

Trabajo Fin de Grado

Ciencias Ambientales

Estudio y caracterización de un campo de dolinas en la Sierra de Guara mediante Sistemas de Información Geográfica.

Survey and characterization of a sinkholes field in Sierra de Guara through Geographic Information Systems.

Autor

Diego Albardía García

Director/es

Jesús Guerrero Iturbe

ESCUELA POLITÉCNICA SUPERIOR 2020

Índice

Resumen	6
Abstract	7
1. Introducción	8
1.1 Karst y dolinas	9
1.2 Antecedentes	12
2. Objetivos	14
3. Área de estudio	15
3.1 Clima	17
3.2 Geología	19
4. Metodología	21
5. Resultados	25
5.1 Evolución temporal entre 1956 y 2018	25
5.2 Comparación de MDT05 y LAS	26
5.3 Caracterización de las dolinas	27
6. Discusión	32
6. Discusión	32
6.1 Caracterización temporal y espacial de las dolinas	32
6.2 Morfometría de las dolinas	34
6.3 Origen de las dolinas	37
7. Conclusiones	37
Bibliografía	39
Listado de anexos:	40

Índice de tablas

Tabla 1: Comparación de la digitalización de las dolinas en los años 1956 y 2018. Fuente:	
Elab. propia	5
Tabla 2: Comparación de la digitalización de las dolinas en resoluciones de 5 y 1 metro.	
Fuente: Elab. propia	6
Tabla 3: Área mínima, máxima y media de las dolinas, con sumatorio de áreas. Fuente:	
Elab. propia	7
Tabla 4: Distancias entre dolinas. Fuente: Elab. propia	9
Tabla 5: Índice de distribución espacial de las dolinas de la zona de estudio. Fuente: Elab.	
propia3	0
Tabla 6: Índice de distribución espacial de las dolinas de la zona de estudio. Fuente: Elab.	
propia3	0
Tabla 7: Área, número de dolinas, densidad y área dolinizada de los campos de dolinas.	
Fuente: Elab. propia con datos propios y de Gracia, J. (1987) y Chueca, J. (1990)	4
Tabla 8: Índice de distribución espacial de los campos de dolinas. Fuente: Elab. propia con	
datos propios y de Gracia (1987)3	5
Tabla 9: Valor medio de elongación de las dolinas en los campos de dolinas. Fuente: Elab.	
propia con datos propios y de Gracia (1987) y Chueca (1990)	6

Índice de figuras

Figura 1: Comparación entre una dolina en MDE con 5 metros (izquierda) y 1 metro de
resolución (derecha). Fuente: Elab. propia9
Figura 2: Clasificación morfológica de las dolinas. Fuente: Peña, 2010
Figura 3: Principales tipos de dolinas según proceso y material. Fuente: Gutiérrez et al.,
200812
Figura 4: Zonas kársticas de las Sierras Exteriores. Fuente: Rodríguez, 198313
Figura 5: Mapa de localización de la zona de estudio. Fuente: Elab. propia
Figura 6: Vista de los Llanos de Cupierlo y el Tozal de Cubilás. Fuente: Elab. propia17
Figura 7: Temperaturas medias mensuales en el periodo 1961-1990. Fuente: Elab. propia a
partir de IAEST, 2020
Figura 8: Precipitaciones medias mensuales en el periodo 1981-2010. Fuente: Elab. propia
a partir de IAEST, 2020
Figura 9: Depósitos fósiles en rocas próximas a los Llanos de Cupierlo. Fuente: Elab. propia. 20
Figura 10: Número de dolinas dependiendo de su área, agrupadas cada 1000 m ² . Fuente:
Elab. propia
Figura 11: Posible uvala en los Llanos de Cupierlo. Fuente: Elab. propia
Figura 12: Rosa de direcciones con sumatorio de orientaciones del eje mayor de las
dolinas. Fuente: Elab. propia32

Resumen

Se ha realizado un estudio en el campo de dolinas de los Llanos de Cupierlo (Huesca) con intención de conocer su evolución y sus características. También se ha tratado de conocer cuál es la mejor metodología a seguir utilizando SIG.

Se han comparado ortofotos de 1956 y 2018 para conocer la evolución. Se han comparado archivos MDE de 5 y 1 metro de resolución de pixel. Se ha utilizado el MDE de 1 metro de resolución para conocer distintos parámetros de las dolinas: área dolinizada, densidad, índice de distribución espacial, pendiente, red de drenaje y orientación. Se ha utilizado bibliografía para conocer la geología de la zona.

Se observa crecimiento de número y área de dolinas, aunque la metodología utilizada se cree que no es conveniente. Los resultados obtenidos mediante la digitalización en el MDE de 1 metro son más precisos. Se obtiene un porcentaje de dolinización del 8,85 % y una densidad de 31,72 dolinas/km². La distribución de las dolinas en los Llanos es aleatoria. La orientación de las dolinas es NE-SO, coincidente con fallas presentes. El campo se ha generado debido a la escasa pendiente, al clima frío y lluvioso, y a la naturaleza caliza de la zona.

Palabras clave:

MDE, ortofotos, dolinización, LIDAR.

Abstract

A study has been carried out in the sinkhole field of the Llanos de Cupierlo (Huesca) with the intention of knowing its evolution and its characteristics. Also tried to know which is the best methodology using GIS applications.

Orthophotos from 1956 and 2018 have been compared to know their evolution. 5 and 1 meter pixel resolution DEM files have been compared. The 1 meter resolution DEM has been used to know different parameters of the sinkholes: dolinized area, density, spatial distribution index, slope, drainage network and orientation. Bibliography has been used to know the geology of the area.

There is a growth in sinkholes number and area, although the methodology used is believed to be inappropriate. The results obtained by digitizing in the 1 meter DEM are more accurate. A dolinization percentage of 8.85% and a density of 31.72 sinkholes/km² are obtained. The distribution of sinkholes in the Llanos is random. The orientation of the sinkholes is NE-SW, coinciding with faults present. The field has been generated due to the low slope, the cold and rainy climate, and the limestone nature of the area.

Keywords:

DEM, orthophotos, dolinization, LIDAR.

1. Introducción

Los Llanos de Cupierlo, situados en el Parque Natural de la Sierra y Cañones de Guara, en la provincia de Huesca, han sufrido un gran modelado kárstico, dando lugar al mayor campo de dolinas de todo Aragón. Si bien existen otros campos de dolinas a nivel autonómico tanto en calizas como en evaporitas, el campo de dolinas de los Llanos de Cupierlo es único por su ubicación en altura, su elevada densidad de dolinización y es el de mayores dimensiones de la provincia de Huesca (Gracia, 1987; Chueca, 1990). A pesar de que esta zona ya fue estudiada por Rodríguez Vidal e incluida en su Tesis Doctoral en 1983, contiene numerosas preguntas todavía sin responder referidas tanto a la distribución espacial y temporal como a los procesos genéticos implicados. Este trabajo busca la caracterización de este campo de dolinas, y conocer por qué aparecen en esta zona. Para ello resulta muy útil el uso de herramientas SIG (Sistemas de Información Geográfica), ya que permiten la obtención de un buen número de variables para poder caracterizar la zona y realizar un seguimiento de su evolución. Estas aplicaciones son especialmente útiles en lugares inaccesibles o de difícil acceso como es el caso de la presente zona de estudio, la cual se encuentra a 3 horas andando del lugar de aparcamiento. Existe un gran número de herramientas SIG a disposición del público, como mapas, ortofotos o modelos digitales de elevaciones (MDE) que permiten obtener información muy interesante sobre distintos parámetros geométricos (orientación, área, volumen, dirección del eje mayor y menor...), distribución espacial o evolución de las dolinas. Esta información se obtiene a través de distintos procesos realizados mediante aplicaciones como QGIS o ArcMap. Con el paso del tiempo, los SIG han ido perfeccionando sus herramientas. Una de estas evoluciones en las herramientas SIG es la capacidad de obtener archivos MDE con resoluciones más altas, lo que permite la obtención de datos mucho más precisos. A modo de ejemplo, en la Figura 1 se muestra la diferencia de una dolina en un MDE de 5 metros de resolución y en otro de 1 metro.

Figura 1: Comparación entre una dolina en MDE con 5 metros (izquierda) y 1 metro de resolución (derecha). Fuente: Elab. propia.

Como puede observarse, la diferencia entre ambas resoluciones es considerable. En la digitalización de estas dolinas, esta diferencia es muy significativa ya que puede dar datos distintos en posteriores procesos para su caracterización, como en el cálculo de áreas u orientaciones.

Utilizando la tesis de Rodríguez Vidal (1983) como base fundamental de este estudio, se cree conveniente el análisis de esta zona mediante tecnología más moderna, ya que exceptuando esta tesis, los estudios en la zona son escasos o nulos. Además, utilizando los estudios de Gracia (1987) y Chueca (1990), se ha realizado una comparación entre campos de dolinas para conocer las características de las dolinas de la zona de estudio.

1.1 Karst y dolinas

Se conoce como Karst a una forma de relieve de distintas características debido a la disolución de las rocas subyacentes. Por lo general, el modelado kárstico afecta principalmente a rocas calizas y a rocas evaporíticas, aunque también puede darse en rocas sedimentarias y metamórficas de composición mayormente carbonatada (Gutiérrez, 2001).

