
W&M ScholarWorks W&M ScholarWorks 

Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects 

2020 

Development Of Quantum Information Tools Based On Multi-Development Of Quantum Information Tools Based On Multi-

Photon Raman Processes In Rb Vapor Photon Raman Processes In Rb Vapor 

Nikunjkumar Prajapati 
William & Mary - Arts & Sciences, nprajapati@email.wm.edu 

Follow this and additional works at: https://scholarworks.wm.edu/etd 

 Part of the Quantum Physics Commons 

Recommended Citation Recommended Citation 
Prajapati, Nikunjkumar, "Development Of Quantum Information Tools Based On Multi-Photon Raman 
Processes In Rb Vapor" (2020). Dissertations, Theses, and Masters Projects. Paper 1616444554. 
http://dx.doi.org/10.21220/s2-93cy-dq98 

This Dissertation is brought to you for free and open access by the Theses, Dissertations, & Master Projects at 
W&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an 
authorized administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu. 

https://scholarworks.wm.edu/
https://scholarworks.wm.edu/etd
https://scholarworks.wm.edu/etds
https://scholarworks.wm.edu/etd?utm_source=scholarworks.wm.edu%2Fetd%2F1616444554&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/206?utm_source=scholarworks.wm.edu%2Fetd%2F1616444554&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.21220/s2-93cy-dq98
mailto:scholarworks@wm.edu








ABSTRACT

Multi-photon nonlinear processes in atoms have served as important tools for quantum

metrology, quantum communications, and quantum sensing. In this thesis, we experi-

mentally address the interplay of various multi-photon Raman processes in hot Rb vapor,

with the four-wave mixing (FWM) process being a central theme. FWM is the nonlinear

response of a medium to a strong optical pump field inelastically scattering off atomic

resonances and resulting in the generation of additional photons in different modes. FWM

is a detrimental, but inherent part of electromagnetically induced transparency (EIT)

and Raman based quantum memories. However, we were able to weaken the four-photon

resonance by utilizing two-photon absorption to remove the additional photons without in-

terfering with the signal beam. We also demonstrate the ability to tailor FWM to generate

new photons in a controlled fashion for mode conversion. With this, we showed the conver-

sion of 795 nm light to 420 nm light. While FWM is a source of noise in quantum memories,

it can also be used for the generation squeezed twin-beams. Such beams have relative in-

tensity noise reduced below the classical shot noise limit and share mode dependence based

on the phase-matching conditions. Using this, we demonstrated that twin-beams can be

generated with largely different spatial structure (optical angular momentum) and still

share strong correlations, so long as the phase-matching conditions are satisfied. We then

constructed and demonstrated the operation of a polarization-based quantum interferom-

eter using squeezed twin-beams and showed that our beams were entangled under the

inseparability condition. Using this interferometer, we were also able to achieve squeez-

ing at low detection frequencies, which is necessary for things like quantum imaging and

gravitational wave detection. We also demonstrated that squeezed twin-beams can be uti-

lized to enhance the sensitivity of two-photon absorption spectroscopy. This research has

touched on many different subjects related to quantum information science and improved

upon some of the tools needed for the implementation of such technologies.
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DEVELOPMENT OF QUANTUM INFORMATION TOOLS BASED ON

MULTI-PHOTON RAMAN PROCESSES IN RB VAPOR



CHAPTER 1

Introduction

Quantum information technologies have been rapidly developing over the last 30 years

offering a wide range of applications. In quantum sensing and metrology, they have been

used for gravitational wave detectors [1–5], bio-sensing [5, 6], quantum imaging [7–10],

and weak RF detection using Rydberg atoms [11, 12]. In quantum communications, they

enabled absolutely secure information transfer offered by entangled light [7, 13–16] and

increased channel capacity through the used of quantum and structured light [17, 18]. In

this thesis, we make complimentary advancements to the fundamental processes which

govern the quantum information revolution.

At its heart, the advancement of quantum information technologies has come about

from the coherent control of light matter interactions and the resulting nonlinear effects,

made possible by the advent of the laser in 1961 by Theodore Maiman [19]. While non-

linear effects involving electric and magnetic fields like the Pockels effect and the Kerr

effect were discovered in the late XIX century, a strong source of coherent electromagnetic

fields was necessary for other polarization effects, made available by the laser. This was a

necessary component for the coherent control of atomic populations and light matter inter-
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actions [20]. The year the laser was invented was also the year second harmonic generation

was first demonstrated by Franken et. al. [21], proving the earlier development of nonlinear

polarization theories by Dirac [22]. Following this initial discovery, many other parametric

nonlinear effects followed: frequency sum and difference generation, optical parametric

amplification, Raman scattering, etc [20, 23–25]. Also observed were coherent nonlinear

effects like electromagnetically induced transparency and Raman absorption [20].

The nature of these nonlinear responses depend on the medium used. In the first

demonstration of second harmonic generation, a crystal exhibiting χ(2) (second order in

polarization response) nonlinearity was used to convert red 794 nm light to blue 347 nm

light [21]. Non-centrosymmetric crystals break inversion symmetry and thus allow χ(2)

processes [20, 23]. However, when comparing the strength of the nonlinearity per atomic

density, alkili vapors offer more promise and added benefits based on the application [26].

Since vapors are symmetric under rotation and translation, they only show odd order con-

tributions from the susceptibility. The most common and explored is the χ(3) nonlinearity,

that gives rise to four-wave mixing (FWM), polarization self rotation, the Kerr effect, and

other processes [26]. In this thesis, we look at FWM as both a positive and negative factor

in quantum information science.

1.1 Four-Wave Mixing in Quantum Memories

In the realm of quantum communications, quantum memories are essential for long

range transmission of entangled states [27]. There are two main processes which can

be used to generate a quantum memory. One process relies on engineered absorption

or photon echos inhomogeneously broadened media. The two main processes, controlled-

reversible-inhomogeneous-broadening (CRIB) and atomic frequency combs (AFC) are such

photon echo based memories [28]. In both, the signal pulse is absorbed coherently by the
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in-homogeneously broadened atomic ensemble. Upon the application of a π/2 pulse, the

ensemble begins to dephase and the pulse is stored. However, to retrieve the pulse from

CRIB or pulse train from AFC, a π pulse must be applied at the exact rephasing time for

efficient retrieval. The coherent ensemble then echoes the signal photons [29]. While these

protocols have seen storage times on the order of hours [28, 30] and have great promise as

a memories, more versatility is needed [28].

Optically-controlled memories do not have this limitation. The storage and retrieval

is controlled by a strong pumping laser which reversibly maps the optical signal on the

ground state coherence of non-interacting superposition of spin-states, which can then be

retrieved on-demand with a second pump pulse [28, 31]. This non-interacting superposi-

tion is the dark state and can be produced by the two-photon processes of on-resonant

electromagnetically induced transparency (EIT) [32–34] and off-resonant Raman absorp-

tion [35–37]. These processes have been observed in alkili vapors [32–37], crystals contain-

ing nitrogen-vacancy centers in diamonds [38–40], and even molecules [41]. Alkili vapors

have the largest storage times of the optically controlled memories, primarily limited by

the collisional depahasing of the dark state rather than the decay between the two states

comprising the superposition [28]. However, the storage times are still much smaller than

those observed for quantum memories utilizing engineered absorption. For this reason, hy-

brid schemes incorporating both optically controlled memories and engineered absorption

have been conceived [28].

Unfortunately, optically controlled memories share a deficiency. The strong pump

field used to optically trap the coherent ensemble results in inelastic Raman scattering,

known as four-wave mixing. This is detrimental to these memories since adds excess

noise photons into the signal, thereby decreasing the fidelity of these quantum memo-

ries [28, 36, 37, 42–49]. Methods to subvert this added noise have involved the optimiza-

tion of frequencies [36, 50], polarizations [51], or introducing an optical cavity for spectral
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filtering [52, 53], but each has its own limitations. The suppresion of the FWM effect has

also been attempted with the use of higher-order nonlinear effects [54, 55]. However, the

introduction of such effects can lead to unwanted modifications of the ground-state coher-

ence [56]. More recently, it was shown that the overall FWM gain could be suppressed by

sufficient absorption of the conjugate field as it is generated. The method for absorption

relies on Raman two-photon absorption using separate isotopes of the given atoms mixed

into the coherent ensamble [42, 43, 45, 57]. This method drastically limits the effects of

FWM and can increase the fidelity of EIT and Raman based quantum memories without

altering the dark state.

1.2 Frequency Conversion via Four-Wave Mixing

While FWM plays a negative role in quantum memories, it is useful in applications

where the efficient frequency conversion of light is necessary. For quantum communica-

tions, there is a need to switch between telecom wavelengths (1550 nm) for transmission

channels and quantum memory wavelengths (795 mn in Rb atoms) for repeater stations.

Any loss during conversion results in noise and loss of entanglement [8]. FWM is a

parametric nonlinear response which can be used to generate collimated light with the

frequency-sum or frequency-difference of the input fields and scattered photons from res-

onance decays [20]. By tuning the input field alignment and frequencies, one can tailor

the output light as desired. A broad variety of interaction configurations exist to this ef-

fect and among them, the scheme involving two-photon excitation reaching higher energy

levels have been investigated for efficient frequency up-conversion [58–60], single-photon

frequency conversion [61], quantum memory [62], active filtering and selective non-linearity

suppression [43, 63], quantum noise dynamics [64], etc.

The configurations involving higher energy levels of alkili vapors also offer other in-
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teresting possibilities for nonlinear optics. The population inversion guaranteed between

certain excited levels with appropriate lifetimes and branching ratios, result in amplified

spontaneous emission (ASE) and spontaneously-seeded four-wave mixing for the involved

optical transitions. A lot of attention was recently given to the generation of collimated

blue light (CBL) at 420.3 nm via the 5S1/2 → 5P3/2 → 5D5/2 transition in Rb vapor [65–

72]. Such interacting systems have been successfully used to study the interplay of co-

existing nonlinear processes [44, 73], the effects of externally-seeded optical fields [74] and

of the ground-state repumping [75, 76], and of optical resonators [77]. It also served as a

tool for studies on orbital angular momentum conservation and manipulations in nonlinear

processes [78–80].

1.3 FWM as a Source of Squeezed Light

FWM can also be used to prepare non-classical states of light, specifically squeezed

states. Squeezed states are similar to coherent laser light in regards to being a minimum

uncertainty state in phase and amplitude [23, 24, 81]. However, for squeezed light, one

observable has noise below this limit (squeezed), while the other has noise above this limit

(anti-squeezed), introduced more precisely in Ch. 2. The original definition of squeezing

referred to noise reduction in the electric field amplitude or phase quadrature noise, but

has since extended to sub-poissonian photon number distributions, polarization squeezing,

and other observables [26].

The first demonstration of 0.3 dB squeezed light was in 1985 by Slusher et al. [82] using

FWM in sodium vapor, nearly 25 years after the invention of the laser and first demon-

stration of second harmonic generation. Since then improvements in detectors, electronic

noise suppression, and the reduction of loss in optical elements has led to substantial in-

creases in squeezing. Nearly 9 dBs of squeezing has been observed in alkili vapors [83, 84],
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7 dBs in optical fibers [85], and over 15 dBs in crystals [86]. Due to the versatility of these

sources, squeezed light has seen use in a variety of situations including entangled pair

generation for quantum communications [7, 13–16], correlated images for quantum imag-

ing [7, 87, 88], bio-sensing [89, 90], enhancements in magnetometers [91, 92], gravitational

wave detection [93], and others given by these reviews articles [26, 87, 94, 95].

FWM in atomic vapors produces bright two-mode squeezed twin-beams. They are

formed when the spontaneous inelastic scattering of a pump field off of the ground state

coherence is stimulated by a seed (probe) field. The result is the simultaneous generation

of additional probe photons and conjugate photons. The pump, probe, and conjugate

photons complete a four-photon resonance involving the hyper-fine split ground state and

two intermediary states coupling the conjugate and probe to the pump beam. The spon-

taneous addition of photons to each beam results in extra noise for the individual twin

beams. However, since the addition occurs in a pair-wise fashion, the twin-beams share

these fluctuations. The result is the increased signal strength without an increase in the

differential intensity noise of the probe and conjugate twin beams. The differential mea-

surement of the two beams result in a lower noise floor then if two classical beams were

used [23, 24, 81]. The twin beams share quantum correlations in phase and intensity and

as such, they are said to be entangled [96, 97].

Squeezed light generated in atomic vapors have some key benefits to their counter-

parts. As stated before, the nonlinearity of atomic ensembles near resonance is much

larger than the those of crystals or fibers. This allows for squeezed light generation at

lower pump powers and removes the need for cavities [26]. While the level of squeezing

produced by FWM in vapors is lower, there are still certain advantages. For example,

squeezed light produced by FWM in Rb vapor is near resonant with the D1 line, the same

frequency as EIT and Raman quantum memories [32–37]. FWM can also be used for

differential absorption measurements to monitor plasmons [83] or molecules and cells [90].
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For applications in communications, FWM is a source of entanglement and can transfer

complicated phase structure from the input beams to the newly generated field [8, 18],

thanks to the multi-mode nature of the FWM.

1.3.1 Squeezed Light and Transfer of Optical Angular Momen-

tum

An important facet of squeezed light generated by FWM is its multi-mode nature

and ability to transfer phase information between the correlated twin-beams [8, 98, 99].

A useful resource carrying complex phase and spatial information is structured light, such

as beams carrying optical angular momentum (OAM) [100–102]. This resource rapidly

became useful for a wide range of applications, from optomechanical manipulations [103,

104] to super-resolution imaging [105, 106]. In quantum information science it has been

used for the generation of hyper-entanglement [107, 108], quantum multiplexing [109],

etc. Nonlinear optical processes used for OAM manipulations have been observed [8, 99,

110–113], as the OAM phase-matching conditions make it possible to control the spatial

structure of the generated optical field by shaping the profiles of the strong pump and

weak probe fields before the interaction.

Twin-beams generated in this manner also exhibit the same level of noise reduction as

non-structured twin-beams [8, 18], even when they have very different spatial structure [18].

The ability to maintain spatial correlations in this manner also opens the possibility for

quantum imaging. Mapping correlations of complex structured light may help in gaining

resolution in imaging [105]. It is also possible to use twin-beams carrying OAM in com-

munications to extend the channel dimensionality for information propagation [114, 115].

OAM demodulation schemes for this already exist [100, 116].
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1.3.2 Squeezed Light for a Quantum Interferometer

To this point, we have simply referenced intensity correlations and the photon num-

ber distribution when considering squeezing. However, for communications and sensing,

enhanced phase measurements are also necessary. These can be obtained by interferom-

eters which incorporate squeezed light. Such devices are grouped into two categories,

interferometers defined by the SU(2) symmetry group and those defined by the SU(1,1)

group [117]. SU(2) interferometer are most similar to classical interferometers where a

single mode squeezed vacuum is injected into a dark port of the interferometer to enhance

the measurement sensitivity. A 3 dB quantum enhancement has been achieved with the

inclusion of squeezed light in LIGO [3, 118]. The geometry of the SU(1,1) interferometer

is similar to the Mach-Zhender interferometer, but with the linear beam splitters replaced

by nonlinear ones. A true SU(1,1) interferometer can potentially reach Heisenberg-limited

phase measurements (i.e., the phase noise can be inversly proportional to the number of

photons rather than to the square root of the number of photons) [117, 119]. Such in-

terferometers have potential application in phase sensitive measurement of molecules and

biological samples due to the low light powers of the amplified probe and the newley gener-

ated conjugate field [90, 120, 121]. However, they are hard to build due to inconsistencies

in the two nonlinear amplifiers and the resulting instabilities, the SU(1,1) interferometer

has seen progress only recently [119].

The truncated SU(1,1) interferometer can avoid such issues [119, 122, 123]. It removes

the need for the second nonlinear beam splitter by using two balanced homodyne detectors

for the probe and conjugate fields. This device allows for the rotation of the squeezing

ellipses to move through different squeezing quadratures, the joint-amplitude and joint-

phase quadratures in the case of FWM. This rendition can operate with improved joint-

phase or joint-amplitude detection for selective squeezed light applications, as discussed
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in Ch. 7.

1.3.3 Spectroscopic Measurement using Squeezed Light

While squeezed light generated by FWM has many attractive features, it has its

limitations. The spectral range of FWM lies within a GHz of the frequency of the atomic

D1 line [98]. This severely limits applications of FWM squeezing for spectroscopy. While

other sources of squeezed light have broad spectral ranges, crystals for example [124, 125],

the need for supplementing the spectral range of FWM still exists.

Spectroscopic measurements involve measuring the response of light to specific reso-

nances in a medium. There is a veriety of methods of taking measurements and ranges of

frequencies covered. In IR- and UV-VIS spectroscopy, broadband light of these frequen-

cies is passed through a medium to map the resonant structure in optical absorption [126].

However, other methods which probe into the vibrational modes of molecules require the

use of multi-photon processes. One example is Raman spectroscopy, where pump photons

inelastically scatter with the frequency shift matching the energy of the vibrational mode

of the molecules [120]. This effect requires large laser powers and has issues with large

fluorescence response which can reduce the visibility of the signal [126, 127]. A solution

to this is the seeded version of Raman scattering, coherent anti-Stokes Raman scattering

(CARS). In this, a broadband seed field is injected along with the pump field resulting

in the amplification of the seed at frequencies where a two photon resonance is formed

with the pump field and a molecular transition [128, 129]. The response of this process

is stronger than just Raman scattering alone. There are several other methods which use

a similar principle [126, 129–132]. The effect can also be further amplified by using a

cavity for the seed field [133, 134]. In all of these cases, the power needed for obtaining

measurable nonlinear response is large, and that can be detrimental for power sensitive
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samples [126, 127].

Another spectroscopic method is Raman two-photon absorption, described in 7.1.1

for the suppression of FWM in EIT and Raman quantum memories. By coupling the

probe and Raman pump fields via a two-photon transition with the ground state and a

highly excited state, the absorption of the probe field can be observed and used to make

spectroscopic measurements of highly excited states by tuning of the pump frequency.

This process can be extended to utilize the probe field of squeezed twin-beams, allowing

for the tunable application of squeezed light for spectroscopic measurement, limited only

by the spectral range of the Raman pump field. The ladder configuration has potential to

probe highly excited atomic resonances, like Rydberg atoms [11, 12]. When the Raman

pump and probe are coupled in a Λ-configuration, it may be possible to probe molecular

vibrational modes. This has potential for application in enhanced imaging of biological

and molecular samples [135].

1.4 Overview of Thesis

This thesis details experiments that look to improve upon various quantum informa-

tion tools using hot rubidium vapor. Chapter 2 introduces the basic theory of multi-photon

interactions of atoms with classical or non-classical electromagnetic fields. In Chapter 3

we experimentally generate FWM in conditions similar to EIT and Raman quantum mem-

ory and address the problem of FWM using Raman two-photon absorption using various

coupling configurations. In Chapter 4 we discus the FWM used to generate blue light by

excitation to the 5D3/2 state. We discus the decay paths of excited state and how repump-

ing can play into the FWM process. In Chapter 5 we describe the basic experimental

apparatus used to generate and detect squeezed light from FWM in the proceeding Chap-

ters. In Chapter 6, we look at the effects of using the pump and probe carrying OAM on
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FWM squeezing. Specifically, how probe and conjugate beams maintain correlations even

with very different spatial mode structure. In Chapter 7, we introduce polarization-based

version of the truncated SU(1,1) interferometer, analyse its advantages and potential.

In Chapter 8, we discuss Raman two-photon spectroscopy and the enhancement of the

measurement with the use of squeezed light. We conclude with a summary of the basic

outcomes and future steps in Ch. 9.
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CHAPTER 2

Theory

2.1 Propagation through a medium

In this chapter, we develop the theory to describe the nonlinear processes which will

be used in the experiments to follow. We begin here with the fundamental equations

governing electricity and magnetism, Maxwell’s equations [136].

~∇ · ~D = ρ, (2.1)

~∇× ~E = −∂
~B

∂t
, (2.2)

~∇ · ~B = 0, (2.3)

~∇× ~H = ~J +
∂ ~D

∂t
. (2.4)

These equations describe the response of charges to electromagnetic fields in media

and vice versa. Here, ~E is the electric field, ~B is the magnetic flux density, ~H is the

magnetic field intensity, and ~D is the electric displacement field. We take the condition

of being in a source-free region and so the charge density ρ and the current density ~J are
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zero.

The electric displacement and the magnetic field intensity describe the distribution of

the fields in a medium and can be written in terms of the polarization ~P and magnetization

~M , respectively.

~∇ · ~D = ε ~E = ε0
~E + ~P , (2.5)

~∇ · ~H = µ~B = µ0
~B + ~M, (2.6)

where ε and ε0 are the permittivity of a light in a medium and free space, respectively.

The ν and ν0 are the permeability of a light in a medium and free space, respectively.

The medium we use is an alkali vapor, which is not magnetic, so the magnetization

~M is zero [24, 137]. We then substitute Eqs. 2.5 and 2.6 into Maxwell’s equations

~∇ · (ε0
~E + ~P ) = 0, (2.7)

~∇× ~E = −∂
~B

∂t
, (2.8)

~∇ · ~B = 0, (2.9)

~∇×
~B

µ0

=
∂(ε0

~E + ~P )

∂t
. (2.10)

Then we take the curl of Eq. 2.8 and substitute Eq. 2.10 to find

~∇× ~∇× ~E = −~∇× ∂ ~B

∂t
= −µ0ε0

∂2 ~E

∂t2
− µ0

∂2 ~P

∂t2
. (2.11)

The left side is reduced by using the identity ~∇ × ~∇ × ~E = ~∇(~∇ · ~E) − ∇2 ~E. This

can be further reduced by using the fact that we are treating a system with no charge

and by assuming isotropic polarization of the media, ~∇ · ~E = ~∇ · ~P = 0. By substituting
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µ0ε0 = 1
c2

, where c is the speed of light, we arrive at the wave equation

∇2 ~E − 1

c2

∂2 ~E

∂t2
= µ0

∂2 ~P

∂t2
. (2.12)

The wave equation describes the propagation of light through space. On the right

hand side is the polarization response of the medium. Depending on the strength of

the light-matter interaction, the polarization response takes on different forms. I address

nonlinear responses of the polarization in a later section.

In its simplest form, the response is linear and the polarization is written as ~P =

ε0(1+χ(1)) ~E, where χ(1) is the linear susceptibility of the medium. For this case, the wave

equation reduces to

∇2 ~E − 1

v2

∂2 ~E

∂t2
= 0 (2.13)

where v is the speed of light in the medium.

