larger
than the one found by NODF, it can be argued that, given the poor performance of the
spectral radius metric at fine scales, it is not necessarily an indication of significant nested
patterns but a consequence of the intrinsic limitations of the metric.

Fraction of ntws with |z-score| ≤ 1 Fraction of ntws with |z-score| ≤ 2

67 out of 167 40.1% 114 out of 167 68.3%

Table 3.2: Fraction of networks whose discrepancy between the real and randomized nestedness
is less or equal than one or two sigma, for nestedness measured by the spectral radius.

Finally, as detailed in the Appendix E, we also verified that performing the measures by
sampling the ensemble and then computing the distribution of nestedness gives compatible
results, both for NODF and the spectral radius. Indeed, this procedure leads to qualitatively
analogous conclusions about the non-significance of nestedness. Noteworthy, when performing
nestedness measures on a sample of the ensemble it is specially important to consider a
proper normalization for NODF. Otherwise, badly normalized calculations can lead to biased
observations, a situation which is further discussed in the first section of Appendix E.

Network properties determining nestedness emergence

In the light of the previous results, the next question to be considered is whether we can
determine which characteristic of the degree sequences controls how nested a network is.
Taking into account that the degree distributions of mutualistic communities have been
reported to commonly follow a (truncated) power-law (Jordano et al., 2003), we propose,
as a plausible candidate, the heterogeneity in the number of contacts per species. Thus,
the hypothesis addressed is that for two networks with identical number of species and
connections but diverse degree sequences, the most heterogeneous one –taking into account
both guilds– will be as well the most nested.
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3. Nestedness and chance

Figure 3.10: Determinants of nestedness. Panel (a): relative change in nestedness and the
corresponding change in heterogeneity, measured for the set of 167 empirical networks and
the average over the respective rewired ones. We used the rewiring algorithm described in
Appendix D. Nestedness is measured using the NODF metric, whereas the heterogeneity is
measured through the variance of the degree sequence of the unipartite adjacency matrix.
We found a correlation index for a linear fit (excluding the top outlier) of R = 0.88. This
closely linear relationship discovers a tight bound between nestedness and heterogeneity.
Panel (b) shows a comparison between the real observation of the degree assortativity r
(Pearson’s coefficient among degrees) and the average estimation in the statistical ensemble,
for the 167 networks of our study. The fact that r < 0 for all values indicate that both real
networks and the average of the randomized ensemble are naturally disassortative.

To evaluate this conjecture, we made use of a self-organizing network model that is
devised with the aim of optimizing the nestedness of a network (Burgos et al., 2007) by
rewiring existing links (see Appendix D). After applying this algorithm to our empirical
set of networks, we found that the resulting degree sequences are, with respect to the
original ones, more heterogeneous and that the final networks are more nested, see Fig. 3.10.
This allows to bridge the gap between two structural features that have been classically
treated separately, although previous works have already suggested their connection (Perazzo
et al., 2014; Jonhson et al., 2013). Interestingly enough, the relationship between network’s
heterogeneity and nestedness also explains why dynamical implications once attributed to
nestedness like the sustainability of communities with a large number of different coexisting
species (Bastolla et al., 2009) or the network’s structural stability (Thébault and Fontaine,
2010; Rohr et al., 2014), have recently been successfully associated with other properties
such as the heterogeneity itself (Feng and Takemoto, 2014) or the species’ degree (James
et al., 2012; Gracia-Lázaro et al., 2018).

Moreover, accounting for the heterogeneity offers some further insight on the process of
emergence of nestedness out of the degree sequences. At first glance, it might not be evident
why our null model reproduces so well the empirical nestedness. A priori, we would naively
expect that the random ensemble contains both nested and non-nested structures alike, in
which specialists appear attached, respectively, to generalists or to other specialists. Although
a given number of connections are certainly imposed by the existence of super-generalists
as well as by finite size effects, usually there is still room for reshuffling links (like in the
"swapping algorithm" (Gotelli and Entsminger, 2001)). In terms of mixing, we would say that,
concerning specialists, both assortative configurations (nodes have neighbors with degrees
similar to their own) and disassortative ones (neighbors have dissimilar degree) are in theory
feasible.

Why, then, our algorithm generates disassortative networks as shows Fig. 3.10? Here,
the particularity that we used a maximally-entropic ensemble plays a crucial role. Johnson
et al. (2010) demonstrated that, in the case of heterogeneous systems, disassortativity is
generally more entropic, that is, it is more likely as long as no external pressures are at work.
This occurs, to put it simply, because for a species with few interactions there exist many
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more chances to engage with another species with numerous connections than matching to a
low-connected partner. Therefore, the low significance of empirical nested patterns reported
here is directly related to the fact that the number of mutualistic interactions per species
is a highly heterogeneous quantity. (Jonhson et al., 2013) also observed this fundamental
relationship between heterogeneity, disassortativity and nestedness, yet using a finite size
configuration model as the one discussed in section 3.2. In our null model, on the other
hand, finite size correlations are tempered since the degree sequences are allowed to vary,
thus showing that the emergence of nestedness is a genuine entropic consequence of degree
heterogeneity.

Discussion

The findings above allow us to finally attempt to answer the question that has motivated
this Chapter: is nestedness an irreducible, relevant pattern –or on the contrary, is it just a
redundant consequence of lower-order features? The statistical analysis performed clearly
demonstrate that, given the degree sequence of real networks, the observed nestedness is
not significant –at least for almost all networks considered. Therefore, this suggests that
nestedness is not an independent pattern, in sharp contrast to the widely extended belief
that it is so. In other words, the observed nested structure of the ecological communities
studied is, in fact, a mere entropic effect of the degree sequences of the two guilds.

In the bigger picture, the dependence of nestedness on the number of interactions per
species has implications beyond the purely structural construction of the network. As
aforementioned, in the recent years several hypothesis regarding the origin of nestedness have
been handled, being one of them that it emerges as a byproduct of non-selective processes
such as the assembling rules (Valverde et al., 2018; Maynard et al., 2018). In this sense,
our observations support the claim that no selective pressures are required for nestedness to
emerge, which does not exclude, however, that such pressure could have shaped the degree
sequences. In other words, our findings demonstrate that nested patterns are not more
informative of the evolutionary history of real systems than their degree sequences alone.
Furthermore, as an additional argument for the non-selection of nestedness, it is important
to recall that the networks of our study are, often, both spatially and temporally aggregated.
Given the significant variability of species’ interactions along time (Chacoff et al., 2018) and
space (Trøjelsgaard et al., 2015), the fact that nestedness emerges from a local property
like the degrees is a parsimonious explanation. Indeed, degree heterogeneity is a general
feature, not only characteristic of the aggregated network but also of its spatial and temporal
counterparts. On the other hand, if nestedness were an independent pattern, its emergence
would require a specific selection of interactions across time and space, which is a much more
intricate process and hence a less simple justification of the origin of nestedness.

All in all, as aforementioned, structural analysis are not sufficient to determine what is
the exact mechanism of network formation in ecological mutualistic systems, even if our
results clearly support the ‘spandrel’ hypothesis. In this sense, it is worthwhile making as
well some remarks on the limitations of our approach. From the perspective of information
theory, the fact that constructing a model where disorder is maximized except for some
informed features (what in our case corresponds to the maximization of the entropy given
some constraints) eventually succeeds in reproducing the features of a real system, does not
entail that the uninformed properties of the system are truly random (Gotelli and Graves,
1996). They can indeed be, or it can also happen to be the case that the confluence of
a large number of diverse factors sump up into an apparently random aftermath. In the
particular context of the factors shaping ecological networks’ structure, what we observe is
that in order to reproduce empirical observations of nestedness, it is sufficient to provide
some information on the degree sequences, leaving everything else unconstrained. Of course,
in the absence of further insight on particular formation mechanisms, we will keep calling
this the effect of chance –but it is important to keep in mind that our observations are
not incompatible with the actual existence of various, or mutually canceling, non-random
ecological and evolutionary drivers.

Turning now into the methodological side, these findings have some implications as well.
Regarding the long-standing controversies about the use of a proper null model for nested
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networks discussed above, our conclusions point out once more the need of incorporating
the information contained in the degree sequences. This claim is not new and it can be
traced back to the first analysis of nested patterns in biogeography (Connor and Simberloff,
1979), and has been later on reflected in the number of null models that incorporate fewer
or more details about the degree sequence. However, null models that involve the degree
sequences as constraint are often intricate and result easily biased. In this sense, the results
presented in this section indicate that an appropriate null model for bipartite networks is
the set of exponential random graphs for which the probability of finding a graph having the
empirical degree sequences is maximized. Indeed, besides the methodological and conceptual
unbiased statistical grounds for this maximum entropy framework, this approach exhibits
at least two main advantages with respect to alternative methods. On the first place, it
overcomes the finite size effects of the FF model, which does not allow for a proper algorithmic
randomization (Gotelli and Entsminger, 2001; Ulrich and Gotelli, 2007; Ulrich et al., 2009),
hence restraining too narrowly the exploration of the phase space of null matrices. With
respect to the PP models, that preserve the degrees on average by constructing a probability
of interaction proportional to the species degrees (Ulrich and Gotelli, 2012), it has been
shown that the common form of the probability in Eq. 3.1 is subject to bias since it is not a
maximum-likelihood choice (Garlaschelli and Loffredo, 2008).

Altogether, while exponential random graph models have been extensively used in other
fields like sociology (Robins et al., 2007) or economics (Garlaschelli and Loffredo, 2008; Saracco
et al., 2015), their possible application to ecological networks is still largely unexplored. Thus,
the methodology implemented here could be a general tool to asses nestedness’ significance
in a variety of contexts, not necessarily restricted to ecological mutualistic network. Indeed,
to facilitate the application of the developed methods to any bipartite network of choice, we
provided an open and fully-documented package with the codes and several key results of
this section (see Appendix G).

In concluding, our results highlight the interest of focusing on the ecological and
evolutionary mechanisms that have led to the coexistence of both specialized and generalized
mutualisms in the same community (Johnson and Steiner, 2000; Bronstein et al., 2006),
giving raise to the observed high heterogeneity of the degree sequences. This is a fundamental
challenge, since understanding the way in which structural properties emerge in ecological
communities can provide critical clues to depict ecosystems’ past assembling, present
functioning and future responses –the three witches of the fate mutualism mentioned the
introduction. Finally, given that nested patterns have been recurrently detected across systems
as diverse as biological, social and technological networks, such findings are expected to have
relevant implications beyond the present analysis of ecological mutualistic communities.

3.4 More on the Lagrange Multipliers

The maximum-entropy and maximum-likelihood formalism introduced above not only has
allowed us to tackle the question of the origin of nested patterns, but also has provided us
with a null model that, interestingly, generates fairly realistic bipartite networks. Indeed,
with the only enforcing of the degree sequences in average, the encountered ensembles based
on the family of exponential random graphs (ERG herein) reproduce several features of
empirical mutualistic networks: first, its density of links, as it would be trivially expected,
but also its nestedness and its degree assortativity, which is a surprising finding. A key
ingredient of this network model are the Lagrange multipliers, which we may determine by
maximizing the probability of encountering the real degree sequences across the ensemble.
A natural question that emerges with these results at hand is: what do these Lagrange
multipliers represent? Can we assign them an intuitive interpretation, and in particular, do
they convey any relevant ecological information?

In this section we briefly explore the possible meaning of the Lagrange multipliers,
understanding them as parameters that are closely related to the structural determinants of
the ecological community. Indeed, in order to attempt to understand the information carried
by Lagrange multipliers (LMs from now on), we can address the problem from different
angles. To begin with, we can take once more the perspective of statistical mechanics. In
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Figure 3.11: Relationship between the Lagrange multipliers and the degrees, for the plant-
pollinator network reported by Burkle et al. (2013). The LMs are encountered following
the procedure explained in section 3.2 and the Appendix B. In particular, the y-axis shows
the xi and yj , that correspond to the change of variables used in Eqs. 3.12-3.13, such that
xi = e−αp and yj = e−βp . The points in light blue correspond to the animals –pollinators–,
and those in dark blue to the plants. Both axis are in logarithmic scale.

this case, it is possible to draw an analogy between the canonical ensemble in the network
world and the ensemble of states of a physical system in thermodynamic equilibrium with
its environment, where the measurable features are thermodynamic properties and one can
constrain, for instance, the energy and/or the number of particles (Jaynes, 1957). In this line
of thought, the LMs we determined would represent the network analogy to the inverse of the
temperature –in the canonical ensemble– and the chemical potential –in the grand-canonical
ensemble–. However, despite the theoretical interest of tracing relations between the two
applications of the maximum entropy formalism, these analogies do not tell us much more
about the specific role of the Lagrange multipliers in the ecological context.

Adopting the viewpoint of network theory instead, we introduced the LMs as the
parameters that permit enforcing the chosen constraints. In the particular case of a bipartite
networks with known degree sequences, we showed above that the relation between the
degree of a plant vp and the LMs is:

vP =
NA∑
a=1

e−αpe−βa

1 + e−αpe−βa
, (3.48)

where, keeping the same notation as in section 3.2, αp represents the Lagrange multiplier
of plant p and βa that of animal a. As aforementioned (see Eqs. 3.12- 3.13), we can write an
analogous expression for the degrees of the other guild. Up to now, we have treated these
variables simply as undetermined parameters that have to be fixed in order to fulfill the
conditions above. Indeed, when determined using the maximum-likelihood approach, we
encounter a non-linear relationship between the values of the LMs and the real degrees (see
Fig. 3.11 for an example). Howbeit, one can also ask whether it is possible to identify these
variables with non-topological quantities, i.e., measurable properties of the nodes related to
the intrinsic nature of the empirical system.

As a matter of fact, this has been done both from a theoretical and a empiricist standpoint
using the so-called fitness models. From a theoretical perspective, this approach consists in
assigning a quenched value to each node, such that, as discussed in section 3.2, this quantity
eventually determines the vertex’s probability of interaction with other neighbors, hence
the name ‘fitness’. This type of generative models have been proved useful in reproducing
non-trivial network structures such as scale-free networks Caldarelli et al. (2002). The
empiricist turn consists, in place of extracting fitness values from a more or less ad-hoc

61



3. Nestedness and chance

theoretical distribution, assigning them according to the distribution of a real feature. A
successful example that carries out this idea is the work by Garlaschelli and Loffredo (2004),
where the authors find that the gross domestic product (GDP) of countries can be identified
as the fitness variables determining the topology of the network of commercial interactions
among them, i.e. the World Trade Web (WTW). An even more interesting study, that
moreover finally relates to the central question of this section, is a continuation work in
which Garlaschelli and Loffredo (2008) showed that such fitness values, and thus in turn the
GDP, coincide with the Lagrange multipliers obtained when constructing a canonical null
model for the WTW –that is, by maximizing the probability of occurrence of the real degree
sequence of the WTW in a maximum-entropy ensemble with constrained degree sequences.

Altogether, this suggests that in the present application of the ERG formalism to ecological
mutualistic networks, the LMs are not only a theoretical tool but could convey some relevant
information about the structural construction of the web of interactions. Therefore, following
the spirit of the relationship found by Garlaschelli and Loffredo (2004, 2008), we examined
whether the species’ abundances could be playing the role of the fitness variables. As
aforementioned, the distribution of abundance has been recurrently identified as one of the
significant factors shaping the structure of ecological communities (Vázquez et al., 2009),
particularly modulating the degree of mutualistic generalization (see section 2.3, specially
the discussion on the passive sampling hypothesis).
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Figure 3.12: Relation among the relative abundance and the lagrange multipliers for: a)
plants,b) flowers and c) pollinators. The d) panel shows the detail of plot c). The Lagrange
multipliers are reescaled to the mean. The data correspond to a plant-pollinator network,
collected in the restored site by Kaiser-Bunbury et al. (2009).

In order to address this question, at least preliminary, we analyze two plant-pollinator
networks reported by Kaiser-Bunbury et al. (2009, 2010). Both networks were observed in
Mauritian ecosystems, but one of them corresponds to a recently restored habitat, while
the second one was recorded in a unrestored site. Kaiser et al. also provide the abundances
of species, but while the measures of relative abundance of plants were directly estimated
through a sampling method based on counting individuals – and the flowering density was
estimated similarly–, for pollinators the authors provide an inferred measure, taking as the
total abundance per specie its total number of observed visits.

Our results (Figs. 3.12-3.13) clearly indicate a positive correlation between LMs and
relative abundance for pollinators, but instead we find no correlation for plants species in any
of the possible measures of abundance –i.e. flowers abundance or whole plants abundance.
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Figure 3.13: Relation among the relative abundance and the lagrange multipliers for: a)
plants,b) flowers and c) pollinators. The d) panel shows the detail of plot c). The Lagrange
multipliers are reescaled to the mean. The data correspond to a plant-pollinator network,
collected in the unrestored site –also named control site– by Kaiser-Bunbury et al. (2009).
As can be seen, in comparison to the restored site, here the plant population is dominated
by a superabundant species.

As a matter of fact, the latter result is in accordance with other studies which claim that,
while abundant species tend to be generalists, not all generalists are abundant Fort et al.
(2016). Moreover, considering the observed correlation for pollinators, we can not dismiss
the possibility of it being an artifact of the measuring techniques. 3

On the whole, this suggests that we may be facing a more complex relationship than the
one encountered by (Garlaschelli and Loffredo, 2008) in the context of international trading
and calls for further research. Prospectively, other factors such as phenology or traits could
be taken as well into account in order to be evaluated as candidates for fitness variables that,
hopefully, explain the ecological meaning of the LMs.

3.5 Conclusions and perspectives

Along this chapter we have examined the tight relation between nestedness and chance,
by looking first at how evolution might –or in fact might not– account for the complex
architecture of interactions within ecological communities, and secondly focusing on the
emergence of structural patterns in mutualistic networks.

In particular, by exploiting a powerful randomizing framework based on a maximum
entropy and maximum likelihood ensemble, we have demonstrated that the degree sequences
ultimately determine the observed nestedness and degree disassortativity of real mutualistic
systems. The emergence of these non-trivial features is justified by its highly entropic
character, that is, by the fact that they are the most probable configuration of links given
the condition of softly constraining the degree sequences, in the absence of other forces. As it
has been extensively discussed, such finding has broad implications for the understanding of
the origin and the role of nested patterns in ecological communities. Indeed, it alludes that,

3Indeed, Kaiser-Bunbury et al. sampling method was based on an equal repartition of observational time
among plants, in order to minimize the possible undersampling of rare species. However, this methodology
could easily lead to a biased quantification of pollinators’ abundance, given that generalist animal species
could have a larger probability of being observed.
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despite nested patterns entail a certainly non-trivial organization of mutualistic interactions,
their complexity is not the product of natural selection –as the so-called panselectionists
would assume– but rather the macroscopic consequence of other pertinent structural features,
particularly the degree sequences.

Moreover, the adequacy of this null model to accurately reproduce the observed structure
of real networks suggests the possibility of developing further applications beyond the present
analysis of the significance of nested patterns. For instance, the encountered Lagrange
multipliers can be regarded as fitness variables that not only stand as a methodological tool
to determine the null ensemble, but also may carry some relevant content about the empirical
drivers of the network’s architecture. As aforementioned, though, our results concerning this
topic are still inconclusive and require future investigations. Another, more direct application
of the methods developed along this chapter is the evaluation of other nested metrics, in
order to assess its performance and unveil its dependencies on other network parameters.
This topic is, indeed, the endeavor of the next Chapter.
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CHAPTER 4

Many rulers for one length: how to
quantify nested patterns

Admittedly, as a result of the effort to quantify nestedness, a variety of metrics with their
corresponding nestedness indices coexist in the ecological literature. However, since they are
based on diverse but not necessarily independent properties of the nested networks, how to
compare the degree of nestedness of different ecosystems remains unclear. The situation recalls
the well-known history of the definition of temperature in Thermodynamics. Initially defined
operationally, i.e., by listing the protocol to measure it, the obtained temperature values
suffered from the flaw that they depended on the thermometer used. This problem was solved
by the theoretical definition of the temperature based on the Second Principle of Clausius,
and finally the notion of temperature was completely understood by the microscopic approach
of Statistical Physics introduced by Boltzmann and Gibbs. Interestingly, the first metrics
of nestedness defined by Atmar and Patterson (1993) was called temperature. This initial
proposal was followed by a long struggle to find the best index to measure nestedness, with
the development of various approaches ranging from algorithmic procedures to analytical
methods. In this chapter I address the question of how to quantify nested patterns by
focusing on the comparison between the most relevant of such metrics and their philosophy,
performance and details.