El constituyente principal de las rocas calizas es el carbonato de calcio (CaCO₃), el cual es poco soluble en agua pura (16 mg/l a 16°C de temperatura). Sin embargo, este compuesto reacciona con los ácidos. En la naturaleza, la combinación de CO₂ con H₂O da lugar a formación de ácido carbónico (H₂CO₃), el cual sí reacciona con el carbonato cálcico para formar bicarbonato de calcio (Ca(HCO₃)₂), que es soluble y fácilmente transportable por el agua. De este modo, su solubilidad varía entre 80 y 350 mg/l en función del contenido en CO₂. Como todos los gases la solubilidad del CO₂ disminuye conforme aumenta la temperatura y en consecuencia, la solubilidad de la caliza es mayor a bajas temperaturas (Galán, 1991).

Una de las principales formaciones exokársticas son las dolinas, también llamadas *sinkholes*, que se definen como depresiones cerradas en superficie relacionadas con la disolución en profundidad de materiales carbonatados o evaporíticos para formar cavidades cuyos techos flexionan o colapsan. Estas formaciones muestran una gran variedad de formas, así como de tamaños (Gutiérrez, 2001).

Atendiendo a la morfología de las dolinas, éstas se pueden clasificar en los siguientes tipos (Cvijic, 1983; Sweeting, 1972):

- En artesa o cubeta: Son los tipos de dolinas más frecuentes. Tienen fondos cubiertos por material insoluble. La relación diámetro/profundidad es de 1/10, y el ángulo de la vertiente es de 10°.
- En embudo: Estas dolinas poseen fondos cubiertos de detritos, en los cuales pueden aparecer conos de subsidencia. El fondo también puede ser plano, debido a los procesos de evolución de la ladera. Estas dolinas poseen un diámetro mayor que la profundidad.
- En pozo o ventana: Son dolinas con paredes muy verticales, en las que la profundidad es mucho mayor que la anchura.

Figura 2: Clasificación morfológica de las dolinas. Fuente: Peña, 2010.

Además de la clasificación morfológica mostrada en la Figura 2, existe una clasificación genética de las dolinas, que atiende a los tipos de procesos que intervienen en su formación y al tipo de material del terreno (Gutiérrez, Guerrero y Lucha, 2008). En esta clasificación se diferencian cuatro tipos de procesos, que distinguen cuatro tipos de dolinas:

- Dolinas de disolución (*solution*): Son formadas debido al ensanchamiento de diaclasas y planos de estratificación por disolución, cuando afloran rocas solubles a la superficie. La forma inicial de la depresión facilita la captura del drenaje superficial hacia la misma, acelerando su desarrollo. Estas dolinas provocan un hundimiento gradual y lento, y dan lugar a dolinas de artesa, cubeta o embudo.
- Dolinas de flexión (*sagging*): Son semejantes a las dolinas de disolución, aunque en este caso, el ensanchamiento de planos de discontinuidad se produce por agua que circula como flujo freático a través del material que aflora en la superficie. La disolución que se da lugar entre el material aflorante y el sustrato soluble hace que el techo del último vaya rebajándose progresivamente. Esto provoca que el material aflorante se flexione gradualmente acomodándose al techo del sustrato soluble. La flexión del material aflorante impide el desarrollo de cavidades.

- Dolinas de colapso (*collapse*): Se producen cuando la disolución en el contacto entre el material aflorante y el sustrato soluble da lugar a cavidades subterráneas, que pueden alcanzar grandes dimensiones. Cuando la cavidad alcanza un tamaño crítico, el material situado por encima del techo de esta se desploma dando lugar a una dolina con paredes verticales. El hundimiento de este tipo de dolinas es brusco, y por lo tanto, muy peligroso. Por lo general, están asociadas a un colapso puntual en partes estructuralmente débiles (a favor de fallas o diaclasas) de una galería subterránea.
- Dolinas de sufusión (*suffosion*): En este caso, la disolución se concentra a favor de diaclasas en el contacto entre la cobertera detrítica y el sustrato soluble, lo que da lugar a la formación de conductos de disolución. A través de estos conductos se produce la erosión y transporte de la cobertera detrítica. El proceso de hundimiento de estas dolinas en superficie suele ser gradual.

Los tres tipos de materiales que se identifican en esta clasificación son: Cobertera detrítica (*cover*), sustrato insoluble (*caprock*) y sustrato soluble (*bedrock*).

De la combinación de los cuatro tipos de proceso y los tres tipos de materiales se pueden clasificar las dolinas en ocho formas simples. Estas formas simples se muestran en la Figura 3:

Figura 3: Principales tipos de dolinas según proceso y material. Fuente: Gutiérrez et al., 2008.

1.2 Antecedentes

Rodríguez (1983) estudió las Sierras Exteriores en su Tesis Doctoral. En esta tesis habla sobre el modelado kárstico de la Sierra de Guara, en la que los materiales karstificables ocupan un

elevado porcentaje de la zona debido a su naturaleza principalmente caliza, aunque posee intercalaciones de rocas no solubles que sirven de separación a varias unidades hidrogeológicas. La variación de las zonas kársticas la representó mediante un mapa, el cual se muestra en la Figura 4:

Figura 4: Zonas kársticas de las Sierras Exteriores. Fuente: Rodríguez, 1983.

En este mapa se observa que las zonas kársticas sufren un ensanche progresivo desde el extremo occidental al oriental, ensanche que se produce debido a la orientación de pliegues dirección N-S, lo que hace que las calizas afloren en mayor extensión. Las potencias de estas calizas se ven también aumentadas progresivamente en dirección O-E, siendo la potencia en la Sierra de Guara entre 500 y 1.000 m.

En su tesis, Rodríguez (1983) estudió también las dolinas de los Llanos de Cupierlo. En su estudio observaba que las dolinas eran medianas y pequeñas, desde los 2 a los 200 m. de diámetro, poco profundas y alargadas, según un eje mayor. Atendiendo a la clasificación morfológica de Cvijic (1983), son dolinas en cubeta. Atendiendo a la clasificación genética de Birot (1966) y Sweeting (1972) se corresponden a dolinas de disolución normal. La mayoría de ellas son de fondo plano, con bordes rara vez escarpados y límites poco precisos. En este estudio llegan a contabilizarse 248 dolinas en un área de 8,4 km², obteniéndose una densidad de 29,5 dolinas/km² en la zona de Cupierlo. Mediante la orientación del eje mayor se aprecia una dirección de las

dolinas NNE-SSW, por lo que se observa un control estructural de las dolinas por macrofracturas de dirección NE-SW.

Existen otros campos de dolinas en Aragón, los cuales están asentados sobre materiales carbonatados, aunque más recientes (pertenecientes al Plioceno), como los estudiados por Gracia (1987) en el sector central de la Cordillera Ibérica. Este estudio se basa en el análisis morfométrico de varios campos de dolinas. Entre estos campos, el que destaca sobre los demás es el campo de Villarroya P2, el cual posee 203 dolinas en un área de 5,79 km², es decir, una densidad de 35,06 dolinas/km². Otro de estos campos, el de la Tortuera, posee 365 dolinas en un área de 49,03 km² (7,44 dolinas/km²). Además, también se estudian los campos de dolinas de Odón, El Villarejo y Villaroya P1, pertenecientes al mismo estudio de Gracia (1987), los cuales poseen una densidad de 6,52, 9,82 y 8,6 dolinas/km² respectivamente. Los valores de elongación obtenidos varían entre 1,66 y 1,95. En este estudio se observa también una clara coincidencia entre las orientaciones de las dolinas y las del diaclasado.

Chueca (1990) también estudió un campo de dolinas en la vertiente oriental del macizo Turbón (Huesca). Los análisis morfométricos realizados en este campo arrojan los siguientes resultados: área dolinizada de 0,482 km² en un área total de 2,58 km² (18,68% de área dolinizada). La densidad de las dolinas es de 35,65 dolinas/km². El valor de elongación obtenido es de 1,41.

2. Objetivos

El objetivo general del proyecto es la caracterización de las dolinas de los Llanos de Cupierlo mediante el uso de fotografías aéreas y distintas herramientas SIG con el fin de determinar la morfometría y distribución espacial de las dolinas. Finalmente, los datos obtenidos permitirán determinar los factores condicionantes en su génesis.

Los objetivos específicos se enumeran a continuación:

- Elaborar un mapa final con la red de drenaje y la geología de la zona que permita determinar la importancia de la hidrología y la litología en la distribución espacial de las dolinas.

 Realizar una cartografía de detalle del campo de dolinas de Cupierlo a una resolución de un metro. La digitalización de las dolinas se llevará a cabo mediante el uso de fotografías aéreas y modelos digitales del Terreno (MDT). - Conocer la evolución temporal de la zona en los últimos años, gracias al estudio seriado de fotografías aéreas y MDT desde el 1956 hasta la actualidad.

- Comparar la eficacia del uso de LIDAR de primera generación del CNIG frente a los MDT más antiguos, y de menor resolución. Los datos permitirán demostrar la importancia de la resolución en el estudio detallado de dolinas.

