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ABSTRACT

Sparse high dimensional time series are common in industry, such as in supply
chain demand and retail sales. Accurate and reliable forecasting of high dimen-
sional time series is essential for supply chain planning and business manage-
ment. In practical applications, sparse high dimensional time series prediction
faces three challenges: (1) simple models cannot capture complex patterns, (2)
insufficient data prevents us from pursuing more advanced models, and (3) time
series in the same dataset may have widely different properties. These chal-
lenges prevent the currently prevalent models and theoretically successful ad-
vanced models (e.g., neural networks) from working in actual use.

We focus our research on a pharmaceutical (pharma) demand forecasting prob-
lem. To overcome the challenges faced by sparse high dimensional time se-
ries, we develop a cross-series learning framework that trains a machine learning
model onmultiple related time series and uses cross-series information to improve
forecasting accuracy. Cross-series learning is further optimized by dividing the
global time series into subgroups based on three grouping schemes to balance
the tradeoff between sample size and sample quality. Moreover, downstream
inventory is introduced as an additional feature to support demand forecasting.
Combining the cross-series learning framework with advanced machine learning
models, we significantly improve the accuracy of pharma demand predictions.

To verify the generalizability of cross-series learning, a generic forecasting frame-
work containing the operations required for cross-series learning is developed
and applied to retail sales forecasting. We further confirm the benefits of cross-
series learning for advanced models, especially RNN. In addition to the group-
ing schemes based on product characteristics, we also explore two grouping
schemes based on time series clustering, which do not require domain knowledge
and can be applied to other fields. Using a retail sales dataset, our cross-series
machine learning models are still superior to the baseline models.

This dissertation develops a collection of cross-series learning techniques op-
timized for sparse high dimensional time series that can be applied to pharma
manufacturers, retailers, and possibly other industries. Extensive experiments
are carried out on real datasets to provide empirical value and insights for rele-
vant theoretical studies. In practice, our work guides the actual use of cross-series
learning.
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Chapter 1

Introduction

This dissertation develops a collection ofmachine learning techniques optimized for sparse

high-dimensional time series. Sparse high-dimensional time series are settings in which

a model needs to produce forecasts for multiple time series (i.e., a vector time series)

and in which the data is not sufficiently large, such that standard models (e.g., Vector

Autoregression, Random Forest, etc.) may fail to work [7, 70, 34]. Despite the practical

importance of sparse high-dimensional time series and their potential impacts, there has

been a limited amount of research to tackle this problem.

High-dimensional time series are common in many fields, including economics, fi-

nance, functional genomics, neuroscience, and climatology. Applications include stock

market return inferences [34, 65, 14], gene regulatory network reconstruction [82], identi-

fication of connections in different brain areas [106], the study of atmospheric processes

[80], and more. These applications require a large number of temporally observed vari-

ables based on a relatively small sample size (i.e., the number of time points). In ad-

dition to sample size limitations, another type of time series contains a large number of

zeros, making them more difficult to predict. This type of time series often appears in

supply chain demand [119, 22], retail sales [6, 96], energy consumption [4], etc. There-

fore, models commonly used in other fields cannot provide accurate predictions for these

applications.
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In industry, using machine learning models to generate accurate and reliable predic-

tions for high-dimensional time series is critical [34, 22, 6]. Manufacturers need demand

forecasts for supply chain planning, power plants need energy consumption forecasts for

resource allocation, retailers need sales forecasts for business management, among oth-

ers. However, the currently used methods in industry cannot meet users’ requirements

[116]. Due to the lack of proper learning approaches for sparse high-dimensional time

series, advanced machine learning models have not exploited their potential advantages.

Therefore, it is essential to investigate the challenges in sparse high-dimensional time

series forecasting problems and find generalizable solutions.

1.1 Problem Statement

Through investigations in the industry and preliminary experiments on real datasets, we

find that sparse high-dimensional time series prediction mainly faces three problems in

practical applications: (1) simple models fail to capture complex patterns, (2) insufficient

data prevents us from pursuing more advanced models, and (3) time series in the same

dataset may have widely different properties. These problems prevent the current preva-

lent methods in the industry from providing reliable predictions, and theoretically success-

ful advanced models fail to work in actual use.

• Simple models fail to capture complex patterns.

Recently, Weller and Crone surveyed 200 companies and found that univariate meth-

ods have maintained their dominant position in the industry [116]. In particular, expo-

nential smoothing (EST), moving average (MA), and autoregressive (AR) models are

the most popular machine learning models. However, the simple patterns captured by

these models are not adequate to describe complex temporal behaviors. For example,

Figure 1.1(a) shows the order quantities of a drug (red) and the predictions (blue) of the

autoregressive model. Due to latent factors such as the market environment and distri-
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bution strategies, the order quantity of some drugs may have an extremely high peak at

a certain time point. We call this phenomenon ”spikes”, which is defined quantitatively

in Chapter 3. As shown in the figure, simple models like AR have difficulty capturing

the spikes indicated by the red circles. In addition to the ”spikes”, under the influence of

periodic market activities and special events, time series may also have long-term and

short-term seasonal patterns [4]. The traditional way to model time series seasonality is

to use statistical forecasting models such as EST and autoregressive integrated mov-

ing average (ARIMA) [49, 12]. Figure 1.1(b) compares the sales of a food (red) with the

EST forecast (blue). Although EST can recognize different types of seasonality (e.g.,

additive and multiplicative), the actual situations are more complicated.

(a) Drug Demand Predicted By AR (b) Food Sales Predicted By EST

Figure 1.1: Complex patterns

Another high-dimensional time series forecasting method is to use structural models

like vector autoregression (VAR) [105, 59]. Unlike using univariate forecastingmodels in

which the parameters are estimated independently for each time series, VAR learns the

contemporaneous relationships between different temporal variables [12]. However,

VAR fails to capture non-linear patterns, and the cross-correlations between different

time series are weak in some scenarios [22]. Moreover, the sparse high-dimensional

time series introduces too many insignificant parameters without sufficient training data.

As a result, VAR suffers from a severe overfitting problem.
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• Insufficient data prevents us from pursuing more advanced models.

To capture complex and non-linear patterns, some applications use more advanced

machine learning models, such as support vector regression (SVR) [75, 84, 97], random

forest (RF) [68, 33], and artificial neural network (ANN) [71, 40, 63, 121]. However,

according to the results of the Makridakis Competitions (M competitions) [78], the actual

performance of many sophisticated models (e.g., ANN) is not as good as that of the

simple models (e.g., EST and AR), mainly because training and testing sophisticated

machine learning models require a large amount of data for better estimation of the

model parameters in order to achieve a better performance [32, 6]. Yet, this condition

is not readily met in most forecasting contexts, since there exists a temporal constraint,

that is, old data from the distant past may have little value to the current prediction task

(this is in fact confirmed in our data analysis). In addition, some products may have been

on the market for just a short time, leaving many zeros in the records. Figure 1.2 shows

the examples of the drug order quantity and the food sales in our datasets. Building

machine learning models based on these time series will cause overfitting problems.

(a) Drug Order Quantity (b) Food Sales

Figure 1.2: Large Fraction of Zeros

• Time series in the same dataset may have widely different properties.

To overcome the insufficient data problem, some studies [22, 6] have proposed similar

5



ideas as ours, that is, to jointly train a machine learning model using the time series

of different products. However, in some cases, the properties of different product time

series vary greatly. The model trained on global time series may perform poorly on

certain individual time series. For example, a model that performs well for high volume

(i.e., average of order quantity) drugs may fail to work on low volume drugs, partly

because the training process tends to optimize the performance of the samples (e.g.,

high volume drugs) that have the most impact on the loss function. Figure 1.3(a) shows

examples of high volume and low volume drugs time series. The histogram of the drug

volume (in log scale) in one of our datasets is shown in Figure 1.3(b).