Here, the linear polarization response was combined with the electric field on the

left-hand side. The solution to the wave equation for x̂-polarized light is [24]

~E(z, t) =
1

2
E0(z, t)x̂ei(kz−ωt) + c.c., (2.14)

where c.c. is complex conjugate. This describes the propagation of a plane wave in free

space with positive and negative frequency components

Ê(+) = E0x̂e
i(kz−ωt), (2.15)

Ê(−) = E0x̂e
−i(kz−ωt). (2.16)
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2.2 Semi-Classical Approach to Light-Atom Interac-

tions

In this section, we develop the tools needed to describe light-atom interactions. We

begin with a simple example of a two-level system with levels |a〉 and |b〉 separated by

energy ~ωab = ~(ωa − ωb), shown in Fig. 2.1. The light-atom interaction is given by the

minimal coupling Hamiltonian [23, 24]

Ĥ =
1

2m
[~p+ e ~A]2 − eφ+ Vc(~r), (2.17)

where ~A and φ are the electrostatic vector and scalar potentials for the external fields, re-

spectively. The contribution from the atom is given by the momentum ~p and the Coulomb

potential Vc(~r). We are working in the radiation gauge, making φ = 0 and ~∇ · ~A = 0,

leaving us with

Ĥ =
1

2m
p2 + Vc(~r) +

e

m
~A · ~p+

[e ~A]2

2m
, (2.18)

where the first two terms describe the Hamiltonian of an atom, Ĥ0. The second two

terms represent the light-atom interaction for the linear and quadratic responses, where

the quadratic term is generally neglected [23]. In addition to this, we assume that the

external field has a wavelength much larger than the size of the atom λ >> r. As a result,

the applied field is uniform across the atom for any given instance in time and allows us

to make a comparison between the vector potential and the electric field ~A · ~p ≈ ~E · ~r [23]

and leaves us with

Ĥ = Ĥ0 − e~r · ~E (2.19)

In this thesis, we consider an interaction weak enough as to not effect the atomic

energy levels. By doing this, we can employ time-dependent perturbation theory and
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treat just the interaction term [23, 24, 137]. We use the Schrodinger picture to evolve the

state in time

|ψ(t)〉 =
∑
k

Ck(t)e
−Ekt/~|k〉, (2.20)

where the coefficient Ck(t) represents the population of the level |k〉, and |ψ〉 is the state

of the system. By plugging this into the time-dependent Schrodinger equation, we can

find the coefficients Ck(t), and thus gain information on the evolution of the populations

of the levels

i~
∂|ψ〉
∂t

= (Ĥ0 + ĤI)|ψ〉, (2.21)

where ĤI = −e~r · ~E is the interaction term. By plugging Eq. 2.20 into Eq. 2.21 and solving

for the coefficients C1(t), we arrive at

Ċ2(t) = − i
~
∑

1

C1(t)eiω21〈2|ĤI |1〉, (2.22)

where ω21 = E2−E1

~ is the transition frequency and 〈2|ĤI |1〉 is the dipole transition

strength.

2.2.1 Selection Rules

We now look at the effects of parity of states on the transition probability. Rubidium

is a hydrogen like-atom, so we define our states in terms of wave functions resembling

those of the hydrogen atom

|k〉 = |n, l,m〉, (2.23)

where n is the is the principle quantum number, l is the angular momentum quantum

number, and m is magnetic quantum number. When we consider the transition strength
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〈2|ĤI |1〉 in Eq. 2.22, we know there are only certain transitions which would be allowed.

The transition is defined by

〈2|ĤI |1〉 = 〈2| ~E · ~r|1〉 = 〈2|eE0(t)êp · ~r|1〉, (2.24)

where the electric field has been split into its polarization êp and time dependent amplitude.

The main contribution that determines if the interaction is feasible is the parity of the

states and the polarization of the light

℘lk = 〈n2, l2,m2|êp · ~r|n1, l1,m1〉. (2.25)

where ℘21 is the transition dipole moment.

In general, the polarization of the light which we work with is in the x-y plane êp = êx.

For this, the transition dipole moment is non-zero only if the two states have opposite

parity. The allowed transitions are then [138]

∆l = ±1, (2.26)

∆m = 0,±1. (2.27)

Here, we take the opportunity to simplify the Hamiltonian and consider the interaction

term in Eq. 2.24. The interaction is broken into the positive and negative frequency

contributions of each operator, the electric field and dipole operators

Ê =
1

2
E0x̂[eiωt + e−iωt] = Ê(+) + Ê(−), (2.28)

d̂ = −e(℘21|2〉〈1|+ ℘12|1〉〈2|) = d̂(+) + d̂(−). (2.29)

where the time dependence of the dipole operators is 〈ψ(t)|d̂(+)|ψ(t)〉 = 〈ψ(t)|d̂(+)|ψ(t)〉∗ =
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eiω12 . Looking again at the interaction in Eq. 2.24

Ê · d̂ = [Ê(+) + Ê(−)] · [d̂(+) + d̂(−)], (2.30)

we see that there are exponentials with frequency sums and differences, where the contri-

butions from the frequency sum terms will oscillate too fast and average out in time. This

is the rotating wave approximation and so we remove the frequency sum terms and keep

the difference terms. This is allowed so long as the frequency difference ∆ = ω − ω21 <<

ω + ω21 [24]. Using the rotating wave approximation and the the selection rules, we now

write the simplified interaction Hamiltonian

ĤI = Ê(+) · d̂(−) + Ê(−) · d̂(+). (2.31)

2.2.2 Density Matrix Formalism

FIG. 2.1: Two-level diagram with incoming photon of energy ω.

It is useful to switch to the density matrix formalism over the wave function approach

to handle relaxation processes. It allows us to work with statistical mixtures of states

and deal with things like spontaneous emission. We follow the formalism established

in [24, 137]. The density matrix for the pure state of the two level system, shown in
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Fig. 2.1 is defined as

ρ̂ = |ψ〉〈ψ|,

=

 |C1|2 C1C
∗
2

C2C
∗
1 |C2|2

 ,

=

ρ11 ρ12

ρ21 ρ22


, (2.32)

where the the diagonal terms correspond to the populations of the states, |k〉 and |`〉.

The off-diagonals represent the coherences and give information on the dispersion in the

system. The coefficients are defined in Eq. 2.22. The evolution of the density matrix in

time is given by

dρ̂

dt
=

d

dt
|ψ〉〈ψ|,

= [
d

dt
|ψ〉]〈ψ|+ |ψ〉[ d

dt
〈ψ|],

(2.33)

and by using the time-dependent Schrodinger equation, we get

dρ̂

dt
= − i

~
[Ĥ|ψ〉〈ψ| − |ψ〉〈ψ|〉Ĥ],

= − i
~

[Ĥ, ρ̂].

(2.34)
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Our Hamiltonian from Eq. 2.19 can be written in matrix form as

Ĥ = (|1〉〈1|+ |2〉〈2|)Ĥ(|1〉〈1|+ |2〉〈2|),

= ~ω1|1〉〈1|+ ~ω2|2〉〈2|

+
1

2
(eE0℘21e

iωt|1〉〈2|+ eE0℘21e
−iωt|2〉〈1|),

=

 0 eE0℘21

2
eiωt

eE0℘21

2
e−iωt ~ω21

 ,

(2.35)

where we have applied the selection rules and adjusted the energy of the states relative to

the ground state |1〉. The energy of the excited state |2〉 is ω21 = ω2 − ω1. From here, we

also substitute in the Rabi frequency

Ω =
e|E0|℘21

~
. (2.36)

To remove the time dependence in the Hamiltonian, we transform into the rotating frame

of the laser field. This is by using a unitary transformation on the state of the system

|ψ̃〉 = Û †|ψ〉, (2.37)

where Û = ei
Ĥ0t
~ = eiωt|`〉〈`| is the unitary operator and ψ̃ denotes the wave function in the

rotating wave frame. By inserting Eq. 2.37 into the Schrodinger equation Eq. 2.21, we can
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find the Hamiltonian in the rotating frame [24]

i~
∂

∂t
|ψ̃〉 = i~

∂

∂t
(Û †|ψ〉) = H̃|ψ̃〉,

= i~
∂

∂t
Û †Û + Û †ĤÛ |ψ̃〉,

=

 0 ~
2
Ω

~
2
Ω∗ ~∆

 |ψ̃〉,
(2.38)

where we see that the time dependence has been removed, ∆ = ω12 − ωn and Ω = e|E0|℘21

~

is the slowly varying amplitude. Now, to find the equations of motion for our system we

insert Eqs. 2.38 and 2.32 into Eq. 2.34

 ˙ρ11 ˙ρ12

˙ρ21 ˙ρ22

 =

 iΩ
2
[ρ12 − ρ21] iΩ

2
[ρ11 − ρ22]− i∆ · ρ12

iΩ
2
[ρ22 − ρ11] + i∆ · ρ21 iΩ

2
[ρ21 − ρ12].

 (2.39)

This system of equations are the same as those produced from the wave function approach

used earlier to find Eq. 2.22. However, we have the ability here to account for spontaneous

emission and collision processes in the atoms, which cause de-excitations and decoherence.

We introduce these relaxation processes as a decay rate from the excited state population

ρ22 to the ground state ρ11 and as a decoherence between the states and describe them as

a population decay γ and decoherence rate γ12 ˙ρ11 ˙ρ12

˙ρ21 ˙ρ22

 =

 iΩ
2
[ρ12 − ρ21] + γρ22 iΩ

2
[ρ11 − ρ22]− (γ12 + i∆)ρ12

iΩ
2
[ρ22 − ρ11] + (γ12 − i∆)ρ21 iΩ

2
[ρ21 − ρ12]− γρ11.

 (2.40)

Using these equations, we can find the populations of the two states and the absorption

of the optical field. By using the density matrix approach in combination with the wave

equation, we can also find the propagation dynamics in the system. This is done by relating
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the polarization in Eq. 2.12 to the ensamble of atoms. The polarization can be defined as

P = ε0χ~E =
N

V
〈ψ|d̂|ψ〉, (2.41)

where N is the number of atoms in the ensemble and V is the volume. The transition

strength is substituted by the off diagonal components of the density matrix

P =
N

V
℘lkρlk, (2.42)

and the susceptibility is defined as [23, 24]

χ =
2℘2

kl

~ε0

ρkl
Ω
. (2.43)

This shows that the density matrix off diagonal terms are related to the polariza-

tion, and this susceptibility can be used to find both the absorption and dispersion in

the medium. We use this approach to light-atom interactions to solve more complicated

systems in the next section.

2.3 Coherent Nonlinear Processes

In this section, we derive coherent nonlinear effects like EIT and Raman absorption,

where a pump field is used to tune the dispersion of the atomic medium for the probe

field [28, 31, 36, 139, 140]. By doing this, we can control the speed of light and absorption

in the medium using the pump, enabling quantum memories and sensing applications [5,

28, 36, 122, 141]

We begin with a three-level system in a Λ-configuration with two resonant fields,

shown by Fig. 2.2. We start by defining the Hamiltonian of the system, where we have
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FIG. 2.2: Three-level diagram with incoming photons of energy ωa and ωb. The decary rates
are given by γ′, γ, and γ̃

already made the rotating wave approximation [24, 142, 143]

Ĥ =


~ω1 0 ~

2
Ωae

iωat

0 ~ω2
~
2
Ωbe

iωbt

~
2
Ω∗ae

−iωat ~
2
Ω∗be

−iωbt ~ω3

 , (2.44)

where Ωa,b = e|Ea,b|℘13,23/~ are the Rabi frequencies for the two resonances. We define

our energy levels relative to our ground state |1〉

∆1,2 = ωa,b − (ω1,2 − ω3), (2.45)

δ = ∆1 −∆2 = (ωa − ωb)− ω12, (2.46)

where ∆1,2 are the single-photon detunings of the fields relative to the respective transitions

ω13 and ω23. The two-photon detuning of the two fields is δ. The Hamiltonian is then

given by

Ĥ =


0 0 ~

2
Ωae

iωat

0 ~∆1
~
2
Ωbe

iωbt

~
2
Ω∗ae

−iωat ~
2
Ω∗be

−iωbt ~∆2

 . (2.47)
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After shifting the energy levels, we change into the rotating frame using the unitary

operator

Û = ei(ωa|3〉〈3|+(ωa−ωb)|2〉〈2|)t, (2.48)

Transforming the Hamiltonian to

H̃ =


0 0 ~

2
Ωa

0 ~δ ~
2
Ωb

~
2
Ω∗a

~
2
Ω∗b ~(∆2 + δ)

 . (2.49)

We now find the equations of motion using Eq. 2.34

ρ̇11 = i(ρ31 − ρ13)Ωa + γ̃ρ22 + γ′ρ33, (2.50)

ρ̇22 =
i

2
Ωb(ρ32 − ρ23) + γρ33 − γ̃ρ22, (2.51)

ρ̇21 =
i

2
(Ωaρ23 − Ωbρ31)− (γ12 − iδ)ρ21, (2.52)

ρ̇31 =
i

2
Ωa(ρ11 − ρ33)− i

2
Ωbρ21 − (γ13 − i(∆ + δ))ρ31, (2.53)

ρ̇32 =
i

2
Ωb(ρ22 − ρ33)− i

2
Ωaρ12 + (γ23 − i∆)ρ32, (2.54)

1 = ρ33 + ρ22 + ρ11, (2.55)

where we have taken ∆ = ∆2 and included the population decays γ, γ′, and γ̃ and deco-

herence rates γ13, γ23, and γ12, shown in Fig. 2.2. The decoherence rates in our system for

Rb atoms are γ13 ≈ 2π · 6MHz and γ12 ≈ 0kHz [31, 144–146]. However, in the case of

dephasing and population decays from collisions, γ12 ≈ 3kHz and grows with effects from

the pump laser power as γs = γ12 + γ13|Ω2|2/∆2
HF .

In general, we deal with a strong pumping field Eb and a weak signal filed Ea. This

allows us to make the assumption that Ωb >> Ωa, γ, δ and results in some interesting
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properties. Due to the strong pumping from a state by a pump Ωb, the atomic population

quickly shifts to the |1〉 state and is trapped there. So, for the first-order effect in Ωa,

ρ11 ≈ 1 and ρ22 = ρ33 ≈ 0. In addition to this, the coherence between the empty levels is

also then zero, ρ23 = 0. In the steady state, the equations of motion are now easily solved

ρ21 = − ΩaΩb

4Γ12Γ13 + |Ωb|2
, (2.56)

ρ31 = i
2ΩaΓ12

4Γ12Γ13 + |Ωb|2
, (2.57)

where Γ12 = γ12 − iδ and Γ12 = γ13 − i(∆ + δ). Here, ρ21 is the coherence between the

ground states established by the strong pumping field Eb, and ρ31 is the optical coherence

at the signal frequency ωb.

The susceptibility χ of the probe field is related to the coherence ρ31 by Eq. 2.43

χa = i
℘2

13(γ13 + i(∆ + δ))

~ε0(γ2
13 + (∆ + δ)2)

[1− |Ωb|2/4
(γ12 − iδ)(γ13 − i(∆ + δ)) + |Ωb|2/4

], (2.58)

Using this, we can find the absorption and dispersion of the probe field, where the first

term is the linear response for the field and the second term is from the two-photon process.

The real part is the dispersion in the medium and the imaginary part is the absorption. We

now analyze the atom field two-photon interaction for two cases, far-detuned and resonant.

2.3.1 Far-Detuned Raman Resonance

In the event that the two optical fields are tuned far from the atomic resonances,

(|∆1|, |∆2| >> Ωa,b, δ, γij), it is possible to still observe absorption through the two-photon

interaction with the hyper-fine split ground states. Under these conditions, the suscepti-
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bility in Eq. 2.58 reduces to

χa = −i℘
2
13

~ε0

|Ωb|2/(4∆2)

(γ12
2

+ γ13
2
|Ωb|2
4∆2 )− i(δ − |Ωb|2

∆
)
. (2.59)

The imaginary part of the susceptibility is proportional to the absorption. Eq. 2.59 shows

the structure of the absorption resulting from the two-photon interaction of the pump and

signal field. This resonance is interesting for a few reasons, (i) the absorption occurs far

off resonance, (ii) it arises from the coupling between two states which are normally non-

interacting due to selection rules, and (iii) an absorption profile with a width significantly

smaller than the radiative decay rate of the optical excited state. This width is proportional

to the dephasing rate γ̃ of the hyper-fine split states. The denominator in Eq. 2.59

γeff =
γ12

2
+
γ13

2

|Ωb|2

4∆2
(2.60)

is the width of this resonance and γ12 << γ13, γ23 and γ13 >>
γ13
2
|Ωb|2
4∆2 for a three-level

Λ-system.

We now look at the absorption of a single photon resonant with the atomic transition.

In this case, the absorption is given by

α = Im{χa} =
℘2

13

~ε0

γ13

γ2
13 + ∆2

. (2.61)

Here, the absorption width is γ13 which is much larger than the absorption width in the

two-photon resonance, as shown in Fig. 2.3. The narrow feature is useful to combat

broadening effects from power and temperature and can be used for increased precision in

measurement [11, 12]. However, as we tune away from the atomic resonance, the response

becomes increasingly weaker and higher pump powers are necessary.
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FIG. 2.3: Plot of absorption of probe field in Eq. 2.58 as a function of the two-photon detuning
for different values pump detuning ∆, where γ12 = 0 and γ13 is set to 2π · 6MHz.

2.3.2 Electromagnetically Induced Transparency

Next, we consider the case where the pump is resonant with the 2 → 3 transition,

∆2 = 0 and so δ = ∆1. Like before, we look at the susceptibility of the probe field.

χa = i
℘2

13

~ε0(γ13 − i∆)
(

(γ12 − i∆)

γ12 − i∆) + |Ωb|2
(γ13−i∆)

. (2.62)

There are a couple of take aways here. The absorption profile ={χa} has a region

where the absorption for the probe field is suppressed, shown in Fig. 2.3. This begins to

develop as probe detuning ∆ approaches zero. For ∆ = 0 we see Eq. 2.62 reduce to

={χa} =
℘2

13

~ε0

γ12

|Ωb|2
. (2.63)

where γ12 << γ13,Ωb. This points to the absorption going to zero for the two-photon

resonance. This is electromagnetically induced transparency (EIT), where we have lossless

propagation of light through this medium [31, 33]. Additionally, this transparency window

is very narrow (∝ γ12). Similar to the Raman resonance, it can be used to overcome

broadening effects and gain precision.
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We can also look at the ground state coherence ρ12 from Eq. 2.57 and find that it is

non-vanishing

ρ12 = −Ωa

Ωb

, (2.64)

defined by the dark state given by

|D〉 =
1√

|Ωa|2 + |Ωb|2
(Ωa|1〉 − Ωb|2〉). (2.65)

The interaction of this state with the fields is given by

ĤI |D〉 =
1√

|Ωa|2 + |Ωb|2
(−Ωa|1〉〈3| − Ωb|2〉〈3|+ c.c.)(Ωa|1〉 − Ωb|2〉)

= 0.

(2.66)

where the dark state is unaffected by the fields and avoids decoherence. By pumping all

the atoms into this dark state using the pump and probe, we can write the information

carried by the signal field onto the atomic spin state [147]. Then by turning off the pump,

they are trapped there until second retrieval pump pulse is sent. Utilizing the light atom

interactions in this manner is a path towards quantum memories [145, 148]. This ground

state coherence has potential as a storage state [28, 31].

Raman absorption and EIT are coherent nonlinear processes which can be used for

this purpose, but the quantum memory which they are used to generate are prone to other

decoherence effects [43, 45, 149]. Collisions are a major contributor to decoherence, but can

be overcome by using a buffer gas or cold atomic systems [149, 150]. It is other nonlinear

effects, like FWM which add noise into the system and are not so easily removed [45, 54–

56].
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2.4 Four-Wave Mixing

To introduce FWM, we begin by returning to wave equation Eq. 2.12 where we con-

sider the polarization response of the medium more thoroughly. Following the work in

[20, 23, 24], we take into account the nonlinear contributions of the polarization

~P = ε0(1 + χ(1) ~E + χ(2) ~E2 + χ(3) ~E3 + · · · ). (2.67)

where each susceptibility term χ(n) is an increasing rank tensor.

Depending on the symmetries of the system we are working with, the higher order

contributions come from even or odd χ terms. For example, we can only observe χ(2)

responses in crystals or fibers, since it is possible to have non-centrosymmetric sites. FWM

exists in the χ(3) polarization response and has been realized in crystals, fibers, and vapors

where medium had rotational symmetry [20]. The polarization response is given by

~P (3) = ε0χ
(3)( ~Ea + ~Eb)

3, (2.68)

where the electric fields of the pump (Eb) and the probe (Ea) have been substituted

in. The polarization response here many terms, however, the number of terms reduce

substantially based on the strength of their contributions depending on the proximity to

atomic resonances and strengths of the fields. When considering the three-level Λ-system

which is used regularly in this thesis, the only term which contributes is

~P (3)
p = ε0χ

(3)E∗aE
2
b e
−i[(~ka−2~kb)z−(ωa−2ωb)t]),

= ε0χ
(3)E∗c e

i[~kcz−ωct]
(2.69)

where χ(3)E∗aE
2
b is the strength of the newly generated field (Ec) and the phase matching
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conditions

∆ω + ωc = 2ωb − ωa, (2.70)

∆~k + ~kc = 2~kb − ~ka, (2.71)

determine the wave vector ~kc and frequency ωc of the new field. ∆~k and ∆ω are the phase

mismatch which would weaken the FWM resonance, depicted in Fig. 2.4. The wave vector

contribution is generally tied to the dispersion of the medium and so the momentum phase

matching conditions can be supplemented, to a small degree, by shifting frequencies rather

than the alignment as demonstrated in Ch. 5. This is written as [24]

2
n(ωb) · ωb

c
cos(θb)−

n(ωa) · ωa
c

cos(θa) =
n(ωc) · ωc

c
cos(θc), (2.72)

where θi are the angles of propagation relative to the propagation axis. Moving forward,

we take both ∆~k and ∆ω to be zero. We also introduce the polarization response of the

new conjugate field

~P (3)
c = ε0χ

(3)E∗pe
i[~kpz−ω·t]. (2.73)

The FWM process generates a new conjugate field as a result of the nonlinear response

of the medium. To better understand the coupling of this field in the system, we want to

observe how this new field and the original input field evolve as they move through the

Rb vapor.

We turn our attention back to the wave equation Eq. 2.12 to monitor the propagation.

It is generally a good assumption for the phase and the amplitude of an optical field to

vary little within an optical wavelength. This is the slow varying amplitude and phase

approximation and a plane wave in the z-direction. Allowing us to make the following
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FIG. 2.4: (a) shows the energy conservation of the FWM process where two pump photons are
absorbed while a probe photon is added and a new conjugate photon is generated with energy
to match the difference. The solid lines represent real states, while dashed are virtual states
marking multi-photon resonances. (b) shows the momentum conservation.

simplifications [23, 24]

|∂E
∂t
| << ωE, (2.74)

|∂E
∂z
| << kE, (2.75)

|∂P
∂t
| << ωP, (2.76)

∇2E → ∂2

∂z2
E. (2.77)

The wave equation is now

∂E0

∂z
= − k

2ε0

Im{P}, (2.78)

where we have taken the steady state form as the field propagates through the medium.

Considering that the pumping field is strong, we assume it does not change with this

interaction and maintains its energy, making the undepleted pump approximation. Now,

the evolution of the probe (Ea) and conjugate (Ec) are found by plugging the polarization
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responses of the fields Eq. 2.69 and Eq. 2.73 into Eq. 2.78

∂Ea
∂z

=
ikc
2ε0

χ(3)E ′∗c , (2.79)

∂Ec
∂z

=
ika
2ε0

χ(3)E ′∗a , (2.80)

where the exponential has been absorbed into the field Eie
i~kpz → E ′i. The solutions to this

are [23, 143].

