RBAFZWERY KT b %
Al

KURENAI

Kyoto University Research Information Repository

Tile  'ppooooooooo
Author(s) | UENO, SUEO
Citation 00oooooood (1968), 43:1-12
Issue Date | 1968-05
URL http://hdl.handle.net/2433/107670
Right
Type Departmental Bulletin Paper

Textversion

publisher

Kyoto University




ooooboooao
430 1968 0 1-12

INVARIANT IMBEDDING AND MULTirlk ECATTERING PROUCESSES

cuec Yeno

Institute of Astrophysics, Kyoto University

I. Introduction : In problems of solving classical eguations of mathe-

>

matical physics two types of difficulties are inseparably assoéiated,i.L,
difficultie§ of analytical character and of computational nature, beca-
use the classical methods reduce problems to the solution of systems of
linear eguations. If we use the invariant imbedding in a systematic fa-
shion, we shall try to reduce problems to the iteration of non-linear
transformation.kt will permit us to avoid such untractable matters. Such
rroblems will be encountered in the fieldsocf radiative transfer,neutron
diffusion, raréfied gas dynamics , random walk and wave propagation.
Particularly, this apprcach is powerful to treat with the interaction
of photons and gas particles in stochastic media ke.g.,sﬁocks, turbulen-
ce convection}and others), allowing for the magnetic field.

Then, the characteristic of the invariance principles consists in
the transformation of the two-points boundary value problems to the ini-
tial value problems. 1In the field of radiative transfer Chandrasekhar
has developed elegantly the theory of invariance principles due to ori-
ginally Ambarzumian. Whereas the angular distribution of emergent ra-
diation is evaluated with the aid of this technigque, however, the deter-
mination of the internal radiation also is reduced to the above problem
by the use of the initial value method(cf. Reference ,Books (4)).

A summary of some recent developments of this approach is presented
by Bailey and Wing (cf.o.Math.Analy. and appl., ) . Tre

generalized Riccati transformation provides another manipulative deriva-

tion of the result (cf.Kybicki and Usher,Ap.c.l46 ,871(1966)).
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2. The rod model

2.1 The stationary multiple scattering processes

2.1.i Trhe transgort equation : Consider an inhomogenecus rod exten-

aing from zwa to z=b., The interval is thought of as being rod materi-
al capable of transporting particles, whereas these particles can move

only to the right or to the left (See Fig.l).
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Fig.l. The rod model Farﬁ&ond,

Let

u{z)= expected number density of particles at z and moving to
the right,
v(z)=expected number density of particles at z and moving to the

left.

The transport equation appropriate to this case is written in the

ferm

(1) du/dz = «(z)u(z) + gz)v(z), dv/dz = ﬁ(z)u{z) + alz)v(z),
where

(2) a(z)= &6(z){p(z) - 1), 8(z)= §(z)alz) (0<Lz<x).

In the above 6(z) is the cross-section,plz) represents an expected
total of particles moving in the direction of the original particle at
z in each collision, and qiz) arises going in the direction opposed.

Eg.(1) should be solved subject to the boundary conditions

(3) u(a)=0, v(b)=1.

2.1.2 Invariant imbedding equations : Let

R(b,a)=expected number of particles emerging to the right each
second at b due to-a flux of one particle per second injec-
ted at z=b,

T{b,a)= expected number of particles emerging to the left each
second at z=a due to a flux of one particle per secondjin—

jected at z=b.- 2



We shall call Kk and "' functions the reflection and transmissicn fun-
ctions, respectively. Furtnermore, R(a,b) and T(a,b) functions‘represea
nt the above global guantities when one particle is incident on z=sa,
beéause of the polarity of an inhomogeneocus properties-of the rod.

It is eviaent that
(4) E(b,a)=u(b), T(b,as=via).