(a) High volume & Low volume (b) Histogram of (log) drug volume

Figure 1.3: Time series with different properties

1.2 Overview

We motivate our research on sparse high-dimensional time series prediction by present-

ing a real business case in pharmaceutical demand forecasting. Then, we provide a

detailed description of datasets used in the thesis including two datasets on pharma de-

mands and one dataset on retail sales. For clarity of presentation, we shall start the anal-

ysis using the first pharma dataset, which shows significant benefits of learning from mul-

tiple relevant time-series in improving forecasting accuracy. With the remaining datasets,

6



we demonstrate that the proposed approach can be conveniently generalized as a pow-

erful framework applicable to a broader range of forecasting situations. Our methodol-

ogy stems from the idea of training a machine learning model on related time series and

using cross-series information to improve prediction accuracy. We call it ”cross-series

learning”. Combining optimized cross-series learning strategies with advanced machine

learning models, we achieve significant improvements compared to the benchmarks.

• Cross-series learning.

Nowadays, with the help of advanced data collection and storage technology, most

companies have large amounts of business data resources, for example the sales of

hundreds of products in retail, the energy consumption of thousands of households, the

load for servers in a data center, and more. The rapid increase in data quantity does not

mean that the individual time series has effective information available, however. First,

as mentioned, for time-varying patterns, only the most recent data is useful. Second,

the series may contain long runs of constant values due to the mismatch between the

frequency of data variation and the sampling rate. Third, records of newly launched and

non-consumable products contain a large fraction of zeros. However, there are a large

number of similar time series available. The limitation of not being able to expand ver-

tically to the past motivates us to look horizontally across related time series. Learning

from related time series not only allows us to obtain cross-series information, but it also

provides sufficient data for more advanced models. In actual use, since we built one

model for multiple time series, cross-series learning can also save time and labor costs

for model selection and hyperparameters tuning.

• Grouping schemes.

Cross-series learning is based on the assumption that the related time series share the

same temporal patterns. However, in real case, even similar products may have differ-

ent behaviors, such as the demand for drugs used for different diseases, the sales of

seasonal vegetables in different seasons, the electricity consumption of users in differ-
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ent regions, etc. In addition, as described in Section 1.1, training models on global time

series can affect the performance of specific individual time series. Hence, we optimize

cross-series learning by building separate models on groups of similar time series and

use different criteria to measure the similarity of the time series. For example, we use

the Anatomical Therapeutic Chemical (ATC) code to group drugs according to the do-

main knowledge of the pharma industry. Without domain knowledge, we can also use

the distance between time series (e.g., the Euler distance and dynamic time warping

(DTW)) to construct clusters. By using grouping schemes, we can balance the tradeoff

between the sample size and sample quality for each model.

• Additional features.

In addition to the cross-series information from related time series, we can introduce

additional features with strong contemporaneous relationships to help enhance fore-

casting accuracy. For example, downstream inventory is related to demand [18, 123],

and price fluctuations may affect product sales [124, 104]. We can also generate new

features using the time series itself, such as exponential moving average [65], trend

and seasonal components [4, 5], etc. According to different applications, we collect

and generate various types of features and conduct extensive experiments to verify

their effectiveness.

1.3 Contributions

The main contribution of this dissertation is three-fold.

First, this dissertation proposes a cross-series learning framework for sparse high-

dimensional forecasting which addresses three challenges: (a) Tradeoff between sample

size and sample quality for advanced models: We propose cross-product training to re-

solve the lack of data issue and various grouping schemes to guarantee sample quality

based on different rationales including domain knowledge; (b) Additional features: For
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pharma demand forecasting, we introduce two key features, downstream inventory lev-

els and considerations of supply chain structure information, inspired by the operations

literature, and design how to effectively include these features; (c) Model efficiency and

interpretability: Nonlinear auto-regressive/recurrent models (RNN) significantly outper-

forms other options (e.g., VAR, tree-based machine learning models). Using domain

knowledge and numerical analysis, we also provide possible explanations of the effec-

tiveness of the best performing model (RNN).

Second, using two pharma demand datasets with hundreds of drugs and one retail

sales dataset with hundreds of food products, we validate the superior performance of

our proposed model framework. More importantly, our work provides important empirical

value and insights. For example, we test the value of downstream inventory information

and supply chain structure information, which has been discussed in theoretical opera-

tions literature [18, 123], but not empirically tested.

Third, our cross-series forecasting model framework (including grouping schemes, us-

ing additional features such as downstream inventory and supply chain structure informa-

tion, in combination with the RNN models) can be applied to other manufacturers, whole-

salers, and possibly other industry based on its robust performances. Domain knowledge

is important for making modifications to this framework when adapting to other industries.

The dissertation also provides practical guidelines of executing such a framework in

reality. Interactions with industry leaders (such as Google) have confirmed the value of

this work. Indeed, machine learning, as a new data-driven method, has the potential of

capturing (external and internal) hidden factors affecting economics time series forecast.

To some extent, it will replace/enhance some of the human experts’ functions, providing

more accurate and consistent forecasts. Given that machine learning has made its way

into other areas in industry, e.g., product development, marketing, it is encouraging to

see that companies are also open to machine learning methods for demand and sales

forecasting (Section 2.5). Based on the results from our questionnaire, the top pharma

companies we interacted with indicated that they are open to machine learning forecast-
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ing models (compared to traditional models like linear regression) as long as there is a

significant accuracy improvement (> 10%). Our results show that RNN has performances

superior to that of linear regression and the discussion of the possible reasons for the ef-

fectiveness of RNN also adds its interpretability. We hope that this provides important

information for pharma companies to make informed decisions/tradeoffs.

1.4 Dissertation Organization

The remainder of the dissertation is organized as follows. In Chapter 2, we detail the ma-

chine learning models for high-dimensional time series forecasting, review the literature,

position our paper among the related works and show the current state of demand fore-

casting in the pharma industry. In Chapter 3, we present the research setting along with

a detailed description of our datasets and identify new features (e.g., inventory informa-

tion). In Chapter 4, We use advanced machine learning models and domain knowledge

to develop an optimized cross-series learning framework for drug demand forecasting.

Chapter 5 extends the pharma demand forecasting framework to a generic version, which

is verified on another pharma demand dataset and retail sales dataset. We conclude the

dissertation in Chapter 6 with a summary of important insights. Detailed results that can-

not be presented in the dissertation body due to space limitations are provided in the

Appendix.
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Chapter 2

Background

First, we provide some preliminary definitions and concepts in section 2.1 to facilitate our

discussion in subsequent chapters. Then we give a brief review of commonly used ma-

chine learning models for time series prediction in section 2.2. Some of these models will

later serve as the benchmark for our proposed forecasting method. In section 2.3, we

discuss potential problems when applying these machine learning models to our applica-

tion settings and intuitively outline a solution approach to mitigate their impacts. Closely

related works in recent years are summarized in section 2.4, which also sets the back-

ground for our proposed research agenda in the next chapter. Finally, in section 2.5, we

present the current state of demand forecasting in pharma industry based on our surveys

and interactions with the top 5 pharma manufactures.

2.1 Preliminaries

A time series is a sequence of observations, each recorded at time t [16]. There are dif-

ferent types of time series, according to the time parameter t. In our research, we mainly

focus on discrete time series with equally spaced time intervals. In other words, for con-

tinuous observations on a time series, the time point of an observation is a monotonically

increasing sequence with the same step size. Equation (2.1) shows an example with T+1

11



time points.

{t0, t1, · · · , ti, · · · , tj , · · · , tT }

8i, j 2 [0, T ), ti < ti+1, ti+1 � ti = tj+1 � tj

(2.1)

For convenience, we set the time interval to 1 by default. Therefore, the above time

series can also be expressed as {t0, t0 + 1, t0 + 2, · · · , t0 + T}.