Ea(L) = cosh(|ηa|L)E ′∗a (0), (2.81)

Ec(L) = −i ηa
|ηa|

sinh(|ηa|L)E ′∗a (0), (2.82)

where ηa,c = ka,c
2ε0
χ(3) and we have used the initial conditions where the seeded probe field

Ea(0) is the input field strength and the new conjugate Ea(0) is initially zero. These

equations give the evolution of the fields through the medium. Using this, we can see the

effects of FWM in different systems, both beneficial and detrimental. A detailed derivation

of the susceptibility tensor can be found in [151].

2.4.1 Frequency Conversion via FWM

In the last section, we discussed how FWM can lead to the generation of a new field

with a frequency that is close to those of the pump and probe. Here, we point another

application of the7 resonant coupling of FWM as a means to convert a signal from one

frequency to another frequency [58–60]. This is a useful tool for switching between different

tasks in a communication link [44]. For example, rubidium based quantum memories

operate near 800 nm while optical fiber communications are most efficient at 1550 nm

wavelengths [152]. An efficient transduction method is necessary to avoid decoherence in

the link [153].
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In this section, we will look at the generation of the conjugate field far detuned from

the input pump and probe fields. In this case, the field is generated by the coupling of

probe and pump optical fields in a ladder configuration to a second excited state of the

Rb atom. The resulting florescence from the upper excited state via alternate levels seeds

the FWM process for the generation of new fields, shown in Fig. 2.6. In this case, there is

no seed probe field.

We begin with Eq. 2.68 where we look at the polarization response of a medium and

consider the other possible combinations of the fields [20]. We introduce a place holder

term for potential new fields to be generated. So Eq. 2.68 now looks like

~P (3) = ε0(χ(3)( ~Ea + ~Eb + ~Ec + ~Ed)
3), (2.83)

where Ec and Ed are place holders for the newly generated fields. Some of the possible

configurations are shown in Fig. 2.5. However, we consider the four-photon resonance

where there is a two-photon absorption with a simultaneous two-photon emission, shown

by Fig. 2.5 (a). We write the polarization response here [20]

~P (3) = ε0χ
(3) ~Ea ~Eb ~E

∗
c e
i(ωa+ωb−ωc) + ε0χ

(3) ~Ea ~Eb ~E
∗
de
i(ωa+ωb−ωd) + c.c.,

= ε0χ
(3)( ~E∗c e

iωc + ~E∗de
iωd + c.c.),

(2.84)

where ωa + ωb − ωc − ωd = 0 and ~ka + ~kb − ~kc − ~kd = 0 are the phase matching conditions

for the frequency which correspond to energy conservation. In this case, we can see that

ωc and ωd can be any value so long as ωc + ωd = ωa + ωb.

The new fields Ec and Ed can have a large range of frequencies, but the atomic

resonances mediate and enhance the nonlinearity, thus limiting the range of frequencies at

which the new fields can be generated. Specifically in the case of Fig. 2.6, two input fields
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FIG. 2.5: Level diagrams of some possible configurations of FWM, where solid lines represent
input fields and dashed lined represent new fields. Many more combinations exist.

(795 nm and 762 nm) are used to pump to the second excited state and the resulting

decay to the 6P3/2 state and subsequently the ground state yield seed photons for the

FWM process. FWM results in the generation of two newly generated fields Ec and Ed

with frequencies 5032 nm and 422 nm. These fields are coherent radiation and have

a wavefront determined by the phase matching conditions from FWM. With effecient

FWM, this process can be used to convert a photon from one energy to another with out

measurement of the signal. Such a conversion would preserve the quantum state which

would be used in communications. [44].

We use Rubidium as an example, shown in Fig. 2.6. Here, the 795 nm and 762 nm

fields are input and we observe that the 6P1/2 state acts as the intermediary state and

results in the emission of 5032 nm and 422 nm collimated radiation. There are also effects

of parasitic decays which remove atoms from the interaction through other decay channels,

but it an additional repump field can be used to replenish the system and enhance the

FWM process [154]. It is also possible to acheive coupling with other decay channels where

a seed field can be used [79]. The one presented here is the stronger effect. However, there
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FIG. 2.6: Level diagram of FWM in 85Rb involving the upper 5D state.

are other decay channels with weaker contribution to FWM [69, 80, 153]. We use the

concept of frequency conversion later in Chp. 4 and discuss the decay paths in more detail.

2.4.2 FWM as a Source of Decoherence of the Dark State

FIG. 2.7: Three-level diagram of FWM where, ωa is the probe, ωb is the pump, and ωc is the
conjugate. The decary rates γ′, γ, and γ̃ are the same as those in Fig. 2.2.

As mentioned before, FWM is detrimental to quantum memories, but inevitable due

to the requirement of a large optical depth. Here we discuss the decoherence in EIT
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quantum memories as a result of additional noise photons generated from FWM and

a potential solution to this issue. We first begin with the Hamiltonian where we have

included the newly generated conjugate field [142, 143]

Ĥ =


0 0 −~

2
(Ωae

iωat + Ωbe
iωbt)

0 ~ω21 −~
2
(Ωbe

iωb + Ωce
iωc

−~
2
(Ω∗ae

−iωat + Ω∗be
−iωbt) −~

2
(Ω∗be

−iωb + Ω∗ce
−iωc) ~ω31

 ,

(2.85)

where the pump field couples to both hyper-fine states in a double-Λ four-photon resonance

with the probe and conjugate fields, as seen in Fig. 2.7. The coupling with the probe is on

resonance and produces EIT and traps atoms into the dark state, as was seen sec. 2.3.2.

However, the pump coupling with the conjugate field is through a virtual state and allows

for population transfer between the hyper-fine split states, |1〉 and |2〉. This ruins the

coherence established by EIT, as will be demonstrated in this section. We move into the

rotating frame using the unitary operator in Eq. 2.48

Ĥ = −


0 0 ~

2
(Ωa + Ωbe

i(ω12+δ)t)

0 ~δ ~
2
(Ωb + Ωce

i(ω12+δ)t)

~
2
(Ω∗a + Ω∗be

−i(ω12+δ)t) ~
2
(Ω∗b + Ω∗ce

i(ω12+δ)t) ~δ

 , (2.86)

where we have made the substitution δ+ω12 = (ωa−ωb) and for our system ω12 is the the

hyperfine splitting ∆HF . Note that the time dependence was not removed by moving into

the rotating frame, so we take other measures to address this. We can find an effective

Hamiltonian which is time-independent by accounting for the light shift from the AC

stark effect. This is done by utilizing the Floquet analysis seen in [45, 143, 155]. The
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time-independent Hamiltonian is

Ĥ = −


0 ~

2

Ω∗bΩ∗s
ω12

~
2
Ωa

~
2

ΩbΩs
ω12

~(δ − |Ωb|
2

ω12
) ~

2
Ωb

~
2
Ω∗a

~
2
Ω∗b ~(δ − 2 |Ωb|

2

ω12
)

 , (2.87)

where we can see that the time dependence has been removed and the energy levels have

been shifted by δls = |Ωb|2
ω12

. In addition to this, we see that there is now an exchange term

between the states |1〉 and |2〉. We now find the equations of motion like before

ρ̇11 = i(ρ31 − ρ13)Ωa + γ′ρ33 + i
ΩbΩc

ω12

(ρ21 − ρ12), (2.88)

ρ̇22 =
i

2
Ωb(ρ32 − ρ23) + γρ33 − i

ΩbΩc

ω12

(ρ21 − ρ12), (2.89)

ρ̇21 =
i

2
(Ωbρ13 − Ωaρ23)− (γ12 − i(δ − δls)ρ21 − i

ΩbΩc

ω12

(ρ11 − ρ22), (2.90)

ρ̇13 =
i

2
Ωa(ρ11 − ρ33)− i

2
Ωbρ21 − (γ13 − i(δ − 2δls))ρ13 − i

ΩbΩc

ω12ρ32

, (2.91)

ρ̇23 =
i

2
Ωb(ρ22 − ρ33)− i

2
Ωaρ12 + (γ23 − i(δls + γ))ρ32 − i

ΩbΩc

ω12

ρ31. (2.92)

We notice here that the ρ21 contains a term regarding the population exchange between the

|1〉 and |2〉 states which was not present before. This population exchange removes photons

from the dark state and causes noise in the quantum memory [45]. We remedy this, by

trying to absorb the conjugate photons before they cause decoherence and couple into the

system [42]. We introduce this absorption into the propagation equations in Eq. 2.80

∂Ea
∂z

=
ikc
2ε0

χ(3)E ′∗c , (2.93)

∂Ec
∂z

=
ikp
2ε0

χ(3)E ′∗a −
D

L
Ec, (2.94)

where D and L are the optical depth and length of the medium, respectively. Taking
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the derivative of Eq. 2.94 and plugging the conjugate of Eq. 2.94 in, we see that these

equations can be written as

∂Ea
∂z
− ikcξχ(3)E ′∗c = 0, (2.95)

∂2Ec
∂z2

+
∂

∂z

D

L
Ec − kakcξEc = 0, (2.96)

The solution to this system are dampened hyperbolic functions with solutions [42]

Ea(L) = e
|ηa|L
D E ′∗a (0), (2.97)

Ec(L) = −i ηa
|ηa|D

e
|ηa|L
D E ′∗a (0), (2.98)

which have a form similar to Eqs. 2.81 and 2.82. However, this shows that the absorption

of the new conjugate field in the medium can also reduce the gain on the probe field.

As described in Sec. 2.3.1, we use a second two-photon Raman resonance as a competing

process with FWM to suppress the generation of additional photons. The experimental

configurations for this are given in Ch. 3. With a strong enough absorption, D >> ηa, it

is possible to completely remove the new conjugate field and the additional photons in the

signal field. This preserves the quantum state which was stored in the quantum memory.

2.4.3 FWM for Transfer of Optical Angular Momentum

In this section, we consider the spatial mode structure of the beams. Here, the notion

a picture is worth thousand words has merit, but more in terms of data density. With

tunability of the signal beam shapes, we can increase the amount of information which is

communicated [109]. In addition to this, by using FWM in conjunction, we can achieve an

even larger number of channels for communication [8, 98, 99]. Optical angular momentum

(OAM) is a property of light which we take advantage of here [100–102]. OAM modes
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have cylindrical spatial profiles defined by the grouping of Laguerre Gauss (LG) modes.

These modes are orthonormal and a demodulation scheme has already been developed for

them [100, 109, 116]. In this section, we look at the LG spatial structure for light and

discuss how FWM can be used to further increase the channel capacity for communications.

In order to look at the spatial dependence, we turn back to the wave equation and

more carefully treat the beam profile. We consider the shape of a laser to be cylindrically

symmetric and so it is beneficial to adjust our wave equation to that coordinate system

1

r

∂

∂r
(r
∂E

∂r
) +

∂2E

∂z2
+ 2ik

∂E

∂z
= 0 (2.99)

where we split the field into two parts E(r, z) = u(r, z)eikz. The beam profile is given by

u(r, z) and eikz the phase is for the propagation.

Like before, we expect the beam envelope to be uniform or have little change with

propagation. We make the slow varying or paraxial approximation [20, 23]

|∂
2E

∂z2
| << |2k∂E

∂z
|, (2.100)

|∂
2E

∂z2
| << |1

r

∂

∂r
(r
∂E

∂r
)|. (2.101)

The wave equation now becomes

1

r

∂

∂r
(r
∂E

∂r
) + 2ik

∂E

∂z
= 0, (2.102)

for which the solutions are the Laguerre Gaussian modes [156]

u`,p(r, z) =

√
2p!/π(|`|+ p)!

w(z)
e
− r2

w(z)2 e
− ikr2z

2(z2+z2R) (

√
2r

w(z)
)

×L|`|p
(

2r2

w(z)2

)
ei`φei(2p+|`|+1) arctan(z/zR),

(2.103)
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where w(z) = w0

√
1 + (z/zR)2 is the beam waist, zR = πw2

0/λ is the Rayleigh range,

and w0 is the beam waist at the point of focus. As we continue, we only consider the

contribution of the ` modes and set p = 0. These are modes with a constant radial phase

profile, but vary by 2π` in phase along the azimuth, as shown by Fig. 2.8. The hole in the

center for non-zero ` is from the phase singularity produced from the accumulation of all

the phases about the azimuth. We are left with

u`(r, z) =

√
2/π(|`|)!
w(z)

e
− r2

w(z)2 e
− ikr2z

2(z2+z2R) (

√
2r

w(z)
)

× L|`|0

(
2r2

w(z)2

)
ei`φei(|`|+1) arctan(z/zR),

= u′`(r, z)eiφ`.

(2.104)

where we focus on the phase contribution from the `-mode. The rest, packed into u′`(r, z),

is for handling the beam size and focusing.

FIG. 2.8: Shown are the equiphase surfaces, phases, and intensity map of the OAM modes for
different ` numbers. Taken from [157].

Now, we turn our attention back to the polarization response of the medium. Using
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Eq. 2.104 for the fields in Eq. 2.68, we find [156]

~P (3) = ε0χ
(3)(ua(r, z)ei(kaz−ωat+`aφ) + ube

i(kbz−ωbt+`bφ))3, (2.105)

where we limit ourselves to the FWM conditions we saw in sec. 2.4. The term we keep is

~P (3)
p = ε0χ

(3)E∗aE
2
b e
−i[(2~kb−~ka)z−(2ωb−ωa)t+(2`b−`a)φ]),

= ε0χ
(3)E∗c e

i[~kcz−ωct+φ`c].

(2.106)

Here, we see an additional component to the phase matching conditions

ωc = 2ωb − ωa, (2.107)

~kc = 2~kb − ~ka, (2.108)

`c = 2`b − `a. (2.109)

The spatial mode of the newly generated field is controlled by independently adjusting

the OAM for the pump and probe fields [8, 18]. A single beam is limited by the number

of OAM modes which can be generated since the mode size scales with the ` number.

In the twin-beams, signals are carried jointly by the probe and conjugate spatial modes,

so various combinations of the two could be used to transmit information, increasing the

possible number of channels to `2. This is discussed in detail in Chp. 6

2.5 Quantization of the Electromagnetic Field

So far, we have limited our approach to the semi-classical picture, where we used the

quantum treatment for the atoms and the classical description of the optical fields. Here,

we switch to the fully quantum picture. This allows us to uncover additional effects which
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arise from FWM and overcome the classical shot noise limit. We follow the derivation

in [23, 24] and start with the quantization of the electromagnetic fields.

We begin here with the wave equation Eq. 2.12 and consider solutions which satisfy

the spatial restraints of a cavity. In this case, the electric field of x-polarization can be

written as a sum over the normal modes of the cavity

Ex(z, t) =
∑
i

√
2ω2

i

V ε0

qi(t)sin(kiz), (2.110)

where V is the volume, k = πnc/L = ω/c, and L is the length of the cavity. We can write

the magnetic field in a similar manner using Eq. 2.8

Hy(z, t) =
∑
i

√
2ω2

i

V ε0

ε0µ0

ki
q̇i(t)cos(kiz), (2.111)

then by using Eqs.2.110 and 2.111, we find the energy of the fields

H =
1

2

∫
V

dτ(ε0E
2
x +

1

µ0

H2
y ), (2.112)

H =
1

2

∑
i

(ω2
i q

2
i + q̇2

i ), (2.113)

where H is the classical Hamiltonian of the fields.

From this equation, we see that the energy in the field is that of harmonic oscillators

of different modes where pi = miq̇i is the canonical momentum of unit mass and ω2
i = k2

i c
2

is the frequency of the mode. By drawing analogy to the quantum harmonic oscillator, we

replace the position and momentum as operators which obey the commutation relations

[q̂i, p̂j] = i~δij, (2.114)

[q̂i, q̂j] = [p̂i, p̂j] = 0, (2.115)
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We make a canonical transformation to the annihilation and creation operators

q̂i = ~(âie
−iωit + â†ie

iωit), (2.116)

p̂i = imiωi~(â†ie
iωit − âie−iωit), (2.117)

âie
−iωit =

1

2mi~ωi
(miωiq̂i + ip̂i), (2.118)

â†ie
iωit =

1

2mi~ωi
(miωiq̂i − ip̂i), (2.119)

which follow the commutation relations

[âi, â
†
j] = δij, (2.120)

[âi, âj] = [â†i , â
†
j] = 0. (2.121)

Now, by substituting Eqs. 2.116 and 2.117 into Eq. 2.113, we find the quantized

Hamiltonian

Ĥ = ~
∑
i

(â†i âi +
1

2
), (2.122)

and the quantized electromagnetic fields are found by plugging Eqs. 2.116 and 2.117 into

Eq. 2.110 and 2.111

Êx =
∑
i

Ei(âie−iωit + â†ie
iωit)sin(kiz), (2.123)

Ĥy = −iε0c
∑
i

Ei(âie−iωit − â†i , eiωit)cos(kiz), (2.124)

where Ei =
√

~ωi
ε0V

and has units of the electric field. So far, we have only considered a one

dimentional cavity, but we now extend this for a three dimensional cavity. We expand the
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electric field in terms of plane waves [23]

Êx =
∑
i

Ei(âiei(
~ki·~r−ωit) + â†ie

−i(~ki·~r−ωit)), (2.125)

Ĥy = −iε0c
∑
i

Ei(âie−i(
~ki·~r−ωit) − â†iei(

~ki·~r−ωit)), (2.126)

Now that we have our quantized fields, we treat different distributions of light. In the

Fock state basis, also known as the number basis, we track the number of photons in a

specific mode by using the number operator (n̂) and add and subtract excitations using

the creation and annihilation operators

â|n〉 =
√
n|n− 1〉, (2.127)

â†|n〉 =
√
n+ 1|n+ 1〉, (2.128)

â†â|n〉 = n̂|n〉 = n|n〉. (2.129)

However, for a coherent source we use the eigenstate of the annihilation operator with

eigenvalue â|α〉 = α|α〉, known as the coherent state. It is written as a combination of the

Fock states

|α〉 = e−|α|
2/2

∞∑
n=0

αn√
n!
|n〉, (2.130)

It is also useful to write the coherent state in terms of the displacement operator [23]

|α〉 = D̂|0〉 = eâ
†α−âα∗|0〉, (2.131)

which states that the coherent state is generated by displacing the harmonic oscillator

ground state, the vacuum state.
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2.5.1 Quantum Limit of Optical Measurements

The coherent state has special noise properties when compared to classical light. The

intensity or number of photons in the coherent state are given by

〈α|n̂|α〉 = 〈α|â†â|α〉 = |α|2, (2.132)

Furthermore, the photon number variance in the signal gives us our limits on mea-

surement. The variance in the photon number is given by

∆n̂2 = 〈n̂2〉 − 〈n̂〉2 = |α|2, (2.133)

which shows that the photon number variance scales with the number of photons. These

are the fluctuations for a poissonian distribution and this noise limit is called the shot

noise limit. This noise comes from the fact that the photons are not spaced evenly in time

and arrive at the detector in bunches. This results in the variance of the photon number

(or intensity) measurement.

It is also possible to measure the electric field directly in terms of its amplitude and

phase. For this we would move to the quadrature notation

Êx =
∑
i

Ei(X̂icos(kz − ωt) + Ŷisin(~ki · ~r − ωit)), (2.134)

where X is the amplitude quadrature and Y is the phase quadrature,

X̂ =
1

2
(â+ â†), (2.135)

Ŷ =
1

2i
(â− â†). (2.136)

45



These quadratures follow the commutation relations

[Xk, Yj] = δkj
i

2
, (2.137)

[Xk, Xj] = [Yk, Yj] = 0, (2.138)

Since X and Y don’t commute with each other. The uncertainty of these quadratures

for a coherent state is given by [23, 158]

∆X2 = 1/4, (2.139)

∆Y 2 = 1/4, 〈∆X〉2〈∆Y 〉2 ≥ 1/16. (2.140)

However, there are other states of light which have the same minimum uncertainty

relationship, but the uncertainties of individual quadratures are tunable [23, 158]. By

operating the squeezing operator on the coherent state, we can produce this new squeezed

state

Ŝ|α〉 = eξ(ââ−â
†â†)|α〉 = |ξ〉, (2.141)

which has uncertainties

∆X2 = 1/4e−2ξ, (2.142)

∆Y 2 = 1/4e2ξ, (2.143)

∆X2∆Y 2 ≥ 1/16, (2.144)

where we observe reduced fluctuations in the amplitude quadrature and increased fluctua-

tions in the phase quadrature as a function of ξ, all the while the minimum uncertainty is

maintained. Eq. 2.143 and 2.144 are the expected noise quadratures are for single-mode

squeezer. A detailed derivation on squeezing and the noise quadratures follows in the next
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section. We briefly introduce them here to whet the appetite. The next section deals with

two-mode squeezed states which are generated by FWM.

2.5.2 Squeezed light from FWM

Now that we have our tool-set for analysis, we turn back to FWM and the propogation

equations. By drawing analogy from the classical propagation equations Eq. 2.80, we find

the propagation equations for the quantum operators which represent our fields [23]. The

new differential equations describing the propagation are

dâ

dz
= ikab̂

†, (2.145)

db̂

dz
= ikbâ

†, (2.146)

where â and b̂ represent the probe and conjugate fields, respectively. The solutions to

these equations are [23, 159, 160]

â(L) = â(0) cosh(ξ) + ib̂†(0) sinh (ξ), (2.147)

b̂(L) = b̂(0) cosh(ξ) + iâ†(0) sinh (ξ). (2.148)

where ξ = |ka||kb|L is the squeezing parameter (the r seen in the prior section) and L is

the length of the medium. The parameter ξ depends on the strength of the pump field and

the optical depth of the medium. The FWM transformation can be written as a unitary

operator, the squeezing operator

Ŝ = eξ(b̂
†â†−âb̂), (2.149)
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which operates on the coherent state to produce a squeezed state

Ŝ|α〉 = |ξ〉. (2.150)

From here, we look at some properties of the two-mode squeezed state. We find the

total number of photons after the gain [23, 24, 159]

〈n̂a〉 = 〈Ŝ†â†(L)ŜŜ†â(L)Ŝ〉 = cosh2(ξ)|α|2 + sinh2(ξ) ≈ G|α|2, (2.151)

〈n̂b〉 = 〈Ŝ†b̂†(L)ŜŜ†b̂(L)Ŝ〉 = cosh2(ξ)|α|2 + sinh2(ξ) ≈ (G− 1)|α|2, (2.152)

〈n̂a + n̂b〉 ≈ (2G− 1)|α|2 (2.153)

where G = cosh2(ξ) is the gain, and we have applied the initial condition of the unseeded

conjugate field b̂ = b̂† = 0. We also look at the noise present in the quadratures, like

before. But we first transform the quadratures according to the Eq. 2.148 and 2.148

X̂a(L) =
1

2
(â(L) + â†(L)) = X̂a(0) cosh(ξ)− Ŷb(0) sinh(ξ), (2.154)

Ŷa(L) =
1

2i
(â(L)− â†(L)) = Ŷa(0) cosh(ξ) + X̂b(0) sinh(ξ), (2.155)

X̂b(L) =
1

2
(b̂(L) + b̂†(L)) = X̂b(0) cosh(ξ)− Ŷa(0) sinh(ξ), (2.156)

Ŷb(L) =
1

2i
(b̂(L)− b̂†(L)) = Ŷb(0) cosh(ξ)− X̂a(0) sinh(ξ). (2.157)

We now find the variance of these quadratures

∆X̂a(L)2 = ∆Ŷa(L)2 = ∆X̂b(L)2 = ∆Ŷb(L)2 =
1

4
(2G− 1), (2.158)

∆X̂a(L)2∆Ŷa(L)2 = ∆X̂b(L)2∆Ŷb(L)2 =
1

16
(2G− 1)2, (2.159)

which are larger than the quadrature noise in the coherent state and is seen to increase
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linearly with the gain. The comparison of the noise quadratures for cohrent light and

squeezed twin-beams is shown in Fig. 2.9 (a) and (b). The reason this noise is larger is

due to the process used to amplify the beams. In FWM, the conjugate and probe photons

are randomly added in a pairwise fashion. Thus, the variances of the quadratures for the

individual fields are larger than shot noise, but the pair generation makes it so the joint-

noises in the two beams are correlated. We observe this by looking at the joint-quadrature

variance and the corresponding uncertainty.