Add an infinitesimal length A <to the rod at z=b. As the incident
flux passes through the interval (b,b+3 ), some of the particles cause
scattering and others pass through unaffected to become incident upon
ta,b}. When a scatteriug occurs 1in A , a scattered particle emerges
at b+ A , whereas the other becomes a part of the incideant flux at b.
some of particles reflected from (a,b, may cause scattering while pas-
sing through tb,b+ A )f The products of this scattering yield a con-

tribution to the reflected flux at b+

. and furnish another scurce
of particles incident upon (a,b). By taking @& to. be an infinitesi-

mal,rall other events have a probabi;ity of occurenée of order UL or
higher, apart from those taken account of above.
Adding up the various effects and their associated probabilitiés, we
get the equation’
(5) R(b+A,a)= 8(b)A + PB(v)R(b,a) AR(b,a) + 2« (b)R(b,a)A +R(b,a)+@ﬁ3L
If we let A—> 0, we derive a kiccati type of first-order differenti-
al equation. This type of quadrétiqaiiy)non-linear equation is chégact—
eristic of the equation given by invériant imbedding technique. Nlt is
provided by
(6) dR(b,a)/db = g(b) + 2«x(b)R(b,a) + #{(b)R(b,a)R(b,a),

together with the boundary condition  R(b,bs=0.

Eq. (6] gives directly the value of the reflected intensity from the
right end due to a unit input without the necessity of finding the in-

ternal flux of the rod.



Similarly, we find the functional equations for R- and T-functions
ras below:
" (7) d4T(b,a)/db= a(b)T(b,a) + A(b)T(b,aR(b,a,
(8) -dR(b,a)/da = g(a)T(b,a,T(a,b),
(9) -dT(v,a)yda»=x(a)}T(b,a) + A(a)T(b,a)R(a,b),
together with the boundary condition 7(b,b)=1.
It is of interest to mention that egs.(6)~(9) consist of  half of all
differential equations for R- and T-functions.
2.2 Time-dependent multiple scattering procésses

2.2.1 ;nngxagﬁigzﬁgguéﬁigai
Consider a one-dimensional homogeneous medium of optical thickness

z=x, illuminated by radiation of time-dependent specific intensity wit)

incident on the right-hand toundary 2z =x.(See rig.2). Scattering of

light in either direction is assumed equally probable.

IGRY) V(Z,t) wz,) wix,t)
< < L > A
0 Z X T Vix, k)

Fig.2, A time-dependent transport process
Let u(z,t) and v(z,t) denote respectively the spééific intensities
of radiation at level z at time t, directed towards the boundaries z=x

and z=0.

The equation of transfer appropriate to the case of relaxation is

expressed in the form

(10) du/fsz + t2 du/dt = -u + B(z,t),

T (11) -9 v/iz + t 5v/&t = -v + B(z,t),
where t2 is the mean free time, and the source function B is given by

(12) B(z,t)= —:f{u(z t') + v(z,t") }exp -(t-t*)/t 3 dt! /tl .
In eq.(12) d is the albedo for single scattering,i.e. the probability

of photon survival, and t, is the duration of temyporal capture, which

corresponds to the mean molecular interaction time in kinetic theory of

dilute gases.
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Egs.{(10) and (11) should be solved subject o the voundary and ini-
tial conditions
(13) u(C,t)=0, vi{x,t)=w(t),
(14 u(z,0)=0, vi(z,0)=C (C<z< x).

The quantities u(x,t) and v(C,t} are called resrectively the reflecteda
and transmitted intensities, and v{(x,t) is the intensity of radiation

incident on the boundary z=x at time t.

2.2.2 The reflected intensity : Let R{x,t) denote the reflection func-

tion. Define

~t
\15)  u(x,t) = J R(x,t-t')¥(x,t')dt’,
-]

~ . .
where v(x,t) is ziven by eq.(13).