If the time series has only one time-dependent variable, we call it a univariate time

series and denote the observation at time t as xt. Equation (2.2) shows an example of a

univariate time series recorded from t to t+ T .

{xt, xt+1, · · · , xt+T } (2.2)

If there is more than one variable, e.g., xt and yt, and the variables are interrelated,

we call it amultivariate time series and denote the observation at time t as (xt, yt) [12].

Equation (2.3) shows an example of a multivariate time series recorded from t to t+ T .

{(xt, yt), (xt+1, yt+1), · · · , (xt+T , yt+T )} (2.3)

We can also treat the multivariate time series as a high-dimensional univariate time

series. Each observation is a high-dimensional vector, such as xt = (xt, yt). Therefore,

we use {xt,xt+1, · · · ,xt+T } to express a general time series including both univariate

and multivariate time series.

An intrinsic feature of time series is that adjacent observations are dependent. Based

on the nature of this dependence, Time series prediction uses p available observations

before time t from a time series to forecast its value at some future time t + h. Equation
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(2.4) shows a general form of time series prediction model.

xt+h = f(xt,xt�1, · · · ,xt�p+1) (2.4)

where p is the order of the model and h is called the horizon or leading time [12].

2.2 Machine Learning Models for Time Series Prediction

Since time series forecasting plays an important role in many application areas such as

economics, supply chain management, neuroscience, genomics, etc. This research topic

has been highly active with much development in both theory and methods. For example,

Exponential Smoothing, the Autoregressive Model, Support Vector Regression, and the

Boost Regression Tree, are well-established and widely-used forecasting methods, which

can often provide robust and accurate prediction in many situations. In particular, in the

last few decades, neural networks have achieved remarkable results across fields; and

thus, many deep learning models have also been developed for time series prediction,

such as Long-Short Term Memory, Gated Recurrent Units, and Temporal Convolutional

Nets. In what follows, we present the most commonly used series prediction models in

detail.

2.2.1 Exponential Smoothing

Exponential Smoothing (EST) is one of the most widely used forecasting models [42],

proposed by Brown, Holt, and Winters in the 1950s [17, 49, 117]. The basic assumption

is that an observation in a time series is a weighted sum of the preceding observations and

the weight decays exponentially as the observations get older. EST models are widely

used in business and industry to extrapolate different types of patterns in the univariate

time series. Two main patterns captured by EST are trend and seasonality. A Trend
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is when the time series as a whole has an upward or downward trend over time, while

Seasonality is when the time series shows a periodic change.

Equation (2.5) shows the simple exponential smoothing model that includes the fore-

cast equation and level equation.

Forecast Equation:xt+h = lt

Level Equation:lt = ↵xt + (1� ↵)lt�1

(2.5)

where 0  ↵  1 is the smoothing parameter. When we recursively substitute older

times for the level equation, we get the expanded expression in Equation (2.6).

xt+h = ↵xt + ↵(1� ↵)xt�1 + ↵(1� ↵)2xt�1 + · · · (2.6)

From Equation (2.6), we can see that the weights of past observations decay with the

rate of 1� ↵.

Based on the simple exponential smoothing model, Holt and Winters also add a trend

component and seasonality components to capture corresponding patterns [49]. Pegels

further categorized each trend and seasonality into additive and multiplicative types [90].

Based on Pegels’ classification, Gardner added another damped type to trend [42]. Hyn-

dman et al. provided a categorization of the 15 EST models depending on the types of

patterns recognized by each model (e.g., Holt-Winters additive model and Holt-Winters

multiplicative model) [54]. By combining different components, we can get a variety of

exponential smoothing models. In practice, we will select the model with the best perfor-

mance.
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2.2.2 Moving Average

In a moving average model, future observations are constructed from weighted sums of

past forecast errors [45]. Equation (2.7) shows the pth-order moving average process.

xt+h = b+ !0✏t + !1✏t�1 + · · ·+ !p�1✏t�p+1 (2.7)

where b is the expected mean from past observations, !i is the weight of the ith fore-

cast error and ✏t�i is white noise.

When making predictions, the simple moving average is the unweighted past values

that can smooth out the short-term fluctuations and capture the long-term trend of the

time series. Equation (2.8) is a simple moving average with a window size of p.

x̂t+h =
xt + xt�1 + · · ·+ xt�p+1

p
(2.8)

Since more recent observations often have more impact, higher weights are assigned

to the recent observations and a weighted average is used to make predictions. Like

exponential smoothing, Equation (2.9) shows the construction of an exponential moving

average with an order of p.

x̂t+1 = ↵xt + (1� ↵)x̂t�1 (2.9)

where ↵ = 2
p+1 is the decay rate. When we recursively substitute the smoothing term

x̂t�i, Equation (2.9) can also be written in the form of Equation (2.10).
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x̂t+1 = ↵xt + ↵(1� ↵)x̂t�1 + · · ·+ (1� ↵)p�1xt�p+1 (2.10)

In this form, we can see the exponential moving average is a special case of expo-

nential smoothing [117].

2.2.3 Autoregressive Models

In addition to EST and MA, autoregressive (AR) models are also the best-known time

series forecasting models. Slutsky, Walker and Yaglom [86] first established the concept

of AR based on Yule’s idea of modeling time series using a stochastic process [120].

Autoregressive Models aim to describe the autocorrelations between observations

[45]. The basic autoregressive model predicts the variable of interest by using the linear

combination of past values of the variable itself. This is why it is called autoregression.

Equation (2.11) shows the basic autoregressive model with an order of p.

xt+h = b+ !0xt + !1xt�1 + · · ·+ !p�1xt�p+1 + ✏t (2.11)

where b is the expected mean of observations and ✏t is white noise. An autoregres-

sive model is always used to predict stationary time series whose properties do not vary

with time. In other words, for any T > 0, the distribution of (xt, xt+1, · · · , xt+T ) does not

depend on t [12]. To process non-stationary time series, there is a model integrating au-

toregressive models with moving average models, called the autoregressive integrated

moving average (ARIMA) [13].

One way to predict multivariate time series is to extend the model of univariate time

series. Take the Autoregressive Model as an example. Suppose we have a bivariate time

series, as described in Equation (2.3). x is the variable of interest we want to predict. We
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can use both x and y as predictor variables to build a pth-order autoregressive model,

which is shown as Equation (2.12).

xt+h = b+ ✓0xt + �0yt + ✓1xt�1 + �1yt�1+

· · ·+ ✓p�1xt�p+1 + �p�1yt�p+1 + ✏t

= b+


✓0
�0

�T 
xt
yt

�
+


✓1
�1

�T 
xt�1
yt�1

�
+


✓p�1
�p�1

�T 
xt�p+1
yt�p+1

�
+ ✏t

= b+ !T
0 · xt + !T

1 · xt�1 + · · ·+ !T
p�1 · xt�p+1 + ✏t

(2.12)

where !i = [✓i,�i]T and xi = [xi, yi]T .

The disadvantage of themodel described in Equation (2.12) is that it only considers the

relationship between one variable of interest and the remaining variables, but not the in-

terrelationships between all variables. In the 1980s, Sims introduced a more generalized

multivariate AR model called Vector Autoregression (VAR) to model the contemporane-

ous relationships between variables [105]. Suppose we have N variables x1,t, x2,t, · · · ,

xN,t, Equation (2.13) is a pth-order VAR model.
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xt+h = b+W 0xt +W 1xt�1 + · · ·+W p�1xt�p+1 + ✏

(2.13)

where eachW⌧ is a N ⇥N parameter matrix for vector xt�⌧ . VARs have been widely

used for economic time series analyses.

In addition to the models commonly used in the industry (e.g., EST, MA and VAR),

many other machine learning models have also achieved significant results in time series
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prediction. We mainly study three of them: tree-based models, kernel-based models and

artificial neural network.