∆X̂±(L)2 = ∆(X̂a(L)± X̂b(L))2 =
1

4
e±2ξ, (2.160)

∆Ŷ±(L)2 = ∆(Ŷa(L)± Ŷb(L))2 =
1

4
e∓2ξ, (2.161)

∆X̂±(L)2∆Ŷ±(L)2 =
1

16
, (2.162)

where we see that the minimum uncertainy is maintained and that we have two squeezed

joint-quadratures, X̂− and Ŷ+, with noise below the shot noise limit. We also have the

X̂+ and Ŷ− joint-quadratures, which are anti-squeezed with noise greater than shot noise.

The joint-quadratures are plotted in Fig. 2.9(c) and (d). The FWM process increases the

power of the fields used for detection, while keeping the relative fluctuations between the

two beams at the same level. The result is the noiseless amplification of the signal.

2.5.3 Balanced Homodyne Detection for Squeezing Quadrature

Measurements

We look more carefully at the experimental geometry and compare classical measure-

ments using coherent light to quantum enhanced measurements using squeezed light. In

optics, it is common to amplify a weak optical signal with the use of a local oscillator or use

a beam cube for differential measurements [81, 161]. By doing this, common mode-noise
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FIG. 2.9: (a) shows the noise noise as a fuzz for the probe beam after amplification and the blue
dashed lines are shot noise for a beam of equivalent power. (b) shows the noise as a fuzz for
the conjugate beam after amplification and the blue dashed lines are shot noise for a beam of
equivalent power. (c) shows the joint-amplitude quadrature with squeezing along the difference
and anti-squeezing along the sum. (d) shows the joint-phase quadrature with squeezing along
the sum and anti-squeezing along the difference.

can be removed and the signal is amplified by the strength of the local oscillator. We

show how balanced homodyne detection can be useful and how using squeezed light gives

further enhancement.

Here, we introduce the beam splitter formalism in a semi-classical framework, as done

in [81]. We will first look at the mixing of a vacuum fields with a local oscillator which will

show the measurement of shot noise. Then we consider a squeezed vacuum mixed with a

local oscillator. This allows us to measure the different noise quadratures.

We begin by separating the field into its noise and amplitude portions

α1 = (|α|+ δX̂α + iδŶα)eiφ, (2.163)

α0 = δX̂α0 + iδŶα0 , (2.164)

where δXα and δYα are the amplitude and phase noise of the coherent beam. We have
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also described vacuum fluctuations (δXα0 and δYα0) in the same mode as our field. We

implement a balanced detector with a 50/50 beam splitter, as shown in Fig. 2.10 (a). The

operation of the beam splitter is written as

B̂ =
1√
2

1 i

i 1

 . (2.165)

FIG. 2.10: (a) shows the detection using homodyne detection of a local oscillator (LO) mixed
with a vacuum. (b) shows homodyne detection, but with a squeezed vacuum input.

For this balanced detection, we are splitting the coherent LO into two and detecting

each beam and then taking the difference. Take note that the dark port introduces vacuum

fluctuations into the system. For this, our new state is

|α2, α3〉 =
1√
2

1 i

i 1


α1

α0

 =
1√
2

α1 + iα0

iα1 + α0

 , (2.166)

where we find the differential current of the balanced detector as

i− = 〈α,α3|â†2â2 − â†3â3|α2, α3〉 = α∗2α2 − α3α
∗
3,

= 2|α|(δXα0 sin(φ)− δYα0 cos(φ)),

(2.167)

where we have made the assumption that the contributions of order δX2 << |α|δX are

negligible. We already see that the noise contribution from the coherent field drops out
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entirely and the differential signal is purely based on the noise of the vacuum amplified by

the coherent field amplitude. Here, we find the variance as [81]

∆i2− = 〈i2−〉 = 4|α|2(δX2
α0

sin2(φ) + δY 2
α0

cos2(φ)),

= |α|2,
(2.168)

where δX2
α0

= δY 2
α0

= 1/4 for the vacuum. Terms containing cos(φ) sin(φ) have also been

removed by averaging over time. Here, we see that the noise scales with the number of

photons in the local oscillator (LO-α′1), just like before. Additionally, it has no dependence

on the phase of the LO. This is the noise expected for a coherent state.

Balanced homodyne detection can be extended to using squeezed light input rather

than vacuum, a shown in Fig. 2.10 (b). The sole requirement for this is that the LO must

be much larger than the signal input. For simple demonstration, we look at the case of a

squeezed vacuum. In the case of this squeezer, we insert a squeezed vacuum into the dark

port in place of the coherent vauum

α0 → αξ = δXαξ + iδYαξ , (2.169)

where the noise in the amplitude and phase are squeezed and anti-squeezed, respectively.

Following the same calculations, we find that the variance of the differential current is

∆i2− = 4|α|2(∆X2
αξ

sin2(φ) + ∆Y 2
αξ

cos2(φ)) (2.170)

where X2
αξ

= 1/4e−2r and Y 2
αξ

= 1/4e2r are the noise quadratures described in Eqs. 2.143

and 2.144. Additionally, homodyne measurement allows for tuning between the different

noise quadratures which is useful for reducing specific noises in a system. In chp. 7, we

extend this homodyne detection for two-mode squeezed light generated through FWM
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which has two squeezed joint-quadratures.
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CHAPTER 3

Suppression of FWM in Quantum

Memory

In this chapter, we demonstrate the suppression of FWM which arises in EIT and

Raman quantum memories due to the nonlinear response of Rb to the strong pump field

(control field for memories). We utilize Raman two-photon absorption in a ladder config-

uration to absorb the conjugate (called Stokes in this chapter) field as it is generated, as

discussed in sec. 2.4.2. We show that the conjugate absorption also leads to similar levels

of gain suppression in the signal field. This gain in the signal leads to data corruption

through the addition of noise photons.

3.1 Experimental arrangements

In this chapter we tested two interaction configurations widely used in quantum mem-

ory experiments. In the first case a strong control field and a weak probe field form

a resonant Λ system, the configuration commonly used to realize EIT based quantum
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FIG. 3.1: Level diagram of Rb atom based quantum memory.

memory [147, 162, 163]. In the second case, two optical fields are far-detuned from any

optical resonances, while remaining in a two-photon resonance. Both are show by the

level diagram in Fig. 3.1 for differnt values of ∆. This arrangement closely resembles the

interaction scheme used for the off-resonant Raman memory experiments [164]. In both

cases the additional scattering of the strong control field off the ground-state coherence at

the probe field’s optical transition results in the generation of a new stokes optical field in

a double-Λ four-photon resonance. As it was shown before, both theoretically and exper-

imentally, this additional FWM interaction results in the incoherent amplification of the

original probe field, leading to uncorrelated excess quantum noise in the quantum memory

channel. An in situ resonant absorption for the newly-generated stokes field suppresses

the four-wave mixing. In both configurations, we rely on the Raman transition to the

second excited electronic state, enabled by an additional Raman pump optical field in a

ladder configuration, to create a strong absorption exclusively for the stokes field. Simul-

taneously, we pay particular attention so that this additional laser field does not modify

the optical propagation of either the control or the probe fields, so its potential effect on
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quantum memory performance is avoided.

Since both interaction schemes are quite similar, we can use the same basic experi-

mental setup to test both of them. The schematic of the experimental setup is shown in

Fig. 3.2.

FIG. 3.2: Optical schematic of setup. ECDL and Ti:Sapph denote the two independent lasers
used in the experiment (external cavity diode laser and Ti:Sapph cw laser, correspondingly).
Optical path of the control field is shown in red, the Raman pump laser in green, and the probe
and stokes fields are correspondingly blue and black. See text below for abbreviations.

Since the relative phase coherence between the control and probe fields is crucial for

the quality of two-photon resonances, we derive both of these fields from a single laser

(external cavity diode laser, or ECDL) tuned to the D1 line of Rb (wavelength 794.6 nm).

The probe field is produced by phase-modulating a fraction of the laser output by a

fiber electro-optical modulator (fEOM) and filtering out one of the first-order modulation

sidebands using a tunable fabri-perot etalon (FP) with 20 GHz free spectral range. The

remaining laser output passed through an acousto-optical modulator (AOM), and the +1

modulation sideband was used as a control field and then passed through an optical isolator

(OI). The control and the probe field were recombined at a polarizing beam splitter (PBS)
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before interaction with atoms. Maximum available control power was ≈ 30 mW, and the

power of the probe field was 140 µW. After the cell, the control field was filtered out by

another PBS, and the remaining optical beam was sent to a non-polarizing beam splitter

(BS), two outputs of which were directed into two independent fabri-perot etalons, tuned to

transmit correspondingly the probe and stokes fields. A cw Ti:Sapphire laser (Ti:Sapph)

tuned to the 5P1/2 → 5D3/2 transition of Rb (wavelength 762.1 nm) was used as a Raman

pump field. It was combined with the rest of the optical fields at the second polarizing

beam splitter and traversed the cell in a counter-propagating direction to minimize the

Doppler broadening of a two-photon resonance. All laser beams were weakly collimated

inside the cell to the diameter of 1 mm. Since all the optical fields were nearly collinear

inside the cell, two optical isolators (OI) were placed to protect both lasers from the

incoming strong pump beams.

For these experiments, described below, we used a Pyrex cylindrical cell (diameter

25 mm, length 75 mm) containing natural abundance Rb isotope mixture. It was placed

inside a three-layer magnetic shielding to suppress stray magnetic fields. The temperature

of the cell was actively stabilized at 90◦C using an electrical heater wrapped around the

innermost layer of the magnetic shielding. The corresponding atomic densities were 1.7 ·

1012 cm−3 for 85Rb and 0.7 · 1012 cm−3 for 87Rb.

3.2 Resonant EIT case

EIT configuration corresponds to both control and probe fields’ frequencies tuned near

optical resonances. For pure EIT we would expect to observe an increase in the probe’s

transmission when the two-photon detuning matched the hyperfine splitting between two

Rb ground states [165]. The width of this resonance, as well as the residual absorption, was

determined by the strength of the control field and the decoherence rate of the ground-
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state coherence. The co-existing four-wave mixing typically increases the height of the

probe field transmission due to additional gain. Simultaneously, it enables the generation

of an additional stokes optical field at the optical frequency shifted down by the hyperfine

splitting from the control field, as shown in Fig. 3.3. If the residual probe absorption

under the pure EIT conditions is negligeable, under the combined EIT and FWM effects,

the probe output amplitude at the peak may exceed its initial value. Successful FWM

suppression, in this case, should eliminate this additional gain; in the ideal case scenario,

the output stokes field should completely disappear, while the probe transmission would

diminish to the level determined only by the two-photon EIT resonance [42]. Under the

realistic conditions of limited control power, even at maximum EIT, the probe transmission

is insignificant and FWM gain does not elevate the signal level above its input value,

so it is hard to distinguish the two processes as both add up coherently in the probe

propagation [166–168]. However, the appearance of the stokes field in the same range of

two-photon detunings when no input stokes field was present is a clear sign of the four-

wave mixing process. The exact values of the FWM gain for both the probe and stokes

fields depended on the mutual spatial alignment of the control and probe beams. We

normally adjusted the beams’ positions to achieve higher powers and similar sensitivities

to the control beam alignment for both probe and stokes outputs.

For the EIT experiments the ECDL frequency was locked to the 5S1/2F = 3 →

5P1/2F
′ = 3 transition of 85Rb using a separate reference cell (not shown in Fig. 3.2),

due to the +80 MHz AOM-induced frequency shift the control field was tuned 80 MHz

above the 5S1/2, F = 3 → 5P1/2F
′ = 3 optical transition. To ensure that the frequency

difference between the control and the probe match the 85Rb hyperfine splitting ∆HF =

3035 MHz, the rf modulation frequency for fEOM was set on ≈ 3115 MHz. By varying

the frequency difference between the control and probe optical fields by sweeping the

modulation frequency of the fEOM, we observed clear transmission peak in the probe field
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FIG. 3.3: Possible realizations of a ladder Raman absorption resonance for the stokes field in
EIT configuration using only 85Rb atoms (a,b), or using 85Rb for EIT and 87Rb for Raman
absorption (c). ∆ is 80 MHz, and ∆HF is 3035 MHz.

around two-photon resonance conditions, as well as generation of the stokes field, marking

the presence of the FWM effect.

Possible realizations of the Raman absorption resonance for the stokes field in this

configuration are shown in Fig. 3.3. If only one Rb isotope is involved, there are two possi-

ble arrangements. One is when the stokes field and the Raman pump field form a “ladder”

from 5S1/2, F = 3 ground state to 5D3/2 second excited state, as shown in Fig. 3.3(a). In

this case, the wavelength of the Raman pump field is λpump = 762.0976 nm and produces

the desired strong absorption resonance for the stokes field. Unfortunately, in this config-

uration the control field and the Raman pump field also form a ladder system, resulting in

two-photon absorption of the control field. For instance, under the conditions when we ob-

served 60% stokes absorption, we also measured 20% control field absorption, as shown in

Fig. 3.4(a). In principle, if sufficient control field power is available, such additional control

absorption may not strongly affect the EIT interaction. However, a noticeable longitudinal

variation of the control field power can lead to additional inhomogeneous broadening of

the EIT resonance and, for example, negatively affect the memory performance.
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FIG. 3.4: (a) Measured transmission for stokes (black) and control(red) optical fields as the
Raman pump frequency is scanned across the two-photon absorption resonance in the level
configuration shown in Fig. 3.3(a). Both control and stokes fields experience absorption since
they are simultaneously in a two-photon resonance with the pump. (b) Stokes field transmission
vs Raman pump frequency using 87Rb resonances, as shown in Fig. 3.3(c). The control field has
no absorption in this case, and thus not shown. All curves are normalized to the transmission
value without Raman pump. Vertical dashed lines indicate the optimal operational frequency.
Raman pump power was 180 mW for (a) and 220 mW for (b).

In principle, it is possible to avoid the control absorption completely by arranging the

frequencies of the stokes field and the Raman pump field to form a two-photon resonance

between the 5S1/2, F = 2 and 5D3/2 levels, as shown in Fig. 3.3(b). However, due to

larger detuning from the intermediate excited level, this configuration leads to weaker

Raman absorption. We were not able to observe more than 15% stokes absorption even

at maximum available pump power (≈ 250 mW).

Thus, we had to use a two-isotope configuration shown in Fig. 3.3(c), using 5S1/2, F =

2 → 5P1/2, F
′ = 2 → 5D3/2 levels in 87Rb for stokes absorption. This transition corre-

sponds to the Raman pump wavelength of 762.0995 nm. The sample stokes field absorption

is shown in Fig. 3.3(b) for the Raman pump power 220 mW. It is easy to observe multiple

absorption resonances, due to the hyperfine structure of the 5D3/2 excited state, unresolved

under the Doppler broadening. Typically, we tuned to the strongest Raman absorption

peak.
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FIG. 3.5: Transmission of (a) probe field and (b) stokes field as functions of two-photon fre-
quency difference between the control and probe field with (red) and without (blue) Raman
pump-induced stokes absorption. All curves are normalized to the input probe field power.
Raman pump power for both graphs is 220 mW. Here I0 and IS are the heights of the probe
transmission peak without and with the Raman pump, correspondingly.

To study the effect of the stokes field absorption on the EIT/FWM, we recorded the

variation in the output probe and stokes field when Raman pump laser was introduced.

The example of its effect on the output probe field is shown in Fig. 3.5. As expected, we see

the reduction of the probe transmission peak when the stokes field is absorbed (we have

verified that Raman pump field does not directly affect probe propagation). Note that

the stokes absorption did not affect the width of the transmission resonances, indicating

that the observed peak reduction was not due to the deterioration of the ground-state

coherence.

To quantitatively characterize the effect of the Raman pump field, we calculated

the suppression factor, defined as 1 − IS
I0

, where IS and I0 are the heights of the probe

transmission peaks values with and without Raman pump, correspondingly (see the exact

definitions in Fig. 3.5(a)). Ideally, we would like to achieve unity suppression for the stokes

field (i.e., no output stokes even at the two-photon resonance). Since we ran the exper-
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FIG. 3.6: (a) Suppression factor for stokes output field as a function of Raman pump power
for EIT configuration. (b) Probe field suppression as a function of the stokes field suppression.
The data shown in blue correspond to seeded probe field (no input stokes), while the red data
points correspond to the seeded stokes fields (no input probe). Each data point corresponds to
the average of five independent measurements, with the error bar equal one standard deviation.
Dashed blue line corresponds to the reference reduction factor for the output probe field, if the
input stokes field was attenuated before entering the vapor cell.

iment at rather high Rb density, we expect only weak transmission under the imperfect

EIT conditions without FWM gain, and thus the probe suppression factor is expected to

approach a value close to one.

The measured suppression factors for probe and stokes field as functions of Raman

pump power are shown in Fig. 3.6. We see that stokes absorption increases (roughly

linearly) with the Raman pump power and the probe attenuation was linearly proportional

to the stokes attenuation. In addition to standard EIT arrangements, when a strong control

field and a weak but nonzero probe field were injected into the Rb cell (no input stokes

field), we also tested a configuration in which an optical field on the stokes frequency

was injected, without any input probe field. In the latter case, only FWM contributed

toward the probe field observed after the interaction with the atoms. For this configuration

we observed qualitatively similar behavior, although for the same pump power the stokes
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absorption was somewhat stronger. The limited available Raman pump power (< 250 mW)

did not allow us to reach the stokes field absorption beyond 50%, and corresponding probe

suppression better than 60%. However, if we extrapolate the absorption data to the region

of the higher pump powers, we can extrapolate that at a Raman pump power of ≈ 380 mW

we should be able to achieve optical depth > 1 for the stokes field.

In addition to inducing stokes absorption via Raman resonance inside the vapor cell,

we also measured the reduction in the output probe field as function of the input seeded

stokes attenuation. These measurements are shown as a reference in Fig. 3.6(b). It is easy

to see that smaller probe suppression occurred in this case. The observed results can be

explained by pointing out that in case of the seeded stokes its absorption can have two

effects on probe. First, since the probe field is generated, its amplitude is proportional

to the seeded stokes field, so weaker stokes is expected to produce less probe. This type

of probe suppression should occur independently if the stokes field is attenuated before

entering the cell or inside the interaction region. At the same time, additional stokes

absorption can reduce the efficiency of the four-wave mixing, resulting in additional probe

gain suppression, which maybe responsible for observed stronger suppression factor values

in case of Raman absorption.

3.3 Off-resonant Raman case

Another configuration identified as a promising candidate for quantum memory appli-

cations is coherent Raman absorption of a probe field in a far-detuned Λ system [164, 169,

170]. This scheme also suffers from the effects of four-wave mixing noise [28, 36]. While

our limited laser power and cw regime of laser operation did not allow us to test the exact

range of parameters used in the Raman memory experiments, we replicated their exper-

imental arrangements as closely as possible. In particular, we have detuned both control
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FIG. 3.7: (a) Level configuration used for the FWM suppression in the Raman configuration.
The control field one-photon detuning from the F = 3→ F ′ = 3 transition is ∆ = 200 MHz, and
the Raman pump field wavelength is 762.1038 nm. (b, c) Examples of the two-photon resonances
for the probe and stokes fields with and without Raman pump of 80 mW, correspondingly. All
curves are normalized to the input probe field power. Here again I0 and IS are the heights
of the probe transmission peak without and with Raman pump, correspondingly, and Ib is the
background level, corresponding to the probe transmission away from the two-photon resonance.

and probe fields away from the atomic resonances, adding a one-photon detuning on the

order of the hyperfine splitting between the ground state levels, as shown in Fig. 3.7(a). In

this configuration the control field frequency approached the F = 2 → F ′ = 3 transition,

and the stokes field was generated near the F = 3→ F ′ = 3 transition. Unlike in the EIT

case, discussed above, there was very little (< 10%) resonant absorption for the probe field.

At the same time, the stokes field experienced a rather stong resonant absorption due to

the proximity to the optical resonance. If only seeded stokes field was interacting with

atoms, it was nearly completely absorbed. However, due to large FWM gain a significant

generation (or enhancement) of the stokes field was observed after the Rb cell near the

two-photon resonant conditions.

This configuration also allowed us to take advantage of the hyperfine structure of
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FIG. 3.8: Measured transmission for the stokes and control optical fields as the Raman pump
frequency is scanned across the absorption resonances. Raman pump power is 80 mW. Vertical
dashed line indicates the optimal operational frequency.

the 5D3/2 state to fine-tune the Raman pump frequency to absorb the stokes field with

minimal control absorption. Example absorption profiles for the control and generated

stokes field under the two-photon resonance conditions are shown in Fig. 3.8. It is easy

to see that the stokes absorption resonance, corresponding to the lowest pump frequency

provides near-maximum stokes signal reduction, while keeping the control absorption less

than 5%.

In this regime we were able to achieve much more significant levels of FWM sup-

pression: nearly 95% attenuation for the output stokes field at the highest Raman pump

power. This more efficient absorption was likely due to the closer proximity of the stokes

frequency to that of the optical resonance. As a result, much higher suppression was

observed for lower powers, reaching the absorption saturation near half of the maximum

power level. In this configuration, we saw roughly the same amount of suppression for

the stokes field when either probe or stokes were seeded. The suppression factor for the

seeded probe was somewhat lower (≈ 60%) compare to the seeded stokes case (> 75%).

This reduction was somewhat expected: in case of the seeded stokes field, any output
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FIG. 3.9: (a) Suppression factor for stokes output field as a function of Raman pump power
for far-detuned Raman configuration. (b) Probe field suppression as a function of the stokes
field suppression. The data shown in blue correspond to seeded probe field (no input stokes),
while the red data points correspond to the seeded stokes fields (no input probe). Each data
point corresponds to the average of five independent measurements, with the error bar equal
one standard deviation. Dashed blue line corresponds to the reference reduction factor for the
output probe field, if the input stokes field was attenuated before entering the vapor cell.

probe field is generated via the four-wave mixing process, and in case of perfect FWM

suppression should vanish completely, resulting in the unity suppression factor. However,

for seeded probe we expect to see a non-vanishing two-photon EIT resonance even if FWM

completely eliminated, leaving the final suppression factor value below one. We also note

that in this Raman regime, the attenuation of the seeded stokes field either before or inside

the cell gave similar generated probe suppression.