As a matter of fact, the metrics defined to quantify nestedness suffer from a critical
drawback: as they are strongly dependent on different network parameters like size, fill, etc,
the comparison among ecosystems is difficult, even in the case where the same metrics (the
same thermometer) is used to measure all the systems. These problems have been reported by
several authors, notably on the occasion of the introduction of each new index and/or package
devoted to correct some of the shortcomings of previously existing ones (Rodríguez-Gironés
and Santamaría, 2006; Almeida-Neto et al., 2008; Dormann et al., 2009; Burgos et al., 2009;
Galeano et al., 2009). Still, these works mainly focus on the dependence on the size and the
density of links of the network of a few metrics, leaving aside other important nestedness
indices as well as the interdependencies among network parameters.

In order to overcome the aforementioned difficulties when measuring and comparing the
nestedness of different networks, the standard procedure is to contrast the nestedness value
of a given real network with that of a null model (see section 3.2), both calculated using
the same metrics. However, while the majority of nestedness metrics have been tested for
algorithmically-based null models (Ulrich and Gotelli, 2007; Almeida-Neto et al., 2008), their
behavior in maximum-entropy ensembles is still largely unexplored.

In this chapter, we focus on the problem of measuring nestedness by presenting a
comparative study of the behavior of the six nestedness metrics reviewed in section 2.4, most
of which are commonly included in popular packages and cited in the literature. Our purpose
is two-fold: first, we aim to test the performance of these metrics under the maximum-entropy
null model explained in Chapter 3 and recently used in Payrató-Borràs et al. (2019), and
secondly, we intend to critically assess the functioning of each metrics by analyzing its
dependencies with network parameters. By doing this we mean to, first, fill a gap in the
literature concerning null models, and second, to provide a practical guide of the advantages
and disadvantages of each nestedness metrics.
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This chapter is structured as follows. The first section is devoted to introducing a
normalized version of the spectral radius. Secondly, I measure the nestedness in the ensemble
built for each of the real networks according to each of the metrics and I compare the results
with the corresponding nestedness value of the observed network. In the subsequent section,
I perform various statistical analyses to determine the relation of each metrics with network
properties, like size, fill, degree degeneracy, etc. Next, I discuss the implications of these
findings for the performance of each metrics; and I finish the chapter with some general
remarks and conclusions on how to choose a nestedness metrics.

4.1 Normalizing the spectral radius

As discussed in section 2.4, the spectral radius is a recently proposed nestedness metrics that
exploits the spectral properties of nested graphs (Staniczenko et al., 2013), characterized
by being independent of the ordering of the graph and fast to calculate. Nonetheless, an
important drawback of the spectral radius is that it is not normalized. Remarkably, the
theorem on which it is based (Bell et al., 2008) requires the size of the matrix and the number
of links to be fixed, a condition that should be considered in order to set a benchmark
against which to rescale the final measure. Although the FF null model respects the required
hypothesis, we already discussed that it leads to a poor statistics due to the relatively
few number of networks matching these constraints in finite and small systems. For these
reasons, we propose to normalize the spectral radius obtained for each system with that
of the perfectly nestedness matrix having the same size and fill, as was already suggested
by Staniczenko et al. (2013). That is, if ρ represents the spectral radius of a real network
and ρmax the spectral radius of a perfectly nested graph with the same size and fill, the
normalized index ρnorm is given by the expression:

ρnorm = 100 ρ

ρmax
(4.1)

In order to calculate the normalized version of this metrics, we need an estimation of the
largest spectral radius of a perfectly nested network of the same size and fill. To estimate
each of these values, for each real network in our dataset we produced 100 new networks,
characterized by being perfectly nested. These networks were generated using the SNM
algorithm introduced by Burgos et al. (2007), which preserves the number of connected nodes
and links, but modifies the pattern of connections and the degree sequences. This algorithm
is divided into two procedures. First, the real network is randomized preserving only the fill
and the size –that this, ensuring that every node has at least one connection. Second, the
SNM algorithm is performed, which consist of iterating the following rules:

• We attempt to modify a link by proposing a new partner, randomly selected but
different to the original node. The rewiring is susceptible of being accepted only if the
new partner has a larger degree than the previous one. This step performs a static
version of preferential-attachment.

• If the proposed reconnection leaves one of the nodes with zero degree, the move is
discarded. This ensures that the number of connected nodes does not change, thus
preserving the network size.

By iterating over these steps i and ii, one generates a new matrix which is more nested as
well as more heterogeneous in its degree sequences than the original one (see Fig. 3.10). The
iteration stops when no more moves are allowed. However, given condition ii, this process is
not unique and might end up in multiple perfectly nested configurations. To handle this, we
generated several optimal configurations per each real network. Specifically, we generated
100 new networks for each empirical network, and exceptionally, for computational reasons,
50 networks for the very large Robertson network. This means that the normalized spectral
radius is actually calculated as:

ρnorm = 100 ρ∑Nperf
i

ρperfect,i

Nperf

, (4.2)
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where ρ is the spectral radius of the real network and ρperfect,i represents an optimal
configuration with the same size and fill of the real network, produced by the SNM algorithm.
Nperf corresponds to the number of perfectly nested generated, that in general we set to 100.

When sampling the ensemble, we generated 10 perfectly nested networks per each null
network (Nperf = 10), and in order to keep the calculations computationally feasible we
reduced the sampling size to 500 null networks (Nsamp = 500).

Accordingly, the average normalized spectral radius is calculated as:

〈ρnorm〉 = 100
Nsamp∑
j

ρnull,j

Nsamp
∑Nperf
i

ρperfect,i,j

Nperf

, (4.3)

where ρnull,j represents a null network sampled from the statistical ensemble and ρperfect,i,j
represents a perfect configuration produced with the SNM algorithm, having the same size
and fill as the corresponding null network.

In the next sections, we study both versions of this metrics: the unnormalized original
one along with the normalized modification given by Eq. 4.1.

4.2 Metrics’ behavior in the canonical ensemble

To start with, we have measured the nestedness of 191 empirical ecological networks extracted
from the Web of Life as well as 8 economic networks which represent the trading interactions
between the buyers and the sellers of two different fish markets studied by Hernández et al.
(2018) (see Appendix A for a detailed account of the dataset). In order to compare the
average nestedness over the ensemble with that corresponding to empirical networks, we have
used the six metrics described in the section 2.4 plus two variations, namely: the Temperature,
the nestedness metrics based on the Manhattan distance (NMD), the NODF and its recent
variant the stable NODF, the discrepancy, the nestedness index based on robustness (NIR),
and finally the spectral radius and the above introduced normalized modification.

As it has been shown analytically and numerically in the previous chapter, the nested
structure of mutualistic networks is a consequence of the double heterogeneity in the degree
sequence which results from entropic effects. In order to investigate if the other nestedness
indices are able to reveal this dependence, we built a null model for each real network –as
explained in section 3.2 and Appendix B– and we compared the nestedness of real networks
with their corresponding average over the ensemble. In particular, for each real network in
our dataset, we sampled 104 null networks with the obtained probability interaction matrix
of Eq. 3.17. Across the same sample, each of these null matrices may vary in its size (number
of connected nodes), density of links, degree sequence, redundancy of degrees or bipartite
matrix eccentricity. Nevertheless, the degree sequences are maintained, on average, equal to
the empirical ones.

Next, for each of the studied metrics, the average value of nestedness over the randomized
ensemble has been obtained by numerically calculating each metrics over the sampled networks
and then constructing the total estimated distribution. The details of the implementation of
these measures are given in the Appendix F. For the sake of clarity and to homogenize the
reading of the diverse figures, I have transformed the definition of the temperature, the NMD
and the discrepancy indices so that the larger the index the more nested the system is. We
have also rescaled these indices so that they vary between 0 and 100. These modifications
read as follows:

T = 100− TAP , (4.4)
NMD = 100 (1− τ) , (4.5)

∆′ = 100
(

1− ∆
E

)
. (4.6)

(4.7)

where T is the temperature, NMD the nestedness metrics based on the Manhattan
distance, ∆ is the discrepancy index, and E the total number of edges in the network.
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The Fig. 4.1 shows the nestedness measured over the ensemble versus the nestedness of the
corresponding real network. Consistently with the results obtained in the previous chapter
using NODF and the spectral radius, NIR and NMD also show that the nestedness values
of the empirical networks are statistically equivalent to the average of the corresponding
randomized ensemble. This leads to the conclusion that the observed nestedness measured
by these indices is not significant. On the contrary, the discrepancy and temperature indices
show a clear bias, with an important fraction of the real networks being less nested than the
random average.

4.3 Influence of network features

The results presented in Fig. 4.1 reveal that the metrics studied behave in different ways
under the same null model, showing distinct levels of fluctuations and sometimes a systematic
bias, as it is the case for the discrepancy and temperature indices. This finding suggests
that the different algorithms implemented by each metrics may eventually translate into
non-equivalent nestedness measures. We explore further this situation in Fig. 4.2, where
we compare the values of nestedness obtained for a group of mutualistic networks when
measured using each of the metrics. As it can be observed, for the same dataset not only the
value of nestedness itself but also the ranking of the networks according to their degree of
nestedness is strongly metrics’ dependent.

Ideally, as it has been recalled by several authors (Staniczenko et al., 2013; Ulrich et al.,
2009; Almeida-Neto et al., 2008), a well-behaved nestedness metrics ought to be independent
of the particular network parameters and, furthermore, rank the degree of nestedness of
a given set of networks universally. The results discussed above put in evidence that the
second condition is not always true. Regarding the first requirement, we next explore more
carefully how the nestedness values given by each metrics depend on the network parameters.
In particular, since the networks of the dataset cover a wide range of parameter values (see
Fig. 4.2 for an example), we analyze the effects of three characteristic network properties:
size, density of links and eccentricity. These quantities are defined as follows:

size ≡ s = n+m, (4.8)

density of links ≡ φ = E

n+m
, (4.9)

eccentricity ≡ ε =
∣∣∣∣n−mn+m

∣∣∣∣ , (4.10)

(4.11)

where, as before, n and m are, respectively, the number of rows and columns of the
bi-adjacency matrix, while E is the total number of links. The eccentricity quantifies the
difference between the number of nodes of the two guilds, or in other words, the deviation
from a square-shaped bi-adjacency matrix. Indeed, ε = 0 for a square matrix and ε→ 1 when
one of the guilds is much larger than the other. Interestingly, most of the large ecological
networks observed show more columns (animal species) than rows (plant species), with a
frequent ratio of 1 to 3. This observation, though, cannot be generalized to all mutualistic
networks, specially to small networks (which can be much more eccentric) or to non ecological
systems.

Additionally, we study the dependence of nestedness on a fourth parameter, the degree
degeneracy. In particular, a perfect nested matrix with an arbitrary φ might have several
species of each guild with the same degree. We measure this quantity as:

degeneracy in degrees ≡ g = number of species with the same degree
n+m

. (4.12)

The study of this parameter remains a special case, since the known connection between
the nested patterns and the degree sequences entails that a certain dependency with the
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Figure 4.1: Significance of the nestedness of real networks. The figure shows the
empirical measure of nestedness against the average value of nestedness in the generated
statistical ensemble for the 199 empirical networks in our dataset. The different panels
correspond to different metrics: (a) temperature, (b) NMD, (c) NODF, (d) stable-NODF, (e)
discrepancy, (f) NIR, (g) spectral radius and (h) normalized spectral radius. The shadowed
areas represent one (salmon color) and two (light gray) standard deviations of the mean.
The black line depicts the identity curve. Triangle symbols stand for small networks (less
than 50 nodes), circles for medium size networks (more than 50 nodes and less than 410)
and squares for large networks (more than 410 nodes). Ecological networks are colored in
blue, economic networks in red.

degree degeneracy is in fact expected. All in all, we analyze its influence given that each

69



4. Many rulers for one length: how to quantify nested patterns
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Figure 4.2: Comparison among nestedness indices. The histogram on the top of the
figure shows how eight different metrics measure the nestedness of several different networks.
Each network, indexed I to X, is represented in the bottom of the figure by its bi-adjacency
matrix ordered by decreasing degree, with the interactions among species represented by
black pixels. All networks represent plant-pollinator mutualistic communities extracted from
the Web of life dataset Bascompte Lab (Bascompte Lab). Each network is labeled with the
name of the first author of the corresponding reference, followed within brackets by, first, its
total number of species (number of plants plus number of animals), and second, its density
of links.

metrics deals with degree degeneracy in a different way.
In order to quantify the dependencies discussed above we have performed a two-fold

analysis. First, we have calculated the Spearman’s rank correlation between the nestedness
index given by each metrics and the different network parameters. This coefficient allows
to assess the relation between both variables without assuming a linear behavior. Fig. 4.3a
summarizes the result of the analysis, showing the Spearman coefficient along with its
statistical significance for all pairs of nestedness values and network parameters (see the
Appendix F for the details on the numerical calculation). Secondly, I have performed a
multi-linear regression. In particular, I have taken the nestedness values obtained by each
metrics as the dependent variable while the network parameters behave as the explanatory
variables. Importantly, in this second analysis we do not consider the effect of the degree
degeneracy, since we are mainly interested on the dependence on parameters that should
not, in principle, determine nestedness. The linear function we have fitted has the following
standard form:

νj = β0,j + β1,js + β2,jφ + β3,jε + ε , (4.13)

where νj , j = 1, ..., 8 represents the nestedness metrics indexed by j, β0,j is the intercept
and βi,j , i = 1, .., 3 are the partial regression coefficients. The ε represents an error term.
This sort of regression informs on the effect of a single network parameter when the rest of
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parameters are kept fixed. Such consideration is specially important given that, in natural
systems, networks’ properties are often correlated (for instance, larger networks tend to be
less dense) and therefore bi-variate regressions may misleadingly quantify the influence of a
certain property due to the uncontrolled coupled influence of another one. On the other hand,
our model assumes a linear relation among the variables which might not always be accurate.
Fig. 4.3b shows the results of the regression for each nestedness metrics, in particular, the
significance of the partial coefficients corresponding to the different network parameters as
well as the value of the adjusted coefficient of multiple determination (see the Appendix F
for more details).
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Figure 4.3: Dependency of nestedness metrics on network parameters. The left
panel, a), shows the Spearman correlation factor between the networks parameters (columns)
and the eight nestedness metrics under study (rows). The numbers represent the value of
the Spearman rank coefficient for each corresponding pair of nestedness value and network
parameter. Only those coefficients that are statistically significant (p-value < 0.01) are
highlighted by a colored circle, being the size and the color of the circle proportional to the
coefficient. The right panel, b), summarizes the results of the multi-linear fit detailed in
Eq. 4.13. Each row corresponds to a different nestedness metrics. The first column from
the right shows the adjusted coefficient of multiple determination (adjusted R2). The other
three columns show the t-ratio of the regression coefficient corresponding to each explanatory
variable (as labelled by the column name). Only those coefficients that are statistically
significant (p-value < 0.01) are highlighted by a colored circle, being the size and the color
of the circle proportional to its t-ratio.

Once we have quantified the dependencies of the various nestedness metrics on different
network parameters, we next explore whether we can explain the deviations with respect to
the null model observed in Fig. 4.1. In particular, we perform a multi-linear fit of the type
detailed in Eq. 4.13, where we replace the nestedness values by the z-scores obtained for each
metrics when applying the null model discussed in sections 3.2 and 4.2. Such z-scores are
calculated as follows:

z-scorej = νj − 〈νj〉
σj

, (4.14)

where νj represents, as before, the real values obtained with a nestedness metrics indexed
by j, 〈νj〉 represents the average nestedness value calculated with metrics j over the null
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ensemble and σj represents the standard deviation of the distribution of nestedness in the
ensemble for the same metrics. By fitting a linear function analogous to Eq. 4.13 we obtained,
thus, the partial coefficients which account for the contribution of each network parameter
to the corresponding z-scores. A summary of these results can be found in Fig. 4.4.
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Figure 4.4: Dependency of z-scores on network parameters. The figure summarizes
the results of a multi-linear regression between the z-scores values corresponding to each
nestednes metrics and network properties. Each row corresponds to the z-scores obtained
by applying to each metrics the null model discussed in section 3.2. The first column from
the right shows the adjusted coefficient of multiple determination (adjusted R2). The other
three columns show the t-ratio of the regression coefficient corresponding to each explanatory
variable (as labelled by the column name). Only those coefficients that are statistically
significant (p-value < 0.01) are highlighted by a colored circle, being the size and the color
of the circle proportional to the t-ratio.

4.4 Critical analysis of each metrics

In the previous section, we have quantified the influence of several network properties on
various nestedness metrics, taking into account how each metrics measures the nestedness of
empirical networks as well as how they compare to the null model of section 3.2. With this
information at hand, we now proceed to critically evaluate the performance of each metrics
by discussing and framing the observed dependencies in a general context .

Temperature

Despite its popularity, this metrics was already known to have several flaws (Almeida-Neto
et al., 2008) and various authors have outlined the presence of ambiguous steps in its
calculation (Rodríguez-Gironés and Santamaría, 2006; Mariani et al., 2019). Indeed, Almeida-
Neto et al. (2008) called up on its dependency on the density of contacts, φ, and on the size
of the matrix. We confirmed these dependencies since our statistical analysis shows that real
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values correlate positively with size and negatively with the density of links (see Fig. 4.3).
Interestingly enough, the temperature is as well the only metrics to show a significant positive
correlation with the degree degeneracy, while the rest of metrics penalize the repetition of
degrees.

Moreover, when tested against the null model, the temperature exhibits a clear bias
(see Fig. 4.1). In fact, the average nestedness in the ensemble is systematically larger than
the real observations. The multilinear regression performed using the z-scores shows that
they correlate significantly with the size, the density of links and the matrix eccentricity.
As shown in Fig. 4.1, the bias of this metrics shows a negative z-score value, therefore its
modulus (which gives the relative distance to the identity curve) increases when the size
of the network is smaller, less dense and more eccentric. Given that mutualistic ecological
networks usually present low density and a pronounced eccentricity, these conclusions point
out that the temperature metrics should be applied, if at all used, with care in the ecological
context.

NMD

Our analysis of the nestedness metrics based on the Manhattan distance shows that it
correlates positively with size and negatively with the degree degeneracy. Interestingly,
the deviations with respect to the null model are sensibly smaller than in the temperature
metrics, though a slight but systematic positive deviation still appears leading again to a
negative z-score. The multilinear regression indicates that the z-scores are mainly explained
by the density of links, which have a positive influence meaning that denser networks fall
closer to their null expectation.

Overall, the NMD metrics exhibits notably less dependencies than its close metrics
temperature, which with the NMD shares a common spirit given that both metrics measure
somehow the distance of unexpected interactions. This dissimilarity is probably due to the
different normalization of the NMD given in Eq. 2.5. On the other hand, such normalization
is dependent on the null model used (Corso et al., 2008), and hence the metrics is inevitably
subject to the same limitations (see the Appendix F for more details on the implementation
of NMD, in our case using the FF null model).

NODF and stable NODF

In the work in which the NODF metrics was firstly proposed, Almeida-Neto et al. (2008)
found a positive dependency with the matrix fill. In our analysis, we recover this result
and observe as well a negative correlation with the network size (see Fig. 4.3a) which is
nonetheless a veiled consequence of the variation in the density of links, as can be understood
after performing the multilinear regression (see Fig. 4.3b). Furthermore, this nestedness index
exhibits a good agreement with the null prediction, as was already found in the previous
chapter. The differences with the null model, quantified by the z-score, are explained mainly
by the size and the eccentricity. As expected from a statistical point of view, the small and
eccentric networks show the largest difference with the null expectation.

Although the NODF metrics is nowadays extensively used, some authors have raised a few
concerns about its adequacy. In particular, Staniczenko et al. (2013) criticized the decreasing
fill factor in its definition, which penalizes degree degeneracy. Indeed, we do observe a strong
negative correlation with degree degeneracy for NODF in Fig. 4.3a. As a solution, Mariani
et al. (2019) proposed an alternative version of the metrics called stable-NODF, which
does not incorporate this decreasing fill. Our analysis determines that dependencies of both
versions of the metrics are very similar: on the one hand, the stable-NODF does moderate the
correlations exhibited by NODF both on degree degeneracy and density of links, but on the
other hand, the correlations of the z-scores with the size and eccentricity are strengthened.

Discrepancy

The discrepancy index shows a significant dependency on the size and the density of links,
being the latter parameter the dominant one as it can be seen from the multilinear regression
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(see Fig. 4.3). These dependencies had been noted already (Almeida-Neto et al., 2008).
Interestingly, these findings are very similar to the correlations observed for NODF and
stable-NODF, despite the fact that the metrics are based on distinct strategies for measuring
nestedness.