3. Área de estudio

La zona de estudio se sitúa en el Parque Natural de la Sierra y Cañones de Guara (Huesca), en las Sierras Exteriores aragonesas. Concretamente, al sur del antiguo municipio de Used y al norte de la localidad de Santa Cilia de Panzano. Está limitada al oeste por el río Guatizalema, y por el río Alcanadre al este. La zona de estudio abarca un área de 201 km², si bien desde el punto de vista geológico, la gran parte de este estudio se centra en los Llanos de Cupierlo, lugar que ha sufrido un gran modelado kárstico en forma de un campo de dolinas. En la Figura 5 puede verse la zona de estudio con los Llanos de Cupierlo delimitados:

Figura 5: Mapa de localización de la zona de estudio. Fuente: Elab. propia.

Dentro de la zona de estudio se encuentran la localidad Nocito y los antiguos municipios de Bentué de Nocito y Used. Pueden observarse también picos importantes, como el Tozal de Guara (2077 m), el Tozal de Cubilas (1938 m) y Cabeza de Guara (1845 m). Estos picos crean un gran contraste con los valles de la zona, como el de Nocito o el Alcanadre, debido al gradiente de altura.

Los Llanos de Cupierlo se encuentran a 1670 msnm y poseen un área de 8 km². En este paraje, la principal vegetación que se encuentra es erizón (*Echinospartum horridum*) y boj (*Buxus sempervirens*), así como algún ejemplar de abeto (*Abies alba*). Se trata de una zona asociada tradicionalmente al pastoreo, por lo que se encuentran también zonas de pastos (ver Figura 6).

Figura 6: Vista de los Llanos de Cupierlo y el Tozal de Cubilás. Fuente: Elab. propia.

3.1 Clima

Esta zona posee un clima característico, ya que se encuentra en la división geológica entre los Pirineos y la depresión del Ebro, aunque es un clima predominantemente continental. En la Figura 7 se muestran las temperaturas mensuales mínimas, máximas y medias en el periodo de 1961-1990, tomadas en la Estación Meteorológica de Panzano (IAEST, 2020).

Figura 7: Temperaturas medias mensuales en el periodo 1961-1990. Fuente: Elab. propia a partir de IAEST, 2020.

Como puede observarse, las temperaturas medias obtenidas en la zona rara vez alcanzan los 20°C, siendo julio y agosto los meses más cálidos, con máximas de 27°C y mínimas de 14°C aproximadamente. Enero, febrero, noviembre y diciembre son los meses más fríos, con temperaturas medias menores a los 5°C. Las temperaturas máximas de estos cuatro meses no alcanzan los 10°C, mientras que las mínimas de enero, febrero y diciembre se encuentran por debajo de los 0°C.

Las precipitaciones son repetidas durante todo el año, aunque menos intensas en los meses de febrero, marzo y julio. Estas precipitaciones pueden ser observadas en la Figura 8, siendo estas una media en el periodo 1981-2010, tomadas en la misma estación.

Figura 8: Precipitaciones medias mensuales en el periodo 1981-2010. Fuente: Elab. propia a partir de IAEST, 2020.

Los meses de primavera y otoño son los que más precipitaciones aportan, superándose los 80 mm de media mensual, mientras que los de verano e invierno rara vez superan esta cantidad.

3.2 Geología

En la zona de estudio se encuentran principalmente superficies estructurales en calizas (pertenecientes al Triásico superior, Cretácico superior y Paleoceno) de la formación Belsué-Atarés, y superficies estructurales en areniscas y margas (pertenecientes al Luticiense) de las formaciones Pont de Suert, Adraén y Bona, y Tremp. (Rodríguez, 1986; Millán, 2006). La unidad más interesante, en la que se encuentran Los Llanos de Cupierlo, es caliza con depósitos fósiles de Nummulites y Alveolinas, con materiales pertenecientes al Luticiense, de la formación Guara (IGME, 1950; Rodríguez, 1986; Millán, 2006). En la Figura 9 se muestra una roca próxima a los Llanos de Cupierlo con depósitos fósiles:

Figura 9: Depósitos fósiles en rocas próximas a los Llanos de Cupierlo. Fuente: Elab. propia.

Las principales estructuras que se encuentran en la zona de estudio son pliegues Norte-Sur y Este-Oeste, así como fallas y cabalgamientos (IGME, 1950).

Los principales anticlinales y sinclinales en dirección Norte-Sur son el sinclinal de Rodellar y los anticlinales de Balcés y Morrano, los cuales van acompañados de cabalgamientos de edades muy variables. Estas estructuras se caracterizan por ser vergentes al Oeste, por lo que este flanco se puede encontrar bastante verticalizado (entre 40° y 80°), mientras que el flanco Este rara vez supera los 30° de buzamiento. La edad de estas estructuras varía dentro del Eoceno. El anticlinal de Balcés se forma durante el Luticiense medio y queda fosilizado en el Luticiense superior. Sin embargo, el sinclinal de Rodellar y el anticlinal de Morrano se forman durante el Bartoniense, quedando fosilizados durante el Priaboniense (IGME, 1950).

Por otro lado, el principal plegamiento en dirección Este-Oeste que se encuentra en la zona de estudio es el anticlinal de Cabeza de Guara. Este se caracteriza por poseer un plano axial casi vertical, con una ligera vergencia hacia el Sur (IGME, 1950).

Las fallas, catalogadas como normales, son abundantes en la zona, las cuales poseen direcciones aproximadas de Nordeste-Suroeste (IGME, 1950).

Todos estos factores generan una serie de superposiciones de estructuras con direcciones Norte-Sur y Este-Oeste, lo que se traduce en una zona estructuralmente compleja (IGME, 1950).

4. Metodología

Inicialmente se ha delimitado la zona de estudio. Para ello se han tomado como límites el embalse de Vadiello al oeste y el río Alcanadre, a su paso por Rodellar, al este. Los municipios de Used y Santa Cilia limitan la zona al norte y sur respectivamente.

Para llevar a cabo el presente TFG se ha seguido una secuencia de etapas concatenadas que se describen a continuación. Inicialmente, para conocer la problemática de la zona de estudio en detalle, se realizó una salida de campo a los Llanos de Cupierlo y su entorno. En ella se realizaron fotografías y se reconoció el terreno de una forma más precisa, prestando atención a la red de drenaje, morfometría de las dolinas y geología.

El siguiente paso fue la búsqueda bibliográfica sobre los tipos de dolinas y sus procesos de formación en buscadores académicos como Alcorze, Dialnet y Researchgate, así como la búsqueda de estudios previos en la zona. Se han buscado también estudios sobre distintos campos de dolinas, con el fin de poder comparar el campo de los Llanos de Cupierlo con otros campos de dolinas existentes. Así mismo se procedió a la digitalización de la geología de la zona a partir de los mapas geológicos de España a escala 1:50.000 (1ª serie) de las hojas 248 (Apiés) y 249 (Alquezar) pertenecientes al Instituto Geológico y Minero de España (IGME). Las estructuras geológicas han sido digitalizadas a partir de los mapas del estudio de Millán (2006) "Estructura y cinemática del frente de cabalgamiento surpirenaico de las Sierras Exteriores aragonesas".

Posteriormente, se procedió a la cartografía, digitalización y caracterización morfométrica de dolinas en la toda la zona de estudio, con especial atención al campo de dolinas de los llanos de Cupierlo. Para ello fue necesario la descarga de las ortofotos del PNOA histórico (1956-57) y del PNOA Máxima Actualidad (2018) de las hojas MTN50 HU30 248 y 249. Estas descargas se han realizado desde el centro de descargas del Centro Nacional de Información Geográfica (CNIG). Utilizando la aplicación *ArcMap* de *ArcGis*, y habiendo elegido previamente el sistema de coordenadas (en este caso se ha escogido ETRS 1989 TM30N), se digitalizaron las dolinas por separado en el año 1956 y 2018, creando un mapa comparativo, para así conocer la evolución temporal de las dolinas.

Con el fin de aplicar otras técnicas de teledetección, se procedió a digitalizarlas de nuevo partiendo de modelos digitales de elevaciones de diferente resolución. Se han utilizado un modelo digital del terreno con paso de malla de 5 m (MDT05), correspondientes al año 2010 y archivos LIDAR 1ª Cobertura en formato LAZ del Instituto Geográfico Nacional (IGN) del año 2010 y una resolución de 0,5 m. Ambos archivos se han obtenido de la página web del centro de descargas del CNIG. La digitalización de las dolinas se realizó sobre modelos de sombras obtenidos a partir de los datos del terreno. En el MDT de 5 m, este tuvo que ser transformado en modelo de sombras mediante la herramienta *Hillshade* de *ArcMap* (*Spatial Analyst Tools > Surface > Hillshade*).

En el caso de los archivos LIDAR el proceso fue más complejo, siendo necesario su descompresión en formato LAS mediante el algoritmo *laszip*, el cual hay que descargarlo y añadirlo a la *toolbox* de *ArcMap*. Posteriormente se creó un *LAS Dataset* para trabajar todos los ficheros como si fueran uno solo (*Data Management Tools > LAS Dataset > Create LAS Dataset*). En las propiedades del *Dataset*, en el apartado *Filter*, se marcó la casilla *ground* para filtrar solo los datos de la superficie del terreno. El *LAS Dataset* obtenido se pasó a *raster* mediante la herramienta *LAS Dataset to Raster* (*Conversion Tools > To Raster > LAS Dataset to Raster*), asignando a la casilla de *Sampling value* un valor de 1. De este modo, la resolución del *raster* será de 1x1 m. Al *raster* obtenido se le aplica la Herramienta *Hillshade* (*Spatial Analyst Tools > Surface > Hillshade*). Sobre este *Hillshade* se realiza la digitalización de las dolinas. Si bien la resolución del 1 m dado que a una resolución de 0,5 m se obtenían numerosos artefactos. Se ha realizado un mapa comparativo de las digitalizaciones obtenidas mediante ambas metodologías. Estas dos digitalizaciones se utilizaron posteriormente para determinar la importancia de la resolución en la cartografía de dolinas.