-~
)

-
ct
~

We shzll ssek an integral equation for the reflection function -
naking use of the invariant imbedding techrique in verturbation scheme,
Imbeddine the rod of opticel thickness x in vosition and time, we ret

{16) u(x+3§”t+t23)= ulx,t) +_1£\ -u(x!th(x,t)} + G,

~

, R , . . - . cos . 2
wnere (A ) is of the order of magnituce of the infinitesimal A .
a7 v(x,tf:v(x+4,t-t2A)-v(_X,t'Q"‘.k +Blx, YA« (s,

v initial condition (1k), eq.(17) becomes
t
.

2 ’ R 3 . —Ct—t'\/t N
13 /\;\x,t>:w(t—t Ad=wit)A +%A ui{x,t’le TT1lét '/t
2 27 1
I (-t /¢ ,
+ 24 ’ witt e " 14t /E. 4+ o A,
Z s I

On makingz use of eas.(11) and (18), we obtain

t‘ \t.
19 usix,t):f R(x,t—t'?w(t'-tzﬁ)dt‘ -Aj Rix,t-tdwit' de' &
A , -
. x T . ey ,
&sﬂ R(x‘t-:"dt",‘, uix,t"" e -t ’ty et/ :
~ ;<‘ .'—o“v,' ) - '_t"
. ,’-':.faer(,x,,t-t‘\'fC' thL?’-" oot )/t1 gttt o+ G(A D,
<~k VL) -
Cr the other nand, we have
THRA
(20) u‘»X*A,t+c2,1 )= ROx+ 4 tet,: —tDw(t)de’.
- .
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~ r
(21) j R{x+ A ,t+t A —t"wft’)dt'—‘f Rix,t=t Yw(t'=t A yatt -
_m -

‘ ' 1
-2 A‘ Rx, =t Iw(t')de iz\( R{x,t=-t"' )dt'{ﬁ ufx, t")e-<t -t )/tl

‘dt”/u +‘%{fi-3(x,t-t')dt"x’ (‘*" B R P VA
Pl SV - A 1
1 4 - - ]
+2af Six, e~ (B8 )/t o0 /ty A w(tr)e-(E-E")/t atr/e, + Q).
-5 o =R

First, we shall consider the case of Dirac delta time-dependent fun=~
ction,w{t)=f 3(t), where F is a constant and § is the Dirac delta
function. The substitution of w(t) into eq.(21) provides (after letting
A-0)

(22) 3 R(x,t)/3 x + 2t25 R/¢ t +2R a{‘ 1/2t ) R(x,t-t')

Le b /tl dt? /tl j' dt'j R{x,t-t")R(x,t'")e -(er-tre )/tl atrv/t }

The cordition imposed on R are

]

i23) R(x,0)=0 for 02t; R(0,t)=0 for t20.

Eq.(21) is the requisite integral equation governing the reflection
function.

Furthermore, we consider a fluorescence problem for which the diffuse-
ly reflected light decreases for a long time after the sudden switchinge~
off of the external raciation field ircident or the boundary x, assuming
no emitting source within the medium.

Writing
(24) v{x,t) = FH*(L),
where

(25)  m(t) = |9 220

1 t <0,
We find the requisite intensity u(x,t), reflected by the end z=x at
time 't , is given by |

(26) ulx,t)= Fi:é(x,t—t')ﬁ*(t')dt' = FJ;R(x,y)dy,

where R-function is given by eq.(22).

2.2.3 The ,A ‘
Let T(x,t) denote ransmission functlon. Then, we have

; %
(27) v(0,t) =j T(x,t-t')vix,t')dt",
-

where t* = t—xta.



de inquire into an integral equation for T(x,t). In a manner similar
to that used in a previous section, we have
(23)  v(0,t+t,0=v(0,%) + ©OCa).
From eq.(27) we obtain
~ tk
(29) v(0,t+t A)= T(x+ A t+t,4 =t )wlt'=t_ A )dt'.
2 W 2 2