On the other hand, the test against the null model reveals that for an important fraction
of networks the real value of nestedness is smaller than the average in the ensemble, resulting
in a systematic deviation a with negative z-score. This shift is very well explained by the
regression of the z-scores summarized in Fig. 4.4, where it can be observed that the three
network parameters studied correlate significantly with the z-scores. Indeed, the larger, less
dense and more eccentric the network, the more distance there is between the null expectation
of nestedness and the empirical value.

NIR

The nestedness index based on network robustness exhibits no dependencies on the network
parameters. Indeed, our statistical analysis reveals no significant correlation with any of the
studied properties (see Fig.4.3). This suggests that, despite not being particularly popular,
the NIR metrics is a reliable option for measuring nestedness. At the same time, the analysis
done using the null model indicates that the nestedness value of smaller and denser networks
tends to fall further apart from their null expectation. Indeed, this is a consequence of its
definition, which relies on the difference between the areas of the ATCs obtained by the DDR
and IDR node removal strategies. As the curvature of the former reproduces the shape of the
IPN, it becomes less convex as the density increases, leading to a loss of sensitivity of this
index. Therefore, this metrics is well adapted for ecological networks that usually show low
densities, but less suited for other bipartite networks, like the aggregated market networks.

Spectral radius

Among the metrics described, the spectral radius shows a significant dependency on both the
size and the density of links, specially the former one. Indeed, larger and denser networks
tend to have a larger spectral radius. This is a consequence of the lack of normalization, as
mentioned above. However, the spectral radius shows a remarkable agreement between the
average over the ensemble and the value of the corresponding real network, along with a
very low dispersion. Nonetheless, the z-scores correlate significantly well with the density of
links, being the most denser networks the ones that exhibit a larger discrepancy with the
null model.

In order to hinder the strong dependency on the network size, we evaluate as well a
normalized version of the spectral radius. In particular, we weight the nestedness of each
network with respect to the maximally ordered matrix with the same parameters as explained
in the Methods section. Taking into account this normalization, it is now possible to compare
the degree of nestedness of networks of different sizes, and to study how different network
parameters affect the nestedness index. We find that this normalized version of the spectral
radius correlates positively with the density of links, and negatively with the size and the
eccentricity of the matrix. Notably, these dependencies are analogous to the ones shown by
the NODF, stable NODF and discrepancy indexes. At the same time, the analysis against
the null model reveals a slight deviation towards a larger value of the average in the random
ensemble with respect to the empirical value. This deviation is stronger for larger, less dense
and more eccentric networks.

Besides the mentioned dependencies, when using the spectral radius, it is essential to
consider its underlying basis for measuring nestedness. As we pointed out in the introduction,
the relation between the spectral radius and the degree of nestedness is not strictly monotonic,
but only holds on statistical terms. This hampers its usefulness to rank networks according
to their nestedness.
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4.5 Conclusions: how to choose a metric?

In this chapter I have addressed the question of how quantify nested patterns, taking into
account the large variety of metrics available in the literature. Indeed, although it has
recently been shown that nestedness is not an emergent irreducible property of the network,
it still remains an interesting quantity to measure, as it constitutes a global property that
informs on the heterogeneity of the degree distributions of the guilds. This is particularly
relevant for ecological networks because of their typical, rather small sizes preclude a correct
fit to a fat tail distribution, like a power law, on the available data. Because of the interest
in ecology for this property, different definitions of nestedness coexist in the literature. These
metrics usually quantify some property of the network following a precise protocol, leading
to operational definitions. Moreover, several of these metrics are integrated into packages
widely used by network ecologists to assess the nestedness values of different networks. This
lack of a unique definition generates confusion when it comes to the comparison between the
nestedness values of different networks.

In this chapter, I have performed a systematic comparative study of the performances
of six different metrics and the variants of two of them, addressing their dependency on
various network parameters. Based on a large database of real systems, our results clearly
put in evidence that the different metrics show diverse dependencies on size, density of
contacts, eccentricity and degree degeneracy. Therefore, if the same group of networks
is ranked according to their nestedness, the outcome will depend on the metrics used.
Understanding these dependencies for each metrics has helped us to explain, as well, the
systematic shifts between the real values of nestedness and the average over a null model
based on a maximum-entropy, maximum-likelihood ensemble.

Altogether, our results point out that the NIR index is, by far, the most independent
metrics with respect to the considered network parameters, although it suffers from a lack of
sensitivity when the density of contacts is high. Moreover, the NODF, the stable NODF, the
discrepancy and the normalized spectral radius all show very similar dependencies, that is: a
positive correlation with the density of links and, for the latter two, a negative correlation
with the size. While a dependency with the size is undesired and ought not to appear when
using a proper normalization, some authors have claimed that a positive correlation between
nestedness and fill is in fact expected (Almeida-Neto et al., 2008).

From a methodological perspective, this analysis could providing a useful guide addressed
at practitioners that compiles the different characteristics, advantages and drawbacks of the
most popular nestedness metrics. Moreover, it complements the theoretical results discussed
in the previous chapter by extending the use of maximum-entropy-based null models to a
large set of metrics. Finally, this study is accompanied by a repository called that allows to
calculate all the nestedness indicators studied, generate the null ensemble for any network,
as well as a database with the already calculated probabilities allowing to generate the null
models for the 199 networks studied here (see Appendix G).
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CHAPTER 5

Beyond the aggregated paradigm

This chapter inaugurates the second part of the thesis, along which we will continue looking
at mutualistic networks yet from a fairly different perspective. Indeed, while in the previous
part we were occupied disentangling the existence of redundant patterns in empirical systems,
here we will try to bring our attention to a very diverse, almost opposite -in terms of the
general spirit- task. In particular, we will attempt to understand how by neglecting the
temporal dimension of real mutualistic communities, that is, by working with the aggregated
version of the interaction networks, we can loose relevant insight into the organization and
functioning of natural ecosystems. In this sense, we will try to incorporate into the network
formalism the information about empirical phenology, namely the biological activity cycles of
species that, to a certain extent, constrain and articulate how ecological relationships occur
among individuals.

This endeavor is certainly not entirely new (Olesen et al., 2008; Encinas-Viso et al., 2012;
Sajjad et al., 2017; Ramos-Jiliberto et al., 2018; Chacoff et al., 2018) and, in fact, during the
recent years the need of moving towards a more realistic depiction of ecological communities
has been stressed more than once (Ings et al., 2009; Heleno et al., 2014). All in all, aggregated
networks are still paradigmatically used in the characterization of the structure and dynamics
of mutualistic systems. Along the following sections we will address this issue by examining
the effects on the perceived network architecture of taking into account -at least partly-
the temporal dimension of mutualism, while the next chapter will be devoted instead to
exploring its implications for species persistence by using dynamical population models.

Accordingly, the present chapter is organized as follows: we will start introducing some
basic notions on phenology; next, we will characterize two real datasets and how their
networks of interactions vary along the season; and, in the third place, we will propose a
set of synthetic models for phenology that permit assessing and contrasting the effect of
temporal variability beyond the scarce number of open datasets.

5.1 A short tale on phenology

From cherry blossom to digital cameras

The bloom of flowers in spring, the arrival of the first migratory birds or the shedding of
leaves at fall are all simple yet beautiful examples of phenological events that undeniably
shape, since ancient ages, our perception and narration of time, specially the passage of
the seasons. Our language and culture is full of references to this sort of phenomenon and
their timing, from words like ‘late bloomer’ to Aristotle’s famous phrase ‘one swallow does
not make a summer ’. Naturally, hence, we can find as well remarkably old instances of
documented phenological patterns, not only related to agricultural needs –as was the case for
the first empirical ecological networks described in Chapter 1– but also in cases in which their
timing marked the date of religious or traditional festivities. A fascinating illustration is the
viewing of cherry blossom in Japan, known as hanami, a celebration that started in the eight
century as an elitist ceremony and gradually became a general festivity. Nowadays, it is so
popular that the cherry blossom is nightly forecast in Japan and the advance of the front of
blossom across the country -the so-called sakura zensen- is keenly followed (see Fig. 5.1). As
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a result, it is possible to find extensive datasets on the phenology of various species of cherry
tree along the years –mainly the Prunus serrulata-, comprising more than seven centuries of
blossoming information (Aono and Kazui, 2008). In fact, this kind of sequential data have
been used to reconstruct springtime temperatures of undocumented old periods. Similarly,
analogous studies have been carried using alternative species’ phenology around the globe,
such as the grape plant to produce wine in France (Chuine et al., 2004).

Figure 5.1: In a), picture called Asukayama hanami no zu (Cherry-blossom viewing at Asuka
hill) by Utagawa Hiroshige, dated about 1831. In b), forecasting of the dates of blossoming
across Japan in 2007. The numbers represent the month and day of the blossoming, being
the darker areas the ones where blossoming is expected earlier. Source: Wikimedia commons.

While these datasets were constructed by relying, basically, on visual and small-scale
observations, during the last decades technological advances have permitted a multiplication
and diversification of the means to measure phenology of both plants and animals. Such
methodology ranges from citizen science projects where participants format and share
individual observations of phenology in their local area (Havens and Henderson, 2013), to
the use of sophisticated remote sensing tools based on satellite data (Zhang et al., 2003).
A particularly ingenious case among these novel approaches is the work by Graham et al.
(2010), in which they process the images recorded by public cameras connected to the Internet
-primary related to traffic surveillance or national parks- to gather information on vegetation
phenology across North-America, exploiting a free source of glances of trees and plants
unintendedly caught by the cameras. Nurtured by these methodological advances as well
as spurred by the investigations on how climate change influences phenology (Memmott
et al., 2007; Hegland et al., 2009) –a topic that we will discuss in some more in detail in the
next chapter–, nowadays we face an undeniable increase in the quantity and the quality of
documented phenology.

Paradoxically, though, this copious amount of phenological data comes at little help, at
least directly, when trying to better understand mutualism along time. This is due to the
fact that public empirical data on both the network of interactions and the timing of their
mutualistic activity is, to put it mildly, scarce. Consequently, previous studies examining the
effect of phenology on mutualistic communities either focus on a very reduced number of
highly-resolved networks (Olesen et al., 2008; CaraDonna et al., 2017; Ramos-Jiliberto et al.,
2018), either they succeed in keeping the big numbers of phenological data at the expense
of roughly approximating the patterns of mutualistic relationships –that is, by neglecting
the real complex networks of interactions (Duchenne et al., 2020). A third approach, yet, to
address the lack of data, is to explore instead synthetic models either for phenology or for the
network of interactions (Kallimanis et al., 2009; Encinas-Viso et al., 2012). In what follows,
these limitations will condition us as well. But before jumping into that, let us summarize
the main characteristics of the phenology of plant-pollinator communities.
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Ecological and evolutionary determinants of phenology

Although phenology certainly plays a part in different types of ecological mutualism, in this
thesis we will focus on its implications for plant-pollinators communities, both because it is
a paradigmatic example in which seasonality is strongly marked and also because, despite
the aforementioned data limitations, the phenology of plants and pollinators is in general
better documented than that of other mutualistic species (Rafferty et al., 2015).

The study of the phenology involves all temporal aspects of species’ life cycle, regarding
on the one hand the timing of their various stadiums of development, i.e. egg/seed, larvae,
adult, etc; and on the other hand the onset and duration of different biological processes
such as flowering, germination, pollination, leave falling, etc. Such timing is determined by
a myriad of factors, similarly to what occurs with mutualistic interactions as described in
section 2.3. Indeed, both biotic and abiotic forces shape the phenology of species, which, in
addition, is thought to be subject to evolutionary change (Rathcke and Lacey, 1985; Forrest
and Miller-Rushing, 2010). To complicate things further, several sources of intra-species
phenological variability occur simultaneously: inter-annual (Olesen et al., 2008; Cirtwill
et al., 2018) –that is, among different seasons–, geographical (Post et al., 2018) –for the
same species but on diverse sites– and last but no least, individual, i.e. among different
individuals of the same population, even those coexisting on the same site and at the same
season (Forrest and Miller-Rushing, 2010).

All in all, from a statistical viewpoint a few general patterns have been identified that,
hopefully, will permit us gain further insight into the general rules governing phenology.
In particular, we will focus on two fundamental phenological quantities of plant-pollinator
systems: first, we will look at the starting dates, that is, the time at which the flowering –in
the case of plants– or the pollination –for animals– begins, and secondly we will consider the
so-called periods, that is, the length or duration of this active state, during which mutualistic
interactions are, on paper at least, possible. Of course, this selection of phenological indicators
is far from being exhaustive, and other works have modeled the different stages of plants and
pollinators in more realistic detail (Ramos-Jiliberto et al., 2018). Instead, in our approach we
will approximate this complex landscape of temporal variability by focusing only on the adult
phase of the species, and moreover, reducing the whole possible set of biological processes
and stadiums to a couple of states: active, namely when the species could potentially hold a
mutualistic relationship –i.e. pollinate or be pollinated–, or inactive. In Fig. 5.2 we depict
this schematic representation for an hypothetical plant and its pollinator. Indeed, this sort
of simplification is not novel and other works have adopted analogous approaches (Memmott
et al., 2007; Encinas-Viso et al., 2012; Burkle et al., 2013).

Figure 5.2: Schema of the phenology of a plant and a pollinator, represented by their active
states. Each species is defined by its period and its starting date, called here ts,f for the
flowering plant and ts,p for the pollinator. The section of time during which the two species
overlap and can actually interact is highlighted in grey.

Regarding the periods of activity, in general both plants’ and pollinators’ periods tend
to follow right skewed distributions, with a small number of species exhibiting a long
phenophase while a large number of species are active only during a short time (Bawa et al.,
2003; Kallimanis et al., 2009). Particularly, Kallimanis et al. (2009) examined the statistical
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distribution of period’s lengths in a Mediterranean scrub community observed along four
years by Petanidou et al. (1995), and concluded that the distribution of pollinator’s periods
could be fitted by a decreasing exponential, while plants’ followed a lognormal distribution.
On the other hand, in a plant-pollinator system in the Artic, Olesen et al. (2008) identified
a lognormal shape for both plants and pollinators’ periods, and a normal distribution for
plants in one of the years of their observation.

In what concerns the onset of flowering and pollinating activity, a complementary measure
that is often used are the middle dates. In this sense, evidence suggests that they tend
to be relatively synchronized (Rathcke and Lacey, 1985; Tébar et al., 2004). For example,
both Olesen et al. (2008) and Bawa et al. (2003) observed that most active periods temporally
coexist at a peak, probably due to a similar reaction to a common set of physicochemical
stimuli such as temperature, photo-period, humidity, etc (Rathcke and Lacey, 1985). In
statistical terms, this would correspond to a scenario where the middle dates are relatively
clustered, as modeled for instance by Kallimanis et al. (2009) using a normal distribution. At
the same time, genetic factors seem to play as well an important role in determining the timing
of flowering or pollinating activity, which hence contributes to explain the heterogeneity of
starting dates. On the other hand, it has also been hypothesized that species may spread
along the season in order to minimize competition. Although the evidence supporting this
hypothesis is controversial (Rathcke and Lacey, 1985), some authors have proposed that
such minimization could still occur within a temporal range determined by genetic and
environmental constraints (Kochmer and Handel, 1986).

In conclusion, this short summary illustrates the complexity of the temporal dimension
of plant-pollinators communities. Indeed, temporal variability not only appears at different
scales, from days to decades and from individuals to species, but it is furthermore regulated by
a multiplicity of factors. In the next section, we analyze two empirical datasets of phenology
in order to examine whether the statistical characteristics aforementioned hold, and then
we use them to evaluate how our understanding of mutualistic networks can change when
moving beyond the aggregated paradigm.

5.2 Phenology in a network: characterization of two datasets

In this section we will focus on studying two empirical examples of plant-pollinator systems,
that contain, at the same time, detailed information about their phenology and their web
of mutualistic interactions. In particular, we will analyze the plant-pollinator community
recorded by Burkle et al. (2013) together with the community measured by Kantsa et al.
(2018), which includes two consecutive years of observations and hence two networks. The
specificities regarding each dataset and how we processed them before the analysis can be
found in Appendix A. In what follows, for the sake of convenience we will refer to them
simply as the Burkle dataset and the Kantsa dataset.

With the aim of understanding how the network description changes when we introduce
temporal variability, this section is divided into two parts: first, we will examine the main
characteristics of the empirical phenology under study; secondly, we will monitor how
the structure of the network varies on a daily basis beyond the static description we are
already familiarized with. In detail, we will characterize how it affects both mutualistic and
competitive interactions within the community.

Statistical properties of phenology

We begin by exploring the statistical characteristics of the two phenological datasets. We
will first look into the distribution of periods lengths and compare them with the literature
discussed above. Secondly, we will address the effect of coupling this phenological information
with the network of interactions, which results in a distribution of mutualistic and competitive
overlaps. These analysis will pave the way for, eventually, introducing some synthetic models
to recreate the effects of phenology on the network’s structure at the end of this chapter.
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Distribution of periods

We start by examining the distribution of the duration of the activity of plants and pollinators.
In particular, we fitted a variety of functional forms on the cumulative distributions using
a maximum likelihood estimation. Then, we tested the quality of the fit by performing a
Kolmogorov-Smirnov test by bootstrapping, as explained in detail in Appendix H.1.

Figure 5.3: Empirical distribution of the periods length for plants (right pannel) and
pollinators (left pannel), corresponding to three different real datasets. We show the fitted
beta distribution for the Burkle’s dataset, for both plants and animals. For the Kantsa
dataset, we could fit a lognormal for plants and we fitted a exponential for pollinators. In
Table 5.1 we summarize the significance of each fit. Although we show here the binned
histograms, the parameters of each fitting function were estimated using the unnbined,
discrete empirical distributions.
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In more detail, we tested three different functional forms: lognormal, exponential and
the beta function. As aforementioned, the first two distribution types have been claimed to
correctly describe some empirical observations, while we introduce the latter as a generic
fitting. The results of the p-value for the KS-test are reported in Table 5.1, where we
highlighted in bold the good-quality fits. As can be seen in Fig. 5.3, the two datasets exhibit
very different shapes: the Burkle dataset is better fitted by the beta function, while in
the Kantsa dataset we could fit a lognormal to the distribution of plants’ periods but we
found no unique fit for the pollinators. In general terms, the distribution of periods of the
Burkle dataset is less heterogeneous, while the Kantsa distributions are clearly righter-skewed.
This is specially notorious for the periods of the pollinators, among which we find a large
proportion of species with very short period -one or two days- as can be seen in Fig. 5.3.
This particularity is what makes this case specially difficult to fit, although its plot suggests
a exponential shape.

Dataset Lognormal fit Exponential fit Beta function fit
Plants Pollinators Plants Pollinators Plants Pollinators

Burkle 0.021 0.018 0.001 0.001 0.63 0.18
Kantsa 1st year 0.67 0.014 0.029 0.001 0.41 0.001
Kantsa 2nd year 0.50 0.001 0.018 0.001 0.02 0.001

Table 5.1: Results of fitting different functional forms, disentangled into plants and pollinators.
We show the p-value of the fit, and highlight in bold the good quality fits, that is, those which
do not significantly differ from the estimated distribution (p-value > 0.05). The p-values
are obtained by performing a Kolmogorov-Smirnov test between the fitted distribution and
the empirical sample, then comparing it to the corresponding K-S distribution sampled by
bootstrap as explained in Appendix H.1.

Distribution of overlaps

As a matter of fact, the relevance of phenology goes beyond the individual characterization of
species’ traits. Indeed, it regulates as well the ecological interactions within the community,
affecting both their occurrence and intensity. Such relationships involve of course the
different kinds of mutualism we have been considering so far, but also indirect interactions
like competition for shared mutualistic resources (Jones et al., 2012), which naturally emerges
among species of the same kind. The negative effects of these antagonistic interactions
are known to coexist with mutualism, yielding to a trade-off between costs and benefits
as explained in Chapter 1 (Bronstein, 2001). This means that addressing how phenology
impacts antagonistic interactions might be just as important as understanding its effect on
mutualism.

In order to be able to calculate the consequence of temporal variability not only among
mutualistic partners but also among competitors, we need to compute the network of
competitive interactions based on shared resources. We do so following the proposal by Gracia-
Lázaro et al. (2018), namely, projecting the empirical biadjacency matrix of mutualistic
interactions Bi,k into the subspace of intra-guild interactions such that:

if Bi,kBj,k = 1 then plants i and j compete for the pollinating services of animal k,
(5.1)

if Bi,kBj,k = 0 then i and j do not compete for the resources of pollinator k,
(5.2)

which leads to a competitive network between all pairs of plant species i and j.
Analogously, we can define the competitive interactions among two pollinator species k
and l as follows:
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if Bi,kBi,l = 1 then pollinator species k and l compete for the flower resources of plant species i,
(5.3)

if Bi,kBi,l = 0 then k and l do not compete for the resources of plant species i.
(5.4)

This completes the description of the ecological community in the sense that the observed
network of pollinating contacts not only mediates the explicit mutualistic interactions, but
also the implicit, competitive relationships among species of the same guild.