3.4 Conclusion

In this chapter, we demonstrated the possibility to use a ladder two-photon Raman

absorption resonance to suppress four-wave mixing amplification of the probe field in

a double-Λ system under near-resonant EIT or far-detuned Raman conditions, the two

interaction systems often considered for quantum memory experiments. We identified
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several configurations in which a strong optical field tuned in the vicinity of 5P1/2 → 5D3/2

optical transition (762 nm) can produce narrow absorption resonances for the stokes optical

field, generated in the four-wave mixing process. We showed substantial reduction in the

output probe field when such resonances are introduced. Maximum four-wave mixing

suppression in the EIT configuration, based on 85Rb atoms, was approximately 40% using

the Raman resonance in 87Rb atoms. This value was limited by the available laser power.

Same-isotope configurations were found as well, but either resulted in additional control

field absorption, or required a significantly stronger Raman pump field. In case of the far-

detuned Raman double-Λ system, we achieved four-wave mixing suppression up to 85% in

the same 85Rb isotope, thanks to the stronger achievable stokes absorption.
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CHAPTER 4

Comparison of collimated blue light

generation in 85Rb atoms via the D1

and D2 lines

In this chapter, we report on the investigation of collimated blue light (CBL) gener-

ation in the two-photon transition reaching the 5D3/2 state. By utilizing the four-wave

mixing process (FWM), we can investigate the interference between competing excitation

channels, spontaneous decays, and nonlinear processes [171]. It is important to understand

this interplay to maximize the efficiency of a nonlinear processes, especially for coherent

information transfer between systems [152]. It has potential for an alternative, more sym-

metric, four-wave mixing diamond scheme involving only near-IR optical fields [172–174].

Here, we experimentally compared the two excitation pathways to the 5D3/2 level through

either 5P1/2 or 5P3/2 intermediate levels and examine the interplay of a repumping field to

identify the optimal conditions for the collimated blue light generation in each case.
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4.1 Experimental arrangements

The schematic of the experimental apparatus is shown in Fig. 4.1. We employed three

individual lasers. Two external cavity diode lasers – ECDL-D1 and ECDL-D2 – that are

tunable in the vicinity of the Rb D1 line (wavelength 795 nm) and Rb D2 line (wavelength

780 nm). Each ECDL, depending on the stage of the experiment, can serve as either

lower pump or re-pump laser while the upper pump optical field is generated using the

continuous wave (cw) Titanium Sapphire (Ti:Sapph) laser. The first stage utilizes the D1

laser as the lower pump, the D2 as the re-pump, and the Ti:Sapph tuned to 762 nm (for

5P1/2 → 5D3/2 transition) while the second stage involves the D1 and D2 lasers swapping

roles and the Ti:Sapph being tuned to 776 nm (for the 5P3/2 → 5D3/2 transition).

The two fields generated by the ECDLs were combined first so they could be adjusted

together before combining with the Ti:Sapph laser. In order to further increase the laser

intensities, the laser beams were weakly focused inside the Rb cell using a 1000 mm (L1)

lens and then collimated using a 500 mm (L2) lens. All beams had gaussian intensity

profiles with diameters 230 µm, 250 µm, and 840 µm at the center of the Rb cell, for the

D1, D2, and Ti:Sapph laser beams, respectively.

For maximum flexibility in setting the pump field polarizations, all optical fields were

combined using edge mirrors. We found that the polarization of the re-pump field rela-

tive to the lower pump field had very little effect on CBL generation, and thus we always

matched the repump laser polarization to that of the lower pump field. The polarizations

of the lower and upper pump fields, before entering the cell, were controlled indepen-

dently using half- and quarter -wave plates. The polarizations of the indavidual beams

were cleaned using beam splitters before they were combined. However, polarization im-

perfections could have risen from the use of zero-order waveplates designed for 795 nm

light.
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FIG. 4.1: The optical layout of the experimental setup. ECDL-D1, ECDL-D2, and Ti:Sapph
denote three independent lasers used in the experiment. The optical paths of the D1, D2,
and Ti:sapph pump lasers and the generated blue light are show in, red, black, green, and
blue, respectively. Inset shows relative orientation of the optical beams. See text for the
abbreviations.

In the experiment we used a 75 mm - long cylindrical Pirex cell (diameter 22 mm),

containing isotopically enriched 85Rb vapor. The cell was tilted by approximately 6◦ to

avoid the retroreflection effects from the cell’s windows on the generated CBL [74]. For

all the measurements the cell was maintained at a relatively low temperature of 88oC,

corresponding to the 85Rb density of ≈ 1.7 · 1012 cm−3. The cell was housed in three

layer magnetic shielding, with the innermost layer wrapped in a heating wire. Thermal

insulation was placed between each layer of the magnetic shield to help with temperature

stability.

Under these conditions we observed the emergence of collimated blue light. To max-

imize its power, we adjusted the relative angles between the two co-propagating pump

laser fields and the repump laser as shown in the inset of the Fig. 4.1: all three beams

were arranged in the same plane, with the angles between the Ti:Sapph laser and D1 and

D2 laser beams being θ1 = 2.1 mrad and θ2 = 7.5 mrad correspondingly. The output
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CBL beam then emerged at the angle of θ3 = 3.3 mrad from the Ti:Sapph beam. We

found that for both intermediate 5P states, the generated blue light was produced at a

wavelength of 421.7 nm (measured using an Ocean Optics spectrometer with spectral res-

olution ±0.2 nm) corresponding to the 6P1/2 → 5S1/2 optical transition. We were not able

to detect any directional radiation at the 5D3/2 → 6P1/2 and 5D3/2 → 6P3/2 transitions,

since the glass cell is not transparent in the mid-IR spectral range. We also did not observe

optical fields corresponding to the alternative relaxation pathways through the 6S1/2 state

[70, 71, 79] or 5P states [173, 174].

To separate the CBL beam from the pump fields after the Rb cell, the output beams

passed through a diffraction grating (DG) which directed ≈ 46 % of the total power of

each field into the first diffraction order. We then used irises to isolate individual laser

fields before the photodetectors (PD). To avoid contamination of the CBL measurements

by any scattered IR laser light, we placed a blue spectral filter (transmission ≈ 40% at

421.7 nm) before the corresponding photo-detector.

4.2 CBL generation via the D1 line

In this section we present the measurements in which theD1 transition (5S1/2 → 5P1/2,

λD1 = 795 nm) served as the first step of the excitation scheme; the second pump laser

with the wavelength 762 nm was used to further excite atoms into the 5D3/2 excited state,

as shown in Fig.4.2. In this configuration the D2 laser, acting as a repump, was tuned

to the transition between the excited 5P3/2 level and the ground-state hyperfine sublevel,

not coupled by the D1 pump laser (F = 2 in this case). Unless otherwise noted, all the

reported data are recorded with the repump laser on, as it produced a uniform increase in

the recorded CBL power, regardless of polarizations and powers of the pump lasers.

CBL generation was analyzed for four pump polarization configurations, in which
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FIG. 4.2: Interaction configuration through the 5P1/2 intermediate level: lower pump (795 nm)
and the upper pump (762 nm) excite Rb atoms to the 5D3/2 level, followed by the emission of
5.032 µm (not detectable) and collimated blue light at 422 nm. The repump field is tuned to
the 5S1/2, F = 2→ 5P3/2 transition.

the two pump fields had either parallel or orthogonal linear or circular polarization. The

resulting observations are shown in Fig.4.3, in which we plotted the CBL power for each

polarization configuration as the function of the lower pump frequency (the upper pump

frequency was fixed). We have considered three cases in which the lower pump laser was

scanned across each hyperfine transition of the D1 line [Fig.4.3(a,b)], as well as when it

was detuned by ≈ +1.2 GHz from the 5S1/2, F = 2 → 5P1/2 [Fig.4.3(c)]. This detuning

was chosen to be large enough to avoid resonant absorption for the lower pump field

while still providing strong CBL output. Moving the pump frequencies farther from the

optical resonances led to gradual decrease of the CBL power, without changes in its other

characteristics.

We found that the polarization configuration leading to the maximum blue light gen-

eration was different, depending on the laser frequency. We detected the strongest CBL

generation at the lower frequency transition (5S1/2, F = 2, 3 → 5P1/2) when the two

pump field were linearly polarized, with parallel arrangement results in slightly higher

CBL power. However, the circularly polarized pump fields produced a similar amount of
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blue light for both the lower and higher-frequency transitions (5S1/2, F = 3 → 5P1/2),

but since the blue output for the linearly polarized pumps dropped significantly in the

latter case, the circular parallel pumps maximized the CBL generation. Finally, the cir-

cular orthogonal configuration led to the smallest generation of CBL. The variations in

CBL output between different polarization arrangements originate, most likely, from the

difference in Zeeman levels involved in the interactions and their transition strength, and

will be further discussed in Sec. 4.4.

FIG. 4.3: Power of the generated blue light as the lower pump was swept across: (a) 5S1/2, F =
3→ 5P1/2 transition, (b) 5S1/2, F = 2→ 5P1/2, and (c) 1.2 GHz above 5S1/2, F = 2→ 5P1/2

transitions. The upper pump was tuned to 762.1036 nm for (a,b), and 762.1054 nm for (c).
Four different polarization configurations of the two pump lasers are shown: linear parallel
(red, solid line), linear orthogonal (magenta, solid line), circular parallel (blue, dashed line),
and circular orthogonal (green, dashed line). The powers of both lower pump (D1 laser) and
the repump (D2 laser) were kept at 16 mW, and the power of the upper pump (Ti:Sapph laser)
at 200 mW . The zero detuning of the D1 pump corresponds to the cross-over transition of the
5S1/2, F = 3→ 5P1/2 state.

We also analyzed the CBL polarization for linearly polarized pump lasers. We found

that for all investigated laser detunings the polarization of the generated blue light matched

the polarization of the lower pump field, even for orthogonally polarized laser fields. Un-

fortunately, we were not able to carry out the CBL polarization analysis for the circularly
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polarized pumps since a quarter-wave plate for blue light was unavailable.

On-resonant D1-line excitation

To investigate the power dependence of the generated blue light on all three involved

laser fields, we considered on- and off-resonant tuning of the pump fields. In the first

case, both pump fields were tuned near the centers of the corresponding optical resonant

absorption peaks (5S1/2 → 5P1/2 and 5P1/2 → 5D3/2). As CBL is the product of parametric

wave mixing of two pump laser fields and the internally generated mid-IR field [44, 66],

the maximum of the blue spectral profile did not always occur exactly at the two-photon

resonance (in which the sum of the two laser frequencies exactly matched the frequency

difference between the ground state and the excited D state), but was shifted toward the

frequency corresponding to the maximum lower pump absorption and often resembled

two poorly-resolved peaks. For the power dependence studies, seen in Fig. 4.4, we chose

the lower pump detuning near the 5S1/2, F = 3 → 5P1/2 transition and parallel linearly

polarized pump fields which produced the highest CBL output.

At maximum power for all three fields, we measured 3.5 µW of the generated blue

light. As we decreased the power of the upper pump field, the CBL power dropped more or

less linearly, as expected for the optically-driven population of the 5D3/2 excited state [175].

The reduction of the repump power resulted in a similar nearly linear drop in CBL until

leveling off at 30% of the repump power. It is likely that the effect of the repumping

became negligible for lower repump laser powers due to its strong absoprtion, since the

measured CBL power output (500 − 700 nW) matched the blue light generated in the

complete absence of the repump field.

However, the lower pump power dependence is more complicated: as the D1 laser

power increases, the CBL power grew steadily until it reached its plateau at 4.25 µW
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FIG. 4.4: Generated CBL power as a function of normalized power of each pump and repump
fields. For each individual dependence the power of one laser was varied between zero and its
maximum value, while the other two lasers were kept at their maximum powers: 65 mW for the
lower pump (795 nm), 200 mW for the upper pump (762 nm), and 17 mW for the repump laser
(780 nm). The laser detuning corresponded to the conditions for the maximum CBL power as
shown in Fig. 4.3(a).

at ≈ 50% of the maximum available laser power (≈ 30 mW), and then began to slowly

decrease. The origin of such behavior is related to the optimization of excitation and

relaxation rates from and to the ground state via stimulated processes, as will be discussed

later in Sec. 4.4. We have verified that the resonant absorption of the D1 laser field

displayed no similar trends, steadily decreasing from 70% to 40% with the growing laser

power.

It also should be noted that the reduction in the generated CBL power at higher

pump power occurred only when the repump field was present. Without the repump, the

CBL reached saturation at the D1 field power of ≈ 35 mW, and then stayed roughly at

the same level with further laser power increase. This can be interpreted as the shift of

the CBL maximum toward higher pump power values, although we were not able to verify

that due to the power limitation.
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Off-resonant D1-line excitation

CBL power dependences were also analyzed for the pump fields detuned by approxi-

mately +1.2 GHz from the 5S1/2, F = 2→ 5P1/2 transition [Fig. 4.3(c)]. At this detuning

the lower pump field experienced almost no resonant absorption making the contribution of

the step-wise excitation process significantly smaller compared with the direct two-photon

excitation. Thus, we observed the maximum blue light generation at the two-photon res-

onance conditions for the 5S1/2 → 5D3/2 transition. We chose to use the linear parallel

polarizations arrangement for direct comparison with the resonant case. As one can see in

Fig. 4.5, in this case the blue light power displays fairly linear dependence on each pump

laser field, without reaching saturation or maximum. The repumping power dependence is

also qualitatively similar to the resonant case, although it is important to note significantly

higher enhancement for the same repump power (×10 CBL power increase) compare to

the resonant case (×4 CBL power increase).

4.3 CBL generation via the D2 line

The alternative excitation pathway to the 5D3/2 level is through the 5P3/2 intermediate

level. In this case, the two-photon transition was executed using the D2 (780 nm) laser and

the Ti:sapph laser, tuned to the 776 nm, while the D1(795 nm) laser served as the repump,

as shown in Fig. 4.6. This pump configuration is traditionally used for the excitation of Rb

atoms into the 5D5/2 state [65–67, 69–71]. Under the identical experimental conditions,

we have obtained up to 120 µW of blue light using the 5S1/2 → 5P3/2 → 5D5/2 excitation

scheme, while in the case of the 5S1/2 → 5P3/2 → 5D3/2 pathway the maximum obtained

CBL power was just ≤ 450 nW.

Fig.4.7 demonstrates the measured CBL output power as a function of the lower pump
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FIG. 4.5: Generated CBL power as a function of normalized power of each pump and repump
field. As in Fig. 4.4, for each individual measurement the power of one laser was varied between
zero and its maximum amount, while the other two lasers were kept at their maximum powers:
65 mW for the lower pump (795 nm), 200 mW for the upper pump (762 nm), and 17 mW for the
repump laser (780nm). The laser detuning corresponded to the conditions for the maximum
CBL generation in Fig. 4.3(c), approximately +1.2 GHz blue of the 5S1/2, F = 2 → 5P1/2

transition.

FIG. 4.6: Interaction configuration for CBL generation via the 5P3/2 intermediate state, that
uses the lower pump (780 nm) and the upper pump (776 nm) to excite Rb atoms into the 5D3/2

state, resulting in emission of 5.032 µm (not experimentally observed) and collimated blue light
(422 nm). The repump (795 nm) field is tuned to the hyperfine ground state opposite of the
lower pump.
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FIG. 4.7: Measured CBL power for varying polarizatins of lower pump (780 nm) and upper
pump (776.1568 nm) as the lower pump is swept across the hyper-fine split ground states.
The considered polarization arrangements for the two pumps are: linear parallel (red, solid
line), linear orthogonal (magenta, solid line), circular parallel (blue, dashed line), and circular
orthogonal (green, dashed line).

(D2) laser detuning, from the F = 3 ground state, for the previously tested four polariza-

tion combinations, shown in Fig. 4.3. We observed an even more pronounced dependence

of the blue light power on the pump polarizations than in the D1 excitation scheme. For

the two-photon 5S1/2, F = 2 → 5D3/2 transition, the parallel circularly-polarized pump

fields yielded CBL output that was stronger than the other three configurations by at least

an order of magnitude. Remarkably, the same pump polarization arrangement produced

no CBL when the lower pump was tuned to the other hyperfine ground state 5S1/2F = 3.

At that frequency the blue light was detected only for the circular orthogonal and linear

orthogonal polarizations. The observed polarization dependence, as well as the varia-

tion of the pump frequency corresponding to the maximum CBL for different polarization

arrangement, is most likely due to rich Zeeman structure of multiple hyper-fine excited

states.
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Overall, we found significantly weaker (approximately by a factor of 10) blue light

generation, compare to the D1 excitation scheme. Also, the blue light power dropped

very rapidly with the laser detuning away from the resonance, so that no detectable CBL

output was found at +1.2 GHz detuning used for the off-resonant case in previous section.

FIG. 4.8: Generated CBL as a function of normalized power of the pump and repump fields.
As in Fig. 4.4, for each individual dependence, the power of one laser was varied between zero
and its maximum value, while the other two lasers were kept at their maximum powers: 17 mW
for the lower pump (780 nm), 200 mW for the upper pump (776 nm), and 65 mW for the
remupmer (795 nm). The laser detuning corresponded to the conditions for the maximum CBL
generation in Fig. 4.7(b), near S1/2F = 2 → 5P3/2F

′ transition. The upper pump wavelength
was fixed at 776.1568 nm.

Fig. 4.8 shows the dependences of the CBL power on the power of the pump and the

repump lasers, measured for parallel circular polarization of the pumps, the configuration

yielding the highest CBL powers. When either pump power was varied, we observed a

roughly linear dependence for the blue light output. Unlike the resonant excitation using

the D1 optical transition shown in Fig. 4.4, no signs of saturation or peaking was observed

at the available range of the lower pump (D2 laser) power. It is important to note, however,

that we operated with less available laser power. In the case of the D1 excitation channel,

the CBL power started to saturate at around 12 mW of the lower pump power, reaching
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the maximum value at 35 mW. Since the maximum available D2 laser power was only

17 mW, it is possible that nonlinear power dependence can be observed at higher pump

powers.

The repump power dependence shows clear saturation for the D1 laser powers above

≈ 20 mW, the power level necessary to provide efficient depopulation of the 5S1/2F = 3

ground state. Unsurprisingly, further repump power increase did not provide any addi-

tional advantages. We confirmed this by the additional measurements of the D2 laser

resonant absorption, observing an increase in absorption from 30% without the repump to

a plateau of ≈ 50% with repump power above 20 mW.

4.4 Simplified theoretical simulations

To gain some qualitative understanding of the observed experimental behavior, we

built a simplified theoretical model of the blue light generation using the methodology

described in Ref. [176] adopted for in a four-level diamond scheme. To reduce the com-

plexity, we have neglected the nuclear spin, eliminating the hyperfine structure. To account

for alternative spontaneous decay paths and the optical pumping of atoms in the second

ground hyperfine state, we introduced an additional fictional non-degenerate ground state.

Lifetime and branching ratios of which, match those of the corresponding Rb states. We

also do not account for the Doppler broadening of the optical transition due to the ther-

mal motion of the atom, but incorporate the ground-state decoherence rate of 1 MHz,

mimicking the transient relaxation.

Despite many simplifications, the calculations qualitatively match the experimental

observations and provide explanation for the observed behaviors. Fig. 4.9(a) demonstrates

the dependences of the CBL gain on the powers of the pump lasers in the range of Rabi

frequencies comparable with those used in the experiment. The simulated trends are
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similar to the experimental dependencies, shown in Fig. 4.4, in which the CBL power

grows with the upper pump, but reaches a maximum and then declines when the lower

pump power is increased. However, if we allow either pump power to vary at a larger range,

as shown in Fig. 4.9(b), we see that the maximum CBL output occurs when the upper to

lower pump Rabi frequencies ratio is roughly 2.3. An increase of either pump power leads

to a reduction of the populations of the atomic levels, involved in blue light generation and

consequently to the reduction of CBL output. In particular, we observe that too powerful

lower pump laser leads to the gradual population of the uninvolved ground state sublevels,

the process only partially amendable with the optical repumping. In contrast, increase

of the upper pump beyond the optimal value depopulates the intermediate excited state,

reducing the 5D state population and consequently the FWM amplification.

This understanding also helps in explaining the difference in the CBL output depen-

dence on the lower pump power at D1 and D2 lines, shown in Figs. 4.4 and 4.8. Since the

D1 laser output is higher, we were able to realize the optimal power ratio for the lower and

upper pumps and observed the CBL maximization. However, if the maximum value of the

D1 pump was used, we were not able to reach the optimal CBL conditions due to power

limitation of the Ti:Sapph laser. However, when we tested the alternative configuration

through the 5P3/2 state, the mismatch between the available powers of the two pumps

restricted the CBL generation to the lower part of the theoretical curve.

We also calculated the dependence of CBL yield on the repump laser strength. As

expected, efficient repumping of atomic population from uncoupled ground state magnifies

the CBL gain significantly, reaching saturation. This is qualitatively the same behavior as

observed experimentally in Fig. 4.8, when the more powerful D1 laser served as a repumper.

Because of the lower maximum available output of the D2 laser and its stronger resonant

absorption, we did not achieve such saturation when it was used for repumping, and the

corresponding line at Fig. 4.4 resembles the lower end of the simulated curve.
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FIG. 4.9: Calculated CBL gain as a function of either pump Rabi frequency. While the Rabi
frequency of one of the pump fields is varied, the other is maintained at its maximum value
of 5 × 1010 Hz. In (a) the Rabi frequencies change in the range similar to those used for
experimental data in Fig. 4.4. In (b) the range of variation is increased by a factor of 10 to
display the more complete power dependence. For these simulations we used parallel circular
polarizations for all optical fields; however, the same general behavior is observed for other
polarization configurations.

FIG. 4.10: Calculated CBL gain as a function of repump Rabi frequency. For these simulations
we used parallel circular polarizations for all optical fields, and the Rabi frequencies of the lower
and upper pump fields of 2×1010 Hz and 5×1010 Hz, corresponding to the calculated maximum
CBL gain.
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Finally, we can check the effect of the polarizations of the pump fields. Fig. 4.11

presents the results of the simulations of CBL gain for the four polarization configura-

tions tested in the experiment. While inclusion of accurate Zeeman and hyperfine atomic

structure is necessary to match the experimentally measured dependences, the simplified

simulations still display some general features, characteristic to the observations. For ex-

ample, in the simulations for both linearly and circularly polarized pump fields, larger

CBL gain is observed when the two pumps have parallel, rather than orthogonal. We also

verified that the observed changes in CBL strength for different polarizations is general,

and not specific for particular values of pump powers. For that we replicated the CBL

gain dependence on the lower pump Rabi frequency, shown in Fig. 4.11(b).

FIG. 4.11: (a) Calculated CBL gain as a function of lower pump frequency for the four polar-
ization arrangements tested in the experiment. For these simulations the Rabi frequencies of
the lower and upper pump fields of 2× 1010 Hz and 5× 1010 Hz, and the upper pump was res-
onant with the corresponding optical transition. (b) Modification of the CBL gain lower power
dependence for different polarization arrangements. The simulation parameters are identical to
those using in Fig. 4.9.