2.2.4 Tree-based Models

Ensemble learning is a technique that combines basic learners to produce a powerful

model [46]. One of the commonly used basic learners is the decision tree. Many deci-

sion tree-based regression models are generated by using different ensemble methods.

Bagging and boosting are two well-known ensemble methods. Bagging (i.e., bootstrap

aggregation) creates multiple learners by using the new training sets randomly sampled

from the original set and taking the average of the predictions from the learners as the

final result [15]. Random Forest (RF) is a representative bagging model that is widely

used for time series forecasting. Boosting is similar to bagging, but the learners learn

from the residual generated by the last iteration [37]. Equation (2.14) shows an example

of this boost procedure.

f (i+1)(xt, xt�1, · · · , xt�p+1) = f (i)(xt, xt�1, · · · , xt�p+1) + h(i)(xt, xt�1, · · · , xt�p+1)

h(i)(xt, xt�1, · · · , xt�p+1) = xt+h � f (i)(xt, xt�1, · · · , xt�p+1)

(2.14)

where f (i)(.) is the model at the ith iteration, and h(i) is the predictive residual at the

ith iteration.

Tree-based models make predictions by referring to the results of different learners so

that they can provide robust predictions and prevent overfitting. Even applied to simple

prediction models like AR or EST, it can still effectively improve predictive accuracy [46].
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2.2.5 Kernel-Based Models

Kernel-based learning methods are a class of pattern analysis algorithm that map in-

stances to a high-dimensional space by using different kernel functions. Instead of learn-

ing fixed parameters for the input features, kernel learning models study the similarity of

instances in the implicit feature spaces [83]. Therefore, we do not need to calculate data

coordinates in the high-dimensional space, but simply evaluate the dot product of each

pair of instances. This approach is called the kernel trick.

Many kernel-based regression models, such as Support Vector Regression (SVR)

[108] and the Gaussian Process (GP) [107], can also be used for time series prediction.

The easiest way to do so is to treat the segments of time series as observations and build

a kernel learning model with general kernel functions, such as the Radial Basis Function

(RBF) and polynomial kernel.

SVR, for example, learns a high-dimensional linear model by using the data mapped

from a p-dimensional space, as shown in Equation (2.15).

xt+h = !T�([xt, xt�1, · · · , xt�p+1]
T ) + b (2.15)

where !T and b are the parameters of the model and �(.) is the function mapping

the p-dimensional data to a high-dimensional space. Suppose there is a kernel function

k(., .), defined as Equation (2.16).

8x1 = [x1,t, x1,t�1, · · · , x1,t�p+1]
T ,x2 = [x2,t, x2,t�1, · · · , x2,t�p+1]

T

k(x1,x2) = �(x1)
T · �(x2)

(2.16)

Then, the loss function of SVR is optimized in the dual space and Equation (2.17) is

used to make predictions.
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x̂t+h =
NX

i=1

�ik(x,xi) + b (2.17)

where �i is the parameter in dual space, N is the number of training instances, x is

the time series segment to predict, and xi is the segment from the ith training time series.

Kernel Ridge Regression (KRR) [115] is another regression model, with an identical form

to Equation (2.15) but a different loss function.

2.2.6 Artificial Neural Networks

At present, artificial neural networks (ANN) have achieved remarkable results in many

fields, including time series prediction. A multilayer perceptron (MLP) is a feedforward

ANN in which the inputs are filtered through multiple hidden layers. The activation func-

tions between the hidden layers introduce non-linearity to the output, which enables ANN

to capture complex patterns [94]. Compared with MLP, recurrent neural networks (RNN)

are more suitable for learning time series patterns due to their unique feedback archi-

tecture [38]. The key to time series prediction is finding the time dependency between

observations. Therefore, the information needs to persist during the learning process.

The chain-like nature of an RNN can address this issue, as shown in Figure 2.1.

Figure 2.1: Structure of recurrent neural network
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The structure on the left-hand side is a basic RNN cell with a feedback connection;

the unrolled structure is on the right-hand side. ht is the hidden state generated at the tth

step and passed to the next successor. By using this structure, the RNN can memorize

the information from historical observations [99].

However, the basic RNN model has exploding and vanishing gradient problems, es-

pecially when dealing with ”long-term” dependencies. Hochreiter and Schmidhuber in-

troduced a new RNN architecture called Long Short-Term Memory (LSTM) [48], which is

composed of an input gate, output gate, and forget gate, as shown in Figure 2.2.

Figure 2.2: Long short-term memory cell

The standard RNN cell is constructed from simple neural network layers, as shown

on the left-hand side. The structure of LSTM is shown on the right-hand side. It uses

three gates, which are sigmoid functions, to control the information flow. By using gates

and simple elementwise operations, it can decide which information is retained, which is

forgotten, and which is outputted. Therefore, LSTM can avoid long dependency problems.

Based on LSTM, Kyunghyun Cho proposed a new cell architecture called the Gated

Recurrent Unit (GRU) [27]. GRU has fewer parameters because it combines the forget

gate and input gate. On smaller data sets, GRU performs better than LSTM, and it is be-

coming more popular due to its simpler architecture. Beyond RNN-based models, many

researchers also use Convolutional Neural Networks (CNN) to process time series data.

A Temporal Convolutional Network (TCN) uses a hierarchy of temporal convolutional fil-

ters to capture long-range patterns [110]. Aaron van den Oord et al. proposed WaveNet,

which is constructed from a stack of causal convolutional layers and uses a dilated convo-
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lution filter to save computational costs [87]. LSTM and CNN (LSTM-CNN) are also used

together, so that the CNN learns time series structural information and LSTM detects

temporal dependency [103].

For many standard time series datasets, the previously described machine learning

models can give accurate predictions. But in practice, many data sets are not so ideal.

Common problems include the following: 1. There is insufficient data, 2. The data con-

tains too many missing values, 3. The data is unevenly distributed. 4. The data contains

patterns that change over time, such that data from the distant past is less useful for

predicting the most recent patterns. In these cases, machine learning models built using

individual time series may not give reliable predictions. Especially for complex deep learn-

ing models, there may not be enough data to fit their parameters, and in many cases, this

will lead to overfitting problems. In section 2.3, we will summarize the methods to solve

such problems developed in recent years by using cross-series information, list their ad-

vantages, and point out their deficiencies or inadequacies.

2.3 Potential Pitfalls

Machine learning models, especially deep learning models, rely heavily on data. If the

amount of data is insufficient or the data is not properly processed, many theoretically

successful models will perform poorly in practical applications [122]. This is especially

true in time series prediction. Due to the limited data from an individual time series, the

prediction results of many complex models are even worse than those of simple models

[78]. Even if we have a long time series, it does not mean that we have sufficient data.

For example, in a time series, data can be dominated by certain specific patterns, making

other patterns difficult to capture during the learning process. Another common situation

is that data from the distant past is of little help in learning recent patterns, while short-term

data is not sufficient for the task.

In the face of this problem, the most direct solution is to increase the amount of data.
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One approach is to use multivariate time series, such as VAR models and many deep

learning models [113, 21, 58, 24]. However, the increase in the amount of data will simul-

taneously increase the complexity of the model. In the end, the amount of data may still

be insufficient. Moreover, additional variables may not be helpful in predicting the target

variable. Another approach is to use related or similar time series. In many cases, related

individuals often follow similar patterns. By sharing data across different time series of

related individuals, not only the problem of insufficient data can be effectively solved, but

the impact of outliers can also be reduced, thereby making more robust models.

Trapero et al. propose a forecasting model which pools past information from other

stock-keeping units when there is not enough promotional history available for the current

one [114]. This model directly uses historical information from other time series. There

will be problems when applying it to other datasets, since arbitrarily fitting all time series

into one model may lose the focus of the current time series patterns. The reason for this

is that during the training process, machine learning models tend to satisfy the data that

has the greatest impact on the loss. Therefore, if time series with similar patterns to the

current one do not dominate or the training data contains too many unrelated patterns,

it will make the learning process extremely difficult. Therefore, before fitting the time

series into the model, we need to group them and let time series belonging to the same

group share a model. This process requires a trade-off between the size of the group and

the similarity of the time series within the group. We want to learn as many patterns as

possible while ensuring sufficient training data.