Returning to our main problem, the most straightforward consequence of introducing
phenology into an ecological network is the modification of the amount of temporal coexistence
–the so-called overlap– among species. Indeed, we find a continuum of possible scenarios
ranging from full concurrence to absence of overlap, as shown in Fig. 5.4. These overlaps
concern either two species in the mutualistic case, or three species –two species of the same
kind and the shared resource– when considering competition.

Figure 5.4: Diversity of phenological configurations giving rise to different types of mutualistic
and competitive overlap. The pannels on the left represent the mutualistic overlap between
the pollinator species k and the plant species i, from the viewpoint of the pollinator species k.
In a) there is full mutualistic overlap, in b) there is only partial overlap and in c) there is no
overlap at all. Pannel d) depicts the competitive overlap between three species, particularly
two plants i and j compiting for a shared pollinator species k. In this case the overlap is
referred to the first pollinator species, j. In d) the competitive overlap is full, in e) there is
only partial overlap and in f) there is no overlap at all between the competitors.

Within this framework, we can introduce a set of phenological coefficients {Φ} and {Ω}
to quantify the effect of the phenological overlap on, respectively, the mutualistic and the
competitive interactions. In the particular case of a plant species i interacting mutualistically
with a pollinator k and competitively with another plant j, we define these coefficients as
follows:

ΦPik = τik
τi
, (5.5)
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ΩPijk = τijk
τi
, (5.6)

where, τi stands for the period of flowering of the plant species i, τik represents the temporal
overlap between the plant species i and its pollinator k (see Fig. 5.4 a-c for a graphical
representation), and finally τijk stands for the overlap between plants species i and j and
their pollinator k (see Fig. 5.4 d-g for an example). An analogous set of coefficients can be
drawn for the pollinators.

Note that, as can be seen in Eqs. 5.5-5.6, the overlaps are pondered by the period of
activity of the species –in the example above, the plant i–, which means that each coefficient
is always referred to a certain plant or animal species. This particular normalization implies,
moreover, that the effect of temporal overlap is non-symmetric among the interacting partners.
Although this might not seem very relevant now, we will see its consequences in the next
Chapter when we address the study of the community dynamics.

In order to obtain some insights into the impact of phenology at a network level, we
calculated the distribution of phenological overlaps {Φ} and {Ω} for each dataset. The
results presented in Fig. 5.5 show that the two empirical cases we have at hand exhibit
clearly different shapes. In what follows, we will explore how these quantities can contribute
to changing our perception of the structure of the community along time.

Figure 5.5: Histogram of the phenological coefficients {Φ} and {Ω} defined in Eqs. 5.5-5.6
to account for the mutualistic (in blue) and the competitive (in red) overlap. Each pannel
corresponds to a different dataset, as indicated on the top of the figure.

Disentangling the structure

With this summary about the general characteristics of each dataset at hand, we can now
turn our attention into the aforementioned question: how does the perceived structure of
the network change if we take this empirical information into account? In order to attempt
to answer this problem and depict the temporal variation of the network’s structure, we
construct a discrete temporal sequence of networks, where each element corresponds to a
different ‘snapshot’ of the system, taken at a different moment of the season. In particular,
given that the level of detail of both empirical phenologies is narrowed to days, we construct
a set of daily networks, representing the mutualistic interactions observed among plants and
pollinators on a given date. To do so, we use the empirical information on the starting and
ending dates of activity of plants and pollinators, and remove from the daily network certain
mutualistic links among species whenever they do not coincide in time – i. e., when their
phenological overlap, as defined in Eq. 5.5, is zero. Additionally, we also remove inactive
species as well as active species with zero degree. On the whole, this provides a coarse-grained
description of the community as shown in Fig. 5.6, that, even if it is not a pure temporal
network, it does account to a great extent for the intra-annual temporal variation, moving
beyond the static network formalism.

Using this information, we measure a set of fundamental structural features for the
different networks of the sequence, in particular: the number of active nodes, the number
of active links, and the maximum degree. Fig. 5.7 provides a summary of the evolution of
these properties along time, for each of the empirical networks in our dataset. To begin
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Figure 5.6: Schematic representation of the coarse-grained description of temporal variation.
Each network in grey-scale corresponds to a different day of the season, where certain species
and interactions might be absent. Summing up these interactions produces the aggregated
network, depicted in color, where the information on the turnover of species and interactions
is lost. Despite this aggregation process is indeed quite simple, a pertinent question is
whether the structure and dynamics of the temporal snapshots is comparable to that of the
aggregated network.

with, in both cases the temporal measures are significantly smaller than their aggregated
counterparts, although this was already expected. What is more interesting is that the
evolution of the two datasets exhibit a clearly different behavior over the season: while in the
Burkle dataset the three quantities show a a marked peak approximately at the middle of
the season, in the Kantsa dataset they stay relatively stable around a certain value, showing
an almost flat shape. Moreover, in the Burkle dataset the maximum of the peak represents
around the 75-80% of the aggregated counterpart, whereas in both instances of the Kantsa
dataset this quantity descends to less than 30-40%.

In the bigger picture, there are very few studies which permit assessing the generality
–or rarity– of these observations, although a recent work by Sajjad et al. (2017) examined
the structure of a plant-pollinator system in analogous terms and obtained similar results to
those described for the Burkle dataset. Overall, the remarkable differences among empirical
examples suggest that introducing the phenology into the network formalisms does not yield
to a unique pattern, but instead the resulting patterns are highly system-dependent. Truth
be told, this finding raises more questions than answers, ranging from the reasons beneath
the divergences among the communities to the implications for the stability and robustness
of ecosystems. The inherent difficulty in addressing these issues is aggravated by the lack of
publicly available datasets beyond the few examples we study here. As a result, we devote
the next section to explore a set of synthetic models, constructed using a minimal number
of assumptions, and seeking those that better reproduce the observed characteristics of
empirical systems.

5.3 Going synthetic

The idea of constructing synthetic models that account for unobserved features of the
community, either mutualistic interactions or phenology, has been partly addressed before as
we recalled in section 5.1. Nevertheless, the majority of these previous works incorporate
empirical phenology as a fixed input while focusing, hence, on modeling the ecological
network. An illustrating pair of examples of this approach are the works by Kallimanis et al.
(2009) and Vázquez et al. (2009), in which the authors propose a diverse set of null models to
explore the role of phenology as a possible determinant of the interaction probability among
species.

In this chapter we adopt an almost inverse perspective and consider, instead, the problem of
modeling the undocumented phenology of a system whose network of mutualistic interactions
is known. That is, we place the emphasis on modeling the temporal variability of the system.
As aforementioned, this is a persistent problem given that, despite the existence of large
repositories of real ecological networks, such datasets ordinarily lack the details about the
species’ phenology. Shifting the focus onto modeling the phenology of a given network
permits, therefore, addressing questions that traditionally revolved around the network’s
structure, like the emergence of patterns or their implications for the community dynamics.
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Figure 5.7: Phenological configurations and temporal evolution of three fundamental
structural features. On the top, schema of the temporal arrangement of the periods of
activity of plant species (green) and pollinators (purple) along the season. Below, the
temporal variation of three basic structural parameters, measured on a daily basis: number
of active nodes, active links and maximum degree. Each column corresponds to a different
dataset as indicated on the top of the figure.

Accordingly, here we will propose and explore a group of models designed to generate
synthetic phenological configurations building into different assumptions. The remaining of
the section is organized as follows: first, we describe and discuss the conceptual basis behind
each null model; and secondly, we compare the generated phenology with the real datasets
characterized above, in order to determine which null model better reproduces empirical
examples.

Description of the synthetic models

As explained in section 5.1, we will work with a stylized representation of the temporal
variability, where the phenology of each species is defined by two elements: the starting date
and the period of activity. These two quantities are thus the parameters to be set by the
synthetic model, under the condition that mutualistic partners share a non-zero mutualistic
overlap. This requirement ensures that the mutualistic network is preserved equal to the
observed one, constituting a formalism that focus explicitly on modeling the phenology.

Determining these two groups of phenological parameters is non-trivial given that, as we
reviewed at the beginning of this chapter, the seasonal patterns of species’ activity are driven
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by a multiplicity of factors. However, in what regards the periods, a straightforward solution
could be to extract them from either one of the realistic distributions tested in Table 5.1 (see
for instance the work by Encinas-Viso et al. (2012) for a similar approach), either following
a general, not necessarily realistic function that can serve for hypothesis testing. On the
other hand, the specification of the starting dates under the mentioned constraints is slightly
more challenging, which is why here we will pay special attention to it. Subsequently, we
will assume that the periods are already given, and focus on how the starting dates might be
fixed in order to warrant that mutualistic partners share a certain phenological overlap.

Before entering into further details about the different synthetic models, let us briefly
discuss the particularities and consequences of preserving the network of interactions. As
aforementioned, we will construct a model under the requirement that the phenological
overlap among mutualistic partners is comprised in the range (0, 1], excluding the zero in
order to ensure that the two species still interact. This means that, strictly speaking, we
will only keep the binary mutualistic network. In other words, the general idea consists
in constructing a synthetic phenology that is compatible with the given network treated in
binary terms –as we have been doing until now.

In this line of thought, the constrain that mutualistic partners share non-zero phenological
overlap may be written as an inequality for each species’ starting date. For instance, let us
take a plant i with period pPi and unknown starting date tP0,i, who is interacting with an
animal j with period pAj and an unknown starting date tA0,j . In order to ensure that their
periods overlap, it must be fulfilled that:

tA0,j − pPi + 1 ≤ tP0,i ≤ tA0,j + pAj − 1 , (5.7)

where we have assumed a daily coarse-graining, such that the minimal overlapping unit
is one day. In order to ensure that all interacting species share phenological overlap, we may
write an inequality analog to Eq. 5.7 per each link in the bipartite network. Then, if we take
the starting dates as unknown variables, we can view the problem of constraining the starting
dates as a multivariate system of linear inequalities composed by N unknown variables and
L inequalities (where N and L are respectively the number of nodes and the number of links
of the network). Note that both {tP0 } and {tA0 } are unknown variables, which means that
the system of inequalities is coupled.

Furthermore, in order to ensure that the resulting distribution is realistic, we can introduce
an additional set of constraints. In particular, we impose a lower and upper bound for the
starting dates of activity, which ensures that the community exhibits some seasonality, a
characteristic that has been empirically observed (Rathcke and Lacey, 1985; Kallimanis et al.,
2009). If we represent by l the lower bound and by u the upper bound delimiting the season,
then the condition on the starting date of a general species i can be written as:

l ≤ t0,i ≤ u− pi + 1. (5.8)

Overall, Eqs. 5.7-5.8 represent a coupled system of linear inequalities, where the parameters
to be determined are the starting dates. Although a problem of this kind might not generally
have a feasible solution, in our particular case the existence of some trivial solutions –e.g.
the same starting dates for all species– warrants that the system is consistent.

Within this framework, we present a group of approaches that, under different assumptions,
permit determining the set of synthetic starting dates while fulfilling the conditions in Eqs. 5.7-
5.8. In particular, we explore four possible scenarios, corresponding to different fundamental
hypothesis about the main factor governing the species’ phenology, namely: (i) species’
periods tend to be synchronized, (ii) species seek to organize their activity as to minimize
their intra-guild competition for mutualistic resources, (iii) species periods get maximally
dispersed along the season, (iv) in the absence of further information, the starting dates can
be determined using a minimal model of maximum entropy.

As can be observed, each of these assumptions relies on a single dominant factor. Indeed,
hypothesis (i) and (ii) are rather intuitive and mechanistic, in the sense that they place the
emphasis on environmental and ecological drivers of the phenology. Instead, the scenarios (iii)
and (iv) function as non-mechanistic models based on statistical properties of the distribution
of starting times, regarding either their dispersion or their entropy. Of course, since biotic and
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abiotic forces do not act separately, one could construct a more complex model where various
of these factors operate simultaneously. In this sense, these synthetic models constitute a
first-order approach, which nonetheless, as we will see, yield some interesting results. In
what follows, we define each of these models one by one and describe how we numerically
implemented them.

Synchronized phenology

This model is based on the assumption that the level of synchronization in the community
is high, hence most species’ activity temporally coincide at the peak of the season. As we
reviewed in section 5.1, empirical evidence suggests that seasonal systems usually exhibit
non-negligible synchronization, in the sense that the flowering and pollination tend to occur
simultaneously. Several hypothesis have been proposed to account for this pattern, from the
presence of abiotic pressures such as the temperature, the precipitation or the photoperiod
–disregarding genetic differences or biotic constraints– (Forrest and Miller-Rushing, 2010), to
the existence of facilitative interaction among concurrent species, which obtain an ecological
benefit of overlapping their periods of activity. All in all, it is still not clear how the mentioned
factors interplay among themselves and with other possible forces to give rise to the observed
heterogeneity in starting dates (Forrest and Miller-Rushing, 2010).

In order to attempt to reproduce this pattern, we construct a model were species’ periods
are approximately centered. To do so, we set the medium dates around the peak of the season
and then slightly perturb them, following the numerical procedure detailed in Appendixes I.1
and I.3. This yields to phenological configurations where species are considerably –but not
perfectly– synchronized. Indeed, introducing this imperfection is crucial for two reasons:
first, to account for the aforementioned heterogeneity in starting and middle dates of activity;
second, because a perfectly synchronized system is trivial, in the sense that all species fully
overlap, recovering hence the aggregated case.

Minimization of the intra-guild competition

This second model is built upon the hypothesis that the periods of the species are located
along the season so as to avoid, as far as possible, overlapping with other species that exploit
a common mutualistic resource –i.e. pollinating services in the case of plants or flower
availability for pollinators. As discusses above, the evidence for this type of mechanism is
controversial, and, when it does occur, its effect is most probably subordinated to other
genetic and environmental factors. Nevertheless, we will still explore the consequences of
this assumption, given that it is the natural counterexample of the synchronized scenario.

In order to construct a phenological configuration that minimizes the competition among
species, we implement a global search algorithm that optimizes an objective function under
the constrains in Eqs. 5.7-5.8 (see Appendix I.2 for the numerical details). In this particular
model, the objective function corresponds to the total competitive phenological overlap
among species, as detailed in Appendix I.4.

Maximization of the variance

We now turn our attention to models that focus directly on the statistical properties of
the system’s phenology. As a first approach, we propose a model based on maximizing the
dispersal of the periods along the season. In particular, we maximize the variance of the
middle dates of activity. Indeed, if we define the middle time tM of a species i as:

tM,i = t0,i + pi − 1
2 , (5.9)

then its variance Var(tM ) is an approximate measure of the dispersion of the activity of
both plants and pollinators along the season. Once again, the maximization of this quantity
is done under the condition that mutualistic interactions present in the aggregated network
still occur. The numerical procedure to do so is explained in Appendixes I.2 and I.5.
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Maximization of the entropy

Following a similar line of thought, we propose a second model to produce phenological
configurations that is based on its statistical properties. In particular, we refine the prior
approach by characterizing the distribution with a more sophisticated and robust indicator,
namely, the entropy. As a matter of fact, this is a plausible alternative to maximizing the
variance which may specially outperform the latter when the distribution is multimodal.

Let us define the entropy within the constructed framework for describing phenology. We
start by defining a random variable xi as the number of species whose middle date of activity
tm takes place at a given date ti. Then, its corresponding probability p(xi) will be:

p(xi) = number of species with tm = ti
total number of species . (5.10)

Given this random variable, it is possible to define its Shannon-Gibbs entropy as follows:

S = −
∑
i

p(xi) ln p(xi), (5.11)

which follows the already familiar and standard form exploited in the first part of thesis.
It is straightforward to see that in a scenario of perfect synchronization, the medium dates
of activity are the same for all species. Hence if we name such date by the index k, then
p(xk) = 1, and the information entropy is zero.

Maximizing the entropy defined in Eq. 5.11 under the constraints imposed by the network
of interactions yields a maximum entropy model, that randomizes the distribution of periods
of the species yet using only the minimal amount of necessary information. The particular
details of how this model was implemented can be found in the Appendixes I.2 and I.6.

Comparison among synthetic models

Given that our ultimate goal is to be able to generate realistic distributions of synthetic
phenology, we now proceed to test the performance of the different models proposed above.
To do so, we will adopt as input the observed network of interactions –which is to be
preserved–, and the empirical distribution of periods. The latter will allow us to focus on
the quality of the methodology to produce the starting dates alone, without introducing
additional sources of noise.

In order to examine the adequacy of each model to reproduce the empirical phenological
patterns, we start by extracting the synthetic starting dates corresponding to the different
datasets by applying the numerical methods explained in Appendix I to our three empirical
networks. After doing so, we characterize the synthetic phenologies within an analogous
framework to the one described in section 5.2. That is, we calculate, on the one hand,
the distribution of phenological coefficients defined in Eqs. 5.5-5.6, and, on the other hand,
we couple the phenology to the network structure and compute the change of some basic
structural features along time. Along the rest of this section we will explain and discuss the
results of comparing these synthetic measures with the empirical observations.

Distribution of overlaps

We start by looking at the distribution of the phenological coefficients defined in Eqs. 5.5-
5.6, as we had done before for the empirical case (see Fig. 5.5). In order to compare the
empirical and the synthetic distributions, we perform two different statistical measures: (i)
a two-sample Kolmogorov-Smirnov test (see Appendix H.2) and (ii) the calculation of the
Kullback-Leibler divergence (see Appendix H.3).

Concerning (i), we analyzed separately the competitive and mutualistic overlaps on the
one hand, and the distributions for plants and for pollinators on the other hand, as it is
summarized in Table 5.2. In particular, for the Burkle dataset, the null hypothesis that
both samples come from the same distribution is rejected for the models which minimize the
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Model /Dataset Mutualistic overlap Competitive overlap
Synchronized Plants Pollinators Plants Pollinators

Burkle 0.052 0.051 0.008 0.021
Kantsa 1st year 0.015 0.010 0.002 0.002
Kantsa 2nd year 0.009 0.009 0.001 0.0017

Minimum competition Plants Pollinators Plants Pollinators
Burkle 0.100 0.103 0.036 0.031

Kantsa 1st year 0.012 0.013 0.002 0.0015
Kantsa 2nd year 0.007 0.008 0.001 0.001

Maximum variance Plants Pollinators Plants Pollinators
Burkle 0.066 0.069 0.027 0.028

Kantsa 1st year 0.015 0.014 0.004 0.003
Kantsa 2nd year 0.011 0.011 0.003 0.002

Maximum entropy Plants Pollinators Plants Pollinators
Burkle 0.040 0.042 0.010 0.015

Kantsa 1st year 0.009 0.007 0.001 0.001
Kantsa 2nd year 0.006 0.007 0.001 0.0016

Table 5.2: Results of the K-S two sample test among the synthetic distribution and the
empirical distribution. We show the KS distance between the two samples, and highlight
in bold the cases in which the null hypothesis is rejected, that is, those where the two
samples do significantly differ (p-value < 0.05). The smaller the KS distance, the smaller
the discrepancy between the two samples. The numerical implementation to calculate these
distances is described on Appendix H.2.

competition and maximize the variance, which are hence incompatible with the empirical data.
The model with centered times and maximum entropy are generally compatible with the
observed phenology, except for the distribution of coefficients associated to the competition
among pollinators. Instead, for the Kantsa dataset, the four models are compatible with the
data.

Dataset / Model DKL Mutualistic overlap DKL Competitive overlap
Burkle Plants Pollinators Plants Pollinators Average

Synchronized 0.035 0.038 0.002 0.014 0.022
Minimum competition 0.095 0.101 0.026 0.033 0.064
Maximum variance 0.042 0.056 0.010 0.019 0.032
Maximum entropy 0.022 0.032 0.003 0.008 0.016
Kantsa 1st year Plants Pollinators Plants Pollinators Average

Synchronized 0.0116 0.0053 0.0014 0.0010 0.0048
Minimum competition 0.0050 0.0073 0.0009 0.0004 0.0034
Maximum variance 0.0111 0.0047 0.0032 0.0008 0.0049
Maximum entropy 0.0055 0.0051 0.0005 0.0005 0.0029
Kantsa 2nd year Plants Pollinators Plants Pollinators Average

Synchronized 0.0048 0.0036 0.0008 0.0008 0.0025
Minimum competition 0.0018 0.0035 0.0005 0.0005 0.0015
Maximum variance 0.0080 0.0036 0.0019 0.0005 0.0035
Maximum entropy 0.0019 0.0035 0.0005 0.0007 0.0016

Table 5.3: Results of the K-L divergence among the synthetic distribution and the empirical
distribution. The smaller the KL-divergence, the smaller the difference between the two
samples. Further details on the definition and numerical implementation of this measure can
be found in Appendix H.3.
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In order to differentiate which model better reproduces the empirical phenology in the
cases in which, according to the KS test, various models are statistically compatible, we carry
out (ii), that is, the calculation of the KL-divergence. Indeed, the KL distance measures
the amount of information lost when we approximate the empirical distribution by the
synthetic one, and therefore can be used as a statistical criteria for model selection. In
Table 5.3 we can observe that the model based on maximum entropy generally provides the
best approximation, except for the second year of the Kantsa dataset, in which it is slightly
outperformed by the model based on minimizing the competition. It is also interesting to
observe that the second-best model is not the same among datasets: while the second-best
model for the Burkle dataset is the one with synchronized phenology, in the Kantsa dataset
it is the model which minimizes the competition.