Una vez cartografiadas las dolinas, éstas fueron caracterizadas morfométricamente y espacialmente sobre el *hillshade* del MDE de 1 m de resolución (LIDAR). Para ello, se aplicaron distintas ecuaciones y herramientas en *ArcMap*. Los parámetros morfológicos obtenidos han sido:

Área, densidad y distribución espacial de las dolinas

Se obtuvo el área máxima, mínima y media de las dolinas, así como el sumatorio de áreas, a partir de la herramienta *Statistics*. Para ello, primero se ha calculado el área de cada dolina mediante la herramienta *Calculate geometry*. Se han agrupado las dolinas en grupos dependiendo de su área (cada 1000 m²), para así obtener una mejor percepción de la variedad de las áreas obtenidas. La densidad de las dolinas se ha calculado a partir del cociente entre el número de dolinas y el área de la zona. El porcentaje de área dolinizada se ha obtenido mediante el cociente entre el sumatorio de áreas de las dolinas y el área de la zona, multiplicado por 100. La distancia euclídea mínima, máxima y media que existe entre dolinas se ha calculado utilizando la herramienta *Calculate Distance Band from Neighbor Count (Spatial Statistics Tools > Utilities > Calculate Distance Band from Neighbor Count*). Para conocer la dispersión de las dolinas se utiliza la herramienta Average nearest neighbor (Spatial Statistics Tools > Analyzing Patterns > Average Nearest Neighbor). Esta herramienta utiliza el método de Clark y Evans (1954) para el cálculo del índice de distribución espacial, el cual consiste en una serie de ecuaciones que incluyen las siguientes variables:

Distancia media al vecino más cercano (*La*): Se obtiene para cada dolina. Es la distancia entre el centroide de una dolina y el centroide de la dolina más próxima a ella.

Distancia media teórica al vecino más cercano (*Le*): Es la distancia entre dolinas obtenida en un ámbito teórico, con una distribución de máxima aleatoriedad. Se obtiene mediante la siguiente ecuación, donde *D* es la densidad de dolinas:

$$Le = \frac{1}{2}\sqrt{\frac{1}{D}}$$

Índice de distribución espacial (*R*): Muestra el valor utilizado para definir la distribución de las dolinas. Se obtiene mediante la siguiente ecuación:

$$R = \frac{La}{Le}$$

El valor del índice varía entre 0 y 2,1491, siendo 0 el valor que representa una máxima agrupación y 2,1491 el que representa una máxima dispersión. Si el valor se encuentra próximo a 1 significa que la dispersión es aleatoria.

Pendiente

El mapa de pendientes proporciona información acerca de la diferencia de altura entre las celdas del *raster*. En este caso se ha calculado en grados, mediante la herramienta *Slope* (*Spatial Analyst Tools > Surface > Slope*), en una escala de verde a rojo dependiendo si la pendiente es menor o mayor respectivamente.

Red de drenaje

Para poder obtener mapas de dirección y acumulación de flujo, así como de la red de drenaje, es necesario realizar una corrección al *raster* mediante la herramienta *Fill (Spatial Analyst Tools > Hidrology > Fill)*. De este modo, no se tienen en cuenta posibles sumideros. El *raster* obtenido es el que se utiliza para la obtención de los tres mapas anteriormente mencionados.

El mapa de dirección de flujo representa la dirección de cada celda en base a la dirección de la mayor pendiente. A cada celda se le asigna un valor distinto dependiendo la dirección que tome, siendo 8 estos valores:

Este: 1 Sureste: 2 Sur: 4 Suroeste: 8 Oeste: 16 Noroeste: 32 Norte: 64 Nordeste: 128

Para obtener este mapa se utiliza la herramienta *Flow Direction* (*Spatial Analyst Tools > Hidrology > Flow Direction*). A cada uno de los valores se le asigna un color.

A partir del mapa de dirección de flujo se crea el mapa de acumulación de flujo, es decir, las áreas en las que se el flujo se concentra. La obtención de este mapa es mediante la herramienta *Flow Accumulation (Spatial Analyst Tools > Hidrology > Flow Accumulation*), y muestra, mediante valores de 1 o 0, las zonas en las que se acumula el flujo y las zonas en las que no, respectivamente.

Utilizando la calculadora *raster* (*Spatial Analyst Tools > Map Algebra > Raster Calculator*) en el *raster* de acumulación de flujo, se obtiene la red de drenaje. Para ello hay que señalar que sólo debe mostrar los valores que estén por encima de 2000. Esta red de drenaje ha tenido que ser corregida, ya que los barrancos aparecían de forma descontinua.

Longitud del eje mayor y orientación de las dolinas

La obtención del eje mayor de cada dolina se ha generado mediante la herramienta *Minimum Bounding Geometry* (*Data Management Tools > Features > Minimum Bounding Geometry*). Esta herramienta convierte todos los polígonos en rectángulos, de modo que pueden conocerse tanto el eje mayor como el eje menor. A partir de estos dos valores se ha calculado el valor del factor de elongamiento, mediante el cociente entre el eje mayor y el menor. Este valor podría indicar el grado de control estructural que ejercen las fracturas y la pendiente de la zona sobre la forma de las dolinas. Si este valor es mayor que 1 quiere decir que la longitud de la dolina es mayor que su anchura, por lo que la forma de esta podría verse afectada por algún factor externo.

Por último, a partir de los datos de orientación de las dolinas, se ha generado un gráfico radial mediante la aplicación de *Microsoft Excel*, el cual muestra un sumatorio de las dolinas que se orientan a cada dirección.

Los resultados obtenidos han sido comparados con otros estudios encontrados sobre campos de dolinas, y sobre la zona de estudio.

5. Resultados

5.1 Evolución temporal entre 1956 y 2018

Para conocer la evolución temporal de las dolinas entre los años 1956 y 2018 se realiza la comparación del número de dolinas, así como de sus áreas. Estos datos son obtenidos de las digitalizaciones en las ortofotos del PNOA histórico (PNOA 1956) y la de máxima actualidad (PNOA 2018).

Ortofotos	PNOA 1956	PNOA 2018	Diferencia
Número de dolinas	310	318	8
Área máxima (m²)	5245,9926	9874,57378	4628,58118
Área mínima (m²)	38,362532	84,060381	45,697849
Sumatorio áreas (m²)	289257,311	311013,013	21755,702
Media de áreas (m²)	933,088099	978,028342	44,940243
Desviación estándar (m²)	900,279869	994,209556	93,929687

Tabla 1: Comparación de la digitalización de las dolinas en los años 1956 y 2018. Fuente: Elab. propia.

Como puede observarse en la Tabla 1, se obtiene una mayor cantidad de dolinas en la digitalización de 2018, con áreas mínimas, máximas y medias más altas. La desviación estándar indica que el área de las dolinas es muy variada. La mayoría de las dolinas digitalizadas en ambos años son las mismas, aunque se identifican 10 dolinas nuevas en la digitalización de 2018,

teniendo estas un área entre 160 y 600 m². Igualmente, en 1956 se observan 13 dolinas que no se han digitalizado en 2018. Además, se han dado casos que en la digitalización sobre PNOA 2018 se han identificado varias dolinas cuando en el de 1956 se ha identificado solo una. Esto ha sucedido en 5 dolinas digitalizadas en 1956, las cuales equivalen a 16 dolinas digitalizadas en 2018. El mapa de evolución temporal de las dolinas puede observarse en el apartado de Anexos.

5.2 Comparación de MDT05 y LAS

En la Tabla 2 se expone la comparación entre las digitalizaciones de un MDE con resolución de 5 metros (MDT05) y otro con resolución de 1 metro (LIDAR).

MDE	Resolución 5 metros	Resolución 1 metro	Diferencia
Número de dolinas	232	274	42
Área mínima (m²)	255,2981	27,673701	227,62
Área máxima (m²)	38545,94403	16648,77882	21897,16
Sumatorio áreas (m²)	747655,0174	714644,7971	33010,22
Media de áreas (m²)	3222,650937	2608,19269	614,45
Desviación estándar (m²)	4097,775768	3018,827052	1078,94

Tabla 2: Comparación de la digitalización de las dolinas en resoluciones de 5 y 1 metro. Fuente: Elab. propia.

Atendiendo al número de dolinas, se observa que en la digitalización de 1 metro de resolución existe un mayor número. En la digitalización con resolución de 1 m se observan 22 dolinas nuevas, las cuales varían de 45 a 1750 m². Además, se observa una dolina en la digitalización de 5 m que no se observa en la de 1 m. El resto de dolinas de diferencia se tratan de dolinas que en la digitalización con la resolución de 5 m se han digitalizado como una sola, mientras que en la de 1 m se han diferenciado varias. Esto ha sucedido en 6 dolinas digitalizadas sobre el MDE de 5 m, siendo 27 las dolinas identificadas sobre el MDE de 1 m.