Chapados develops a hierarchy model based on a Bayesian framework and lets the

time series in one subgroup share the same model parameters, which achieves good

results in supply chain planning [22]. Bandara et al. group related time series to train a

new LSTM for sales forecasting. They use two grouping strategies. The first is to use

domain knowledge, such as sales rankings and the percentage of zero sales. The other

is to use time series clustering. They use k-means to cluster time series according to the

feature vectors constructed from handcrafted features, such as trend, spikiness, and lin-
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earity [6]. In [5], Bandara et al. investigate more clustering methods, including k-means,

DBSCAN, Partition Around Medoids (PAM), and Snob. Salinas et al. introduce a proba-

bility forecasting framework called DeepAR, which uses RNN-based architecture to learn

from groups of similar time series and provides estimations of the forecast distributions

[96].

The methodologies of the works listed above are closely related to ours. However,

their clustering metrics are mainly based on handcrafted features, such as mean, trend,

and seasonality. In many cases, these features do not guarantee that time series with

similar patterns can be extracted. Moreover, some features are not applicable to all types

of time series, for example, physical trajectories. Therefore, rather than using handcrafted

features, we recommend grouping according to the nature of the time series itself. For

a general time series, if it has synchronous sampling and equal length, we can use Eu-

clidean distance. For asynchronous sampling, we can use dynamic time warping dis-

tance (DTW) [95]. In addition, we can use edit distance on real sequence (EDR) [26],

edit distance with real penalty (ERP) [25], and longest common sequence (LCSS) [61].

For physical trajectories, we can use symmetric segment-path distance (SSPD) to com-

pare the similarity of path shapes [10]. According to the review in [10], no one trajectory

distance can be robust for all types of trajectories. [1] introduces a framework called Au-

towarp to learn warping distance by using an autoencoder that best fits to the training time

series.

2.4 Related Works

In this section, we review demand forecasting literature, particularly the interface between

machine learning and forecasting in the operations management literature, with a special

focus on the recent research motivated by real industry problems using data-driven ap-

proach.

Due to its crucial role in production and inventory control [57], demand forecasting
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has been extensively studied in the past decades [117, 17, 98, 100, 69, 11]. Practical

considerations such as collaborative forecasting partnerships between retailers and man-

ufacturers [2], performance of hierarchical forecasting at different levels of aggregation in

the supply chain [67], and combining forecasts from multiple models [44] have also been

studied. Most of this research focuses on traditional time-series methodology.

Recent years have seen a great development of machine learning applications across

many disciplines due to their remarkable abilities to capture hidden patterns. In forecast-

ing domain, Hill et al. successfully applied neural network models to time-series and

achieved much better performance as compared to that from traditional statistical fore-

casting methods [47]. Recently, the similar type of research has appeared in the opera-

tions management literature. While limited in numbers, there is an upward trend in this

data-driven research. For example, Carbonneau et al. studied the effectiveness of both

machine learning and traditional forecasting methods on simulated and real sales data

[20]. They reported that traditional methods work well on simulated data, but are less

competitive against more advanced machine learning models on real data. A more re-

cent paper leveraging the power of machine learning in demand forecasting is Cui et al.,

which uses both the operational data (sales and marketing data) and the social media

information to improve the accuracy of daily sales forecasts [73].

Notice that all demand forecasting models discussed so far predict the future demands

for a product using its own data, where there may be problems in model parameters

estimation when the amount of data is limited. To address this problem as well as to

help find the common hidden factors, we leverage information from other products. This

idea of cross-learning from other products has been used in new product forecasting in

which future sales are predicted from a set of features such as price, brand, style based

on comparable products [35, 3]. However, in such settings, the dataset is limited to only

similar products and the data is not time-series as mentioned.

Within the context of time-series literature, demand forecasting from related time se-

ries have also been studied ranging from tourism demand forecasting, hotel room de-
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mand forecasting, to electric power demand forecasting [89, 109, 41]. Regardless of the

application settings, a standard assumption is that these time series are organically re-

lated to each other, for example the demand for hotel rooms and the number of internet

search terms about hotel information in the area. Vector autoregression (VAR) is a well-

established econometric method for learning from related time series when making fore-

casts [105]. However, VAR is very different from what we propose and is not applicable

to our problem due to overfitting. Specifically, VAR allows all variables to interact linearly

with their own and each other’s current and past values (lags). Therefore, when there are

many time-series involved with many lags, as intended in our problem for cross-learning,

the number of VAR coefficients to be estimated is very large, leading to severe overfit-

ting and larger forecast errors even with regularization. As confirmed by our numerical

results, VAR performance is significantly worse than even those from the baselines (see

Section 4.2). This is confirmed in our numerical results. Indeed, Hyndman and Athana-

sopoulos suggests using VAR only for a small number of time-series which are known to

be correlated with each other [52]. In addition, VAR only captures linear relationships. As

confirmed by our results, there exists significant non-linear relationships in our data.

In terms of using non-demand information to help demand forecast, many recent pa-

pers leverage social media data to enhance the performance of forecasting [74, 73, 11,

72, 102]. For further details, we refer the readers to Choi et al. for a review [28]. In this dis-

sertation, we identify other suitable non-demand features and use them to predict demand

across products. In particular, our idea of leveraging inventory and supply chain struc-

ture information within the cross-drug training framework is based on existing theoretical

operations management literature. Indeed, the benefit of using downstream’s inventory

data to enhance the upstream’s optimal production/inventory decisions has been studied

in the analytical models [18, 123], but has not been tested empirically. Further, among

the possible drivers for different inventory levels in the system, the impact of distribution

network structure is significant [19]. In our dissertation, we empirically explore the value

of inventory information and supply chain structure (DC-level data) in demand forecasting
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using real data in a cross-drug training setting.

There is limited and also relatively primitive academic literature on demand forecasting

for pharma products compared to other industries (e.g., tourism, energy, etc.). Besides

the monograph by Cook [30], prior studies on pharma demand forecasting are summa-

rized and compared to our study in Table 2.1. Specifically, the first row specifies which

tier’s demand is forecasted in the respective research because different data might be

available and used for that specific tier. The pharma supply chain has multiple tiers, in-

cluding manufactures, trade partners/wholesaler (TPs), distribution centers (DCs), and

point-of-care. It is well-known that demand forecasts become less accurate moving up

the chain. We propose to forecast demand at the manufacturer’s tier.

Table 2.1: Comparison of pharmaceutical demand/sale forecasting papers in the literature.
Anusha et al. Candan et al. Kim et al. Merkuryeva et al. Nikolopoulos Zedeh et al. Our
(2014) (2010) (2015) (2019) (2016) (2014) Model

Tier Retailer Retailer Retailer Distributor Point-of-care Distributor Manufacturer
Moving average None AR Moving average Diffusion models ARIMA Exp. state-space models

Benchmark Exp. Smoothing Linear regression ARIMA Moving Average
Holt-Winter Exp. smoothing Linear Regression

Linear regression
Proposed None ANN VARX Symbolic regression None Graph-based analysis Clustering and RNN
model and ANN
Utilized Historical sales Historical sales Historical sales Historical sales Historical sales Historical sales Historical demand
data Social network Price (prescription data) Downstream inv.