Structural features

Secondly, in order to complement the information provided by depicting the phenological
coefficients, we calculated as well the sequence of temporal networks resulting from considering
the phenology. This produces a sequence of networks, each corresponding to a given date,
as represented in Fig. 5.6. Repeating the procedure detailed in section 5.11 now for each
synthetic model, we calculated a few basic structural quantities as a function of time: the
number of active nodes -size-, the number of active links and the maximum degree. The
results for each model as well as the empirical case are plotted together in Fig. 5.8.

Figure 5.8: Temporal evolution of three fundamental structural features, measured on a daily
basis: number of active nodes, active links and maximum degree. Each column corresponds to
a different dataset as indicated on the top of the figure. In each plot, we represent the results
for the empirical case (light blue), and the four synthetic models based on: synchronized
middle times (red), minimum competition (green), maximum variance (yellow) and maximum
entroy (violet). In grey and dashed stye, the reference value for the aggregated case.

With this information at hand, we can perform a comparison between the product of
each synthetic model and the empirical observations, specifically addressing the change in
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fundamental structural properties along time. To quantify these correlations, we calculated
the corresponding Pearson coefficient for different values of time lag between the distributions.
By doing so, we are taking into account the possibility that the null model reproduces well
the empirical scenario but in a delayed or advanced time. That is, we are relaxing the
assumption of a perfect matching between the empirical and the synthetic starting dates,
focusing instead on the relative position among the starting dates of different species. In
table 5.4 we show the maximum value of the Pearson correlation calculated following this
procedure, as it is further detailed in Appendix H.4.

Table 5.4 and Fig. 5.8 show that the analysis of the structure lead to similar results to
the aforementioned analysis of the phenological overlap. Indeed, the better fitting models for
the Burkle dataset are the ones based on synchronized phenology and maximum entropy,
while for the Kantsa dataset the maximal correlation is found for the model which minimizes
intra-guild competition and, again, the one maximizing the entropy.

Dataset / Property Maximum Pearson coefficient for each null model
Burkle Synchronized Maximum Variance Minimum competition Maximum entropy

Maximum degree 0.98 0.88 0.93 0.98
Number of links 0.98 0.87 0.78 0.98

Size 0.99 0.79 0.92 0.98
Average 0.99 0.85 0.88 0.98

Kantsa 1st year Synchronized Maximum Variance Minimum competition Maximum entropy
Maximum degree 0.78 0.76 0.91 0.91
Number of links 0.74 0.71 0.89 0.83

Size 0.81 0.58 0.89 0.85
Average 0.78 0.69 0.90 0.86

Kantsa 2nd year Synchronized Maximum Variance Minimum competition Maximum entropy
Maximum degree 0.90 0.67 0.87 0.93
Number of links 0.85 0.78 0.89 0.85

Size 0.89 0.63 0.90 0.88
Average 0.88 0.69 0.88 0.88

Table 5.4: Maximum Pearson correlation among the empirical and the null expectation of
the structural properties along time.

Overall, these multiple statistical tests reveal at least two general conclusions. On the one
hand, we find that each dataset is better described by a distinct mechanistic assumption, i.e.
the synchronization of the species’ phenologies in the Burkle dataset and the minimization
of the competition in the Kantsa dataset. This disparity seems to reflect the substantial
divergences between the two datasets, that we described in detail in section 5.2. On the other
hand, both networks’ phenology are accurately reproduced by the statistical model that
maximizes the entropy associated to the distribution of the middle dates of activity, despite
the considerable differences among the two datasets. What this latter finding suggests is that
the observed network of interactions together with the periods of each species provide sufficient
information to reproduce, fairly closely, the observed temporal patterns of activity. This is
particularly interesting given the mentioned differences among datasets, which provides, to a
certain extent, a warranty of generality despite the limited data at our disposal. This finding
does not imply that, forcedly, the starting dates of activity are set at random, but that the
information enclosed in the corresponding network of interactions and the species’ periods
may be sufficient to reproduce well the main characteristics of the community’s phenology.
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5.4 Conclusions and perspectives

Along this chapter we have addressed the possibility of moving beyond the aggregated
paradigm by incorporating –in the form of periods of activity– some of the temporal
variability that plant-pollinator communities exhibit along the year. In particular, we
have concentrated on seasonal ecosystems, assessing the daily change in both inter-guild,
mutualistic relationships and intra-guild, competitive interactions.

The analyses carried out along this chapter have revealed, in the first place, that non-trivial
information is lost when portraying the real network of interactions by a static representation,
that is, neglecting its temporal dimension. Indeed, we have observed that the consequences
of introducing the empirical phenology into the network formalism are system-dependent,
and hence no general pattern can be expected a priori. Moreover, the process of aggregation
not only disregards the richness of temporal variability, but it also tends to overestimate the
value of the main fundamental structural features, as had been remarked as well by Sajjad
et al. (2017). This is specially relevant given that structural features like the degree or the
connectivity are consistently used to characterize, respectively, the relative vulnerability of
species (Dakos and Bascompte, 2014) or the community stability (Thébault and Fontaine,
2010).

In the light of the limitations of the aggregated paradigm, and driven by the scarcity
of available datasets, we proposed a group of models to produce, given a fixed mutualistic
network, a compatible hypothetical phenology. The comparison of these results with the
empirical datasets revealed that the soundness of certain mechanisms is, at least in the first-
order approach we have adopted here, specific to the particular system under consideration.
Instead, we have found that the purely statistical assumption of maximizing the entropy
associated to the distribution of middle dates performs generally well, as we have tested in
two dissimilar empirical examples. Importantly, the remarkable performance of the maximum
entropy hypothesis is partly explained by the fact that, actually, the network of interactions
is closely dependent upon the starting dates, in the sense that the mutualistic contacts
observed corresponded, forcedly, to concurrent species –a condition that, indeed, we impose
to our models. Therefore, preserving the network of interactions is a strong constraint, which
could justify the general adequacy of this model.

In perspective, these synthetic models offer a methodological set that might prove useful
in different aspects. On the one hand, they can be exploited merely as a group of realistic
models to construct synthetic ensembles in the absence of highly-resolved empirical data, in
those cases where the main driving forces of the phenology are known. On the other hand,
they can also be applied as null models that permit testing a variety of null hypothesis, from
the mechanistic forces shaping the phenology to the existence of temporal, structural or
dynamical patterns. At this point, it is worthy to remind as well that ours is just a first
approach to modeling the temporal variability of networks. In particular, we considered the
description level at which species are active or inactive during a certain fraction of the season.
However, it could be possible to refine the scale of description to include the weekly or even
daily turnover of interactions, a sort of hyper-realistic depiction of the temporal variability
of the network that is gaining attention during the recent years (CaraDonna et al., 2017).
This is due, partly, to the technological advances that permit monitoring phenology in great
detail, and therefore it is probable that in the coming years we will find a rising number of
this type of studies.

In the bigger picture, the interest in moving towards a more realistic portrayal of
interacting systems is not exclusive to ecology, and indeed the study of temporal complex
networks has received great attention in recent years (Holme and Saramäki, 2012). How
this change of paradigm will eventually challenge our understanding of natural systems is
something we are just now beginning to explore.
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CHAPTER 6

Dynamics one more time

This sixth chapter, that closes both the second part and the main body of the thesis,
constitutes the natural continuation of the inquiries about the temporal dimension of
mutualism we had initiated above. Here, though, we will leave aside the emphasis on the
network’s structure and tackle instead the impact of considering phenology on the community
dynamics. Before starting, it is worthy to forewarn that some of the results presented along
this chapter are still inconclusive and call for further investigations, but we will still present
them here in order to introduce some of the prospective work that emanates from this thesis.

This chapter is structured as follows. First, we will introduce the tight relation between
phenology, ecosystem’s dynamics and climate change, a topic that has not ceased to gain
attention in recent years. Next, we will propose a methodological approach to incorporate
phenology in a dynamical model that considers both the mutualistic and the competitive
interactions. Finally, we will test this model on the two empirical datasets we studied in
Chapter 5 and discuss the results.

6.1 Stability in a changing climate, or why time matters

Previously, we have investigated how our representation of a mutualistic community changes
when we take into account the phenology, concluding that several structural features are
distorted by the lens of the aggregated paradigm. Given that the link between structure and
dynamics is, certainly, one of the keystones of the field of ecological networks in particular
and that of complex networks in general, a pertinent question that naturally follows is how
ecosystems’ dynamics are modified by the phenology. In this sense, there are, at least, two
main queries. First, how does our current understanding of the stability of communities
translate into a framework that accounts for temporal variability? And secondly, and maybe
even more importantly, what effect does phenology have on our predictions about the future
robustness of ecosystems?

Regarding the first question, admittedly the vast majority of studies on stability are
based upon aggregated networks, disregarding the phenology of species (Bastolla et al., 2009;
Thébault and Fontaine, 2010; Suweis et al., 2013). Arguably, this choice may be justified, to a
certain extent, as long as the population effects derived from the ecological interactions build
up along the season. Nonetheless, it is clear that the lack of phenological information not
only implies a loss of detail, but may also lead to over or underestimating certain ecological
relationships. This is specially relevant, as we will discuss below, for indirect interactions such
as competition, which can be strikingly modified when considering the temporal dimension of
the system. In this line of thought, some works have explored the consequences of accounting
for phenology in the characterization of the dynamics. For instance, Encinas-Viso et al. (2012),
proposed a microscopic dynamical model that involved both mutualism and competition
in order to analyze, by exploring a wide range of theoretical forms for the configuration
of phenology, the properties of the resulting hypothetical networks of interactions. More
recently, Ramos-Jiliberto et al. (2018) proposed a highly-realistic population model and
applied it to study a set of empirical networks with its corresponding phenology, upon
which they applied different types of perturbations. In both of these examples, the authors
concluded that the phenology plays a fundamental role in driving the community’s stability
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and dynamics, by producing phenomena that could not be explained from the aggregated
perspective alone.

On the other hand, the study of the impact of phenology on the dynamics is inevitably
intertwined with a global perturbative process that menaces a great variety of natural systems,
namely the climate change. This comes as no surprise if we consider the multiplicity of
environmental factors that play a role in determining the starting dates of activity, as reviewed
in Chapter 5. In particular, both the onset of flowering and the date of first emergence of
insects have been claimed to advance as the environmental temperature raises, which can
lead to what is commonly known as phenological shifts (Hegland et al., 2009). The most
immediate consequence of this phenological perturbation is the possibility that mutualistic
partners desynchronize, leading to a lack of temporal overlap –also called mismatch– that
hampers pollination services and may eventually yield to biodiversity loss. As a result, during
the last decade there has been a major explosion in the number of works devoted to quantify
the possible extent of such mismatches (Memmott et al., 2007; Hegland et al., 2009; Burkle
et al., 2013; Duchenne et al., 2020) as well as their impact on the persistence of species and
the community stability (Revilla et al., 2015; Rafferty et al., 2015).

Truth be told, in this chapter we will focus mainly on the first question, although it would
be worthy to keep in mind the possible applications of this kind of dynamical models to the
study of phenological shifts and mismatches. In what follows, hence, we start by introducing
one of these possible models.

6.2 A model to incorporate phenology

The aim of this section is to present a model that permits assessing the effects of phenology
on the organization of ecological mutualistic systems, particularly on biodiversity persistence.
To this end, we work upon a previous population model proposed by Gracia-Lázaro et al.
(2018), that investigates the influence of the network structure on the persistence of species.
In particular, this model exploits a bilayer framework like the one depicted in Fig. 6.1,
which accounts, simultaneously, for mutualistic links between species of different kind and
competitive interactions among members of the same guild. Such competition is driven, as
detailed in section 5.2, by the sharing of common mutualistic resources (Jones et al., 2012),
therefore being derivable from the empirical network of mutualistic interactions. As we had
done in the previous chapter, we will concentrate on the particular case of plant-pollinator
communities, although some of the results are in fact generalizable to other ecological or
social systems that are equally based on consumer-resource relations.

Let us focus here on plant-pollinator systems and consider a community consisting of
NP species of plants and NA species of animals, being N = NP +NA the total number of
species. The plants’ parameters and variables are represented by the superscript P , while
A stands for animals. As always, the mutualistic relationships are given by the bipartite
NP ×NA matrix, B, with Bik = 1 if animal species k pollinates the plant species i, and
Bik = 0 otherwise. Within this framework, in the original model by Gracia-Lázaro et al.
(2018) the evolution of the abundance of each species is described by a differential equation,
which takes into account both the abundance of other species and the interaction with them,
resulting in a system of N coupled differential equations. In detail, let sPi be the abundance
of the plant species i, being αPi its intrinsic growth rate. Then, the relative abundance of a
given plant i evolves according to:

1
sPi

dsPi
dt

= αPi −βPi sPi −βP0

∑
jP,i6=j s
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j

∑
k∈ABikBjks

A
k∑

k∈ABiks
A
k

+γP0

∑
k∈ABiks

A
k

1 + hP γP0
∑
k∈ABiks

A
k

, (6.1)

which takes into account the mean-field intra-species competition for resources regulated
by parameter βPi , the structured inter-species competition for mutualistic resources pondered
by parameter βP0 and finally the mutualistic benefit. This last term models the effect of
mutualism following a Holling Type II functional response, as proposed by Bastolla et al.
(2009), that involves an interaction strength parameter γP0 and the so-called handling time
term, hP , which regulates the saturation of the mutualistic term. Moreover, the existence of
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Figure 6.1: Bilayer representation of a plant-pollinator network. Mutualistic interactions are
depicted in grey as the inter-layer links, while competitive interactions for shared resources
are represented in white as intra-layer connections.

competitive interactions is mediated by the term BikBjk, as previously introduced in Eq. 5.2.
Although we focused here on the temporal evolution of plants’ population, an analogous
expression can be drawn for the pollinators. Overall, as aforementioned the system can be
seen as a multilayer network like the one depicted in Fig. 6.1, where inter-layer connections
represent the mutualistic interactions, while intra-layer links account for the competition.

In order to include the temporal dimension into this formalism, we adopt a first-order
approach that quantifies the dynamical consequences of phenological overlap in an effective
manner. This approximation presumes that species interact homogeneously along time, and
hence the resulting amount of mutualistic benefit or competition stress is proportional to the
fraction of shared overlap in their periods of activity, as defined in section 5.2 and depicted
in Fig. 5.4. Subsequently, the mutualistic and competition growth terms can be modulated
by a linear function of the temporal coexistence between species. That is, the larger the
amount of time during which two species coexist, the larger the corresponding mutualistic or
competitive term will be. As a way to model this mechanism, we can exploit the phenological
coefficients ΩPijk and ΦPik, defined in Eqs. 5.5-5.6. Indeed, following the effective assumption
describe here, we can introduce them directly into equation 6.1, which leads to:

1
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,

(6.2)
where the mutualistic and competitive terms are now rescaled by the phenological

coefficients 5.5-5.6.
As a matter of fact, expression 6.2 can be written more compactly. Let MP

i be the
biomass of the pollinators of a given plant species i, then MP
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k∈ABiks

A
k ΦP

ik, and
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ij be the biomass of the pollinators shared by two plant species i, j, such that
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In the same way, the relative abundance variation of an animal species k is given by:
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It is worthy to remark that the latter equations 6.3-6.4 are formally identical to the
original model introduced in reference Gracia-Lázaro et al. (2018). This illustrates the fact
that, following the procedure presented here, we have translated the binary aggregated
network into a weighted, but still aggregated, formalism. Certainly, this is still a rather
basic, first-order approach to the modeling of temporal variability, since the structure of
the network does not change over time. However, while for the mutualistic network the
binary structure is not modified with respect to the aggregated representation –i.e. features
like the degree, connectivity, etc, are preserved–, in what concerns the competitive network
some links may removed, particularly in those cases in which the interacting species do not
coincide along the season. In this sense, the aggregated case presents a sort of worst-case
scenario in terms of the competition, that is tempered by the introduction of the phenology.

6.3 Results in two empirical datasets

With this methodology at hand, we are ready now to test the predictions of the aforementioned
model on a empirical dataset. In particular, we study the three real networks extracted from
the Burkle and the Kantsa datasets. The details on each dataset are given in Appendix A,
while the main features of each system have been characterized in section 5.2. Along the
present section we will analyze how their community dynamics is affected by phenology:
first, by applying the population model introduced above and, secondly, by comparing these
results with the predictions of a null model where the starting dates of activity of both guilds
are shifted.

To start with, following an analogous procedure to the one proposed by Gracia-Lázaro
et al. (2018), we numerically integrate the system of Eqs. 6.4-6.3 for a wide range of different
values of mutualistic and competitive strength (see Appendix J for more details on the
computational implementation). In Fig. 6.2, we plot the number of surviving species in the
steady state, for both the aggregated empirical case as modeled by Eq. 6.1 and the network
with empirical phenology as given by Eq. 6.2.

Moreover, in order to complement the information provided by these two scenarios, we
construct a null model based on the shifting of the starting dates under the condition of
constraining the binary mutualistic network and the periods’ distribution. In particular,
we apply the numerical procedure described in Appendix I.1. This provides, hence, a
randomization of the links’ weights associated to the phenological overlap, and will permit
assessing the robustness of the results with respect to possible variations in the interaction
strength due to shifts in the starting dates. In Fig. 6.2 we plot, together with the results of
the aggregated and the weighted networks, the average biodiversity obtained by applying
the model of Eq. 6.2 over a set of null configurations generated by synthetically shifting the
empirical starting dates.

The results summarized in Fig. 6.2 point out several aspects that are worth discussing.
First, in general terms we recover a comparable pattern to the one found by Gracia-Lázaro
et al. (2018), in the sense that increasing the mutualism positively affects biodiversity in
the low-competition regime, but turns out to be detrimental to species’ persistence when
competition for mutualistic resources is severe. Moreover, similarly to what we observed
when talking about the network’s structure, the effect of phenology on the network is highly
system-dependent. Indeed, the two datasets exhibit almost opposite behaviors: while for the
Burkle dataset the region of maximum persistence increases dramatically in the model with
phenology in comparison to the aggregated case, in both years of the Kantsa dataset this
region decreases. This can be understood if we consider the substantial differences between
the two datasets, thoroughly detailed in section 5.2.

In order to attempt to better understand these results, we investigate the relation between
the persistence of a species and its individual characteristics. In particular, we consider two
fundamental properties of, respectively, the structural and the temporal dimension of the
system, namely the species degree and its period of activity. As shown in Fig. 6.3, in the three
empirical examples under study the degree is a strong determinant of the persistence of a
species. In detail, having a small degree is a necessary condition –although not sufficient– for
a reduced region of persistence, which means that specialists species are more vulnerable to
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Figure 6.2: Biodiversity persistence as a function of the mutualism and inter-species
competition parameters. Panels show the levels of biodiversity in the stationary state
of the population model given by Eqs. 6.4-6.3, as a function of the strength of mutualistic
and competitive interactions –that is, parameters γ0 and β0. The color scale represents
the number of species in the steady state. The left panels show the results obtained when
phenology is neglected; the middle panels depict the results obtained when considering the
observed phenological coefficients; and the right pannels show the results obtained when
considering the phenological coefficients corresponding to 100 independent null configurations,
generated by shifting the initial times of activity and flowering as explained in Appendix I.1.

extinction. This result is observed for both the aggregated network and the network weighted
with the empirical phenology, as well as for the null model where the starting dates are shifted.
From a ecological viewpoint, this should come as no surprise since specialists species have
been traditionally regarded as more fragile (McKinney, 1997), given the higher specificity
of their mutualistic resources, specially pollinators (Memmott et al., 2007; Ramos-Jiliberto
et al., 2018).