4.5 Conclusion

In conclusion, we report on characterization of the collimated blue light generation

via two-photon excitation from the 85Rb 5S1/2 ground state to the 5D3/2 excited state
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through either 5P1/2 or 5P3/2 intermediate levels. We have studied the characteristics of

the generated blue light for various pump laser frequencies, and found that the polarization

arrangement leading to the maximum CBL power output strongly depends on the optical

transitions used. This indicates the importance of selection rules and individual Zeeman

transition probabilities. The experimental results shared various qualitative characteristics

with the theoretical simulation. We found that under the optimized experimental condi-

tions the blue light output was noticeably stronger when the D1 optical transition was used

as the first excitation step. In the case of the D1 resonant excitation we demonstrated

the existence of the optimal pump powers that led to maximum blue output. For other

situations (off-resonant D1 excitation or resonant D2 excitation) a linear dependence of

output CBL power on the lower pump power was detected. Theoretical simulations allow

us to explain this behavior: for each set of experimental parameters there seems to be

an optimal ratio between the lower and upper pumps that lead to maximum CBL yield.

Any deviations from this value result in sub-optimal population redistribution between

the involved atomic transitions, and in the reduction of blue light generation. In case of

the D1 resonant excitation we were able to realize such optimal conditions for the lower

pump power. For the other configurations, however, we were limited to the initial rising

power dependence, before the CBL maximum was reached. Our measurements and simu-

lation also demonstrated the importance of the repumping of atomic population from the

uncoupled ground state sublevels, that led to an order of magnitude increase in blue light

generation in all tested configurations. A more detail simulation and further study may

shed light on the specific temperatures, powers, and polarizations for a better optimized

and efficient CBL generation.
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CHAPTER 5

Experimental Generation of FWM

Squeezing

In this chapter, we will discus the different experimental components which go into

generating two-mode squeezed light via FWM. This will be the central focus for the remain-

ing experiments in this thesis and the following chapters will build upon the experimental

principles defined here. There are some key aspects to consider when generating squeezed

light. In sec. 5.1, we will begin by discussing the preparation of the pump and probe

fields necessary to produce FWM. The method is similar to the one in Ch. 3, but with a

different laser system and parameters. In sec. 5.3, we will discus the propogation of the

beams in the cell and phase matching conditions which govern the FWM process. Finally,

in sec. 5.4, we will discuss the filtering of the pump field and the detection of intensity

difference squeezing. The schematic is shown below in Fig. 5.1

85



FIG. 5.1: Full schematic for the generation and detection of squeezed light via FWM

5.1 Beam Preparation

The probe and pump beams are generated by using a single continuous wave diode

laser system, the Toptica TaPro795. The output of this system is tunable between 775 nm

and 805 nm and has two output ports. One is a pick-off from the laser diode (will become

the probe) and the other is the output from the tapered amplifier (will become the pump),

shown in Fig. 5.2. Generating both the probe and pump from the same system will ensure

the phase coherence between the two beams necessary to generate squeezed light from

FWM.

The pick-off from the diode is first split into two parts using a polarizing beamcube, the

vertical polarization is fed into a Bristol wavemeter to monitor the frequency of the pump

and the horizontal polarization (4.5 mW) is coupled into a fiber electro-optical modulator

(EOM) and modulated at 3035 MHz (hyper-fine splitting of 85Rb). We use a Marconi

Instraments 2031 RF source to control the EOM and supply it with a frequency output of

1517.5 MHz at -1.5 dB which is then frequency doubled and amplified. The output of the

EOM is then filtered using a Fabry-Perot etalon set to transmit the low frequency side-
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FIG. 5.2: This is the cutout of the beam prep which generates the probe and pump fields.

band (3.035 GHz shifted down from the frequency of the pump field). This is the probe

optical field, which is then passed though a fiber to clean the transverse intensity profile

and then output to the interaction portion of the experiment with a power of 70 µW ,

as shown in Fig. 5.1. We can monitor the probe signal using a photodetector (PD1) in

Fig. 5.1, with appropriate filtering of the leaked pump field. The pump is the direct output

from the tapered amplifier, coupled into the Toptica fiber-dock system. The fiber output

polarization is cleaned further using two polarizing beam splitters (PBS). The amplifier is

driven at a current of 1.5 A and results in a power of 380 mW, laser schematic shown in

Fig. 5.2.

5.2 Beam Monitoring

We monitor the frequency of our beams by using a Bristol wave meter and ensure that

the pump frequency is set to 794.9725 nm. This frequency was selected by optimization

the incedent angle of the beams, single- and two-photon detunings, pump field power, and

cell temperature [8, 98]. These various parameters control the amplification of the probe

field and the generation of the conjugate field and are optimized for maximum gain and
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squeezing.

The single-photon detuning sets the proximity from the atomic transition. The op-

timal condition for this parameter does not align with maximum gain [98]. This is due

to the absorption of the probe field by the atoms, as it is generated, which results in the

correlations between it and the conjugate field being destroyed and leading to additional

noise. For this reason, we set to 1 GHz away from the atomic transition. We confirm

the absence of probe absorption with the spectroscopy setup, shown in Fig. 5.3 (a). By

tuning the etalon and EOM in Fig. 5.2, we can tune the probe frequency until we do not

see an absorption. The output signal of the etalon is shown in Fig. 5.3 (b) and monitored

by PD1. The absorption spectroscopy signal is monitored by PD2 and shown by the blue

curve in Fig. 5.3 (b). Both are obtained by sweeping the pump laser.

FIG. 5.3: (a) The absorption spectroscopy setup. (b) The oscilloscope trace, blue is signal for
the absorption spectroscopy of an Rb natural abundance cell and red is the output of the EOM
filtered by the etalon as the laser frequency is swept.

These measurements are also useful for monitoring our equipment. The absorption

spectroscopy signal can point to the mode characteristics of the laser. If it is operating

in a multi-mode regime or if the alignment into the amplifier for the pump is incorrect,

the absorption features shown in Fig. 5.3 (b) by the blue curve begin to wash out with

noise and unexpected sharp features will appear. PD1 is used to monitor the probe signal
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while the pump is in use. It gives the same signal as PD3 with the pump blocked. This is

necessary to monitor the operation and stability of the EOM. In the event the RF source

is malfunctioning, the sidebands shown by the red trace in Fig. 5.3 (b), will vanish and

only one peak will be seen.

5.3 FWM and the Phase Matching Conditions

In the interaction portion, the pump and probe optical fields were combined at an

angle of ≈ 0.4◦ using a polarizing beam splitter (PBS) before entering a 25-mm long

Pirex cell filled with isotopically enriched 85Rb vapor, shown in Fig. 5.4 (a). The cell was

mounted inside of a three-layer magnetic shielding and maintained at 106◦C corresponding

to the atomic density of 7 · 1012 cm−3.

After the cell, we observe the amplified probe field and the newly generated conjugate

field. This interaction has two main features that we track, the gain and squeezing from

FWM. The optimization for this was discussed in Sec. 5.2. The two features are tracked by

measurement of the differential intensity using the balanced detection shown in Fig. 5.6

(a). By blocking one of the ports of the balanced detector, we can measure the power

in of either the probe or conjugate beam in the DC coupled output of the detector. By

not blocking either beam, we make a measurement of the differential intensity noise and

thus squeezing via the AC coupled output of the balanced detector to a spectrum analyzer

(SA). A sample SA signal is shown in Fig. 5.6 (b).

The gain from FWM and the level of squeezing are optimized by three main pa-

rameters; the single-photon detuning ∆ (pump frequency), two-photon detuning δ (EOM

modulation), and the relative angle of the probe and pump (θ1), shown in Fig. 5.4 (a).

The general settings were determined by the conditions in [8] and are as follows: an an-

gle of 0.4◦ between the pump and the probe beam, a two-photon detuning of -1 MHz
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FIG. 5.4: (a) is the interaction in the cell with phase matching angles shown and (b) is the
FWM level diagram for generating squeezed light where ∆HF is the hyper-fine splitting.

(EOM modulation 3035 MHz), and a single-photon detuning of ∆ ≈ 800MHz from the

85Rb 5P1/2 resonance. However, the optimization requires simultaneous adjustment of all

parameters and the tuning of a single parameter is not enough.

The effect the multiple parameters in play becomes clear when the beams have a more

complicated mode structure, shown in Fig. 5.5. In this case, we impart optical angular

momentum onto the input probe field and observe that the amplification is spatially de-

pendent on the two-photon detuning. As we tune this, the shape of the probe (left) and

the conjugate (right) beams also change due to the phase matching conditions. Conse-

quentially, the squeezing also becomes worse. However, as will be shown in Ch. 6, we can

adjust the angle of incidence of the probe relative to the pump to supplement the phase

matching conditions to restore the shape and help improve the squeezing. This shows that

the profile of the amplification can give insight to finding a good alignmnet for squeezing.

5.4 Pump Filtering and Intensity Difference Squeez-

ing Detection

While alignment and frequency play an important role in generating squeezed light,

the detection might be even more vital. The first demonstration squeezing, by Slusher
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FIG. 5.5: The probe (left) and conjugate (right) OAM mode structures as a result of FWM
and the effects as the two-photon detuning is changed.

et.al. [82], showed that squeezing was drastically limited by losses. To avoid them, we

minimize the number of optical elements en route to detection. Losses are detrimental

since they remove photons from the probe and conjugate fields at random and introduce

vacuum fluctuations into the two beams, resulting in squeezing reduction. This squeezing

is defined by the beam splitter model [156]

SqVout = 10 · log10[T · 10SqVin/10 + (1− T )] (5.1)

where T is the transmission through the elements.

After interaction in the cell, the pump is filtered using a polarizing beam cube with

an extinction coefficient of ≈ 103. The probe and conjugate fields are then separated using

an edge mirror and then each beam passes through an iris to spatially filter any remaining

pump. This filtering seems like a small step, however it is one of the most crucial to

observe squeezing and the setting of the iris plays a large role in squeezing quality.

At the final stage, small focus lenses are used to focus the beams onto PD’s 3 & 4.

This is done to make sure the entirety of the beam is being detected since any loss would

further limit squeezing. In addition to this, the lenses allow for slight adjustments to
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FIG. 5.6: (a) The detection portion of the schematic. (b) The output from the spectrum
analyzer.

probe and pump alignment while not needing to adjust the alignment into the detection

apparatus. The noise in the differential intensity is monitored by using the AC output

coupling of the differential detector fed to a HP 8596 B spectrum analyzer.

The experiments in Ch. 6 and 7 use settings (a). Settings (b) are used for the exper-

iment in Ch. 8. The readout from the spectrum analyzer is usually aquired for detection

frequencies in the range of 100 kHz to 500 kHz, shown in Fig. 5.6 (b). We measure the

differential noise of the squeezed twin-beams as the detection frequencies are scanned. In

this graph, shot noise is plotted as black and the noise from the squeezed light is plotted in

blue. The shot noise is obtained by using a portion of the pump beam split in two with a

polarizing beam displacer and a half-wave plate, as shown in Fig. 5.7 (a). This sends half

the pump to each port of the balanced detector, from which we can measure the classical

noise for different powers of the pump field. Rather than doing this for every measurement,

we make a calibration of signal to noise, shown in Fig. 5.7 (b). The calibration will change

depending on the spectrum analyzer settings.

In Fig. 5.6 (b), we see that the noise of the squeezed fields is 4 dBs lower than that

of shot noise. This is a factor of 2.5 reduction in the noise power. In the proceeding

experiments, to obtain squeezing values, we measure trace from the SA five consecutive
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FIG. 5.7: (a) The shot noise measurement method for the apparatus. (b) The calibration of
the spectrum analyzer noise.

times and average to obtain our value and take the standard deviation to obtain our

error-bars.
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CHAPTER 6

Optical Angular Momentum

manipulations in a Four Wave

Mixing process

In this chapter, we utilize the FWM process to extend the parameter space of ac-

cessible OAM modes by independently implanting OAM on both the pump and probe

optical fields. We demonstrate that, despite considerable differences in spatial profiles of

the generated probe and Stokes fields, we observed comparable levels of quantum intensity

correlations.

To achieve high four-wave mixing gain and a high level of intensity correlations be-

tween the probe and stokes fields, the two input optical fields must cross inside the Rb cell

at the proper angle. The Stokes field is then generated symmetrically with respect to the

output pump beam, following the phase matching conditions ~kprobe + ~kStokes = 2~kpump. If

either input optical field carries optical angular momentum, the OAM phase-matching con-
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FIG. 6.1: Realization of the four-wave mixing in 85Rb vapor: (a) level diagram and (b) geo-
metrical arrangement. (c) Example of the output probe (left) and generated stokes (right) field
with mutual difference of ∆` = 4.

dition dictates the topological charge of the generated Stokes field, as defined in sec. 2.4.3:

`Stokes = 2`pump − `probe. (6.1)

Thus, it should be possible to produce the Stokes field carrying OAM in a significantly

broader range than if only one of the input beams carried OAM [8]. As an example,

Fig. 6.1(c) shows the Stokes field with `Stokes = −3 that is generated using probe and

pump fields carrying the unit topological charges of the opposite sign ( `probe = +1 and

`pump = −1). This results in the topological charge difference of ∆` = 4 between the

two quantum correlated optical fields. Yet, as we will show in the following sections,

such manipulations of the spatial beam profiles do not cause significant deterioration of

the quantum correlations between the two fields. Moreover, we found that the four-wave

mixing process allows for the usage of an optical field with a composite vortex structure to

increase the total effective topological charge of a beam. Specifically, we used a phase mask,

which added two closely-separated, but clearly distinguishable, unit charge vortices to the

input pump field. By analyzing the generated Stokes field, we unambiguously demonstrate

that its OAM value is consistent with the total OAM carried by the pump field, rather
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than with that of an individual vortices. These observations suggest that FWM can be

used as a mechanism for effectively merging separate topological defects, thus realizing a

new tool for OAM manipulations.

6.1 Experimental arrangements

FIG. 6.2: The optical layout of the experimental setup. A single laser is used to generate all
outputs. The high-power pump (red) is output though a fiber dock system while the lower power
pump output is in free space and later used to generate the probe (blue). The stokes (black)
optical field is generated through FWM in the cell. The set-up has four main sections; probe
prep, OAM prep, interaction, noise detection, and imaging. Abbreviations and explanations
are given in the text.

The schematic of the experimental setup is shown in Fig. 6.2. We follow the same

beam preparation described in Ch. 5. However, we implant spatial modes to our pump

and probe before the FWM interaction in the cell. We use two different methods to

control the topological charges of the two input optical fields. For the probe field, we

used a forked diffraction grating that directed ≈ 50% of the input intensity into the first

diffraction maximum, thus preparing the probe field with the spatial charge of ` = 1. For

the pump field, we used a transparent spiral vortex phase mask to add ` = ±1 OAM

96



charge, depending on the mask orientation without significant optical power losses.

The OAM-carrying pump and probe optical fields were then combined at a proper

phase-matching angle (≈ 0.4◦) using a polarizing beam splitter (PBS). At the location of

the cell, the pump and probe beams had diameters of 250 µm and 300 µm and powers of

410 mW and 60 µW, respectively. After the cell, the pump beam was filtered out using a

second PBS, and the amplified probe and generated Stokes fields were spatially separated

using an edge mirror and sent to the two inputs of a balanced photodetector for differential

intensity measurements.

To analyze the vortex structure of the output beams, we deployed two interference

methods. In the first one, either the probe or Stokes beam was individually passed through

a Mach-Zehnder interferometer with a divergent lens placed in one of its arms, such that

at the output, the original vortex beam overlapped with a constant phase section of the

expanded beam. Their interference pattern produced a traditional forked interferogram.

This method allowed us to easily identify the position(s) and number of vortices in the

original beam by simply counting the number of forked fringes in the resulting interfero-

gram, best seen on the probe beam in Fig. 6.1 (c). For a more accurate analysis of the

OAM beam conposition, we alternatively replaced the lens with a Dove prism in one of

the arms that transposed the beam. The interference of the original and the transposed

optical fields resulted in a petal interferogram, in which the azimuthal phase difference

between the beams in two interferometer arms produced a flower-like structure with the

number of petals equal to the double of the input beam topological charge [177], shown in

Fig. 6.6.
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6.2 Optical angular momentum conversion with sin-

gle vortex beams

In the first series of measurements, we independently prepared both the pump and

probe optical fields in pure LG modes with unit topological charge, as described above.

During all of the measurements, the probe was kept in the same (`probe = +1) LG mode.

However, by flipping the orientation of the phase mask, we set the topological charge of the

pump field to be either `pump = ±1. Two configurations were tested: when the pump and

probe optical fields had the same (`probe = `pump = 1) or opposite (`probe = −`pump = 1)

OAM charges. For each configuration, our goal was to test the OAM phase matching in

Eq. (6.1) by analyzing the intensity and phase profile of all optical fields after the cell.

At the same time, we measured the intensity correlations between the output probe and

stokes fields to confirm that the intensity squeezing is preserved, even if the two fields are

in different transverse modes.

In the first configuration, the identical topological charges in the probe and pump

fields `probe = `pump = 1 resulted in the Stokes beam being generated in the same mode,

`Stokes = 1, in Fig. 6.3(a) (right). The identical unit charge for both amplified probe

and the generated stokes field was confirmed by the interferogram: when interfered with

the plane wave, one clear fork in the interference fringes was observed for both beams.

When the phase mask in the pump field was reversed, the pump beam was implanted

with a negatively charged vortex and the Stokes was generated in the `Stokes = −3 mode,

shown in Fig. 6.3(b)(right). This observation was in excellent agreement with the OAM

phase-matching condition.

To achieve the maximum intensity squeezing, great care had to be taken to adjust the

waists and the convergence of the pump and probe fields to increase their spatial overlap
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FIG. 6.3: Left: Intensity squeezing (left axis) and the FWM amplification for the probe and
Stokes fields (right axis) as functions of the two-photon detuning, measured for (a) `probe = +1,
`pump = +1, and (b) `probe = +1, `pump = −1 configurations. Images on the left show the
flat-front interferograms of the input pump and probe fields at the cell’s position, and on the
right — the interferograms of the output probe and Stokes fields for each configuration.
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inside the Rb cell. The input pump and probe beams are shown on the left of Fig. 6.3(a)

and 6.3(b). In these configurations, we saw substantial FWM gain and were also able to

maintain a large two-mode intensity squeezing (−5.8 ± 0.1 dB) whether the pump and

probe beams carried the same or opposite charge [see Figs. 6.3(a) and 6.3(b)]. This value

was within the standard error of our measurements when comparing to squeezed beams

without OAM.

The dependence of the measured gain and two-mode intensity squeezing, on the two-

photon detuning (between the probe and pump fields), is shown in Figs. 6.3(a) and 6.3(b).

It is similar to the previously reported measurements with conical beams [98]. We defined

gain, for both probe and Stokes fields, as the ratio of the output intensity to the intensity

of the input probe field. One can see that the FWM gain peak is shifted from the exact

hyperfine splitting frequency, due to the power broadening. At the same time, the best

quantum-noise suppression occurs not at the maximum gain frequency, but on its wing

closer to the two-photon resonance.

The two-photon detuning also affects the transverse profile of the output fields, likely

due to the effect of the nonlinear dispersion on the angular phase-matching conditions.

Under the conditions for best squeezing, the intensity profiles of both the Stokes and

probe fields most closely resembles those expected from a pure LG mode. However, closer

to the region of maximum gain, the intensity distributions become uneven: typically, the

portion of the output beam that is closer to the pump beam is more amplified. For the

positive values of the two-photon detuning, the outer parts of the probe and Stokes fields

become more intense.
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6.3 Optical angular momentum conversion for a com-

posite vortex pump field

In the next series of experiments, we inserted a different phase mask, containing two

spiral features separated by 100 µm [178] to produce a pump beam with two spatially

separated vortices of charge ` = 1, as shown in Fig. 6.4(a). To model a composite vortex

structure theoretically, we assumed that the center of a spiral feature was located at (r0, φ0)

with respect to the beam axis. Then we could express the φ coordinate of the phase mask

as φ′ = arctan(y′/x′), where x′ = r cosφ− r0 cosφ0 and y′ = r sinφ− r0 sinφ0. With this

in mind, we modeled the modified pump beam as

upump(r) =
∑

cl,pul,p(r), (6.2)

where

cl,p =

∫
rdrdφ u0,0(r, φ, zmask) eiφ

′
1 eiφ

′
2 , (6.3)

and the φ′i coordinates correspond to the two spiral features. The intensity and phase

distributions are shown in Figs. 6.4(b) and 6.4(c), respectively, and the experimentally

observed pump intensity distribution matched the theoretical one quite accurately.

FIG. 6.4: Composite vortex pump beam: (a) experimentally measured interferogram of the
pump beam at the location of the Rb cell, (b) simulated pump beam transverse intensity
distribution, described by Eq. (6.2), and (c) a phase map of the simulated pump field.
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It has been shown that such composite vortex beams can be decomposed into a su-

perposition of pure LG modes, which allow the generation of high-dimentional entangled

states [179, 180]. Thus, our goal was to study how the composite nature of the pump beam

topological charge and the OAM conservation affect the structure of the generated stokes

field. For example, according to Eq.(6.1), two individual pump vortices with `pump = ±1

should result in the generation of a stokes field with a similar composite vortex structure,

containing two vortices of either ` = 1 or ` = −3, depending on the mask orientation.

Thus, when the total Stokes topological charge is measured, we would expect it to be

either 2 or −6. However, this is not what we observed experimentally. For one orienta-

tion of the phase mask, the Stokes optical field was produced in the ` = 3 mode, seen in

Fig. 6.5(a1). In the second configuration, we observed the Stokes field generated in the

` = −5 mode, seen in Fig. 6.5(a3). Such behavior is consistent with the pump field con-

tributing its total topological charge into the four-wave mixing phase matching conditions,

thus behaving as a simple beam carrying `pump = ±2 OAM. The corresponding theoretical

simulations, shown in Figs. 6.5(b2) and 6.5(b4) confirm this observation.

The modal analysis seen in Ref. [177] allowed us to more precisely quantify the dis-

tribution of ` values in the generated Stokes fields. Using the spectral interferograms

produced in the interferometer with the inserted Dove prism [see Figs. 6.5(b1)–6.5(b4)],

we carried out the Fourier analysis of the azimuthal intensity distribution and confirmed

that the observed petal structure consist of mainly either ` = 3 or ` = −5 LG mode with

over a 90% confidence, both experimentally and numerically [Figs. 6.5(c1)–6.5(c4)]. Small

contamination of correspondingly ` = 1 and ` = 3, especially noticeable in the theoretical

simulations, can be explained by the asymmetry of the Stokes beam caused by the spatial

separation of the multiple vortices.

As in the case of simple vortex beams, we saw that the intensity squeezing between

the probe and stokes was maintained in these cases as well, and followed the same general
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FIG. 6.5: Top row: (a1, a3) experimentally measured and (a2, a4) numerically simulated
intensity profiles of the generated Stokes field for the composite pump field, containing two
` = ±1 spatially-separated optical vortices, correspondingly. Middle row: spiral interferograms
of each beam. Bottom row: Fourier mode decomposition of the radial intensity ditributions of
the spectral interferograms for different LG mode indices `.