On the other hand, using eq.(l3), we see that the trammitted intensity

v(0,t) is provided by

o t"’
(30)  v(0,t) :( T(x,t-t )V (x, t')dt' j T(x,t-t Dwlt'=t,A ddt' -
£ V- op
- A Tlx,t=t)w(tt)dt' +% Af T(x,t-t! )dt'{u(x t')e '(t )/tldt"/tl
S »
A( T(x,t-t')dt" f w(trye B/t at''/ty o+ Q.
L ] b

The, recalllng eqs..14),(29¢, and (30), we find that eq.(28) becones

t
(31) f T(X+A Eet, 4 =t )w(E -t A Jat! =f 'r(x,t-t')w(t'-t24 Ydt?
w -W

‘,t‘r (t -(t'=-t'") /¢

A (x t-tdw(tt)dat _x} T{x,t-t*)dt'} ulx,t*'" e

-

Ldt' /e, s ©(ay.

1 dt'/t,
L

—Af (x,t=t')dt’ ftu(t")e‘(t'-t "/t

Inserting w(t)=F §(t) into eq.(31) and letting A> 0, we have
(32) IT(x,t)/d x +t

nvt* “'/2

j dt'j T(x,t=-t " IR(x,t' e "

5T/5 t 4 1 2% ) T(x,t-t)e ¥/t at'/t,

ARSI V4 U
1 dt /tl }

’
alonz with the boundary and initial conditions
(3%) T(x,t)=0 (x>’o, 0>t or t<xt2), T(0,t)=F &(t) (t> 0).

Eq.(32) is the requisite integral equation for the T-function in the case
of Dirac delta—functién time-dependence.

Furthermore, consider the same quenching fluorescence problem as théf
treated in the pré&ceding section.

Under the incident intensity v(x,t), given by eq.(13), the reguired
intensity transm%zted from the boundary z=0 at time t is provided by

&0

(34) v(O,t):FJE’(x,t-t')H‘(t‘)dt':F L_’I‘(x,y)dy,

where T(x,v) satisfies eq.(32).

3. The slab model




3.1 Stationary multinle scattering processes

Z.1.1 The eguation of transfer

Let a parallel beam of radiation of net flux ®nEF per unit area nor-
mal to the direction of the proragation be incident on the upper surface
z=x of the atmosphere at polar angle cosﬂx with the inwards nermal and
an azimuth & (O < g 1,0<(f < 2T ). Consider ar inhomorzeneous vlane=

varallel atmosphere of Tinite optical thickness x with anisotropic scatt-

ticon isotropically. The optical altitude is measured from the bottom.
Let the irtensity of radiation at altitude z directed towards the top
surface z=x be denoted by I (z." yX), where (Q stands for (0K <€
0 é_ﬁpé;Zﬂ:), and let the intensity of radiation directed towards the bot~
tom be denoted by I_(Z,Q yX). The direczion of the beam is specified by
its direction cosin ' F. with respect to the outward normal to the at-
mosphere at z=x. The albedo for single scatteaing ,A depends upon‘z, where
0 <z <x. |
Je shall éétérmine’:he angular distribﬁfion of diffusely reflected lizht

emerging from the top of the atmosphere,i.e. the solution of the Chandra=-

sekhar pla“eiary problem with thermal emission.
“he equation of transfer is written in the form
(35)  wdIlz,2 ,x)/dz + I = /\(z)q’—%_{qr(z,;’l yAI(z,2,x)d0 ' +3(z,Q
s Ma)Fe™ 2 Yz, 0,00 /4,
where the gmse function 7T {(z,{ ,{},) is normalized to 47 on the unit
sphere, and B(z,Q ) represen-s the internal source.
Eq.(33) should be solved subject to the boundary conditicns
(36) I_(x,2 :x)=0,
(37) 1 (O,--,x)~ JJ,J; (O,_.,x)p dﬂd?, +F“;Qe-x/ﬂc .

where A is a constant.