On the other hand, considering the relation with the species’ phenological period yields
divergent results depending on the dataset, as can be seen in Fig. 6.3. Interestingly, the
analysis of the Burkle dataset reveals that species with short period are benefited from the
introduction of the temporal dimension, in comparison to both the aggregated case and the
null model. This could explain the sharp increase in the region of maximum persistence,
for the empirical case, depicted in Fig. 6.2. Nonetheless, this finding is not general. In
the Kantsa dataset we find instead that introducing the phenology is detrimental to the
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persistence of species with short periods. In particular, in this dataset there is a bulk of
pollinator species with just one or two days of observed activity (see Fig. 5.3) which represent
the majority of extinctions in Fig. 6.3.

Figure 6.3: Relative size of the region of persistence per species as a function of their degree
(left) and period (right). We plot the results for the aggregated case (in red), the empirical
case (in light blue) and the null moodel (in dark blue), in which case we depict the average
and the standard deviation of the relative region of persistence of each species over the null
ensemble.

The dynamical uncertainty associated to species with short period might be better
understood by comparing the empirical results with the estimations provided by the null
model. In particular, let us introduce a probability of survival ps,i for each species i. In the
null model, ps,i is defined as the ratio between the number of times that species i persists alive
on the whole range of exploration of β and γ, among the total number of null configurations.
In the study of the empirical network this quantity is binary, such that, if we call it xs,i, we
have xs,i = 1 if species i never gets extinct and xs,i = 0 otherwise. Using these quantities,
we can define the z-score associated to the empirical observation when compared with the
null ensemble as:

z-scorei = xs,i − pi,s
σi

, (6.5)

where the standard deviation σi is computed as the one corresponding to a Bernoulli
process, since the survival/extinction event is binary. Thus, the z-score will be positive if
the species survived in the empirical case but got extinct a certain number of times in the
null ensemble, and negative otherwise. We plotted this quantity as a function of the degree
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of the species and as a function of its period in Fig. 6.4. Here again we observe divergent
results among datasets, in the sense that the particular correlations are different for each
network. However, we also find that in general the species with short period tend to have a
larger z-score –in absolute terms– which means that their persistence is more affected by
the introduction of phenology –either in a positive or in a negative way– and hence their
long-term robustness is more difficult to predict.

Figure 6.4: Relation between the z-score as defined in Eq. 6.5 and the degree (on the left) or
the period (on the right), for the three datasets.

On the whole, we have observed that, together with being a specialist, having a short
period is typically a sign of higher vulnerability to extinctions. On the other hand, these
results pose probably more questions than answers, as we find once again no universal pattern
in how phenology specifically affects ecosystem’s dynamics, particularly species persistence.
Truth to be told, this should come as no surprise if we take into account the substantial
inherent dissimilarities between the two datasets. How to cope with this problems and what
could be done as prospective work to try to answer some of the remaining questions is what
we discuss in the next section, the last of this chapter.

6.4 Conclusions and perspectives

Along this chapter, we have briefly addressed the question of the interplay between phenology,
mutualism and species persistence, by taking as a paradigmatic example the case of plant-
pollinator systems. In detail, we have developed a previous dynamical model that accounts
for both competitive and mutualistic interactions, in order to include the effect of phenology.
We have applied a first-order approximation, consisting in weighting the strength of ecological
interactions by the temporal overlap among the partners. After examining this model, our
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result points out that specialist species tend to have a larger probability of becoming extinct,
in particular due to perturbations on the balance between competitive and mutualistic
outcomes, a result which is has been equally been observed in other experimental (McKinney,
1997) and theoretical studies (Memmott et al., 2007; Gracia-Lázaro et al., 2018; Ramos-
Jiliberto et al., 2018). Moreover, the persistence of species with short periods is the most
difficult to predict, since they are the most sensitive to changes in the starting dates. A
possible future increase in the number of available, highly-resolved datasets could permit
assessing the generality of these results, and particularly the existence of local correlations
related to the species composition of the site and its geographic or climatic conditions.

All in all, the model presented here represents just a first step towards the modeling of
phenology, in the sense that it is greatly limited by the fact that the dynamics still occur on
a static network. Other works, like the one by Encinas-Viso et al. (2012), have proposed
microscopic models that involve a changing network of interactions, at the expense –all
things being said– of introducing some stochasticity. In our case, the effective modeling
of phenology using a deterministic setting is hampered by the difficulty in identifying and
handling the diverse temporal scales, specially the rate of change in the network. In this
sense, it would be interesting to explore how ecological dynamical models would perform
in the framework of temporal networks, a field that has received great attention during the
recent years (Holme and Saramäki, 2012).

Understanding the often-neglected temporal dimension of mutualistic communities is not
only a question of theoretical curiosity, but an urgent challenge in the context of a changing
climate. Although we have not addressed this question explicitly here, the null model
based on shifting the starting dates is partly based on this philosophy. In this sense, the
development of an adequate methodological framework is crucial to assess the consequences
of climate change on mutualistic systems around the globe, from the the extent and impact
of possible mismatches (Visser and Gienapp, 2019) to the flexibility of the network to rewire
and replace missing interactions (Vizentin-Bugoni et al., 2020) or to accommodate invasive
species (Hellmann et al., 2008).
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CHAPTER 7

Conclusions

Since Darwin introduced his famous metaphor of the entangled bank to describe the
intertwined complexity of natural communities, scientists have looked at ecological interactions
as potential drivers of the structure and dynamics of ecosystems. However, until a few decades
ago these studies primary emphasized the importance of antagonistic interactions, leaving
aside mutually beneficial relationships, that remained overlooked as curious but marginally
relevant (Bronstein, 1994). Nowadays we know that mutualism does in fact play a major
role in the organization of ecological communities, pervading ecosystems around the globe,
involving diverse spatial scales and engaging very different kinds of organisms (Bascompte
and Jordano, 2013), to the extent that we can find analogous relations in non-ecological
contexts such as social and economic systems.

In this thesis we have looked at mutualistic systems from a complex network perspective,
considering these communities as a perfect example of a complex system. The network
representation of ecosystems entails an inherent tension between the need of providing a
stylized description that permits detecting and understanding general patterns, and on the
other hand the risk of oversimplifying, missing relevant details about the structure or the
dynamics. In other words, when constructing a network we face the challenge of knowing
what is the minimum amount of information necessary to obtain a faithful portrayal of the
system, in relation, of course, to the questions we would like to answer.

This tension between simplification and attention to detail is somewhat reflected in the
two parts in which this thesis is organized. Indeed, along the first part we have looked at the
structure of binary mutualistic networks in order to investigate the emergence of a widespread
architectural pattern, namely nestedness. Using a null model based on maximum entropy
ensembles, we have demonstrated that this pattern can be naturally explained by a reduced
set of fundamental network features, particularly the degree sequences. This finding not only
carries fundamental implications for our understanding on what structural indexes should
be tackled to characterize the dynamics of mutualistic systems, but also on how ecosystems
have been assembled and have evolved through time. With these results at hand and by
applying once more the constructed null model, we have then explored the functioning and
performance of different nestedness metrics, establishing the difficulty of finding an unbiased
and universal tool to quantify and rank nested patterns.

In the second part of this thesis, we have followed a different path and, if before we had
questioned what is the minimum information needed to reproduce the structure of aggregated
networks, here we turned into investigating whether such static network representation
is actually realistic enough, or, on the contrary, its lack of detail distorts our perception
of mutualistic communities. First, we have explored the consequences from a structural
viewpoint of partly accounting for the community’s temporal variability, by characterizing
two highly-resolved empirical datasets. Furthermore, we have proposed a set of models aimed
at producing, under diverse assumptions, synthetic configurations of phenology. From their
comparison with the empirical systems, our results suggest that models based on maximum
entropy may once again work generally well to reproduce –subject to some constraints–
the observed phenology. Instead, the adequacy of mechanistic models seems to be highly
system dependent. Secondly, as a natural continuation of these sort of queries, we begun to
address the problem of how to translate the existence of temporal variability into a dynamical
framework which could permit assessing the influence of phenology upon species coexistence.
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Some of the questions addressed along this thesis are still open and call for further research,
while answering others has lead to the arousal of new queries and avenues of research. A
translation of this summary into French and Spanish can be found in Appendix K. To
conclude this thesis, we briefly discuss these topics on the bigger picture, relating our findings
to broader challenges in the field of ecological networks in particular and that of complex
systems in general.

7.1 ‘Informing’ ecology

In his influential book The Structure of Evolutionary Theory, Gould (2002) wrote:

A. N. Whitehead famously remarked [...] that all later philosophy might well be
described as a footnote to Plato. How often, indeed, must any decent scholar invent
a formulation with pride in systematic analysis, and with hope for originality
–only to discover that one of history’s truly great thinkers had established the
same principle, recognized its importance, and even specified its full range of
application.

In a similar spirit, we must acknowledge that the application of concepts from information
theory and statistical physics to ecology is not entirely new. Indeed, models based on the
maximum entropy principle have been applied, specially during the last two decades, to the
study of macroecology (Pueyo et al., 2007; Harte et al., 2008), in particular to infer the
scaling relation of relevant biodiversity metrics such as the species area relationship (typically
shortened as SAR) or the species abundance distribution (the so-called SAD). As discussed
by Harte and Newman (2014), this type of approach has not been exempt from criticism,
primary because of its lack of a mechanistic background, which somewhat complicates is
ecological interpretation. Harte and Newman (2014) provide several reasons to justify the
good performance of maximum entropy models, that may as well apply to our study of
ecological networks: from the concurrence of various factors and forces whose overall effect
can be seen as random –as we argued in Chapter 5, to the presence of sufficient implicit
information in the constrained variables to reproduce macroscopic patterns –similarly to
what has been discussed in Chapter 3.

Despite the existence of these precursory applications of information theory to macroe-
cology, admittedly its exploitation in the context of ecological networks is comparatively
scarce. All in all, in recent years this tendency seems to have been reverted, and we can find
an increasing number of works that use an information theoretic approach to characterize
the structure of ecological networks in different ways. On the one hand, statistical models
based on maximum entropy assumptions have been used to disentangle the general forces
shaping the organization of ecological interactions, similarly to what we have done along
this thesis for mutualistic communities. For instance, Williams (2011) proposed a maximum
entropy model that solely constrains the number of nodes and links of the network in order
to generate synthetic degree distributions, and claimed that the hypothetic distributions are
statistically compatible, in around 70% of the studied cases, with the empirical observations
of both antagonistic and mutualistic systems 1. In a more general fashion, Solé and Valverde
(2004) analyzed the architectural constraints of diverse types of real complex networks using
metrics borrowed from information theory. Doing so, they found that the structure of several
technological and biological systems –including an ecological network– falls within a narrow
range of the whole space of possible configurations. On the other hand, other works have
moved beyond the maximum entropy approach, using methods of statistical inference to
refine the depiction of the real structure of ecosystems. For example, Young et al. (2019)
have recently proposed the use of tools from Bayesian inference to construct a model that

1Despite the methodological interest of these results, the findings by Williams (2011) are greatly hindered
by the small size of the real networks studied (generally having less than 100 species). As a matter of fact,
Williams also observed that larger real networks tended to show a larger discrepancy with respect to the
synthetic expectation, in particular due the broadening of the degree distribution. This is in agreement with
the fact that as the network’s size increases, so does the tail of the degree distribution, departing from the
distribution generated by the Exponential random graph model.
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informs on how a particular, incomplete observation of a network can be used to estimate
the real, complete structure of the system. This offers a methodological framework to assess
the problem of incompletely sampling ecological networks, which is one of the open questions
in the discipline (Ings et al., 2009; Bascompte and Jordano, 2013).

From a broader perspective, and to finish this section, it is worthy to mention that the
process of ‘informing’ ecology is not an isolated phenomenon, since in general the field of
complex networks has equally witnessed an increase in information theoretic approaches (Park
and Newman, 2004), specially in their applications to real-world problems (Cimini et al.,
2019). In this sense, it is also true that many of the methods and results presented along
this thesis have implications beyond the field of ecology, given that some of the patterns and
features we have analyzed here –such as nestedness or the role of temporal variability– are
transversal to many network applications.

7.2 From Madagascar to Delphi

This adventure, begun casually
enough, served to enrich but also
to simplify my life: the future was
matter for slight concern. I ceased
to question the oracles; the stars
were no longer anything more
than admirable patterns upon the
vault of heaven.

Memoirs of Hadrian - M.
Yourcenar

To finally conclude this thesis, let us say that identifying the fundamentally informative
properties of mutualistic communities not only is a matter of theoretic accuracy, but also
carries far-reaching implications for the predictability of ecosystem’s future. As a a matter
of fact, the role of prediction in ecology is a controversial issue (Carpenter, 2002). In the
words of Ings et al. (2009), scientists have been lately advocating for ‘moving away from
phenomenological studies and moving towards those that are more mechanistic and, ultimately,
predictive’, or in a more poetic fashion, for following the opposite path to the one described
above by Yourcenar, that is, extracting interpretations and predictions from the observation
of natural patterns.

The difficulty of ecological forecasting is aggravated by the same inherent reasons that lead
Darwin to depict ecosystems as an entangled bank: they are composed by many components,
subject to various forces and sources of heterogeneity and, as a result of the interplay among
all these factors, their dynamics are often non-linear. Indeed, these characteristics are
common to complex systems in general, where the question of predictability is a prevailing
problem. All in all, ecologists continue struggling to provide accurate predictions, specially
in conjunction with policy makers (Clark et al., 2001).

In the context of community ecology, an early but beautiful example of ecological
prediction is related to the story of the Darwin’s orchid and its pollinating hawk moth (Arditti
et al., 2012), briefly described in Chapter 1. As aforementioned, after studying the orchid
named Angraecum sesquipedale, endemic of Madagascar and characterized by its long nectar
spur, Darwin proposed the existence of a particular species, endowed with an equally long
tongue, that would pollinate it. Wallace further elaborated upon this hypothesis, envisioning
and drawing the plausible form of the pollinator. As a matter of fact, no less than three
predictions can be disentangled from this event. First, on the existence of the animal species,
about which Wallace (1867) famously wrote:

[...] that such a moth exists in Madagascar may be safely predicted: and naturalists
who visit that island should search for it with as much confidence as astronomers
searched for the planet Neptune [...].
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Next, on the existence of the actual mutualistic relationship between the orchid and the
hawk moth. And last but not least, on the robustness of species’ persistence, summarized
by Darwin (1877)’s sentence: ‘If such great moths were to become extinct in Madagascar,
assuredly the Angraecum would become extinct’, which predicted a dynamical process of
coexinction. Curiously enough, the three predictions have undergone different fates: while the
Hawk moth was discovered only two decades after Darwin’s death, the mutualistic interaction
itself was not explicitly observed until the 1990’s (Arditti et al., 2012). The coexinction
prediction, on the other hand, has remained a conjecture until today.

This simple example illustrates some of the current problematics for making accurate
forecasting in the field of ecological networks. On the one hand, in order to be able to perform
suitable predictions one needs an adequate theoretical and methodological framework, that
permits modeling the complexity of the system. Along this thesis, we have explored and
discussed some of the advantages and limitations of the network formalism. However, at
the same time, forecasting is intimately dependent on the quality of the observations, since
noisy or incomplete data will certainly undermine the prediction power of any model (Clark
et al., 2001). This relates indeed to the second part of this thesis and the discussion about
phenology and how it affects mutualistic systems. In this sense, to assess the possible impact
of climate change on ecological communities, we need high-resolution data that incorporates,
as well, precise information on spatial and temporal heterogeneity (Ings et al., 2009). As
aforementioned at the beginning of the thesis, this is a cooperative endeavor that calls for
further and interdisciplinary research. In the end, only by doing accurate predictions that
can guide concrete actions on natural ecosystems we may fill the gap between science and
society.

While this happens, we may continue doing as Emily Dickinson said: Not knowing when
the dawn will come, I open every door.
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APPENDIX A

Datasets

A.1 Ecological networks

The Web of Life repository 1 contains a large dataset of ecological networks, including very
diverse species, interaction types, and ecosystems location and climate. We detail below the
main characteristics of the data exploited in Chapters 3 and 4 of this thesis. The number
without brackets represents the total number of networks extracted from the repository,
while the number between brackets represents the quantity of networks that have a minimum
size of 20 nodes, which corresponds to the minimal cutoff used in the study presented in
Chapter 4.

• 133 (118) Plant-pollinator networks. Here, the links among guilds represent mutualistic
relationships, characterized by benefiting both interacting agents. In this case,
animals, including mainly insects, pollinate flowering plants. This activity provides
the pollinators with nutrients while pollinated plants enhance its reproductive success.
The two set of nodes of the bipartite network represent the species of the plant and
pollinator guilds.

• 30 (23) Seed-disperser networks. Here, the links also represent mutualistic interactions,
consisting now of birds feeding on the fruits of certain plants and then contributing
to their reproduction and dispersal by disseminating their seeds. Hence, one guild is
formed by the plant species and the other by the bird species.

• 51 (43) Host-parasite networks. Here, the links depict a parasitic relationship, where
one of the species obtains benefits in detriment of the other. Explicitly, these networks
are formed by different flea species which feed on diverse mammal species. Although
this is not a mutualistic interaction, the system may still be represented by a bipartite
network where the two guilds correspond to flea and mammals species.

• 4 (4) Plant-herbivore networks. Here, the links represent a consumer-resource
interaction between insect species (one guild) and plant species (the other guild).
In detail, the networks depict different communities where macrolepidopteran species
feed on several Prunus species.

• 4 (3) Plant-ant networks. These networks include two examples of diverse types of
communities: a network depicting ants which feed on plant nectar, this being a consumer-
resource interaction, and two networks representing communities where ant species live
in a mutualistic association with certain plant species known as Myrmecophytes.

A.2 Economic networks

In Chapter 4 we studied as well a set of economic networks, which are publicly available
in Hernandez et al. (2018). In particular, these data consist of:

1Publicly available at: www.web-of-life.es
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• 8 economic networks representing buyers-sellers interactions in the Boulogne-sur-Mer
Fish Market in France (Hernández et al., 2018). These are mutualistic networks taken
from a very different context. Each network describes the transactions observed in
different days in the bilateral or in the auction Fish Market. These daily networks are
typically much denser than ecological ones.

A.3 Phenology and plant-pollinator networks

We used two public datasets which contain observations of mutualistic interactions in plant-
pollinator systems together with their phenology. We detail the peculiarities of each dataset
below.

The Illinois dataset

The dataset gathered by Burkle et al. (2013) corresponds to a set of woodland sites in
Carlinville, Illinois (USA), observed during the springs of 2009 and 2010 from March to
May 2. The observed network of mutualistic interactions contained originally 26 spring-
blooming herbaceous plants and 54 bee species. However, 2 plant species did not exhibit
any interaction in the empirical network, so we removed them of the analysis and obtained
eventually a 24× 54 network.

The dataset also included the observed phenology, specifically the starting and ending
dates of the active stages of both plants and pollinators. Using those, we extracted as well
their periods of activity and the middle dates.

The Lesvos Island dataset

The dataset recorded by Kantsa et al. (2018) is based on a two years study conducted in
Aglios Stefanos, Lesvos Island (Greece) during the springs of 2011 and 2012 from April
to July. The published dataset 3 includes the aggregated network of interactions over the
two years, composed by 41 plant species and 168 pollinators. Moreover, it provides as well
mixed information of phenology, including one-year observations and two-years averages.
Nonetheless, Kantsa et al. shared with us the observed phenology for each year separately,
that is, the starting and ending date of activity for each species in both seasons. Using these,
we obtained as well their periods and middle dates.

Remarkably, a large portion of the pollinator species are present in only one of the
seasons. In particular, out of the total 168 pollinator species observed along the two years,
only 67 species (39.9%) were persistently found in both seasons, while 53 species (31.5%)
were observed just during the first year and 48 species (28.6%) just during the second year of
observation. This implies that not only there is an important turnover of interactions among
the two consecutive years, but also there is a considerable species turnover, as suggested as
well by previous studies (Olesen et al., 2008; Chacoff et al., 2018).

In order to obtain the network of interactions specific to each year, we removed those
interactions present in the aggregated network that, after including the corresponding
information on phenology, occur among species whose periods of activity do not overlap. In
such cases, it is clear that the interaction was not possible due to the lack of phenological
overlap and hence we can remove it from the yearly network. After doing so for each season,
we removed as well those species that do no longer hold mutualistic interactions –i.e. they
have zero degree. As a result, both year-specific networks sizes’ are reduced to 34 plants
species and 113 pollinators in the first year, and 38 plant species and 104 pollinators in the
second year of observations.