FIG. 6.6: Measured intensity squeezing (left axis) and the FWM amplification for the probe and
stokes fields (right axis) as functions of the two-photon detuning, measured for (a) `probe = +1,
composite pump `pump = 2× 1, and (b) `probe = +1, `pump = 2× (−1) configurations.
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trend. However, due to larger sizes of both Stokes and pump beam, the spatial filtering

of the pump field was less efficient, resulting in small leakage of the pump signal into

the detection scheme, thus reducing the detected squeezing. Nevertheless, in the case

of Stokes generated in ` = 3, we measured up to nearly −5 dB of intensity difference

squeezing [Fig. 6.6(a)]. For the other mask orientation, in which the Stokes field was

generated with the total topological charge of `stokes = −5, the measured squeezing level

was worse, roughly −4.3 dB, mostly due to even larger Stokes beam size [see Fig. 6.6(b)].

However, we believe that with the optimized detection geometry we should be able to

regain the same amount of squeezing even for the beams with large topological charge

difference, as in this case.

6.4 Conclusion

In this chapter we have demonstrated control of the Stokes-field spatial-mode structure

by means of shaping the input pump and probe fields using independent phase elements.

We found that the Stokes-field OAM can be controlled in a much wider range without

degrading the two-mode intensity squeezing between the amplified probe and generated

Stokes field, regardless of their spatial mode mismatch. We also found that closely po-

sitioned phase singularities in the pump field can be effectively added in the four-wave

mixing process, resulting in topological charge of the Stokes field being dependent on the

total OAM of the pump, not the sum of two independent vortices. This opens an in-

teresting avenue for the manipulation of the complex spatially separated LG modes, and

generation of OAM-enabled hyperentanglement.
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CHAPTER 7

Implementation of

Polarization-Based Truncated SU

(1,1) Interferometer in Hot Rb Vapor

7.1 Introduction

In this chapter, we analyze the performance of a recently proposed modification [16]

of a so-called truncated SU(1,1) interferometer [5, 119, 122, 123], that takes advantage of

polarization manipulations of the involved optical fields. As a reminder, the conventional

SU(1,1) interferometer is akin to the Mach-Zhender interferometer which uses two nonlin-

ear beam splitters rather than linear ones, resulting in the noiseless amplification of the

fields and interference after phase accumulation for enhanced phase sensing [26, 181–183],

shown in Fig. 7.1 (a). Four-wave mixing in a Rb vapor cell can serve as the nonlinear beam

splitter to produce noiseless amplification and then interfere the amplified probe and newly

generated conjugate field in a second cell by tuning of the phase matching conditions. How-
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ever, the practical difficulties of experimental realization of two identical nonlinear beam

splitters greatly reduces the practicality of traditional SU(1,1) interferometers [119].

FIG. 7.1: (a) Traditional SU(1,1) interferometer: the first cell acts as a noiseless amplifier
(shown in blue) while the second cell and the balanced photodiodes serve as a detector (shown
in pink).(b) A truncated SU(1,1) interferometer, in which the second cell is replaced with
balanced homodyne detectors with external local oscillators (LOs) (shown in pink). (c) A
polarization-based truncated SU(1,1) interferometer. Here the amplifier cell is also used to
generate local oscillators and combined with the quantum fields using polarization optics, and
then final detection is carried out by a singe balanced photodiode.

Fortunately, similar enhancement in sensitivity can be achieved without the use of

the second vapor cell, but rather by performing a proper joint quadrature measurements

to both output twin beams [119]. In such so-called truncated SU(1,1) interferometer the

second beam-splitter is replaced by a pair of homodyne detectors that use a pair of reference

fields to act as local oscillators (LO) for the squeezed twin beams [5, 119, 122, 123], shown in

Fig. 7.1 (b). In this case the phase stability between all four optical fields becomes critical;

if separate lasers are used as LOs, they must be phase-locked to the generated quantum

fields. Alternatively, a dual-rail construction can be used to generate both the squeezed

twin beams and the LOs simultaneously, using the same laser. The polarization-based

truncated SU(1,1) interferometer, discussed here, goes a step further, as we demonstrate

that it is possible to retrieve the information in the phase and amplitude joint quadratures
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with a single balance homodyne detector, shown in Fig. 7.1 (c). Moreover, by manipulating

relative phases between the two quantum beams and their respective LOs, we realize all-

optical tuning to any desired joint quadrature. We can also use our results to confirm the

quantum inseparability of the two squeezed beams. Furthermore, we should be able in

principle to adjust our device so that it will generate two pairs of entangled beams rather

than the entangled beams with their LOs [13, 14].

These modifications to the truncated SU(1,1) interferometer enable some very benefi-

cial properties for practical applications in quantum communications and quantum metrol-

ogy by increasing the stability and reducing the technical complexity. For example, since

only a single balanced photodiode is required, the problem of detectors disbalance is au-

tomatically eliminated. The intrinsic symmetry of the system results in a better stability

and balancing of powers in the two ports of the detector. This enhanced stability and

balance allows for sub-shot noise detection at frequencies ranging from a few MHz to as

low as 200 Hz. Lastly, this same setup can be used for the generation of polarization

entangled beams [13, 14].

This chapter is structured as follows. In section 2, we discuss the experimental ar-

rangement for the proposed interferometer and its key features and technical challenges.

In section 3, we provide the analytic description of the system, derive expressions for the

expected noise measurements and discuss the cases of importance. In section 4, we present

experimental data showing squeezing of joint quadratures in wide range of detection fre-

quencies, as well as, confirming that the system indeed produces entangled beams. Finally,

we conclude with section 5.
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FIG. 7.2: (a) The level diagram of 85Rb and the corresponding FWM process where the probe
(blue), pump (red), and conjugate (black) form a four-photon resonance and couple the two
hyperfine ground states through a virtual level detuned ≈ +1 GHz from the 5P1/2 excited state.
The pump frequency was fixed at 794.9727 nm. (b) The schematics of the experimental appa-
ratus for the polarization based truncated SU(1,1) interferometer (see text for abbreviations).
Images are taken from Ref.16.

7.2 Experimental Arrangements

The experimental apparatus for the polarization based truncated SU(1,1) interferom-

eter is shown in Fig. 7.2 (b). The beam preparation for the probe and pump optical fields

follows same as seen in Ch. 5. However, rather than simple interaction in the cell of the

two beams, we generate a dual rail system. This is done to LOs and squeezed fields in

identical spatial and spectral modes, both input probe and pump beams are split using

a polarizing beam displacer (PBD1) which vertically displaces the horizontally-polarized

components by 4 mm(in the vertical direction) with respect to the vertically-polarized

ones. The polarization of the pump beam is rotated by 45o before the PBD so that it

is split evenly between the lower (dashed) and upper (solid) rail, approximately 160 mW

each. This is necessary so that the nonlinearity is the same for the two rails for better

mode structure matching [184]. The probe is split unevenly where the lower, squeezed rail

can either be completely unseeded (i.e., the input probe is in a coherent vacuum state), or

is seeded by a very weak (< 1 µW) probe beam. In either case, the upper LO rail has a
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majority of the power (≤ 30 µW). In Sec. 7.4, we will demonstrate that the quantum noise

reduction is similar for when the lower squeezed rail is seeded or not, but the presence of

the seeded fields allows observation of intensity interference that we can use for sub-shot

noise phase measurement [122].

Thus, before the Rb cell, we created four optical beams arranged in a roughly box

configuration. The probe and pump channels, shifted down by the PBD1 (the lower rail)

are designated for the quantum signals, and the unshifted beams (upper rail) are used

to generate strong local oscillators. In each rail the probe and pump fields are mutually

orthogonally polarized. The pump field in the lower/upper rail has vertical/horizontal po-

larization while the probe field in the lower/upper rail has horizontal/vertical polarization,

correspondingly. Then, all four beams are directed into a 22-mm long Pirex 85Rb vapor

cell, mounted inside a three layer magnetic shield, such that each pair of pump and probe

beams crosses inside the cell. The temperature of the cell is stabilized at 106oC.

After the interaction with Rb atoms as shown in Fig. 7.2(a), the output consists of

three beams – an amplified probe, pump, and generated conjugate beams – for each rail

(total of six). The pumps beams in both rails are removed by using an opaque mask.

Then the probe and conjugate quantum signals (lower rail) are recombined with their

corresponding local oscillators (LOs) from the top rail using a second polarizing beam dis-

placer (PBD2). This is possible since both probe and conjugate beams of the LO rail have

orthogonal polarizations with respect to the probe and conjugate beams in the squeezed

rail. To make both probe and conjugate beams parallel and to enable the independent

control of the relative phase between the probe LO relative and the conjugate LO ∆φ, the

conjugate beams are reflected off an additional mirror (M1). The phase of the two LOs

relative to the two squeezed fields is controlled synchronously by small tilt of the PBD

using a piezo-electric transducer (PZT). After the LOs are combined with their respective

squeezed fields, the resulting probe and conjugate beams are mixed by using a half wave
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plate set to 45o and a polarizing beam cube, evenly splitting each beam between the two

ports of the balanced photodetector (BPhD) for homodyne detection. The differential

photocurrent is then analyzed using a spectrum analyzer (SA) across a range of detection

frequencies from a few kHz to a few MHz. In majority of the experiment the SA resolu-

tion bandwidth was 3 kHz and the video bandwidth was 100 Hz. This detection method

allows for measurement of the four joint quadratures of noise, as will be further discussed

in Sec. 7.3.

FIG. 7.3: Individual photo-currents of each port of the balanced photodetector as the local
oscillator phases are scanned with respect to their squeezed fields to demonstrate the high
interference visibility. Flat regions correspond to pump leakage measurements (see text for
details).

In order to reliably measure the squeezing between the probe and conjugate fields,

there are some technical factors to consider. The sufficient filtering of the two strong

pump fields was crucial. Since the two-rail configuration required the two pumps to be

orthogonally polarized, the traditional polarization filtering using a single polarizer was

not possible. Instead, we used a series of opaque masks and irises to spatially remove

as much of pump fields as possible. In order to efficiently use the irises to remove any

remnant pump leakage and improve signal stability, we overlapped the four fields going to
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the ports of the detectors, shown by overlapped dashed and solid (blue and balck) lines

in Fig. 7.2(b), after the PBS for the balanced detection. In addition to pump filtering, it

was also very important to have proper mode matching between the LOs and the squeezed

beams [184]. As a gauge for mode matching and mixing of the fields, the visibility was

used as a reference. In order to observe the visibility, the input probe seeds for both rails

were balanced at 15 µW . Then, we were able to measure a visibility in the interference

fringes of over 98%, shown in Fig. 7.3. The interference region of the figure shows the

signals in each photodetector channel when the phase of the two fields in the upper rail

is dithered with respect to the two fields in the lower rail over a range of ≈ 2π. Due to

the offset of the phase, we see turning points in the sweep near half-max for both sweeps.

The flat region shows the case where both input probe seeds are blocked. In this case, we

see an offset in both traces. This offset is due to the pump leakage into the two detector

ports, and is also the lower bound on the interference fringes. It can be seen that the

pump leakage is small compared to the signal and is the same for both ports, seen by the

flat parts of the blue and red traces in Fig. 7.3. Thus, we expect that the excess noise due

to the pump field on the spectrum analyzer will also be small.

7.3 Analytic Description of the Optical Joint Quadra-

ture Control and Detection

In our calculation, we follow the formalism in Ref.23. There, it is shown that an

optical field can be expressed in the semi-classical sense as a mean field amplitude and a

respective noise quadratures with an overall phase. In the calculations, we use the following

notation: the labels α and β refer to the parameters of the local oscillators at the probe

and conjugate frequencies, correspondingly; similarly, we use α0 and β0 to describe the
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squeezed optical fields.

α̂ = (|α|′ + δX̂α + iδŶα)eiφα (7.1)

β̂ = (|β|′ + δX̂β + iδŶβ)eiφβ (7.2)

α̂0 = (|α0|′ + δX̂α0 + iδŶα0)e
iφα0 (7.3)

β̂0 = (|β0|′ + δX̂β0 + iδŶβ0)e
iφβ0 (7.4)

FWM theory predicts that individual phase and amplitude quadratures for each field

are above the shot noise [185]. However, if their joint quadratures are measured, squeezing

or anti-squeezing can be observed:

〈(∆X̂−)2〉 = 〈δ2(δX̂α0 − δX̂β0)〉 =
1

4
e−2r; (7.5)

〈(∆X̂+)2〉 = 〈δ2(δX̂α0 + δX̂β0)〉 =
1

4
e2r; (7.6)

〈(∆Ŷ−)2〉 = 〈δ2(δŶα0 − δŶβ0)〉 =
1

4
e2r; (7.7)

〈(∆Ŷ+)2〉 = 〈δ2(δŶα0 + δŶβ0)〉 =
1

4
e−2r; (7.8)

where r is the squeezing parameter, determined by the FWM gain [23, 185].

To relate the proposed optical method of detection to the joint quadrature measure-

ments, we carry out the matrix operations for the beam splitters while tracking the relevant

phases of the two pairs of beams. Immediately after the cell, we begin by combing the

probe and conjugate beams with their respective LOs using a polarizing beam displacer

PBD2. This element is one of the key elements to control the phase. Since the upper rail

(LOs) and the lower rail (squeezed fields) have orthogonal polarizations, the LOs acquire a
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different phase shift compared to the squeezed fields. Additionally, this phase for the LOs

is more sensitive to the alignment of the beam displacer than that of the squeezed beams

since it is aligned to the fast axis. This allows us to set the phases of the squeezed beams

constant or even zero (φα0 = φβ0 = 0). Then we only need to track the phases of the LOs

which vary relative to their respective squeezed field and relative to each other. The phase

of the LOs with respect to each other are adjust via a mirror (M1), changing the angle of

one of the squeezed beams and their LOs, while the phases of the LOs with respect to the

squeezed fields are adjusted by adjusting the vertical angle of the PBD which is connected

to a piezo-electric modulator, making the phase of the LOs with respect to the squeezed

fields a time dependent sweep. With this information, we rewrite Eqs. (7.1-7.4) for the

beams as follows:

α̂ = (|α|′ + δX̂α + iδŶα)eiφ(t), (7.9)

β̂ = (|β|′ + δX̂β + iδŶβ)ei(φ(t)−∆φ), (7.10)

α̂0 = (|α0|′ + δX̂α0 + iδŶα0), (7.11)

β̂0 = (|β0|′ + δX̂β0 + iδŶβ0), (7.12)

where φ(t) is the phase of the LOs with respect to the squeezed fields and ∆φ is the phase

of the the LOs with respect to each other. φ(t) is controlled by the angle of the PBD

(mounted on a PZT) used to overlap the LOs with their respective squeezed fields, while

∆φ is tuned by using M1, shown in Fig. 7.2 (b), which controls the phase of the LOs with

respect to each other.

To this point, the fields have not interfered since the two rails have orthogonal po-

larizations from when they were combined. The key operation is the final mixing of the
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fields after the last beam splitter. Here, it is important that each LO and squeezed field

are split evenly into the two balanced ports of the balanced photodetector. So, the LOs

are combined with their respective squeezed fields, the polarizations of the beams are ro-

tated by 45 degrees in order to evenly mix the beams of orthogonal polarizations on the

polarizing beam splitter (PBS) which then interfere and are detected by the two ports of

the balanced detector. The current generated at each photodetector port is given by:

î1 ∝ |α̂ + α̂0 + β̂ − β̂0|2 (7.13)

î2 ∝ |α̂0 − α̂ + β̂ + β̂0|2 (7.14)

Here, we ignore the terms containing the product of α and β since they will oscillate at

a frequency of doubled hyperfine splitting, that is not picked up by our photodetector (with

a few MHz detection bandwidth). Since we use a balanced homodyne detector, we take

the difference of the two currents and then analyze the noise of the signal in the Fourier

domain, for which the noise signature is flat across all detection frequencies, under ideal

conditions. By inserting Eqs. (7.9-7.12) into Eqs. 7.13 & 7.14 and taking the differential

current (i− = i1 − i2), we arrive at:

î− = αα0 cos(φ(t))− ββ0 cos(φ(t)−∆φ)

+ α[δX̂α0 cos(φ(t))− δŶα0 sin(φ(t))]

− β[δX̂β0 cos(φ(t)−∆φ)− δŶβ0 sin(φ(t)−∆φ)]

(7.15)

Here we made the assumption that the mean amplitudes of the squeezed fields are

much smaller than those of the LOs. We also assumed the balanced FWM gain for the

probe and conjugate channels, so that the intensity of the two local oscillators are the
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same, and the intensities of the two squeezed fields are the same: α = β >> α0 = β0.

Below, we simplify the expressions for the two cases in which we expect to observe joint

quadrature squeezing, according to Eqs.(7.5-7.8) by looking at the specific values of the

relative phases of the two LOs.

In case 1, we consider φα = φβ = φ(t) (∆φ = 0). This represents the LOs changing

in-phase simultaneously relative to the squeezed fields. In this case, Eq. 7.15, for the

current reduces to:

î− = α[(δX̂−) cos(φ(t))− (δŶ−) sin(φ(t))], (7.16)

where

X± = X̂α0 ± X̂β0 (7.17)

Y± = Ŷα0 ± Ŷβ0 . (7.18)

This shows that no matter how we tune the phase of the LOs, we will not see any

fluctuations in the mean intensities. In this case, the intensities of the beams always

interfere and change at a rate where both detectors always see the same total intensity

of light. We can then find the variance of this differential current in Eq. 7.16, 〈∆î−〉 =

〈(̂i−)2〉 − 〈(̂i−)〉2:

〈(∆î−)2〉 = |α|2[〈∆(X̂−)2〉 cos2(φ(t)) + 〈∆(Ŷ−)2〉 sin2(φ(t))] (7.19)

Here, we can see that the first term is the variance of the amplitude difference joint

quadrature and the second term is the variance of the phase difference joint quadrature.

115



The prior is squeezed and the latter is anti-squeezed. So as the phase of the LOs φ(t))

changes, we move between the two joint-quadratures. This is shown in Fig. 7.4(a). The

dashed curve represents the differential intensity, that remains constant around 0, mea-

sured by the balanced photodetector while the solid curve is the noise power of the differen-

tial current measured by the spectrum analyzer, as expected from the analytic calculations.

The sweep is done over 2π rads to cover the full range of the sweep.

FIG. 7.4: (a) The differential current (red, dashed) and noise power (red, solid) as a function of
the phase φ(t) swept from 0 to 2π for the case φα = φβ (∆φ = 0). (b) The differential current
(blue, dashed) and noise power (blue, solid) as a function of the phase φ(t) swept from 0 to 2π
for the case φα = φβ (∆φ = π).

In case 2, we set the two LOs to be π out of phase with each other φα = φβ + π =

φ(t) (∆φ = π), even though they are changing in phase simultaneously relative to their

corresponding squeezed fields. In this case, Eq. 7.15 reduces to:

î− = 2αα0 cos(φ(t)) + α[(δX̂+) cos(φ(t))− (δŶ+) sin(φ(t))] (7.20)

Contrary to case 1, here we see that the terms for the fluctuations in the intensity

survive. This likens back to the typical workings of an interferometer. In this case, both

beams are interfering in a way that results in the total intensity in the system fluctuating
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from one port of the balanced detector to the other. This interferometric operation is

also fitting for this case, since it results in the measurement of the squeeze joint-phase

quadrature. This will be seen by taking the variance of the differential current in Eq 7.20.

〈(∆î−)2〉 = |α|2[〈∆(X̂+)2〉 cos2(φ(t)) + 〈∆(Ŷ+)2〉 sin2(φ(t))] (7.21)

Here, we are now measuring the joint quadratures for the amplitude (first term) and

phase sum (second term). For FWM, the amplitude sum is anti-squeezed while the phase

sum is squeezed. So as the phase of the LOs relative to the squeezed fields is changed, we

sweep through the different joint noise quadratures. A specific point of interest here is the

point of maximum squeezing. Unlike case 1, where the intensity was constant regardless

of phase, in case 2 it is changing. Here, it happens that the phase (φ(t)) corresponding to

maximum squeezing, also corresponds to the point of greatest interferometric sensitivity.

The point where the intensity is changing the fastest with the phase. There is an added

appeal to this method since there is reduced noise measurement at the point of greatest

sensitivity. This is shown in Fig. 7.4 (b) by the blue curves. The dashed curve represents

the differential current (i−) while the solid line represents the noise power of the differential

current as a function of the phase over a range of 2π radians. It can be seen that the point

of lowest noise power coincides with the point of maximum interferometric sensitivity,

shown by vertical dashed line labeled by 〈∆Ŷ 2
+〉.
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7.4 Measurement of Squeezed Joint Quadratures and

Entanglement

In the previous section, we introduced the form our noise and intensity signals would

take as we moved from one joint quadrature to another. However, the accurate detection of

squeezing using such large sweep is nearly impossible when using a reasonable combination

of low video bandwidth and not too low sweep time, since there would be smoothing of

the signal at the sharp feature where squeezing is present. In order to accurately measure

this, we substantially reduced the range of the sweep from 2π to π/4 around the minima

of the joint quadrature noises. Under these conditions, we are able to more accurately

determine the squeezing values.

FIG. 7.5: (a) Measured joint quadrature noise power for the cases 1 (∆φ = 0) and the case 2
(blue,∆φ = π) as the phase φ(t) of the LOs is swept with respect to the squeezed fields, for the
case of seeded squeezed field. Solid green line shows the minimum detected quadrature noise,
≈ −2dB below the shot noise (dashed green line). (b) Analogous measurements performed with
the vacuum-seeded input field, showing the joined quadrature noise power as a function of the
phase φ(t).

Similar to the solid traces in Figs. 7.4 (a) and (b), Fig. 7.5 (a) shows the noise power

as the phase between the LOs and the squeezed fields are swept. Color codes to the

previous section, red corresponds to case 1 (φα = φβ,∆φ = 0) and blue corresponds to
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case 2 (φα = φβ + π = φ(t), ∆φ = π), shown in Sec.7.3. The blue curve shows the

phase sweep of the LOs relative to the squeezed fields near the squeezed phase sum joint

quadrature (〈∆Ŷ 2
+)〉), represented by case 1 (LOs in phase), while the red curve shows

the sweep near the squeezed amplitude difference joint quadrature, represented by case 2

(LOs π out of phase). In these two sweeps, we see that the noise power drops below the

shot noise level expected of the joint measurements of two uncorrelated laser beams, as

shown in Fig. 7.5(a) by dashed line. The level of squeezing for each joint quadrature was

roughly -2 dB. The solid green line shows the interferometer, case 2 (LOs out of phase by

π), locked to the point of optimal phase sensitivity and lowest noise.

So far, we have demonstrated operation where a seed field is present for the squeezed

rail. We can also show that similar noise reduction is seen with the removal of this seed

field (i.e., “seeding” the both probe and conjugate inputs of the first nonlinear beam-

splitter with coherent vacuum). This arrangement results in the generation of squeezed

vacuum twin beams in the lower rail, which are truly entangled beams since there is

no coherent seed to add uncorrelated photons. In this configuration, the resulting noise

spectrum as a function of phase (of LOs with respect to the two-mode squeezed vacuum

φ(t)) would look the same as what is seen in the Eqs. 7.19 & 7.21, as witnessed in the

experimental data shown in Fig. 7.5(b). Here, we see that the squeezing is at the same

level independent of the seed input probe field present or not for the squeezed rail. While

the noise would look the same, we would loose our operation as an interferometer, now the

term for the interference of the squeezed beams and the LOs would vanish. This would

result in the intensity profile remaining flat with the phase for both case 1 and case 2.