3.1.2 The reflected intensity -



Let rhe principle of invariant imbedding be

23

- A ~ —
(33)  I(2,0,x) =1(z,0,2) + ‘ S(z,Q , &I _(z,0/,x)dd /&7,

where S represents the scattering function and the subscript on thé iéteg-
ral indicates the integration over -nezative values of ik only. In eq. (38}
N
I+(z,§l,z) represents the intensity of radiation emitted at l?vel z if
there is no layer from x to z , and I_(z.Q +X' represents the intensity
of radiation dif‘“usely reflected at level z directed towards the bottom.
The downward directed radiation consists of the diffuse radiation field
and the radiation field due to the emitting source B.

In the limit z=x we have
(39) I+(x, 3’23x)=f+(x,§2 x)=I% (x,Q ,x) + FS(x;Q s Do) /B .

Cn differentiating eq.(38), with respect to z, passing to the limit
z=x, and makinz use of the above relation, we cet

(40) dI+(x,Sl,x2/dx + I+(x,§Z.x)/W :% B(x,Q ) + NxX)F Y ({x,0 ,0 /h

{ ’
L
\ Al -4, { .
+,A(xz€ T(x, 2 ,Qf)1+(x,;)ﬁ x)dff/kﬁ} + Q@Wr)’S(X;;2$§Y){ Blx,2 )
. J+ . o
o MO T, 2 89T, Gy Qx d QAT+ AGOF T(x, &) )t ap ad /W
r + <+ ’ )
=FS{x5 Q,Q0/4 M Ho &
It is the reguisite invariant imbedding equation, whose boundarv con-
diticn is
(41, I+(o,52 1Cl=FAe  (O<poc 1)
The scattering function S is governed by
(b2 95(x5;92 ,2 )5 x + (L/p + 1/He )5S = )\(x){ Y(x; 0 ,0) +
> ; ; ’ . / N I Vi
JY(;{,Q W s(x; Q) n)a & uT R - fs<x; Q,0") F(x,07, Lo aQ/LTH
t v-

(167t

"

f_ iS(x; QL) T (x, 0, )8 (x50, 0)al a0 /;*'rt”}‘-
In the absence of an internal source, putting
(432) I (x, 2, x)=FS(x3Q ,2.)/4 ¢,
from eq.(40) we get eq.(42). The boundary condition is given by
(L4) S(0580 , 8 )= bAp oo

3.2 Time-dependent multiple scattering processes

W



2.2.1 'ne eguation of transfer and invariant imbedding equation

Consider the tims-dependent diffuse reflection of parallel rays by
& homoseneous, non-emitting and isotropically scattering slab. We shall -
deferming the time historv of radiation which is diffuselv reflected
from a slab as a result of a constant incident flux starting at time

zero{see Fig . 3). A,
ey M A

NN\ - )

Fig.3 Incident and reflected beam
for a slab of thickness x

The equation of transfer is
+\

(45)  pRI(z, Pk ,tikz + (1/c) 2Tt + 61 = (A5/2) f I(z,ﬁ',t')d\'r&’,
where ¢ is the velocity of licsht, § is the volume aytenuation coef~
ficient, and XN 1is the albedo for single scattering, togsther with
the boundaryv and initial conditions
(LE) 100, ++,£)=0, > 05 Ilx,-p,t)= x HL) FS(p =to), y> O«

In a2 manner similar to the stationary case, we find that an invariant
imbedding equation for S-function is given by
(47) 2Slx i g ox +(/p 1/K) (Db +1)S Ao up

+(1/2).S Slx,t; Boop )dh /k +(1/2¢ )S Slx,t; p sﬂc)d‘k

[}
+Sot' JS(X trs \L \&;)c\% qu(x =t R, Ht d["/',‘"}
together with the initial condition
(48} ’s'(é,o;p,w)zo.
In egs.i4€) and (47) H is the Heaviside unit step function
(49)  H(t)= ©, t<O,
1, t>0.

In the above S is the required solution of the non-linear integro-

1]

differential equation of convolution type (see figures which show.
the general way in which the reflected intensities build up to their

limiting values). . 10
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