This method partly approximates the network of interactions corresponding to each
year, in the sense that we might be slightly overestimating the number of interactions
and underestimating the turnover by keeping all the plausible interactions present in the

2The original dataset is publicly available at: https://doi.org/10.5061/dryad.rp321
3The original dataset is publicly available partly as Supplementary Material of the article, partly as a

repository at: https://figshare.com/articles/dataset/Data_from_Disentangling_the_role_of_floral_sensory_stimuli_
to_pollination_networks_/5663455
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aggregated network. However, in the absence of a more detailed dataset, it is arguably a
valid estimation since it entirely respects the ecological niches.
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APPENDIX B

Computational implementation of the
null model

Here I give the numerical details on how I obtained the Lagrange multipliers ~x∗ and ~y∗ that
define the corresponding statistical ensembles of the empirical networks. The determination of
these multipliers might be achieved following either of two procedures: by directly maximizing
the log-likelihood in Eq. 3.11 or by solving the non-linear, coupled set of equations in 3.12-
3.13. While in this section I present our particular implementation for bipartite graphs,
there is a Matlab package developed by Squartini et al. (2015) which numerically solves this
optimization problem for a variety of types of unipartite graphs and constraints 1. The main
difference between their implementation and our approach lies in the numerical functions
used to find the optimal Lagrange multipliers. Whereas their package uses a local optimizing
function 2, I made a special effort to ensure that the maxima found are global, in particular,
by combining the use of a global search algorithm with a local optimization function repeated
over a large set of pseudo-random initial conditions.

B.1 Constrained maximization of the entropy

I numerically optimized the log-likelihood by simulated annealing (Corana et al., 1987; Goffe
et al., 1994, 1996). Given the pseudo-aleatory character of this approach, which allows to
overcome the barriers separating local minima, it is extendedly used in situations in which
the co-existence of several local optima is expected.

More precisely, in our case we need to take into account that in Eq. 3.11 the degrees
may be degenerate. This means that nodes of the same guild having identical degrees satisfy
equivalent equations, hence necessarily bearing the same solution. To account for this, I
introduced a multiplicity factor mp for plants and ma for animals. If we call redP and redA
the redundancy for plants and for animals (namely, the corresponding numbers of repeated
degrees), then the system can be redimensionalized to N ′P = NP −redP and N ′A = NA−redA.
This procedure is an extension to the bipartite case of the redimensionalization proposed
in Garlaschelli and Loffredo (2008) for a unipartite network. Consequently, the log-likelihood
might be rewritten into:

L(~x) =
N ′P∑
p=1

mpvp ln(xp) +
N ′A∑
a=1

maha ln(ya)−
N ′A∑
a=1

N ′P∑
p=1

mpma ln(1 + xpya) (B.1)

1The package implements the entire ‘Max&Sam’ methodology for a general unipartite setting. It provides
the functions to find the numerical solution for the maximum entropy ensemble under a number of different
constraints for both undirected or directed networks, binary or weighted. Moreover it permits to sample
the resulting ensemble. The package is freely available online at https://it.mathworks.com/matlabcentral/
fileexchange/46912-max-sam-package-zip. The bipartite case can be reproduced, using this package, by
redefining the directed unipartite case in such a way that one guild solely has out-going links, while the other
only has incoming links. The formal analogue of preserving the average degree sequences of both guilds
would be now to constrain, in average, the in-degree and out-degree sequences.

2One can find the documentation of the Matlab function they used to solve the optimization problem
in https://es.mathworks.com/help/optim/ug/fmincon.html.
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B. Computational implementation of the null model

Although, in analytical terms, the original expression in Eq. 3.11 and this latter one are
obviously equivalent, from a computational point of view reducing the number of variables
enhances the algorithm’s efficiency. Besides, imposing from the beginning such identity
between variables improves the accuracy of the program.

I have programmed a standard version of the simulated annealing algorithm. The
random number generator used is the one by Toral and Chakrabarti (1993), with a starting
temperature of T = 103, a reduction factor of the temperature of RT = 0.85, and a total
number of updates per fixed temperature of 2 ·104. The algorithm stops when five consecutive
iterations differ in less than a parameter tol = 10−6. Furthermore, I ran the algorithm 10
times per network with different random seeds, in order to produce independent sequences
of explorations. It is considered that the global optimum has been reached when all the runs
converge to the same solution.

B.2 Local solution of the system of equations

I have solved the set of equations by means of a local, deterministic algorithm known as the
modified Powell hybrid method. In particular, I used the MINPACK library (Moré et al., 1980)
for FORTRAN, available online (Burton S. Garbow, Burton S. Garbow). This method finds
the zero of a non-linear system by exploiting its Jacobian, which I analytically calculated
and implemented into the program.

As before, we may re-dimensionalize the problem to N ′P equations for plants and N ′A
equations for animals, which now read:

vp =
N ′A∑
a=1

maxpya
1 + xpya

for p = 1, ..., N ′P , (B.2)

ha =
N ′P∑
p=1

mpxpya
1 + xpya

for a = 1, ..., N ′A. (B.3)

I implemented these equations and their Jacobian and ran the algorithm with a tolerance
tol = 10−11 (as defined in the source code). The possibility of exploiting the gradient provides,
in general, a greater local accuracy than the simulated annealing technique. However, its
shortcoming lies on the risk of getting trapped in local optima, from which, due to its
deterministic nature, it is unable to escape. To compensate this drawback I performed
a significant sampling of the space of initial conditions, by running 104 iterations of the
algorithm, each with a different random selection of starting points, covering as well distinct
ranges. However, due to the encounter of rough, rather accidental configuration surfaces, the
modified Powell hybrid method was not always able to converge to a solution. The rate of
success was approximately 50%.

To finally ensure that the maximum found is global, I compared the outcomes of the
various independent runs. Moreover, for the cases when the Powell algorithm converged, I
could also compare the solutions obtained for both methods which amounts to a total of 10
runs for the simulated annealing and 104 for the Powell hybrid method. In all these cases
same maximum was found.

I have also checked that the constraints are correctly met with a relative precision between
0.01% and 10%, by computing the expected degrees from Eq. 3.12-3.13 and comparing to
the corresponding values of the observed networks. The worst case of 10% was typically
caused by discrepancies in low degrees, generally the most sensitive to imprecisions in the
elements of the randomized matrix given that the matrix elements of low degree nodes are
usually very small (see Fig. 3.4 in main text as an example).
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APPENDIX C

Statistical measures for stable-NODF

C.1 Analytical expressions for the first two moments of stable-NODF

The analytical expression for the average of s-NODF over the ensemble is:

〈s-NODF(B)〉∗ = 1
K

NP∑
i<j

·
NA∑
a=1
〈bia〉 〈bja〉

NA∑
a=1
〈bja〉

+ 1
K

NA∑
k<l

·
NP∑
p=1
〈bpk〉 〈bpl〉

NP∑
p=1
〈bpl〉

 . (C.1)

The standard deviation of s-NODF is given by the analogous of Eqs. 3.26-3.27, where the
partial derivatives in Eq. 3.27 correspond to:

K
∂ s-NODF(B)plants

∂brc
=

NP∑
j=r+1

bjc
vj

+
r−1∑
i=1

bic
vr
−

r−1∑
i=1

NA∑
a=1

bia bra
vr2 (C.2)

K
∂ s-NODF(B)animals

∂brc
=

NA∑
l=c+1

brl
hl

+
c−1∑
k=1

brk
hc
−

c−1∑
k=1

NP∑
p=1

bpk bpc

hc
2 , (C.3)

C.2 Statistical measures of stable-NODF

We have computed the real nestedness and its statistical significance using stable-NODF, for
the 167 networks in our dataset. In particular, for each real network we have calculated the
estimated average and the standard deviation using the analytical expressions in Eq. C.1 and
Eqs. C.2-C.3. Fig. C.1 and Table C.1 show that real nestedness is not statistical significant
when measured by stable-NODF either.

Fraction of ntws with |z-score| ≤ 1 Fraction of ntws with |z-score| ≤ 2

118 out of 167 70.7% 162 out of 167 97.0%

Table C.1: Fraction of networks whose discrepancy between the real and randomized
nestedness is less or equal than one or two sigma, for nestedness measures performed with
stable-NODF.
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Figure C.1: Comparison between the real measure of stable-NODF and its average in the
ensemble estimated using an analytical expression, for the 167 networks of our study.
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APPENDIX D

Additional methods to assess the
significance of nested patterns

D.1 Significance tests

I quantified the significance of the nestedness measures using the z-score index, which for
a general property x reads: x∗−〈x〉

σx
. For us, 〈x〉 is the average nestedness computed in the

ensemble, either analytically or by explicit sampling, and we compare it with the empirical
observations x∗. The standard deviation is σx. Given that the NODF values are Gaussian
distributed in the random ensemble, the z-scores can be directly related to p-values.

Moreover, I performed a multiple test correction which allows accounting for the fact
that as the number of statistical tests increases, so does the probability of finding rare
events (Benjamini and Hochberg, 1995). Thus, considering the multiple comparisons prevents
overstating the number of significant discoveries. It is pertinent to apply this technique
here since the 167 cases studied are evaluated under the same null hypothesis and all of
them follow a normal distribution. I employed the false discovery rate method, in particular
the Benjamini-Hochberg procedure which applies to independent tests (Benjamini and
Hochberg, 1995). The correction was numerically carried out using the StatsModel package
in Python (Seabold and Perktold, 2010).

D.2 Self organizing network model

In order to reorganize the original network into an even more nested structure, we numerically
implemented the self-organizing network model proposed by Burgos et al. (2007). This
methodology keeps constant many aspects susceptible to affect the measure of nestedness, like
the size and fill, but modifies the degree sequences through the redistribution of connections.
We rewired the links among species following two simple rules: i) when changing an
interaction, the new partner must have higher degree than the old neighbor ii) if the
proposed redistribution leaves one of the two nodes with no interactions at all, we reject
the change. This operation was repeated until the system achieved a frozen state in which
no more reconnections were accepted (we considered this happened when 103N consecutive
rejections occurred, being N the number of nodes of the network). The final frozen state is
normally not perfectly nested, since condition (ii) typically leads to configurations which are
not utterly optimal. To compensate this, we carried out 103 independent rewiring operations
for each network. We then averaged the target properties, namely, nestedness (measured
using NODF) and the variance of the joint degree sequence of the two guilds.

D.3 Statistical measures of degree assortativity

Assortativity is a network feature that quantifies to what extent nodes tend to match
other nodes that are similar (or dissimilar) to them. Here, we used the notion of degree
assortativity. We followed the definition proposed by Newman (2002), which consists of a
normalized correlation coefficient between degrees. This eventually corresponds to the Pearson
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Figure D.1: Relation between the degree assortativity and the nestedness for the real network
(in pink) and the average measure for the randomised case (in blue).

correlation coefficient denoted by r, such that r = −1 indicates perfect disassortativity, r = 0
no correlation at all and r = 1 maximum assortativity.

In order to compute the statistical properties of this quantity, we produced for each
ensemble a sampling made up by 104 networks. We then measured computationally the
assortativity of each sampled network using the assortativity_degree function from the igraph
package in R (Csardi, Csardi). Fig. D.1 displays the anti-correlation between the Pearson’s
coefficient and nestedness, showing that, in general, the more dissortativity a network is
the more nested. Finally this allowed us to calculate the first and second moments of the
assortativity for each ensemble in our set.
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APPENDIX E

Measures of nestedness on a sampling

E.1 Statistical measures of NODF on a sampling

Effect of the NODF’s normalization

Null networks obtained by sampling the canonical ensemble may include nodes with no
interactions and, hence, degree zero. Typically, this corresponds to nodes with low degree
in the real network, which are very common in ecological networks having fat-tailed degree
distributions. Such zero-degree nodes pose a dilemma when measuring certain network
properties which involve normalizing by the size of the network (or a related quantity). This
happens, in fact, for NODF, which is normalized by the total number of pairs of rows and of
columns.

In particular, we may consider two different criteria for normalizing NODF:

• Homogeneous normalization. The dimension is calculated including the zero-degree
nodes, so that the size is held constant and equal to the original one. This has the
advantage that, since the degree sequences are preserved on average and so is the size,
the density of links is preserved on average (and equal to the empirical one). Moreover,
from a conceptual perspective it makes sense to consider nodes that are present in
the system but not interacting -e.g. a plant which is flowering but is not visited by
pollinators-.

• Heterogeneous normalization. We may consider as well not to count the zero-
degree nodes, which entails that the size of the network changes from one sampled
network to another. In this case, the sampled networks are typically smaller that the
original one (see Fig. E.1) and, since the degree sequences are still preserved on average,
the average density of links on the ensemble differs from the empirical value (actually,
it is larger).

The homogeneous choice is more appropriate, since it keeps constant the density of links
(an equal to the real value) and it is conceptually sound. Importantly, choosing one or
another normalization has a strong impact on the resulting value of NODF, as can be seen in
Fig. E.2. Indeed, the heterogeneous normalization leads to a significant discrepancy between
the analytical and sampled average, being the sampled average systematically larger than
the analytical prediction. On the other hand, by using the homogeneous normalization
this discrepancy falls within two standard deviations, meaning that the two measures are
statistically compatible.

Altogether, this effect is driven, mainly, by the strong dependency of NODF on the
density of links, that has been explictly quantified in Chapter 4. Indeed, given that in the
heterogeneous choice smaller networks tend to have a larger density of links, the resulting
NODF is biased towards larger values. Consequently, we chose to estimate the distribution
of NODF using the homogeneous normalization.
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E. Measures of nestedness on a sampling

Figure E.1: Comparison between the real (in blue) and sampled values (in green) of NODF
and size, obtained by neglecting zero-degree nodes. Calculations are made over an empirical
pollination network composed by 259 species, and the sampling includes 104 null networks.

a) Heterogeneous normalization b) Homogeneous normalization

Figure E.2: Comparision between the sampled average and the analytical average, measured
by NODF, for a set of real mutualistic networks. The expression for the analytical average is
the same for both a) and b). However, in a) the sampled average is calculated by excluding
from the normalization the nodes with zero degree. Instead, b) keeps the normalization
factor constant.

Fraction of ntws with |z-score| ≤ 1 Fraction of ntws with |z-score| ≤ 2

108 out of 167 64.7% 150 out of 167 89.8%

Table E.1: Fraction of networks whose discrepancy between the real and randomized
nestedness is less or equal than one or two sigma, for NODF distributions estimated on a
sampling of the ensemble.

Results using the homogeneous normalization

Using the homogeneous normalization, we performed the statistical measures of NODF on a
sampling of the ensemble. The sampling is formed by 104 networks generated using the link
probabilities in Eq. 3.17 for each one of the 167 empirical networks of the study. As we can
see in Fig. E.3 and Table E.1, the real value of nestedness and the average over the sampling
are statistically compatible.

122



E.2. Statistical measures of spectral radius on a sampling
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Figure E.3: Comparison between the real measure of NODF and the average computed over
the sampling formed by 104 networks, for the 167 networks of our study.
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Figure E.4: Comparison between the real observation of the spectral radius ρ(λ) and the
average estimated over a sampling of the statistical ensemble formed by 104 networks, for
the 167 networks of our study.

E.2 Statistical measures of spectral radius on a sampling

We carried out as well the calculations for the expected average and standard deviation of the
spectral radius on a sampling. To this end, we sampled the statistical ensemble by producing
104 networks. For each sampled network we computed the spectral radius, ρ, using the R
package rARPACK Qiu and Mei (Qiu and Mei). Finally, we calculated the average and the
standard deviation of the resulting distribution. Fig. E.4 and table E.2 show the comparison
between the real value of spectral radius and the average computed over the ensemble, which
turn out to be statistically compatible.

It is important to remark that the sampling and the theoretical approach provide slightly
different measures of nestedness when using the spectral radius. This is due to the non-
normalized character of the spectral radius, which sets a dependence both on the size of the
network and its number of links. Indeed, a superior bound for the spectral radius which
depends on these quantities is given by Hong Yuan (1988), who proposed that, for a connected
graph A having N nodes and L links, it is fulfilled that: ρ(A) ≤

√
2L−N + 1. In fact, when

sampling the ensemble, the number of links is conserved in average, but the average number
of nodes with non-zero degree decreases. This entails that the average density grows and,
consequently, so does the spectral radius. This explains the difference between the measures
over the sampling and the theoretical ones, and calls for special caution when using the
spectral radius to quantify nested patterns.
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E. Measures of nestedness on a sampling

Fraction of ntws with |z-score| ≤ 1 Fraction of ntws with |z-score| ≤ 2

84 out of 167 50.3% 149 out of 167 89.2%

Table E.2: Fraction of networks whose discrepancy between the real and randomized
nestedness is less or equal than one or two sigma. Nestedness is measured with the spectral
radius ρ(λ).
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APPENDIX F

Methods for assessing nestedness’
metrics performance

F.1 Computation of the nestedness index for each of the studied
metrics

Temperature

We calculated the temperature metrics using the R software (R Core Team, 2013) and,
specifically, the bipartite package (Dormann et al., 2009) version 1.13.0. In particular, we
used the nested function and we set as method the binmatnest2 option. This calculates the
temperature metrics by using an implementation by Jari Oksanen (Oksanen et al., 2017) of
the binmatnest program by Rodríguez-Gironés and Santamaría (2006). We have redefined
the resulting temperature in order to uniform the interpretation of the values yielded by
all the metrics such that the higher the value of the corresponding index, the higher the
nestedness.

NMD

We calculated the nestedness metrics based in the Manhattan distance (NMD) using the R
software (R Core Team, 2013). We used the nestedness.corso function (currently deprecated)
from the bipartite package (Dormann et al., 2009) version 0.90. For each measure (both
for the real networks and the sampled networks), we set the number of null networks that
eventually permits evaluating the significance to 500. Again, we redefined the index to
simplify the interpretation of results.

NODF

We wrote a program in FORTRAN90 that computes the NODF and stable-NODF metrics
for the real networks, as well as for the corresponding set of null networks.

Importantly, when performing the calculations over the sample of null networks, we
kept the same normalization for all sampled networks. That is, we divided the number of
overlapping connections, calculated for each null network, by the original number of rows
and columns, independently of whether some of the nodes came to have zero degree in the
null network.

Discrepancy

We computed the discrepancy metrics using the R software R Core Team (2013) and the
bipartite package (Dormann et al., 2009) version 1.13.0. In particular, we performed the
calculation using the method discrepancy from the nested function.

The final nestedness value measured is directly proportional to the density of links and
size of the network. With the aim of removing such dependencies, we divided the resulting
value of the metrics by the total numbers of links. This results in a relative discrepancy.
Once again, we finally rescaled the index in to obtain the same monotonic variation for all
the indices.
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F. Methods for assessing nestedness’ metrics performance

NIR

We implemented a program in FORTRAN90 that calculates the NIR value of the real network
and of the corresponding set of null networks. In each case, the resulting value of nestedness
is multiplied by 100 in order to preserve the same scale for all the metrics.

In order to account for the possible effects of the degeneracy in the ordering, that is,
the fact that multiple configurations are possible when we order rows and columns by their
degree, we computed the resulting NIR as the average over a large number of equivalently
ordered configurations. These configurations were produced by randomly swapping the
matrix position of nodes with the same degree. In more detail, to generate a new ordering
we run over all the nodes with degenerate degree and, for each node, we accept a position
swap with probability 1

2 .
For each real network, we calculated the degeneracy, ideg, the number of repeated degrees.

Then, we produced a total of 10 · ideg configurations with the same degree order but diverse
row and column positions. This procedure was carried out both for the real network and for
each null network in the sampling with the exception of the Robertson’s network (Robertson,
1929) for which, due to its very large size (1500 species), only 10 degenerate configurations
have been computed.

Spectral radius

We computed the largest eigenvalue using the R software (R Core Team, 2013), in particular
the eigs_sym function from the rARPACK package.

F.2 Correlations among metrics and network features

The statistical correlations were numerically calculated using Python. The Spearman rank
correlation coefficient rs and its p-value were calculated using the Scipy package (?), in
particular the scipy.stats.spearmanr function.

We performed the linear fits using the Statsmodels package (Seabold and Perktold, 2010),
which carries out a multi-linear least-square regression and provides multiple information,
including the adjusted R2, the partial regression coefficients, their standard deviation and
their associated p-value. The t-ratioi,j corresponding to each partial regression coefficient,
βi,j , is calculated as follows:

t− ratioi,j = βi,j
σi,j

(F.1)

where σi,j is the standard deviation associated to that coefficient. This index provides,
hence, information on how significantly different from zero is a certain regression coefficient.
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APPENDIX G

The nullnest repository

In order to complement the theoretical work presented in Chapters 3 and 4, I released an open
github repository named nullnest 1 that aims at being a practical tool, for both ecologists
and network scientist, to assess the nestedness of real and null networks. The repository is
thoroughly documented, with examples and ready-to-use programs, and allows performing
the analysis discussed in Payrató-Borràs et al. (2019) and Payrató-Borràs et al. (2020).