Por otro lado, atendiendo al área máxima, mínima, media, y al sumatorio de áreas, se observan valores mayores en la resolución de 5 metros que en la de 1 metro. Igual que en el anterior caso, la desviación estándar indica una gran dispersión en los datos del área de las dolinas. El mapa de comparación entre MDE de 1 m y 5 m puede observarse en el apartado de Anexos.

5.3 Caracterización de las dolinas

Para la caracterización de las dolinas, se ha optado por usar la cartografía de dolinas de mayor resolución, obtenida mediante el MDE de 1 m. Los datos obtenidos se exponen en los siguientes apartados:

5.3.1 Área, densidad y distribución espacial de las dolinas

Como ya se ha expuesto anteriormente, el número de dolinas obtenido mediante la metodología usada es de 274. La zona de estudio tiene un área de 201,1 km², por lo que la densidad de dolinas en la zona de estudio es de 1,36 dolinas/km². Sin embargo, si sólo se tiene en cuenta el área de los Llanos de Cupierlo (8,07 km²), donde se concentran 256 dolinas de las 274 (es decir, el 93% de las dolinas), se obtiene una densidad de 31,72 dolinas/km².

En cuanto al porcentaje de dolinización de la zona de estudio (201,1 km²), se ha obtenido un valor de 0,35 % de área dolinizada. Sin embargo, teniendo en cuenta el área de los Llanos de Cupierlo (8,07 km²), se obtiene un valor de 8,85 % de área dolinizada.

Atendiendo al área de las dolinas, se han obtenido unos valores muy variados, con un área mínima de 27,67 m² y máxima de 16648,78 m². Mediante la **jError! No se encuentra el origen de la referencia.** se muestra el área máxima, mínima y media de las dolinas digitalizadas. Además, en la Tabla final con área, longitud de eje mayor y orientación de las dolinas digitalizadas, due se encuentra en el apartado de Anexos, se puede observar el área de todas las dolinas digitalizadas.

Área mínima (m²)	27,673701
Área máxima (m²)	16648,77882
Sumatorio áreas (m²)	714644,7971
Media de áreas (m²)	2608,19269

Tabla 3: Área mínima, máxima y media de las dolinas, con sumatorio de áreas. Fuente: Elab. propia.

Para poder ver mejor la variedad en estas áreas se ha creado el siguiente gráfico de barras (Figura 10: Número de dolinas dependiendo de su área, agrupadas cada 1000 m². Fuente: Elab. propia.Figura 10), el cual muestra el número de dolinas dependiendo del área, en grupos divididos cada 1000 m².

Figura 10: Número de dolinas dependiendo de su área, agrupadas cada 1000 m². Fuente: Elab. propia.

Como puede observarse, 107 de las dolinas son menores de 1000 m², y 264 son menores de 10000 m². Además se identifican 10 dolinas mayores de 10000 m², las cuales, analizando su morfología, es posible que sean producto de una unión de dos o más dolinas, es decir, uvalas (ver Figura 11).

Figura 11: Posible uvala en los Llanos de Cupierlo. Fuente: Elab. propia.

En los cálculos realizados para las distancias al vecino más cercano, la cual es la distancia entre dolinas, se han obtenido unos valores de distancia mínima y máxima de 11,05 y 364,74 m respectivamente. La distancia media es de 82,61 m, como puede observarse en la Tabla 4:

Distancias al vecino más cercano (en m)			
Distancia mínima	11,0483		
Distancia máxima	364,7369		
Distancia media	82,6098		

Tabla 4: Distancias entre dolinas. Fuente:

Elab. propia.

El índice al vecino más cercano, o índice de distribución espacial, así como la distancia media observada y esperada, tanto de la zona de estudio como de los Llanos de Cupierlo, se exponen en la Tabla 5 y Tabla 6:

Zona de estudio			
Distancia media observada (m)	82,6098		
Distancia media esperada (m)	428,2454		
Índice de distribución espacial	0,192903		

Tabla 5: Índice de distribución espacial de las dolinas de la zona de estudio. Fuente: Elab. propia.

El índice de distribución espacial de la zona de estudio indica que la distribución de las dolinas tiende al agrupamiento de estas, ya que el área que se ha utilizado para este cálculo (el área de toda la zona de estudio) es de 201,1 km².

Llanos de Cupierlo		
Distancia media observada (m)	82,6098	
Distancia media esperada (m)	85,8	
Índice de distribución espacial	0,962721	

Tabla 6: Índice de distribución espacial de las dolinas de la zona de estudio. Fuente: Elab. propia.

El índice de distribución espacial de los Llanos de Cupierlo indica que la distribución de las dolinas tiende a una dispersión aleatoria de estas. El área utilizada para el cálculo, en este caso, es de 8,07 km².

Como se puede observar, los índices de distribución varían mucho dependiendo si se tiene en cuenta la zona de estudio en su totalidad o únicamente los Llanos de Cupierlo. Esto se debe principalmente a la diferencia de áreas en los cálculos y a la escasez de dolinas fuera de los Llanos de Cupierlo.

5.3.2 Geología

El Mapa final de las dolinas de la zona de estudio y el Mapa en detalle de los Llanos de Cupierlo (ver Anexo) muestra que las 274 dolinas digitalizadas se asientan sobre la unidad geológica de calizas con nummulites y alveolinas lo que significa que la litología juega un papel esencial en el desarrollo de las dolinas. A pesar de existir otras unidades con litologías carbonatadas (ej: calizas tableadas; ver Mapa final de las dolinas de la zona de estudio, en Anexos), estás no muestran el desarrollo de dolinas. Las fallas presentes en la zona, las cuales son abundantes, poseen una dirección predominante NE-SO. En el Mapa final de las dolinas de la zona de estudio y en el Mapa en detalle de los Llanos de Cupierlo (ver Anexo), se muestran las fallas presentes los Llanos de Cupierlo y la zona de estudio.

5.3.3 Pendiente

La pendiente obtenida en la zona de estudio se muestra mediante el Mapa de pendientes de los Llanos de Cupierlo, el cual se encuentra en el apartado de Anexos. Este mapa muestra que la mayor parte de la zona se encuentra asentada sobre una pendiente escasa, con valores entre los 0 y los 8,4°, aunque aparecen pequeñas zonas con pendientes mayores, que por lo general coinciden con las dolinas.

5.3.4 Red de drenaje

Se observa continuidad en la red de drenaje de la zona de estudio, a excepción de los Llanos de Cupierlo, donde la red de drenaje se encuentra completamente distorsionada como consecuencia de los fenómenos kársticos. Es evidente que estas dolinas representan las vías de entrada de las aguas superficiales dentro del sistema kárstico de la Sierra de Guara. La red de drenaje obtenida se muestra mediante el Mapa final de las dolinas de la zona de estudio y el Mapa en detalle de los Llanos de Cupierlo, los cuales se encuentran en el apartado de Anexos.

5.3.5 Longitud del eje mayor y orientación de las dolinas

En la Tabla final con área, longitud de eje mayor y orientación de las dolinas digitalizadas, encontrada en el apartado de Anexos, se pueden observar las longitudes del eje mayor y la orientación de las 274 dolinas.

Las longitudes del eje mayor de las dolinas varían entre 6,87 y 330,38 metros. La longitud media del eje mayor es de 69,59 metros, mientras que la del eje menor es de 39,52. El valor de elongación obtenido mediante el cociente entre el eje mayor y el eje menor es de 1,76, por lo que se entiende que la morfología de las dolinas está siendo influenciada por algún factor externo, como la pendiente o la orientación de fracturas (un valor de 1 equivaldría a una dolina circular).

Mediante la Figura 12, en forma de gráfico radial, se muestra el sumatorio de las orientaciones de las dolinas, divididas en franjas de 10 grados. Como puede observarse, la dirección predominante que toman estas dolinas es NE-SO.

Figura 12: Rosa de direcciones con sumatorio de orientaciones del eje mayor de las dolinas. Fuente: Elab. propia.

6. Discusión

6.1 Caracterización temporal y espacial de las dolinas.

Observando las cartografías de dolinas realizadas a partir de las fotografías aéreas, se observa que el número y área de las dolinas es mayor en la digitalización de 2018 que en la de 1956. Concretamente se observa un incremento de 8 dolinas nuevas entre 1956 y 2018 y un aumento del sumatorio del área de las mismas de 21755 m2. La diferencia creciente en el número y área de las dolinas apunta a la aparición de nuevas dolinas y a un crecimiento de las existentes en los últimos 72 años.

Cabe también la posibilidad de que todas las dolinas estuvieran presentes ya en el 1956, pero debido a la resolución de la imagen no se cartografiaran todas las existentes. De ser cierta esta posibilidad, las dolinas no habrían experimentado ningún crecimiento ni se hubieran formado nuevas dolinas.

Para poder salir de dudas sobre la influencia de la resolución en la identificación de dolinas en el área de estudio, se han comparado los resultados obtenidos a partir de los MDT de 5 m y LIDAR a 1 m. En este caso, calculando la diferencia entre las digitalizaciones con ambas resoluciones, mostrada en la Tabla 2, se observa que la digitalización a 1 m de resolución permitió cartografiar 42 dolinas más que las observadas con el MDT de 5 m. Evidentemente, debido a la lentitud de los procesos kársticos en calizas y la inexistente diferencia temporal entre la adquisición de los dos modelos de elevaciones, la diferencia en el número de dolinas es debido a la nejoría en la resolución espacial que aporta el LIDAR. Este incremento debido al aumento en la resolución aportada por los datos LIDAR permite visualizar dolinas pequeñas que no se verían con un tamaño de pixel mayor y diferenciar varias dolinas juntas entre sí que eran cartografiadas como una sola con el MDT de 5 m de resolución.