However, we could remove the seed probe for the LOs and the squeezed beams and this

would result in the output of the two ports of the beam splitter containing polarization-

entangled twin beams. Unfortunately, we did not have the technical means to verify this

capability experimentally.
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In the implementation of this device, we have shown its function as an interferome-

ter and shown that we can measure squeezing and anti-squeezing for the corresponding

joint quadratures in Eqs. (7.5-7.8). By using these joint-noise measurements, we can now

characterize the degree of entanglement between the two beams. Since the noise measure-

ments are those of shared fluctuations in phase and intensity of the squeezed beams, the

measurement of the variance can be related to the correlations and, correspondingly, the

inseparability [7, 186]:

I = 〈∆X̂2
−〉+ 〈∆Ŷ 2

+〉 ≤ 2 (7.22)

If we show that I < 2, we can say we have entangled beams [7, 186]. The measured

squeezing values for the two joint quadratures 〈∆X̂2
−〉 = 〈∆Ŷ 2

+〉 = 0.66 ± 0.03 yield the

inseparability value of I = 1.32±0.04. This shows that our beams are corelated beyond the

classical limit and can be said to be entangled. There is also a more rigorous way to quantify

entanglement; it is given by the Einstein-Poldolski-Rosen (EPR) criteria, requiring that

4〈∆X̂2
−〉〈∆Ŷ 2

+〉 ≤ 1 for entangled optical fields. The minimum value for this parameter

that we were able to achieve was 1.75, failing to confirm the EPR entanglement. However,

we believe that our experiment was capable of achieving higher levels of squeezing, since

the relatively low value of squeezing in the interferometer (-2 dB) was due to the optical

losses at the uncoated surfaces of PBD, imperfect mixing, and phase alignment due to

mechanical instabilities. In the case of a single channel, not susceptible to these issues, we

were able to measure -4.5 dBs of squeezing, shown in Fig. 7.6 (a). If we were able to carry

this level of squeezing through the interferometer, the entanglement parameter would have

been well below 1, and we would satisfy the EPR criteria as well.

In addition to possibly being a source of polarization entangled beams, the polar-

ization based truncated SU(1,1) interferometer is also useful for enhancing the squeezing
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FIG. 7.6: (a) The noise spectrum for intensity squeezing (blue) obtained within a single rail as
a function of the detection frequency. Green line represent the shot noise level. (b) Analogous
measurements for the noise spectrum of the dual rail interferometer output. The inset zooms
on the lower detection frequencies, and was measured using a different spectrum analyzer with
less low frequency noise.

detection bandwidth, shown in Fig.7.6 (b). The upper limit, from electronic limitations, is

at detection frequencies of a few MHz while on the lower limit, we were able to squeezing

at detection frequencies as low as 200 Hz. The operation in this detection regime would

be ideal for quantum imaging. Ref. 187 demonstrated the possibility of observation of

the spatial correlations between two-mode squeezed bright beams. In this, it required the

use of various manipulation on the part of the camera and exposure times, pushing what

current camera technologies can handle even with the use of electronic shutters. However,

low frequency squeezing allows the use of longer exposure times and more time between

frames making quantum imaging electronically easier.

7.5 Conclusion

In this chaper, we have demonstrated feasibility and operation of the polarization

based truncated SU(1,1) interferometer. What distinguishes our design from the previous

work is its all optical control and tunability, and the simplicity of hardware adjustement
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for desired noise regime. For example, with simple phase adjustment it can be tuned to

either operate as an interferometer with enhanced sensitivity or as a sensitive differential

absorption detector with reduced noise. With this prototype, we were able to achieve

nearly −2 dB of noise reduction in both squeezing joint quadratures (limited mainly by

uncotrolled phase drift and pump field leakage). Such level of squeezing is sufficient for

resulting optical beams to be considered entangled by satisfying the quantum inseparability

condition. The level of squeezing can further be improved by using better optics and

closed conditions to avoid phase instabilities, likely resulting in even higher entanglement

level. The interferometer also had an intrinsic symmetry for detection which allowed for

squeezing measurements at detection frequencies from a few MHz to as low as 200 Hz, a

trait which has potential applications in quantum imaging and quantum metrology. It also

has the added benefit of being a source for polarization entangled Bell states by replacing

the probe seeds in both rails with coherent vacuum [13, 14].
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CHAPTER 8

Enhancement of Raman Two-Photon

Spectroscopy using Squeezed Light

8.1 Introduction

In this chapter, we discuss the spectral limitations of squeezed light and how they can

be overcome. As was discussed in Sec. 2.4, squeezed light can offer a means of noise re-

duction through more sublte and power efficient means. The ability to make spectroscopic

measurements with the aide of squeezed light allows for interesting applications like trace

gas detection, bio-sensing, and molecular characterization [120, 126, 128, 129]. However,

the frequency of squeezed light is tied to atomic transitions and can only be generated

in a narrow range. This limit removes an important extension of using squeezed light for

spectral enhancements.

Here, we present a proof of principle concept to couple squeezed light, generated near

atomic resonances, to a largely tunable Raman pump laser in a two-photon resonance to

enhance the spectral range of application of the FWM process. This has a two fold benefit,
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we overcome the spectral limitations of squeezed light generated by FWM and reduce the

noise floor for this class of spectroscopic measurements. In this method, the source of

squeezed light is not limited to FWM.

This concept can be used to probe both highly excited states [188] or low energy

vibrational modes [189]. In a ladder configuration (Fig. 8.1 (b)), one of the correlated

twin-beams (probe-blue) is coupled in a two-photon resonance with the Raman pump

(green) to a highly excited state. This can be used to investigate the energy structure of

an excited state. It may be possible to use this method for sensing applications in Rydberg

atoms [11, 12] or multi-photon spectroscopy tools. In the Λ configuration (Fig. 8.1 (c)), the

two-photon resonance occurs when the energy difference between the probe and Raman

pump beam matches energy differences for low energy states. Such a configuration would

be useful for studies of vibrational modes of molecules or crystals [135].

FIG. 8.1: (a) shows the level diagram of the 85Rb D1 line and the corresponding FWM process
where the probe (blue), conjugate (black), and pump (red) optical fields are shown. ∆ (1GHz) is
the two-photon detuning of the probe and pump and ∆HF (3036 MHz) is the hyper-fine splitting
of the 5S1/2 ground state. (b) shows one of the ladder level configurations of this method to
probe highely excited states using the Raman pump beam (green). (c) shows the lambda
configuration of this method which can be used to probe low energy states and vibrational
states of molecules and crystals.

The general limitations for such quantum enhancement arise from the available tuning

range of the Raman pump laser. In our case, the Ti:sapph laser is tunable from 700 nm to

800 nm. When coupled in a ladder configuration, this limits the probing of highly excited

124



states to energies above the ground level corresponding to 3.3 eV-4.1 eV light. While in the

Λ configuration, we can potentially probe low energy absorption anywhere from 5.2 µm

(0.24 eV) to the far IR, and even microwave (10−3 m). The range is shown by shaded

regions in Fig. 8.2 for the two configurations. However, by using Raman pump lasers with

different ranges, it would be possible to reach other regions and probe an even broader

spectrum with squeezed light for different applications.

FIG. 8.2: Shaded region shows the possible range of energies probable by the two-photon
absorption of the probe field, limited by the range of our Ti:Sapph laser.

Here, we present a proof-of-principle demonstration of this concept by taking mea-

surements of the hyper-fine structure of 87Rb. We coupling the probe optical field to the

Raman pump in a two-photon resonance with the 5D3/2 state, as shown in Fig. 8.3 (b).

In Ch. 3, we utilized the Raman two-photon process to absorb unwanted probe and conju-

gate photons generated by resonant and off-resonant FWM in Rb vapor. We were able to

achieve absorption of the conjugate optical field by coupling it to a Raman pump optical

field in a two-photon resonance with the 5S1/2 → 5D3/2 transition. Even though the 5D

state is not perceivable to 795 nm light, we were able to probe its level structure. However,

the previous study did not utilize squeezed light and had a different directive. Here, we

investigate this two-photon transition with the use of squeezed light generated in hot 87Rb

vapor.
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8.2 Raman Resonance Response of 5D3/2 State

FIG. 8.3: (a) shows the experimental schematic of the experiment, see text for details. (b)
shows the two-photon transition (5S1/2, F = 2 → 5D3/2) of the probe field coupled to the
Raman pump field. (c) shows the noise signal produced from absorbing the probe field as the
detuning of the Raman pump (∆Ramana) is swept by 200 MHz. The hyper-fine splitting of the
5D3/2 state are labeled accordingly.

The schematic of the setup is shown in Fig. 8.3 (a). Experimental conditions for the

squeezed twin-beam generation are the same as those seen in Ch. 5. After generating the

correlated twin-beams in the first cell (labeled FWM cell) of 85Rb atoms, the correlated

twin beams are then focused at the center of the second cell of 87Rb atoms (labeled Raman

absorption cell) using a 200 mm lens. The two cells are housed in separate, but identical

shields where we fix the temperature of the FWM cell and vary the temperature for the

Raman absorption cell for measurements. The second cell, containing 87Rb, is used as the

sample where we probe the 5D3/2 excited state using the Raman two-photon absorption

of the Raman pump and probe beams, level diagram shown in Fig. 8.3 (b). The Raman

pump beam (762.1068 nm) is generated by a Ti:sapphire laser and input into the system

via fiber optics and counter-propagating with respect to the probe and combined at a

shallow angle over the probe beam using PBS2 to avoid reflections into the detectors. The

conjugate field propagates through the cell with no absorption. After the probe absorption

in the Raman absorption cell, the twin-beams are detected on balanced detectors and the
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AC portion of the signal is picked up by a spectrum analyzer (SA).

FIG. 8.4: (a) and (c) show the differential intensity of the photodetectors as the pump frequency
is tuned through the two-photon resonance with the 5D state for pump powers of 10 mW and
1 mW, respectively. (b) and (d) show the differential noise of the photodetectors picked up by
the spectrum analyzer as the pump frequency is tuned through the two-photon resonance with
the 5D state for pump powers of 10 mW and 1 mW, respectively. The SA sweep time here is 8
seconds, the resolution bandwidth is 10kHz and the video bandwidth is 10 Hz

Data is taken by sweeping the Raman pump frequency by 200 MHz across the 5D3/2

state. The hyperfine splitting between the 5D3/2, F” = 1, and F” = 3 states is 72

MHz [144]. Each data set maps the resonance structure of the two-photon transition.

The sweep in Figs. 8.4 (a) and (c) shows the differential intensity of the probe and con-

jugate beams as the Raman pump frequency is scanned across the 5D3/2 state. Similarly,

Fig. 8.4 (b) and (d shows the noise power of the differential intensity as the frequency of

the Raman pump (∆Raman) is scanned across the 5D3/2 state. For 10 mW of Raman pump

power, we see 1% absorption, where the hyperfine structure of the 5D3/2 state is clearly

visible in both the intensity trace (Figs. 8.4 (a)) and the noise trace from the SA (Figs. 8.4

(b)). However, as we decrease the power to 1 mW, the signal vanishes below the noise for
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the intensity sweep (Figs. 8.4 (c)), but not the noise sweep (Figs. 8.4 (d)). In the noise

traces, the black line is the classical shot noise limit and we see that we can detect the

responses as weak as 5 dB below this limit.

Furthermore, past studies have shown that uneven clipping or absorption of the probe

and conjugate beams can lead to large increases in the noise [156]. Particularly in this

case, the absorption observed in Fig. 8.4 (a) is roughly 1% of the overall signal and the

absorption is nearly overshadowed by the noise. However, due to the noise correlations

in the twin-beams, this unbalanced loss produces a response in the noise on the order of

10 dBs, shown in Fig. 8.4 (b). This enhanced noise sensitivity is further demonstrated by

Figs. 8.4 (c) & (d) for the oscilloscope and SA traces respectively. Here the Raman pump

power has been decreased to 1 mW and we see no response from the differential intensity

signal. However, we are still able to make out the resonances in the noise in Fig. 8.4 (d).

Here, we are able to use these noise measurements as a signal to map out the structure of

the resonance. We take successive measurements of this trace for decreasing powers and

plot them in a 3-d mesh, shown by Fig. 8.5 (a)-(e) for different temperatures. From here

on, we will focus on the differential noise and treat it as our signal since it has a much

stronger response.

We experimentally test the coupling of the squeezed probe beam to the Raman pump

in a ladder configuration, shown by Fig. 8.1 (b) and Fig. 8.3 (b). By coupling the squeezing

field as opposed to a classical coherent field, we expect to see the absorption signals amid

a noise floor, 5 dB lower than classical limits would allow. By utilizing the signal observed

on the differential noise picked up by the spectrum analyzer, we can measure the response

of the probe absorption as a function of power, Raman pump frequency, and temperature

(atomic density). Such measurements give us a working range for application of this

method and potential to estimate the use in other systems.

The method demonstrated here shows a clear advantage over classical light. By mak-
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FIG. 8.5: (a)-(e) The mesh plot of noise traces, as the Raman pump power is changed and
frequency is scanned. The different plots are for varying temperatures, as labeled. The black
trace outlines the power dependence of the absorption signal for the 5S1/2, F = 2→ 5D3/2, F” =
1 transition which is extracted for the power dependent traces in Fig. 8.6

ing these power and temperature measurements, we can find a range of operations. Fur-

thermore, it also allows us to how weak of a response the system is sensitive to and how

well it operates compared to a similar classical system. The Raman pump power and tem-

perature both have an effect on the optical depth of the medium and the corresponding

two-photon resonance strength. In Rubidium, the atomic number density is tied directly to

temperature and the amount of atoms in the vapor increases nonlinearly with temperature.

So, the absorption also increases in a similar fashion with temperature. Additionally, the

absorption decreases linearly with the power. We collect this temperature and power data

to find the optimal working conditions with minimum power and atomic density which still

allows detection of the Raman absorption response. This allows us to gauge the viability

for application to other systems like trace gasses and molecular samples which may have

lower concentrations or interaction strengths.

In order to clearly see the behavior and limits, we extracted the data from Fig. 8.5
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FIG. 8.6: (a) shows the power dependence shown by the black trace in Fig. 8.5 (a)-(e) for the
5S1/2, F = 2→ 5D3/2, F” = 1 two-photon transition absorption. In this, the power dependence
at different Raman cell temperatures are plotted as different colors, as labeled. (b) shows the
atomic density dependence of the two-photon absorption for a Raman pump power of 10 mW,
shown by the dashed black outline in (a)

(a)-(e)) for the different temperatures and powers, marked by the black line which lays

on the peak for the 5S1/2, F = 2 → 5D3/2, F” = 1 state. Fig. 8.6 (a) shows the power

dependence for each line extracted from the different temperature plots. The classical

noise limit is shown by the solid black line at a squeezing value of zero and represents the

limit for detection of coherent light. The solid blue line shows the noise limit for detection

with the use of squeezed twin-beams. It can be seen that for any temperature lower than

60oC, that classical light would not be able to distinguish the absorption signal, even for

larger Raman pump powers. The squeezed light can discern the signal for Raman pump

powers as low as 10 mW and powers as low as 1 mW for higher cell temperatures. We

also observe how the absorption responds to the temperature by plotting the data in the

vertical box in Fig. 8.6 (a) as the noise power plotted against the temperature.

The data shows that we have a wide range of powers and temperatures that are open

to exploration when using Raman absorption of squeezed light and are not accessible to

classical light sources. In the ladder configuration, we have realized the detection of the
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5D state via the detection of squeezed light which normally does not have access to this

state. We were able to acheive these signals for weak interaction conditions, where we used

low Raman pump powers and atomic densities on the order of 1011 cm−3. Relating these

powers and densities, we can compare the possibility of measuring the Raman response

in other samples. Trace gasses are known to have densities in the range of 1018 cm−3

or higher [190]. The concentrations of molecules in solution tend to be on the order of

1023 cm−3 in general. In addition to this, molecular and crystal samples typically exhibit

strong Raman responses. Here, we have used 87Rb vapor with a density of 1012 cm−3 or

lower. This is substantially smaller than what we will see for other samples. However,

further work will need to be done to gauge the interaction strengths in other media. We

hope to see the benefits of squeezed light in these measurements when applied to other

samples.

Additionally, since the two-photon process is performed using two narrow-line lasers,

the resulting absorption spectrum can also boast an increased spectral resolution. A

Raman spectrometer has a resolution of 5-10 cm−1. Using the ladder configuration in

this experiment, we were measuring absorption features separated by 10’s of MHz. This

corresponds to less than a 10th of a cm−1. Such a resolution with the increase applicability

of squeezed light for Raman measurements and have broad implications in a range of fields.

8.3 Conclusion

In conclusion we have produced a proof-of-principle demonstration of the extension

of the spectral range of squeezed light. By measuring the level structure of the 5D3/2

state of 87Rb, we showed that this method can work for resonances far detuned from

the optical frequency of either twin beam. In addition to the enhancement of Raman

absorption spectroscopy sensitivity, we also see the extension of the range of the twin
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beams. The dependence of the noise on the relative losses of the correlated twin beam

is larger than would be expected form a simple application of the beam splitter model of

loss to squeezed light. This provides an added sensitivity to the absorption measurements.

Further testing of this coupling method is necessary, but this is a big first step in increasing

the applicability of squeezed light.
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CHAPTER 9

Conclusion and Outlook

This dissertation has focused on the improvement of various quantum information

technologies using multi-photon light-matter interactions in hot Rb vapor. We demon-

strate different methods of reducing or utilizing FWM for improving quantum sensing and

quantum communication technologies.

We demonstrated the effectiveness of using a Raman two-photon absorption to reduce

the effects of FWM as a nonlinear process competing with two-photon Raman transitions.

We tested this method for experimental conditions mimicking both resonant EIT and off-

resonant Raman memory. In the case of EIT memory, we used the 85Rb isotope to produce

the FWM based amplification. Then we used a Raman pump field coupled to the newly

generated conjugate field in a two-photon resonance with the 5S1/2, 5D3/2 states of the

87Rb isotope, in the same cell. In this scenario, we were able to see up to 40% reduction

in the conjugate field generation which also limited the amplification of the probe signal

field. Further improvement may be possible with optimization of the isotope mixture

and increased pump powers. In the case of the Raman memory, we observed nearly 85%

conjugate absorption. This case was particularly useful since the two-photon absorption
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was performed in the same 85Rb isotope the FWM was generated in, removing the need

for isotope optimization. This increased absorption in the Raman memory case, compared

to the EIT memory, is due to the proximity of the newly generated conjugate field to the

atomic resonance. Since publication, this work has seen use in Raman memories which used

other absorption configurations to generate built in noise suppression [191] and enhancing

FWM using stimulated Raman scattering [192].

We also demonstrated frequency conversion using FWM. By using a two-photon exci-

tation from the 85Rb 5S1/2 to the 5D3/2, we observed and characterized the generation of

blue collimated light. We explored two cases, one where the virtual state of the two-photon

coupling was on or near the 5P1/2 state and the other where the virtual state was on the

5P3/2 state. The proximity of the virtual state to the 5P1/2 state resulted in much stronger

generation of blue light. We also looked at the effect of polarization and thus the Zeeman

level dependance on the transitions and found that the polarization played a large role in

the blue light generation. The effects of ground state repumping also played a big role in

replenishing the ground state for atoms which used alternative relaxation pathways. We

found that the power ratio of the rempump field to the pump field played a role in opti-

mum generation of blue light. When the repump power was much lower than the FWM

pumps, we observed that the output of blue light would actually begin to decrease, this

was also found to be true for simulations as well.

With squeezed twin beams, we demonstrated the transfer of OAM modes of light from

the probe and pump fields to the conjugate with the use of FWM. Even under conditions

where the conjuagte field was generated in an OAM very different ∆` = 4 from the probe

OAM, we still observed a strong level of correlations between the twin-beams, nearly -4

dBs of squeezing. By using structured light in FWM, we can utilize this for applications

in quantum imaging and quantum communications. The OAM modes offer an orthogonal

basis and twin-beams provide entanglement of photons. By utilizing structured light, the
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channel capacity can be increased.

We built and demonstrated the operation of a polarization based truncated SU(1,1)

interferometer. In this system, we are able to generate the local oscillators at the same time

as our squeezed twin beams, giving added phase stability to the system. In addition to this,

the symmetry in the interferometer allows for low frequency noise cancellation built into the

system. This allowed for the measurement of squeezing of -2 dB at detection frequencies as

low as 200 Hz, limited by the dark noise of the detector. This level of squeezing satisfies the

criteria for inseparability for continuous variable entanglement. This are ideal operating

conditions for quantum imaging since cameras with quantum efficiency are limited to these

speeds. It is possible to improve this device by better filtering of the pumping field. A

test for the future will be the demonstration of the generation polarization-entangled bell

states. This interferometer can be a source of such states, by simply removing the seed

field from the LO port. This will generate two sets of two-mode squeezed vacuums, which

when combined will yield the polarization-entangled states [13, 14].

We demonstrated the improvement upon two-photon absorption spectroscopy with

the use of squeezed twin-beams. By coupling the amplified probe beam with a Raman

pumping field, we were able to measure probe absorptions for Raman pump powers as low

1 mW. This was possible due to the nearly 5 dBs of intensity difference squeezing. In the

case of classical beams, it required at least 10 mW of power under the same conditions

to see a response. In addition to this, we found that monitoring the differential noise of

the twin beams makes for a more sensitive signal in response to the absorption than the

differential intensity sweep. In the furture, we will modulate the pump frequency to elicit

an even stronger response and work with lower powers and temperatures. We will also

couple the Raman pump in a Λ configuration in molecular samples and test this method

to probe vibration modes.

In addition to this, we can utilize spatial correlations between twin beams for quantum
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FIG. 9.1: (a) shows the cross correlation of two classical beams. (b) shows the cross correlation
between the two-mode squeezed twin-beams.

imaging. Further research and analysis of twin beams with a camera could lead to a better

understanding of the mode structure of the squeezed light. Along this path, we have

already performed preliminary measurements using a camera to map the correlations of

twin-beams, shown in Fig. 9.1 [187, 193]. The next step will be to map the correlations

of structured twin beams.

In conclusion, the advancements presented here, on the utility of multi-photon pro-

cesses, will have applications in the fields of quantum metrology [5, 6, 11, 12], quantum

communications [7, 13–16], and quantum imaging. The FWM process is a versitile tool

and we used it for the generation of entangled beams applications secure communication

protocols, the transfer of orbital angular momentum in light for expanding the bandwidth

for communications, and noise reduction for interferometric and spectral sensing. We also

present a method using Raman absorption to compliment the spectral range of squeezed

light to gain sensitivity for spectroscopic measurements of molecular samples or Rydberg

atoms [11, 12]. This technique will also be extendable to other forms of squeezing. We

136



137

also used Raman absorption for the suppression of FWM, which is detrimental to quantum

memories. The advancements presented have a potential impact diverse and broad range

of fields not only in quantum optics, but also in biology and chemistry [5, 6].
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