Supply chain info.
Forecast Monthly Quarterly Monthly Weekly Yearly Monthly Weekly
frequency
Forecasting 1-month ahead 1-year ahead 1-month ahead 1-week ahead 1-5 year ahead 1-month ahead 1-2 month ahead
horizon
Metrics MAD, MSE None Prediction error R2 R2 R2 NME, NMAE, NMSE

MAPE rate MAD ME, MAE, MSE MSE, MAE
Number of 2 1 4 1 11 217, but only 133 (1st dataset)
NDCs 21 were analyzed 112 (2nd dataset)

Time-series No No No No No No Yes
cross-validation

Table 2.1 also compares our dissertation to other research works in terms of bench-

marks, models proposed, data utilized, metrics used, and forecasting horizon. The main

benchmarks used in these papers are moving average, simple exponential smoothing,

and regressions, consistent with those reported in the industry practices described in

Section 2.5. In terms of data used, there seems to be a lack of distinction between de-

mand and sales in the pharma forecasting literature (with sales being the right-censored

demand by available inventory). All papers in the table except ours used historical sales

(instead of actual historical demand) to predict demand, and little other information is
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used for forecasting. Specifically, besides historical sales, Kim et al. used customers’ re-

sponse collected in blog documents to help improve drug demand forecasts for a retailer

[66]. Merkuryeva et al. used discounted prices in a causal forecasting model to forecast

demand at a distributor [81]. The rest only used historical sales. In measuring forecast-

ing accuracy, cross-validation is the standard approach and should be used to ensure

the generalizability of the forecasting model to new data. The basic cross-validation pro-

cedure involves separating the data into training and test sets, where the training data is

used to estimate a forecasting model’s parameter, and the test set (⇡ 20%of the observa-

tions) is used to evaluate its accuracy [76]. However, this reporting standard is often not

used in the pharma forecasting literature. Further, in practice, for accuracy evaluation of

forecasting methods, it is recommended to use the more sophisticated time-series cross-

validation, where there are a series of test sets and the forecasting accuracy is computed

by averaging over these test sets [52]. However, none of these papers implemented

time-series cross-validation and most of them only used a small number of drugs.

2.5 Current State of Pharma Demand Forecasting

Based on surveys, reports, and literature, this section describes the current situation of

pharma demand forecasting in terms of methods and data used.

Forecasting Methods

In 2018, the global market for pharmaceuticals reached $1.2 trillion, up $100 billion

from 2017 (IQVIA Institute for Human Data Science) and the U.S. alone holds over 45%

of the global pharma market. Due to the high profit margin - the top 10 pharma com-

panies in the U.S. had a median profit margin of 17% (Angell 2004) - there was a low

need for supply chain efficiency and the pharma industry didn’t pay much attention to de-

mand forecast until more recently [64, 81]. This seemingly explains the dominant position

of simple demand forecasting methods used in the industry. Jain, based on a pharma

industry survey, listed the most popular forecasting models as exponential smoothing,
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moving averages, and regression [56]. More recently, Weller and Crone surveyed 200

companies (14 of which are pharma companies) and confirmed that univariate statistical

methods have maintained their dominant position in pharma and other industries [116].

In particular, exponential smoothing, moving average, and naive methods account for

82.1% of all statistical forecasts. This is true even in the era of using software. Analyzing

the results from a joint research initiative of IndustryWeek and SAS, Chase summarized

that while companies might be using various softwares to help with demand forecasting,

moving average, exponential smoothing, and simple regression models are still the most

popular forecasting methods used by the softwares [23].

Cook outlined the typical procedure of demand forecast for in-market pharma products

as (1) trending historical data, (2) applying the effects of ex-trend events (i.e., external or

internal events that may affect demand but not reflected in the historical data), and (3)

converting trended data into forecast outputs based on the first two steps [30]. The chal-

lenges to the forecasters are to identify these ex-trend events and quantify the effects of

these events on the forecast. While these could be done by human experts’ judgments,

this is atypical because most pharma companies deal with a large number of national drug

codes (NDCs), ranging anywhere from hundreds to thousands of marketed products with

different therapeutic characteristics. Even for drugs with the same active pharmaceutical

ingredient (API), theymay have different dosages, delivery methods (tablets v.s. injection,

etc.), corresponding to different NDCs. Thus, forecasting is typically done using software

(e.g., SAP, Oracle, R, Excel). One other concern of human judgement is its quality, con-

sistency, and dependence on experiences; hence, human judgement is only incorporated

for special cases such as new product launch or known competitor entrance/exit. And,

even in the cases when human judgement is incorporated, it is incorporated on top of

the algorithm-generated forecasts [56]. Hence, accuracy of algorithm-generated demand

forecasting is particularly important.

Data Used

Currently, for statistical forecasting methods, historical sales are the most commonly
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used data for forecasting [116]. Benchmarking studies reported in Merkuryeva et al. point

out that ”although there is plenty of data useful for more accurate demand forecasting,

data usage is limited due to various aspects (e.g., different data formats; lack of data in-

tegration tools)” [81]. Chase also observes that despite all the improvements with data

collection, downstream data has not been utilized for supply chain demand forecasting

and planning [23]. The value of downstream data has been overlooked, even after sup-

ply chain visibility is made available. Since the mid-2000s, to streamline ordering and

purchasing processes in the drug supply chain, Electronic Data Interchange (EDI) has

been adopted in the pharma industry. As part of the fee-for-service (FFS) arrangements

with the manufacturer, wholesalers must provide inventory data to the manufacturer, typ-

ically via the EDI interface known by their numerical designations such as 867, 852, 180

among many others. For instance, EDI 852 contains inventory, product stocking, and

product movement records from the trade partners’ DCs to the manufacturer [118]. How-

ever, there has been a ”lack of new models for increasing forecasting intelligence” [81]

and ”minimal investment in the analytic skills of demand planners” [23]. Our dissertation

is the first to explore the value of some of this data to pharma demand forecasting tasks.

Forecasting Horizon

The results we provide to the manufacturers are forecasts of future drug demand. In

our setting, the future demand refers to the total order quantity of each drug for all distri-

bution centers in a certain week in the future. The number of weeks we predict is called

the forecasting horizon. According to Cook (2016)[30], the forecasting horizon within the

pharma industry can range from short-term, medium-term, to long-term forecasts. The

long-term forecasts (> 5 years ahead) are used for strategic planning. For example, to

launch a new product 3 years from now, a 10-year forecast is often used. The medium-

term forecasts (> 1 year) are produced for financial forecasting and budget planning.

The short-term forecasts (daily, weekly, monthly) are involved with operations, such as

inventory decisions and manufacturing decisions (procurement of raw materials, schedul-

ing, etc.). We primarily focus on forecasting roles in supply chain operations; hence, the
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forecasting horizon considered is 1-8 weeks.

Interactions with pharma companies

To further confirm the current state of demand forecasting in the pharma industry, we

interacted with five top pharmaceutical companies whose names are hidden for confiden-

tiality based on a focused questionnaire directed at the points of interest in this disserta-

tion. Specifically, we designed a list of questions in the three aforementioned categories:

forecasting methods, data used, forecast horizon, and the use of demand forecast, for

which the companies provided answers. Appendix 3 includes the list of specific ques-

tions. When doubts existed, further interactions were conducted through interviews or

additional correspondences.

All pharma companies we interacted with confirmed that they are using software to

forecast demands with simple models such as exponential smoothing (2 companies),

moving average (2 companies), and linear regression models (3 companies), and some

companies use more than one of the three. One company estimated that human judg-

ment is involved in less than 10%of the cases, while the remaining companies use human

judgments in 10� 30% of the cases. Moreover, human judgments are primarily used for

new product launches and planned promotions. Further, all companies verified that only

historical demand is used to generate statistical forecasts. In terms of forecasting hori-

zon, it varies from 3 months (3 companies), 1 month (1 company), to 1 week (1 company).

Results of demand forecasts are used in a wide variety of activities. All companies utilize

demand forecasts for inventory decisions. Besides, it is also used for cash flow and work-

force planning (4 companies), for capacity planning (3 companies), production planning,

and promotion planning (3 companies) and for setting sales targets (1 company).