Del mismo modo, existen diferencias notables en el área de las dolinas dependiendo de la resolución de modelo digital de elevaciones utilizado. Las dolinas digitalizadas con el MDT de 5 m de resolución tienen una mayor área media, mínima y máxima. Con este método, el sumatorio de las áreas de todas las dolinas es de 747655 m². Por el contrario, considerando los datos LIDAR a una resolución de 1 m el sumatorio de las áreas es de 714645 m², menos que el obtenido a una resolución de 5 m. Esta diferencia es debido al mayor tamaño del píxel en los modelos de 5 m, que hace que se sobreestime el tamaño de las dolinas digitalizadas

En consecuencia, los mejores resultados se obtienen utilizando tanto fotografías aéreas como modelos de elevaciones de alta resolución. En este caso tanto las ortofotos del PNOA de Máxima Actualidad como los datos LIDAR a una resolución de 1 m fueron herramientas esenciales para llevar a cabo una cartografía de detalle. No obstante, se identificó un mayor número de dolinas utilizando la ortofoto del PNOA. Concretamente, se detectaron 44 dolinas más con la ortofoto que con el LIDAR. Esto puede deberse a que algunas dolinas tengan una profundidad inferior a 1 m y en consecuencia queden fuera del alcance de detección del LIDAR (resolución de 1 m). Sin embargo, la salida de campo demuestra que todas las dolinas incluidas las de menor tamaño presentan una profundidad muy superior al metro. Esto sugiere que la falta de visión tridimensional de las ortofotos, a pesar de su alta resolución, puede llevar a errores y una sobreestimación del número y área de las dolinas, y de la densidad de dolinización. Atendiendo a estos datos, la metodología que ha resultado ser más eficaz para la cartografía de dolinas ha sido

la elaboración de mapas de sombreado con datos LIDAR. En cualquier caso, siempre es recomendable comprobar la cartografía en el campo en caso de que hubiera dolinas de pequeño tamaño, de geometrías en artesa colmatadas de sedimentos o con profundidades inferiores al metro que escapen a la resolución de los datos LIDAR.

6.2 Morfometría de las dolinas

Como puede observarse en los resultados, la diferencia entre el área mínima y máxima de las dolinas de los Llanos de Cupierlo es notoria. Es probable que algunas de las dolinas que mayor superficie abarcan sean producto de la unión de dos o más depresiones, lo que se conoce como uvalas. Es también destacable que la mayoría de las dolinas de mayor área se sitúan en zonas de fondo de barranco, lo que podría favorecer el aumento de su tamaño.

La densidad de dolinas obtenida en este estudio se ha comparado con los campos de dolinas estudiados por Gracia (1987) en el sector central de la Cordillera Ibérica y por Chueca (1990) en el sector oriental del Pirineo, obteniéndose la Tabla 7:

Campo de dolinas	Área (km²)	N. Dolinas	Densidad (dolinas/km ²)	Área dolinizada (%)
Llanos de Cupierlo	8,07	256	31,72	8,85
Villaroya P2	5,89	203	35,06	5,42
Villaroya P1	3	26	8,6	1,64
La Tortuera	49,03	365	7,44	8,1
Odón	18,1	118	6,52	7,37
El Villarejo	16,4	161	9,82	2,97
Turbón	2,58	92	35,65	18,68

Tabla 7: Área, número de dolinas, densidad y área dolinizada de los campos de dolinas. Fuente: Elab. propia con datos propios y de Gracia, J. (1987) y Chueca, J. (1990).

Como se observa en la Tabla 7, la densidad de dolinas en los llanos de Cupierlo es entre 3 y 4 veces mayor que Villaroya P1, La Tortuera, Odón y El Villarejo y semejante a la obtenida en Villaroya P2 y en el Turbón. Además, la densidad de dolinas obtenida en este estudio para los Llanos de Cupierlo (31,72 dolinas/km²) es ligeramente superior al calculado por Rodríguez Vidal en 1983, el cual mostraba una densidad de 29,5 dolinas/km². Esta ligera diferencia se debe a que el número de dolinas identificadas mediante la metodología utilizada en el presente estudio es mayor. Cabe destacar que el trabajo de Rodríguez Vidal (1983), a pesar de ser un trabajo antiguo y no disponer de modelos digitales de elevaciones, consiguió unos resultados muy próximos a la realidad, gracias a un exhaustivo trabajo de fotogrametría y trabajo de campo.

Igualmente, si se compara el porcentaje de área dolinizada en Cupierlo con respecto a otros campos de dolinas del territorio aragonés, se observa que los Llanos junto con el campo de dolinas del Turbón ofrecen la mayor área dolinizada de todas las zonas estudiadas. Esto significa, que no solo existe un gran número de dolinas sino que además existen dolinas de grandes dimensiones ocupando una importante área de la zona de estudio. Finalmente, atendiendo al índice de distribución espacial y a que no existen valores de distribución para el campo de dolinas del Turbón, el campo de dolinas de Cupierlo es el que tiene un índice más cercano al agrupamiento (Tabla 8). Esto quiere decir que las dolinas de Cupierlo poseen menor distancia entre ellas que en el resto de campos y por tanto, representa la zona con el mayor agrupamiento de dolinas por km².

Campo de dolinas	Índice de distribución espacial
Llanos de Cupierlo	0,962721
Villaroya P2	2,146
Villaroya P1	1,9
La Tortuera	1,16
Odón	1,86
El Villarejo	1,55

Tabla 8: Índice de distribución espacial de los campos de dolinas. Fuente: Elab. propia con datos propios y de Gracia (1987).

Como se ha visto en el apartado de resultados, las longitudes del eje mayor de las dolinas varían entre los 6,87 y 330,38 metros, valores que difieren respecto al estudio realizado por Vidal (1983) en los Llanos de Cupierlo. Esta diferencia podría corresponderse a variaciones en la metodología utilizada para delimitar las dolinas.

A modo de comparación se ha realizado la Tabla 9, con los valores medios de elongación tanto de los Llanos de Cupierlo como de los estudios de campos de dolinas en zonas carbonatadas estudiados por Gracia (1987) y Chueca (1990).

Campo de dolinas	Elongación
Llanos de Cupierlo	1,76
Villaroya P2	1,69
Villaroya P1	1,66
La Tortuera	1,95
Odón	1,72
El Villarejo	1,82
Turbón	1,41

Tabla 9: Valor medio de elongación de las dolinas en los campos de dolinas. Fuente: Elab. propia con datos propios y de Gracia (1987) y Chueca (1990).

En el estudio de Gracia (1987) se habla sobre que este factor de elongación aporta información sobre el control estructural de factores como el diaclasado, concluyendo que estos campos están claramente influidos por estos factores. El valor de elongación obtenido para los Llanos de Cupierlo indica que existe un claro control estructural de las dolinas por parte de las diaclasas presentes en la zona. Además, analizando la orientación de las dolinas, la cual es predominantemente SO-NE, se observa una posible relación con las fallas de la zona, las cuales poseen la misma dirección.

En lo que respecta a la pendiente, el bajo valor de este parámetro en la zona de los Llanos de Cupierlo hace de esta un lugar idóneo para la captación de agua, tanto de las precipitaciones en forma de lluvia como del posible deshielo. Las zonas que aparecen con pendientes mayores corresponden a dolinas que poseen algún lateral escarpado (por lo general, dolinas de mayor tamaño).

Por lo general, la red de drenaje obtenida en la zona de estudio presenta una morfología bien jerarquizada. Los principales receptores de esta red son el río Guatizalema, en la zona más occidental, y el río Alcanadre en la zona oriental. La excepción a esta jerarquización aparece en la zona de los Llanos de Cupierlo, lugar en el que la red de drenaje desaparece o queda difusa. Esto indicaría que los Llanos de Cupierlo se trata de una zona de recarga de acuíferos, algo que se potenciaría con la escasa pendiente del lugar.

6.3 Origen de las dolinas

En la zona de estudio, a pesar de existir más formaciones carbonatadas, solo aparecen dolinas asociadas a la formación Guara (calizas con nummulites y alveolinas). Es por ello que esta unidad geológica debe contener una serie de características geológicas que la hacen propensa a experimentar los procesos kársticos. A falta de estudios petrográficos que den luz a esta cuestión, es posible que sean calizas con una mayor porosidad intergranular que favorezca la infiltración, circulación de las aguas y, en consecuencia, su disolución.

Si bien la karstificación es mucho más intensa en esta unidad carbonatada, no se encuentran estos fenómenos de disolución en toda su extensión. De hecho, las dolinas aparecen en dos zonas claramente diferenciables: Los Llanos de Cupierlo (256 dolinas), y su vertiente norte (18 dolinas). Es muy probable que estas 18 depresiones se hayan producido por la naturaleza caliza de la zona y por la escasa pendiente. En el caso de los Llanos de Cupierlo entran en juego, además de estos dos factores, otros como la fuerte fragmentación que ha sufrido la zona, la red de drenaje, que favorece la captación de agua en la zona de los Llanos, o el clima lluvioso y frio de la zona, que favorece la disolución de las calizas. Ligado a esto último, se encuentra otro factor importante en el proceso de dolinización de los Llanos, el cual es la altura, que hace que el clima de la zona sea propicio para crear estas formaciones. Las dolinas identificadas se tratan de dolinas en cubeta, las cuales se han generado por la disolución del sustrato soluble.