The nullnest repository is divided into two main blocks. The first part is related to the
construction of the null model. In particular, it provides a program to compute the maximum-
entropy and maximum-likelihood ensemble discussed in section 3.2 for any bipartite network
introduced by the user. It also contains the ready-to-use probabilities of interaction in the
null ensemble, for the whole dataset of empirical networks described in the Appendix A.
On the other hand, the second part of the package is concerned with the measurement of
nestedness. In detail, we provide the codes to quantify the real degree of nestedness of
a given matrix, together with the first two moments of its null distribution, using any of
the six metrics discussed in the first part of the thesis. This can be done either by using
the analytical expressions derived in Payrató-Borràs et al. (2019) (only for NODF and the
spectral radius) or by numerically sampling the null ensemble, for any of the six metrics
studied in Payrató-Borràs et al. (2020).

1The codes and the accompanying documentation can be downloaded at: https://github.com/cclaualc/
nullnest.
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APPENDIX H

Statistical tests on phenology

H.1 Quality of a fit using the Kolmogorov-Smirnov test

In order to assess the quality of the fit and obtain its corresponding p-value, we start by
performing a Kolmogorov-Smirnov one-sample test between the fitted function and the
empirical distribution, using the stats.kstest software from the SciPy package (Virtanen
et al., 2020) in Python. Next, in order to determine its p-value we explicitly compare the
obtained KS-value with the expected statistics, sampled using Monte Carlo simulations.

In more detail, we proceed as follows:

• We calculate the K-S test statistics –using the SciPy software–, that we may call
Dobs, between the empirical distribution and the fitted function, whose parameters are
estimated using the maximum likelihood fitting software from the stats function in
SciPy.

• Using Monte Carlo methods, we generate a sample of size Nsampl composed by synthetic
distributions, each sampled from the fitted function and having the same size as the
observed, empirical distribution.

• For each synthetic sample indexed by i, we fit a function using the same functional
form as in the empirical case and using the maximum likelihood estimator from the
stats function in SciPy.

• We then calculate the K-S test statistics between this novel fit and the corresponding
synthetic sample, which produces a new distance that we will call Dsyn,i.

• Once this procedure has been repeated for all the synthetic distributions generated,
we can compare the observed K-S statistics Dobs with the distribution of Dsyn,i in the
sample.

After carrying out this computation, the p-value is then calculated as:

p-value = number of samples with Dsyn,i > Dobs + 1
Nsampl

, (H.1)

which, as normally, quantifies whether the observed KS distance Dobs differs significantly
from what would be expected if the observed distribution of periods was really generated by
the fitted function. Hence, when the p-value is sufficiently large the fit is compatible with
this assumption.

H.2 Kolmogorov-Smirnov two sample test

We programmed a Kolmogorov-Smirnov test on two samples by using the ks_2samp function
from the SciPy package. In detail, the K-S test for two samples permits challenging the null
hypothesis that two particular samples come from the same statistical distribution. The
smaller the KS distance, the smaller the discrepancy between the two samples. In the case
where the p-value is relatively small (e.g. p-value < 0.05) the difference among distribution
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is significant and hence the null hypothesis is rejected, which in our case implies that the
distribution produced by the given synthetic model is incompatible with the empirical
observations.

H.3 Kullback-Leibler divergence

The Kullback-Leibler divergence quantifies how one probability distributions Q(x) is different
from a second, reference distribution called P (x). In particular, the KL divergence from Q
to P is defined as:

DKL =
∑
x

P (x) logP (x)
Q(x) , (H.2)

and it measures the amount of information lost when approximating P (x) by Q(x). In
our case, we calculate this quantity taking as the reference function P (x) the empirical
distribution of phenological overlap, while Q(x) corresponds to distribution of phenological
overlaps produced by the null model under consideration. We implement this calculation in
a program in Python that uses the stats.entropy software from the SciPy package.

H.4 Pearson correlation with time lag

In order to calculate the Pearson correlation for different values of time lag, we take the
evolution of a given structural property in the synthetic model, and shift it alternatively
backwards or ahead in time. For each different value of time lag, we calculate the
corresponding Pearson coefficient between the synthetic, shifted array, and the unchanged
empirical vector. In particular, we use the stats.pearsonr software from the SciPy package
to compute the Pearson correlation. We repeat this procedure for a wide range of different
temporal lags, and eventually extract the maximum value. This also provides the time lag at
which the correlation among the empirical and the synthetic sequences is maximized.
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APPENDIX I

Numerical implementation of synthetic
models

In this appendix we explain the different numerical methods used to encounter the starting
dates of species’ activity, on the basis of different hypothesis and under the constrain that
mutualistic partners share a minimum phenological overlap.

First, we describe two numerical approaches to solve the problem of maintaining the
mutualistic overlap: (i) by shifting some given starting dates, (ii) by optimizing a certain
quantity within the constraints imposed by the non-zero overlap. Secondly, we explain how
we implemented these methods for each particular synthetic model.

I.1 Shift of starting dates

Here we introduce a method to shift a given set of initial times of activity, with the condition
that a minimal mutualistic overlap is preserved. The periods of activity, that we will denote
as pPi for a plant i and pAk for an animal k, are kept unchanged. We solely modify the timing
of the beginning of the activity of each species, where we note the initial time by tP0,i for each
plant i and tA0,k for each animal k.

The program takes as input the aforementioned information together with the starting
dates of activity, that, importantly, need to already fulfill the set of inequalities written in
Eqs. 5.7-5.8. This can be achieved by taking, depending on the case, a trivial solution –e.g.
the same starting dates for all species– or the empirical dataset –if available. Then, the
proposal of the novel starting dates is done under the condition that a non-zero amount of
temporal overlap between interacting mutualistic partners must be preserved. In detail, we
impose, at least, 1 day of overlap, which is the minimal unit of phenology in the studied
datasets. To warrant that this occurs, we fix the following boundaries to the new initial
times. Let us call t′P0,i the novel time proposed for plant species i:

• The upper bound is given by the neighbor species whose activity ceases earlier. That
is, by the minimum of the set of times {tA0,k + pAk }, where k runs over the indexes
of the animal species interacting with plant i (so, if B is the bipartite matrix, those
fulfilling that Bi,k = 1). Let us illustrate this with the example on Fig. I.1. The upper
boundary for the initial flowering time of plant number 1 is given by the pollinator
that finishes pollinating earlier, which is animal number 1. Therefore, as can be seen
in the figure, the upper limit for {tP0,1} coincides with {tAf,1}.

• The lower bound is found by subtracting the period of plant i to the time at which
starts the last species. Thus, by the maximum of the set of times {tA0,k}, minus pPi .
In the example of Fig. I.1, the pollinator that begins its activity the latest is animal
number 3, at {tA0,3}. To {tA0,3}, we need to subtract the period of plant number 1 (in
yellow) in order to we recover the lower limit.

131



I. Numerical implementation of synthetic models

According to these criteria, the new starting dates of activity are extracted from the
following uniform distribution:

t′P0,i ⊂ U
(
max

(
{tA0,k}

)
− pPi + 1 , min

(
{tA0,k + pAk }

)
− 1

)
, (I.1)

where the 1 is respectively subtracted and added to the boundaries in order to ensure at
least one day of overlap between mututalistic partners.

Figure I.1: Example of a plant wich interacts mutualistically with three pollinator species.
We calculate the upper and lower boundaries for the new initial time of the plant t′P0,1 using,
respectively, the minimum final time of activity of its pollinators (here tAf,1 = tA0,1 + pA1 ) and
the maximal initial time (here tA0,3) minus the period of the plant (pP1 ). As can be seen in
the figure, to this boundaries we correspondingly added and substracted one day in order to
mantain at least one day of mutualistic overlap.

Note again that this procedure requires an initial configuration of starting dates, either
empirical or hypothetical, that is then randomized. Subsequently, the resulting set of starting
dates show some dependency on the initial configuration. As explained below, we exploit
this feature to generate synthetic phenologies that are approximately centered.

I.2 Constrained optimizations

Here we describe a second procedure to generate a set of starting dates that fulfills the
inequalities described in Eqs. 5.7-5.8. In contrast with the algorithm described in section I.1,
this method does not require any other input than the network of mutualistic interactions
and the periods, and hence there is no initial condition for the starting dates. Instead, we
seek a solution that, on the hand, verifies the system of coupled inequalities, and on the
other hand, optimizes a given quantity, described by an objective function.

In particular, given the constraints in Eqs. 5.7-5.8, we may use linear programming
techniques to find a feasible solution. Since L >> N , the problem is overdetermined, yet we
know already that it is consistent because there are some trivial solutions which satisfy all the
constraints -e.g., all species starting or finishing the same date-. However, we are particularly
interested in non-trivial solutions which can yield to realistic or statistically interesting
configurations of phenology. This leads to the introduction of the objective function, which
we will seek to optimize over the possible set of solutions. In sections I.4-I.6 we specify the
numerical implementation of different forms of this objective function, but the general form
of the algorithm is maintained.

In detail, we solve the constrained optimization problem defined by Eqs. 5.7-5.8 through
a two-step process. First, we perform multiple local optimizations with different initial
seeds, using the function minimize from the SciPy package in Python (Virtanen et al., 2020)
–specifically the method ’trust-constr ’. Second, we set these local solutions as the starting
population for a differential evolution algorithm, which performs a global stochastic search.
In particular we use the differential_evolution function from SciPy. This combination of
an iterative local search plus a global optimization aims at ensuring a robust finding of the
global optimum.
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I.3 Synchronized phenology

In order to produce a configuration where species’ periods are relatively synchronized, we
proceed in several steps. First, we set the middle dates by sampling a normal probability
distribution. Once the medium dates are determined, the location of the period of each
species’ periods along the seasons is randomized using an algorithmic procedure which
conserves the mutualistic interactions provided by the empirical network.

In more detail, we programmed a software in Python that operates as follows:

• We select one of the guilds (for instance, the pollinators) and determine their starting
dates by extracting their middle dates from a normal distribution with standard
deviation σ = 0.5 days and mean µ = 120 days.

• We then set the starting dates for the other guild, by using the randomization process
explained in section I.1 of this appendix. In detail, we determine the range -maximum
and minimum dates- within which we can extract a random starting date while ensuring
that the mutualistic overlap will not be lost. This novel starting date is extracted from
a uniform distribution.

• To finish, we re-randomize again the first guild, using the same procedure as in the
previous step, in order to relax the assumption of the normality of middle times of
activity.

Indeed, we repeat steps (ii) and (iii) iteratively several times in order to improve
the randomization. This eventually yields a non-perfectly synchronized configuration of
phenology.

I.4 Minimization of the competition

In order to find the configuration that, under the mentioned constraints, minimizes the
competition, we apply the numerical algorithm described in section I.2 where the objective
function is the total competitive overlap. In detail, at each iteration of the optimization
algorithm, we calculate the total sum of unnormalized phenological overlap among all
competitors, including both competition among plants and among pollinators.

I.5 Maximization of the variance

We perform a constrained search that maximizes the variance of the middle dates by using
the algorithm described in section I.2. In this case, the objective function corresponds to the
variance, and it is calculated at each iteration of the optimization process.

I.6 Maximization of the entropy

In this model, we find the phenological configuration that maximizes the entropy by using
the algorithm explained in section I.2. The objective function corresponds here to the
Shannon-Gibbs entropy of the middle dates, as defined in Eq. 5.11, which we explicitly
computed using the Python software.
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Numerical integration of the population
model

We simulated the community dynamics as provided by Eq. 6.1 and its counterpart for
animals for the aggregated network, and by Eqs. 6.3-6.4 for the network weighted with the
phenological overlaps. Each simulation starts from random initial conditions of the relative
abundances that are taken at random from a uniform distribution in the interval [0.05, 0.95].

Following references Bastolla et al. (2009); Rohr et al. (2014); Gracia-Lázaro et al.
(2018) we take the values of αP,Ai from a uniform distribution in [0.9, 1.1], the intra-species
competition parameter is fixed to βP,Aj = 5 and the Holling term to hP,A = 0.1. For simplicity,
we assume that competition and mutualism parameters take the same values for plants
and animals. After a transient, equilibrium is assumed when all the species’ frequencies
remain constant: at that point, we keep the information on final abundances and number of
surviving species. A species is considered extinct when its relative abundance is lower than
10−9. This process is repeated for different values of the interaction strength, that is, we
modulate β for competition and γ for mutualism homogeneously for all plant and all animal
species. Eventually, this provides a heatmap of biodiversity for each pair of β and γ values,
as plotted in Fig. 6.2.
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APPENDIX K

Translation of summarized conclusions

K.1 Conclusions in French

Depuis que Darwin a introduit sa fameuse métaphore du ‘rivage luxuriante’ pour décrire la
complexité des communautés écologiques, les interactions entre les espèces sont considérées
comme des déterminants cruciaux de la structure et de la dynamique des écosystèmes
naturels. Cependant, jusqu’à il y a quelques décennies, la plupart de ces travaux soulignaient
principalement l’importance des relations antagonistes, laissant de côté les interactions
mutualistes – qui étaient considérées comme curieuses du point de vue de l’histoire naturelle
mais peu pertinentes (Bronstein, 1994). Aujourd’hui, nous savons que le mutualisme joue
en réalité un rôle central dans l’organisation des communautés écologiques, et qu’il est
en fait possible de trouver des relations mutuelles dans une multitude d’écosystèmes à
travers le monde, à travers différentes échelles spatiales et entre différents types d’organismes
(Bascompte and Jordano, 2013).

Dans cette thèse, nous avons étudié les systèmes mutualistes du point de vue du formalisme
de réseaux complexes, considérant ces communautés comme un exemple paradigmatique de
systèmes complexes. Toutefois, la représentation en réseau implique une tension inhérente
entre la nécessité de fournir une description stylisée de l’écosystème permettant de détecter
et de comprendre leur propriétés généraux et, d’autre part, le risque d’une simplification
excessive, en omettant des détails pertinents de la structure ou de la dynamique. En d’autres
termes, en construisant un réseau, nous sommes confrontés au défi de savoir quelle quantité
minimale d’informations est nécessaire pour obtenir une représentation fidèle du système,
par rapport, bien sûr, aux questions auxquelles nous voudrions répondre.

Cette tension entre nécessité de simplification et attention au détail se reflète dans les
deux parties où cette thèse est organisée. En effet, tout au long de la première partie, nous
avons examiné la structure des réseaux mutualistes binaires afin d’enquêter sur l’apparition
d’un proprieté structurel répandue appelé imbrication. En utilisant un modèle nul basé
sur le principe d’entropie maximale, nous avons montré que cet structure peut s’expliquer
naturellement par un ensemble réduit de propriétés fondamentales du réseau, à savoir les
séquences de degrés. Cette constatation n’a pas seulement d’importantes conséquences
sur la question de savoir quels indices structurels doivent être abordés pour caractériser
la dynamique des systèmes mutualistes, mais aussi sur notre conception de comment les
écosystèmes se forment et évoluent au fil du temps. Ensuite, en appliquant de nouveau le
modèle nul construit, nous avons exploré le fonctionnement et la performance de différentes
métriques, établissant la difficulté de trouver un outil impartial pour quantifier et classifier
universellement les systèmes imbriqués.

Dans la deuxième partie de cette thèse, nous avons suivi une voie différente et, si nous
avions auparavant recherché quelles étaient les informations minimales nécessaires pour
reproduire la structure des réseaux agrégés, ici nous nous demandons si la représentation
statique d’un réseau est réellement suffisamment réaliste ou, au contraire, si son manque
de détails fausse notre perception des communautés mutualistes. Premièrement, nous
avons exploré les conséquences structurelles de l’introduction de la variabilité temporelle
de la communauté, caractérisant deux ensembles de données empiriques à haute résolution.
En outre, nous avons proposé un ensemble de modèles destinés à générer, sous diverses
hypothèses, des configurations synthétiques de phénologie. À partir de leur comparaison
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avec les systèmes empiriques, nos résultats suggèrent que les modèles basés sur le principe de
l’entropie maximale reproduisent généralement bien, sous certaines restrictions, la phénologie
observée. En revanche, l’adéquation des modèles mécanistes semble dépendre fortement du
système étudié. Deuxièmement, en suivant naturellement ce fil de recherche, nous avons
abordé la question de savoir comment traduire l’existence de la variabilité temporelle dans
un cadre dynamique permettant d’évaluer l’influence de la phénologie sur la coexistence des
espèces, un sujet que nous examinons à titre préliminaire et qui nécessite des recherches plus
approfondies, notamment dans le contexte du changement climatique.

K.2 Conclusions in Spanish

Desde que Darwin introdujo su famosa metáfora del ‘ribazo enmarañado’ para describir la
complejidad de las comunidades ecológicas, las interacciones entre especies se consideran
determinantes cruciales de la estructura y la dinámica de los ecosistemas naturales. No
obstante, hasta hace solo unas décadas la mayoría de estos trabajos enfatizaban principalmente
la importancia de las relaciones antagónicas, dejando de lado las interacciones mutuamente
beneficiosas –que se consideraban curiosas des del punto de vista de la historia natural pero
al fin y al cabo poco relevantes (Bronstein, 1994). Hoy en día sabemos que el mutualismo
juega, en realidad, un papel central en la organización de las comunidades ecológicas, y que
de hecho es posible encontrar relaciones mutualistas en multitud de ecosistemas alrededor del
mundo, a través de diversas escalas espaciales, y entre tipos de organismos muy diferentes
(Bascompte and Jordano, 2013).

En esta tesis hemos estudiado los sistemas mutualistas desde el punto de vista
del formalismo de redes complejas, considerando estas comunidades como un ejemplo
paradigmático de los llamados sistemas complejos. Sin embargo, la representación en forma
de red implica una tensión inherente entre la necesidad de proporcionar una descripción
estilizada del ecosistema que permita detectar y comprender patrones generales y, por otra
parte, el riesgo de simplificar excesivamente, omitiendo detalles relevantes de la estructura
o la dinámica. Dicho de otro modo, al construir una red nos enfrentamos al reto de saber
cuál es la cantidad mínima de información necesaria para obtener una representación fiel del
sistema, en relación, por supuesto, a las preguntas que nos gustaría responder.

Esta tensión entre necesidad de simplificación y atención al detalle se refleja de alguna
manera en las dos partes en las que se organiza esta tesis. De hecho, a lo largo de la primera
parte hemos examinado la estructura de las redes mutualistas binarias con el fin de investigar
la aparición de un extendido patrón estructural, el llamado anidamiento. Usando un modelo
nulo basado en el principio de máxima entropía, hemos demostrado que este patrón puede
explicarse naturalmente por un conjunto reducido de propiedades fundamentales de la red,
concretamente las secuencias de grados. Este hallazgo no solo tiene importantes consecuencias
respecto la cuestión de qué índices estructurales deben ser abordados para caracterizar la
dinámica de los sistemas mutualistas, sino también sobre nuestra concepción de cómo los
ecosistemas se forman y evolucionan a través del tiempo. Seguidamente, aplicando una
vez más el modelo nulo construido, hemos explorado el funcionamiento y el rendimiento de
diferentes métricas, estableciendo la dificultad de encontrar una herramienta imparcial para
cuantificar y clasificar universalmente los patrones anidados.

En la segunda parte de esta tesis, hemos seguido un camino diferente y, si antes habíamos
investigado cuál es la mínima información necesaria para reproducir la estructura de las redes
agregadas, aquí nos preguntamos si la representación estática de una red es realmente lo
suficientemente realista, o, por el contrario, su falta de detalle distorsiona nuestra percepción
de las comunidades mutualistas. En primer lugar, hemos explorado las consecuencias
desde un punto de vista estructural de introducir la variabilidad temporal de la comunidad,
caracterizando dos conjuntos de datos empíricos de alta resolución. Además, hemos propuesto
un conjunto de modelos destinados a generar, bajo diversas hipótesis, configuraciones
sintéticas de fenología. A partir de su comparación con los sistemas empíricos, nuestros
resultados sugieren que los modelos basados en el principio de máxima entropía reproducen
generalmente bien –dadas ciertas restricciones– la fenología observada. En cambio, la
adecuación de los modelos mecanicistas parece ser sumamente dependiente del sistema
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estudiado. En segundo lugar, siguiendo de forma natural este hilo de investigación, hemos
abordado el problema de cómo traducir la existencia de la variabilidad temporal en un
marco dinámico que pueda permitir evaluar la influencia de la fenología en la coexistencia de
las especies, un tema que tratamos preliminarmente y que requiere una investigación más
detallada, especialmente en el contexto del cambio climático.
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