Finally, the pharma companies stated they are not currently using machine learning

models, but one is in the early stage of investigating machine learning in demand fore-

casting. All companies mentioned that they are open to machine learning models as long

as these models can bring sufficient improvement (> 10%), even if such models are less

interpretable than the currently used models.
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Chapter 3

Research Setting and Dataset

This section reviews the research setting for this dissertation. In particular, we first detail

our pharma demand datasets in the context of the supply chain network in Section 3.1,

followed by a detailed description of the retail sales dataset in Section 3.2.

3.1 Pharma Demand Datasets

3.1.1 Pharma Distribution Network

The pharma supply chain is a complex system in which drugs are delivered frommanufac-

turers to patients through the distribution networks. An over-simplified pharma distribution

network highlighting what is pertaining to our work is depicted in Figure 3.1. In particu-

lar, the flow of pharma products originates from manufacturers to multiple trade partners

(TPs), who then distribute these products via their network of distribution centers (DCs), to

downstream point-of-cares (POCs), such as clinics, hospitals, or retail pharmacies. Trade

partners can be categorized as “traditional wholesalers” and “specialty distributors”. The

former typically have large networks, carry a large variety of drugs, and more often dis-

tribute to hospitals, retail pharmacies, and homecare providers, while the latter typically

have more controlled networks, specialize in specialty drugs and more often distribute to

physician offices, clinics, and independent specialty pharmacies. Regardless of its type,
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each trade partner has its own network of DCs, through which POCs receive the drugs.

Figure 3.1: Illustration of a pharma distribution network

As mentioned, we obtained from our industry collaborator two large datasets of EDI

852 of two top pharma manufacturers. The datasets consist of supply chain channel

data on all pharma products that the respective manufacturer has at the time of data

collection. Each product is determined by a unique, three-segment identifier, called NDC.

We will focus on analyzing the first dataset and then use the second dataset to confirm

our insights in Section 5. We next present more detailed description of the first dataset.

3.1.2 Pharma Demand

Our data includes all transactions over the period from July 2007 to August 2017 between

a drug manufacturer and its trade partners’ DCs, collected weekly for 133 unique NDCs.

Specifically, this refers to information of the quantity sold, the trade partner, the distrib-

utor, and the respective inventory level at the corresponding DC. The quantity sold and

inventory level from each transaction are measured in pack unit (PU) or extended unit

(EU) for each NDC. We choose to use extended unit (i.e., one capsule or tablet for solid
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dosage forms or one milliliter for liquid drug products) because this measurement helps to

normalize different package sizes, which allows comparisons across NDCs. Specifically,

each transaction in the dataset includes information on the quantity sold, the trade part-

ner, the distributor, and the respective inventory level at the corresponding DC. Figure

3.2 shows the format of the data items.

Figure 3.2: Format of pharma dataset

The first dataset includes 3.4 million transactions, and the second dataset contains 1

million transactions.

Figure 3.3 illustrates a typical time-series of the weekly order quantities of a drug over

the period of 2007-2017. The figure shows many demand spikes occurring throughout

the years. As will be discussed later, existence of such spikes is due to the prevalent

investment buying in the pharma industry. Hence, being able to capture such spikes is

important to the performance of forecasting models.

Figure 3.3: Illustration of a drug’s order quantities over time

Figure 3.4 shows the sparsity of all drugs’ order quantity series. Each row in the figure
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indicates whether there were medicines ordered in the week from 2007 to 2017. Blue

pixels represent zero order quantities, and green represent non-zero order quantities. In

the first dataset, we have 133 unique NDCs with 530 weeks of records, but 52% of the

total observations are zeros, which is typical for a sparse high-dimensional time series.

Figure 3.4: Sparsity of the order quantity series

3.1.3 Additional Information

In addition to the past demand information, we use the following non-demand features in

our forecasting model.

Inventory Information. The fee-for-service (FFS) contracts prevalent in pharma industry

require downstream wholesalers to share inventory information with the manufacturer via

EDI 852 interface. Hence, we collect both the historical order quantity and the inventory

at the DCs in each week to help predict future order quantity. This approach also rests on

the theoretical foundation from the OM literature that a supplier’s order quantity decisions

can be improved when demand and inventory data are shared within the supply chain

[18, 123].

Product Information. Aside from the EDI 852 data, we also collected additional informa-
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tion of each drug’s ATC code from public databases. ATC code is a classification system

segmenting the drugs into distinct groups based on their chemical, pharmacological, and

therapeutic properties. ATC code has five levels, with progressively more detailed in-

formation about the drug. We focus on the first level classification, also known as the

main anatomical group, in which the drugs are divided into 14 main groups. Specifically,

we first extracted the non-proprietary name for each NDC from the National Drug Code

Directory, and then searched for the respective ATC code from the database at WHO

collaborating center for drug statistic methodology. Since ATC code is widely used in

pharma industry to classify drugs based on their characteristics, we later use ATC code

as one of the grouping schemes in our forecasting models. We also obtained wholesale

acquisition cost (WAC), which is the list price for each NDC. Real prices typically include

discounts and rebates, but WAC is a widely accepted reference price [123].

Supply Chain Structure Information. The 133 NDCs are sold to 28 trade partners (in-

cluding the top three wholesale distributors which represent 85% of the total annual U.S.

sales) through their respective 247 DCs. We later tested at the TP level to see whether

such supply chain information benefits the forecasts. On average, each trade partner pur-

chases 64 NDCs from the drug manufacturer, while each DC receives roughly 34 NDCs

every week. We provide the descriptive statistics of our dataset below.

Table 3.1: Descriptive statistics of our dataset
Mean Std. Min Median Max

# of DCs per TP 9 15 1 2 50
# of NDCs per TP 64 41 2 68 127

# of Observations per TP 123,031 272,775 240 25,749 970,393
Avg. Order Qty per TP 21,616 63,999 39 903 285,866

3.2 Retail Sales Dataset

Our retail dataset is extracted from the Walmart good sales dataset in the M5 competition

[36]. The competition dataset contains daily sales and prices for thirty thousands of prod-
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ucts from Walmart stores in California, Texas, and Wisconsin between 2011 and 2016.

The products cover food, hobbies and household goods at 10 stores in each region. Retail

dataset is used to verify the generalizability of cross-series learning. We select foods at

Walmart stores in California to test our framework. There are many similarities between

the food sales and pharma demands, for example, they are both under the influence of

promotion, seasons, special events, etc. On the other hand, the sales range of food is

much smaller than the demand range of drugs. Figure 3.5 shows the histograms of the

drug demand volume and food sales volume in log scale. Food is more perishable, so

food sales change faster than drug demand in a short period.

(a) Histogram of (log) drug volume (b) Histogram of (log) food sales

Figure 3.5: Ranges of drug demand and food sales

To facilitate comparison with pharma datasets, we preprocess the competition dataset

to produce our retail dataset with similar format. We accumulate the daily sales of a

product in 10 stores each week as the weekly sales of the product in that region and use

the average of daily price in each week as the weekly price. Finally, the retail dataset

contains weekly sales and prices of 216 food products at Walmart stores in California

from January 2011 to April 2016. Every food product has 274 weeks of sales and price

records. The statistic of foods’ average weekly sales and prices in the retail datasets is

shown in the table 3.2.
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Table 3.2: Descriptive statistics of food weekly sales and prices
Mean Media. Std. Min Max

sales 13.24 8.37 14.73 0 83.53
prices 3.23 2.51 1.95 0.97 11.35

3.2.1 Retail Sales

An example of a food product sales from 2011 to 2016 is shown in the Figure 3.6. Like

pharma demand, due to the influence of hidden market factors such as periodic market

activities and special events, retail sales also have spike values at certain time points

and multiple seasonal patterns. ARIMA and ETS are often used to learn the seasonal-

ity of time series, such as additive seasonality and multiplicative seasonality. However,

these seasonalities are not adequate to describe the complex seasonal patterns of sales.