7. Conclusiones

Respecto a la evolución temporal de las dolinas, se podría afirmar que las dolinas han crecido en área y en número. Sin embargo, se cree que para un buen estudio de estas características es conveniente usar otro tipo de metodología, ya que con las ortofotos utilizadas no se trabaja con la precisión necesaria para este tipo de estudios.

Respecto a la comparación entre MDT05 y LIDAR se obtiene un mejor resultado en la digitalización de las dolinas con MDE de 1 metro de resolución (LIDAR) que con los de 5 metros

(MDT05). Si bien es cierto que trabajar con este tipo de archivos requiere de ordenadores más potentes, y en algunos procesos de *ArcMap* el tiempo invertido es mayor.

Respecto al origen de este campo de dolinas se puede concluir que se debe principalmente los siguientes factores: al clima frío y lluvioso de la zona, ligado a la altura, a su naturaleza caliza y a la escasez de pendiente, lo que provoca una recepción del recurso hídrico en los Llanos.

Comparando con otros estudios, la densidad de dolinas y el porcentaje de área dolinizada de los Llanos de Cupierlo son bastante altos, obteniéndose una densidad de 31,72 dolinas/km² y un porcentaje de dolinización de 8,85 %.

Las dolinas de los Llanos de Cupierlo poseen un índice de dispersión más cercano al agrupamiento que en otros estudios, indicando que estas dolinas se encuentran concentradas, a poca distancia unas de otras.

El valor de elongación y la orientación de las dolinas indican un control estructural de estas por parte de las fallas presentes en la zona, observándose una dirección de las dolinas NE-SO, tal como afirmó Rodríguez (1983).

Bibliografía

Benayas Polo, R. (2019). *GEASIG. Análisis de MDT y superficies con ArcGIS.* Obtenido de https://www.geasig.com/analisis-mdt-y-superficies-con-arcgis/

Chueca Cía, J. (1990). El modelado exokárstico en la vertiente oriental del macizo del Turbón (Provincia de Huesca). *Lucas Mallada, 2*, 57-74.

Clark, P. J., & Evans, F. C. (1954). Distance to Nearest Neighbor as a Measure of Spatial Relationships in Populations. *Ecology*, *35*(4), 445-453.

Cvijic, J. (1893). Das Karstphanomen. Geog. Abhandlungen, 5, 225-276.

Galán, C. (1991). Disolución y génesis del karst en rocas carbonáticas y rocas silíceas: un estudio comaprado. *MUNIBE, 43*, 43-72.

Gracia Prieto, F. J. (1991). Criterios de clasificación morfométrica de las dolinas. *Cuaternario y Geomorfología, 5*, 65-76.

Gutierrez Elorza, M. (2001). Geomorfología climática. Barcelona: Omega.

Gutierrez, F., Guerrero, J., & Lucha, P. (2008). A genetic classification of sinkholes illustrated from evaporite paleokarst exposures. *Enviromental Geology*, *53*, 993-1006.

Instituto Geológico y Minero de España. (2003). Memoria asociada al mapa de la hoja 248 (Apiés). 33-62.

Instituto Geológico y Minero de España. (2003). Memoria asociada al mapa de la hoja 249 (Alquezar). 13-39.

Millán Garrido, H. (2006). Estructura y cinemática del frente de cabalgamiento surpirenaico en las Sierras Exteriores aragonesas. (Instituto de Estudios Altoaragoneses, Ed.) *Colección de Estudios Altoaragoneses, 53*, 103-200.

Peña Monné, J., Sánchez Fabre, M., & Lozano Tena, M. (2010). Las formas del relieve de la Sierra de Albarracín. (Centro de Estudios de la Comunidad de Albarracín, Ed.) *Colección Estudios, 7*, 89-137.

Rodriguez Vidal, J. (1983). Geomorfología de las Sierras Exteriores oscenses y su piedemonte. (Instituto de Estudios Altoaragoneses, Ed.) *Colección de Estudios Altoaragoneses, 4*, 29-71.

Santas Lajusticia, L. (2016). *Estudio de dolinas en el Valle dl Fluvià, Girona*. Zaragoza. Sweeting, M. (1972). *Karst landforms*. Londres: Macmillan Press.

39

Listado de anexos:

Tabla final con área, longitud de eje mayor y orientación de las dolinas digitalizadas	.41
Mapa de evolución temporal de las dolinas	50
Mapa de comparación entre MDE de 1 m y 5 m	51
Mapa de pendientes de los Llanos de Cupierlo	52
Mapa de detalle de los Llanos de Cupierlo	53
Mapa final de las dolinas de la zona de estudio	54

Dolina	Area (en m²)	Longitud de eje mayor (en m)	Orientación (en °)
1	579,008214	27,880362	4,085617
2	61,044029	9,755163	78,690068
3	62,72414	10,583354	90
4	114,24754	16,171095	75,963757
5	50,403327	10,327315	98,130102
6	67,764472	12,179249	80,537678
7	57,648805	11,052392	101,309932
8	38,082513	10,583354	36,869898
9	264,897483	24,795201	102,528808
10	27,673701	6,875314	101,309932
11	70,564657	10,439357	9,462322
12	56,703742	11,441697	54,462322
13	197,518036	18,256287	90
14	183,02708	18,864669	23,198591
15	260,522194	26,382254	6,009006
16	178,931809	20,933792	74,054604
17	86,630718	12,211379	164,054604
18	217,049325	19,557045	87,273689
19	12203,90546	234,329388	52,744711
20	2662,555728	60,838832	74,054604
21	1646,928697	63,961029	62,102729
22	1014,366948	56,086287	26,565051
23	716,987321	34,92507	90
24	4732,872369	131,336508	45
25	406,026798	26,463474	168,690068
26	287,018943	24,508665	98,130102
27	270,392846	31,947885	26,565051
28	2129,890573	79,157114	48,012788
29	1136,314997	84,03004	17,525568
30	580,75833	31,413031	175,601295
31	3776,889274	152,34178	33,690068

32	505,15334	24,287802	86,185925
33	433,468609	44,153014	45
34	535,395336	31,580631	81,869898
35	374,664728	30,494205	72,645975
36	162,970756	17,926647	113,19859
37	258,17704	18,93208	116,565051
38	1672,830407	61,957091	81,253838
39	342,191335	23,048787	87,510447
40	394,406031	25,262998	86,633539
41	151,166227	19,625015	30,963757
42	2931,662239	60,854288	0
43	1102,135241	41,42436	51,340192
44	956,21936	36,465833	141,340192
45	1489,129532	49,719539	3,900494
46	1211,954989	42,333418	0
47	1361,589865	52,607523	41,987212
48	235,390536	20,108374	53,130102
49	14626,59035	209,112973	6,46982
50	3528,232863	114,6819	60,068488
51	11253,24271	230,510856	41,378515
52	833,930039	33,022062	56,309932
53	8195,790921	158,179581	50,411869
54	1857,747611	77,598718	21,037511
55	5996,770786	212,825239	29,859016
56	975,689395	71,479399	50,194429
57	5812,1336	205,765998	35,537678
58	11880,65912	292,513758	22,520566
59	3733,311398	96,639575	32,275644
60	2804,315084	93,003843	26,565051
61	4681,208959	152,085436	36,634114
62	691,785658	50,38173	17,354025
63	576,881824	40,809686	29,475889
64	4620,961233	141,012348	15,945396
65	477,781534	27,484731	97,125016

66	1900,065404	57,679282	90
67	1326,307536	49,154996	104,036243
68	693,18575	33,744619	112,619865
69	1906,225811	51,329269	0
70	3125,00625	73,981576	81,573031
71	579,778265	28,932674	82,234834
72	574,737933	28,722966	93,814075
73	585,938672	28,782055	71,565051
74	1861,002826	51,130389	85,763605
75	326,396542	25,306859	121,607502
76	4180,115887	83,111832	79,695154
77	13984,68299	226,78647	50,355825
78	372,984617	29,922388	16,38954
79	7614,26254	115,485688	63,434949
80	810,373485	39,39795	102,094757
81	3237,013642	72,156589	51,632515
82	692,170683	32,438067	70,016893
83	4674,777285	91,067138	87,397438
84	674,450764	33,141528	120,068583
85	534,222759	29,934247	45
86	7218,35141	99,001902	91,363928
87	5318,819792	89,802741	81,869898
88	1159,232759	43,656337	90
89	2577,045085	58,254734	77,005383
90	2613,79751	66,502136	67,380135
91	3266,809359	70,890895	88,492564
92	3621,864043	70,995725	68,19859
93	990,784142	39,893665	113,962489
94	8913,994572	156,82635	40,322582
95	529,794966	27,475359	74,744881
96	4292,12328	86,011951	55,407711
97	1813,399684	51,100241	47,489553
98	3102,604772	84,033855	75,256437
99	6693,001737	129,465668	44,341457

100	6709,802846	112,516564	56,976132
101	5888,788659	92,353508	43,66778
102	5818,224002	93,36088	108,970408
103	2852,828286	67,264014	106,927513
104	3335,020111	75,416229	98,426969
105	3477,269499	74,833225	84,805571
106	1893,48497	52,493438	126,869898
107	2040,214654	52,826867	83,659808
108	3317,658965	66,712826	102,994617
109	4549,740282	88,372643	94,085617
110	1095,992335	44,124183	95,710593
111	1807,239278	53,913344	94,085617
112	4252,920692	84,721058	116,565051
113	1064,630265	38,100076	0
114	1298,725716	47,677917	57,994617
115	3101,624707	63,239664	96,519802
116	2575,469981	69,628849	7,853313
117	4571,266703	85,32741	76,429566
118	2775,648192	72,771434	56,821488
119	548,451198	32,366137	93,814075
120	877,017883	35,845479	68,962489
121	3604,782915	84,396488	36,469234
122	544,670948	33,200464	42,70939
123	235,950573	19,64435	45
124	987,27516	48,131364	13,570434
125	1808,219342	49,980691	169,695154
126	678,239764	35,754796	99,462322
127	581,21336	29,287138	23,198591
128	8615,503622	116,319579	78,366366
129	2559,543929	64,375906	83,088773
130	4842,359595	85,22984	70,463345
131	5271,676055	89,746062	77,735226
132	800,704096	34,727667	76,328693
133	1030,196743	41,282702	37,03039

134	1374,514468	59,501257	55,491477
135	1359,629735	50,999005	68,198591
136	2328,94871	79,376151	59,198554
137	429,058318	30,6071	60,945396
138	745,969234	40,813061	177,273689
139	455,520064	28,522612	32,005383
140	1514,934986	67,780723	40,914383
141	1577,309102	49,486638	42,70939
142	7923,717964	152,012238	33,951094
143	8648,895826	180,62041	34,64668
144	1653,544134	48,405992	75,465545
145	9789,901132	190,922481	40,192046
146	3274,956147	75,44656	56,888658
147	579,148224	37,07542	177,306887
148	5683,255094	109,842281	28,810794
149	7248,250384	119,470466	78,023868
150	1726,033918	58,587316	162,474432
151	1698,03207	52,522518	172,405357
152	1716,51329	54,687903	62,354025
153	3585,356633	76,582755	17,354025
154	874,777735	41,394863	86,185925
155	2596,331358	75,576481	39,957549
156	1469,536989	46,405907	4,763642
157	2197,025003	65,623882	115,201124
158	958,78328	38,914521	45
159	3197,251018	95,034368	43,22853
160	8250,464529	175,983793	52,224316
161	4757,513995	94,6604	26,565051
162	3095,884328	83,366738	56,768289
163	965,503723	39,077001	67,380135
164	2354,39539	85,577481	52,206057
165	3976,262433	80,388329	94,573921
166	6400,662443	176,952751	36,501441
167	296,81959	22,718496	26,565051

168	201,053269	21,92215	60,255119
169	1825,16046	78,272404	20,854458
170	2904,911724	117,396499	23,498566
171	769,490786	35,140881	71,565051
172	639,002174	30,53849	105,255119
173	1368,730336	56,144033	49,085617
174	467,070827	31,044769	5,194429
175	285,618851	21,13412	146,309932
176	5493,962601	162,046497	44,045159
177	1196,238952	90,982219	34,215702
178	5161,300645	155,327353	36,253838
179	13791,47024	265,489936	17,020526
180	3761,348249	121,597869	57,652557
181	1526,100723	82,503068	16,587339
182	11866,06316	273,757459	8,775056
183	16648,77882	330,385431	28,379243
184	863,016959	34,138979	104,036243
185	3319,339076	114,331747	16,837473
186	2316,872913	107,346545	29,357754
187	1317,057642	46,491784	142,80009
188	946,462466	48,193208	71,565051
189	662,523726	32,875297	56,309932
190	1057,349785	45,823736	69,145542
191	2598,011468	115,166225	48,012788
192	3560,715007	88,780726	31,218403
193	9703,760447	171,501219	50,630683
194	2959,235309	61,842003	92,29061
195	425,628091	27,760564	10,619655
196	836,135185	37,785604	120,256437
197	3584,796596	92,676872	29,744881
198	1751,235581	47,179757	49,398705
199	8552,884489	121,079299	171,326826
200	1932,687557	57,657484	72,897271
201	1552,42246	52,014081	29,054604

202	1326,149165	53,714798	8,130102
203	2186,384301	59,266785	0
204	12724,03978	156,68174	67,750976
205	6813,409684	104,408113	25,016893
206	3774,089089	75,686267	105,524111
207	5065,534325	87,272577	14,036243
208	2087,817796	56,777001	39,805571
209	849,576072	43,443879	65,556045
210	9336,936237	177,239751	22,217594
211	588,598848	30,76463	26,565051
212	6010,876717	131,392167	29,475889
213	2212,706038	70,01143	64,093492
214	2302,311952	56,513254	85,236358
215	1806,679241	50,391981	32,275644
216	1449,375659	51,517191	68,962489
217	483,871935	24,641669	165,963757
218	1897,965265	51,851791	60,255119
219	6278,574385	116,466919	71,565051
220	3853,614338	124,148074	30,963757
221	1352,489264	47,845299	56,309932
222	3147,407729	103,046707	51,709837
223	1051,189378	42,776919	4,398705
224	929,661358	45,014739	28,300756
225	9980,418706	179,876932	79,508523
226	2299,966798	56,598833	104,036243
227	1782,072617	52,588259	99,462322
228	5887,73859	148,746312	21,077494
229	1147,935764	40,693002	42,70939
230	4191,351629	90,833689	80,073754
231	328,146658	33,338662	93,576334
232	846,180848	51,855085	85,236358
233	2367,906281	77,683587	51,340192
234	932,811565	43,787607	59,036243
235	2121,139995	64,04729	15,255119

236	1078,071153	45,429236	74,054604
237	2763,432386	116,791243	75,963757
238	2395,90813	64,343966	110,854458
239	4027,015783	128,473799	51,788975
240	757,800015	35,965987	131,185925
241	778,801401	47,294172	83,990994
242	445,404397	27,550223	40,601295
243	332,521946	23,812548	90
244	2019,633295	70,336274	64,179008
245	1211,954989	48,232666	104,931417
246	301,019867	19,831439	8,130102
247	233,64042	25,135467	90
248	721,060278	35,842228	157,750976
249	272,142961	20,140215	174,289407
250	2791,784257	77,836465	128,047043
251	78,405175	10,583355	90
252	113,092464	17,534384	95,440332
253	224,014785	26,192466	135
254	122,289321	18,692226	174,289407
255	45,940532	9,901346	66,801409
256	50,534585	7,876221	172,874984
257	63,911418	9,37138	153,434949
258	990,565377	38,069288	108,434949
259	713,172069	37,041741	90
260	1327,462612	54,526484	77,471192
261	1614,481556	50,693923	96,340192
262	200,983265	19,84379	90
263	1097,217416	46,992001	105,945396
264	482,191825	25,575983	85,236358
265	1409,052997	75,366018	52,594643
266	632,281731	35,646448	6,340192
267	571,237702	49,391507	45
268	458,670272	31,133499	78,690068
269	253,696744	27,465193	14,036243

270	9379,856754	250,422871	29,577839
271	2451,806819	109,706908	29,931512
272	1643,778489	97,893072	54,107334
273	1411,468157	67,807681	12,680383
274	11229,86117	212,913465	85,236358

Mapa de evolución temporal de las dolinas

Digitalización realizada a partir de ortofotos de las hojas 248 y 249 del PNOA Histórico (1956-1957) y Máxima Actualidad (2018).

Sistema de referencia: ETRS 1989 Proyección UTM30N

Fuente: Centro Nacional de Información Geográfica

Mapa realizado por Diego Albardía mediante ArcMap 1.15

Mapa de pendientes de los Llanos de Cupierlo

Este mapa muestra las dolinas de la zona de estudio, así como las pendientes sobre las que se encuentran, expresadas en grados.

Digitalización realizada a partir de LIDAR primera cobertura con resolución de 1 metro (año 2010).

Fuente: CNIG

Elaborado por Diego Albardía mediante ArcMap 1,15

Mapa en detalle de los Llanos de Cupierlo

Este mapa muestra las dolinas identificadas numeradas, así como la geología, la red de drenaje principal, las fallas y las curvas de nivel.

Digitalización de dolinas realizada a partir de LIDAR primera cobertura con resolución de 1 metro (año 2010) correspondientes a las hojas 248 y 249.

Digitalización de geología realizada a partir de mapa geológico del Instituto Geológico y Minero de España.

Sistema de referencia: ETRS 1989 Proyección UTM30N

Fuentes: CNIG, IGME

Curvas de nivel (cada 100 m)

Red de drenaje

Dolinas

Conglomerados, areniscas y margas

Areniscas y margas con fósiles marinos

Calizas con Nummulites y Alveolinas

Areniscas, margas y calizas

550

Calizas, calizas tableadas y margas abigarradas

825

1:15.000

1.100 Metros

Elaborado por Diego Albardía mediante ArcMap 1.15

Mapa final de las dolinas de la zona de estudio