Therefore, we need to build more sophisticated models on large amounts of data.

Figure 3.6: Retail Sales

Neural networks are universal estimators of functions [31, 39, 50], capable of model-

ing complex and non-linear patterns including seasonality [79, 111]. However, Nelson et

al. [85] noted that the mathematical proof for the feasibility of neural networks for sea-
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sonality modeling is only valid when there is no upper limit on the number of neurons.

In practical forecasting applications, limited data availability may not support large-scale

neural networks that can capture seasonal patterns. Later, our cross-series learning is

used to address this limitation.

3.2.2 Sparsity of Retail Sales

The retail sales dataset includes sporadic zero sales due to the intermittency of the records.

Even though weekly sales accumulates the daily sales of different stores within a week,

many zeros are still left. Figure 3.7 shows the sparsity of all food product sales. Each

row in the figure indicates whether there were non-zero sales in the week from 2011 to

2016. Blue pixels represent zero sales, and green represent non-zero sales. There are

59,184 observations in the retail sales dataset, but 33% of them are zeros. According

to our preliminary test, building machine learning models on each such time series, the

performance of advanced models (e.g., Neural Networks) is comparable to or even worse

than the simple models (e.g., Linear regression).

Figure 3.7: Sparsity of the retail sales

In Chapter 4, extensive numerical experiments are conducted on the first pharma
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dataset. The observations and insights obtained from the first pharma dataset are val-

idated on the second pharma dataset. We will use the retail sales dataset to verify the

generalizability of the cross-series learning technique and the effectiveness of our generic

forecasting framework in Chapter 5.
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Chapter 4

Cross-Series Learning For Pharma

Demand Forecasting

Accurate demand forecasting is the basis for supply chain efficiency since it essentially

drives all important operational decisions, from raw material supply planning, produc-

tion planning, inventory management, to financial goals. For a pharmaceutical (pharma)

manufacturer, demand forecasting can be even more critical because (1) any mismatch

between demand and supply could ripple through the drug distribution channel and im-

pact the patients, sometimes even causing life-threatening situations; and (2) any demand

that is not fulfilled could potentially lead to permanent lost sales from a patient, because

patients who cannot afford the uncertainty in their order fulfillment may switch to an alter-

native drug. For drugs treating chronic illnesses, this could mean huge financial losses

for the drug manufacturer.

Current demand forecasting in the pharma industry focuses on using simple statis-

tical methods with historical demand to extract future demand patterns. However, we

know that demand is under the influences of many factors, many times hidden factors,

in addition to historical trends. Some of these factors apply across industries, such as

the general economic environment, while others are unique to the pharma industry, such

as distinctive demand patterns due to special pharma situations (e.g., investment buy-
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ing), the change of regulations (pharma industry is highly-regulated), market competition

between brands as well as between brand and generics, special contracts, and media

effects (high public attention to pharma). Capturing such factors require more sophis-

ticated models built upon a large amount of data, as well as domain knowledge of the

industry. Indeed, the emerging concept of demand sensing, which focuses on identi-

fying and including various factors affecting demand aside from historical demand, has

attracted much attention [23, 92]. However, little has been done in practice, especially

in the pharma industry. Simple time-series models often ignore these hidden factors or

assume that these factors manifest themselves in the individual drug demand time series

so that the future demand for a pharma product is simply a function of its own previous

demands.

At the same time, in the pharma industry, FFS and EDI have generated a significant

amount of data. This data, however, has not, in general, been utilized for demand fore-

casting or production planning [101]. While theoretical work from the operations man-

agement literature has shown potential value of downstream’s demand and inventory

data when being incorporated in the upstream’s optimal production/inventory decisions

[18, 123], it remains to be shown empirically whether the aforementioned EDI data can

provide any additional value in the upstream’s demand forecasting that we focus on. Fur-

ther, since EDI data is unstructured, the next immediate question is how to effectively mine

this additional information and adequately capture the hidden factors mentioned above in

improving demand forecast.

Machine learning has been known to be an effective method to detect unknown pat-

terns in structured and unstructured data. Recently, there have been more and more

applications of machine learning in supply chain and operations management literature.

It is well-known that effectively training and testing these machine learning models require

a large amount of data for better estimation of the model parameters in order to achieve

better performance. Yet, this condition is not readily met in most forecasting context since

there exists a temporal constraint, i.e., old data from distant past may have little value to
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the current prediction task (this is in fact confirmed in our data analysis).

The limitation of not being able to expand vertically to the past motivates us to look

horizontally across drugs to increase the amount of data available to improve the forecast

accuracy. However, it is not straightforward to determine how many and which drugs

to include when learning across drugs to balance the tradeoff between the sample size

and sample quality. Hence, we explore three different grouping schemes to enhance

performance of the forecasting models. The first scheme uses a product segmentation

approach commonly used in the industry based on demand volume and volatility. The

second scheme uses product-based characteristics based on pharma domain knowledge.

The third scheme requires no knowledge of the data and uses a time-series clustering al-

gorithm to group the drugs. In addition, to investigate the value of downstream data, we

also include inventory data as well as the information of the supply chain structure to

explore whether and how much such information would help improve the model perfor-

mance.

To execute our model framework, we work a large datasets from a top drug manufac-

turer whose name is hidden for confidentiality. The dataset includes weekly demand and

inventory information extracted from EDI 852 over a 10-year period (2007-2017) for 133

unique products of this manufacturer represented as 133 NDCs, that are sold to 28 trade

partners (e.g., wholesalers), through their respective 247 distribution centers (DC). Using

this data, we develop a forecasting framework and various cross-drug training models

that combine machine learning with pharma domain knowledge to predict future demand

for each drug. The numerous design considerations pertaining to our framework (i.e., dif-

ferent machine learning algorithms to use, how to group drugs together, different levels

of aggregation of the data based on supply chain structure, how much time lags of his-

torical demand as well as inventory data is used) result in an extensive set of numerical

experiments.

In Section 4.1, we develop the cross-drug forecasting framework, describe the de-

tailed process for group drugs, introduce benchmarks, and discuss suitable forecasting
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models and implementation details to be used with the data. In Section 4.2, we report our

results on the benefit of cross-drug training, the benefit of grouping, the value of down-

stream inventory information, and the value of supply chain structure information. We

also include robustness checks in terms of the models used, forecasting horizons, and

the benefits of our model framework on inventory performance. In Section 4.3, we provide

possible explanations for the evident effectiveness of RNN based on domain knowledge

and additional numerical analyses. Section 4.4 concludes the observations and insights.

4.1 Model Development

Recall that each NDC has unique characteristics such as active ingredients, dosage form,

route of administration, etc. Thus, there should exist no meaningful correlation structures

between most drugs’ time-series, and one cannot expect to be able to predict future de-

mands for one drug using past demands of other drugs. Yet, exploratory analysis (such

as the demand spikes in Figure 3.3) suggests that drugs may have some similar demand

patterns. Therefore, we design to leverage their combined data to train a single model to

capture these patterns. In what follows, we develop our model framework. Section 4.1.1

introduces notations for our demand forecast models and provides the general form of our

cross-drug forecast model. Section 4.1.2 proposes our grouping schemes for cross-drug

training. Section 4.1.3 discusses the choice of model (VAR and various machine learning

models) and proposes to use recurrent neural network. Section 4.1.4 presents baseline

models and Section 4.1.5 provides the implementation details.

4.1.1 Cross-drug Training

The objective of our model is to predict the total demand at the manufacturer from all DCs

for each of the 133 NDCs . We first introduce the following important notations for the

forecasting models.
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• I : set of all NDCs in the dataset, i.e, I = {1, . . . , I}.

• J : set of all distribution centers in the dataset, i.e, J = {1, . . . , J}.

• K : set of all trade partners in the dataset, i.e, K = {1, . . . ,K}. Further, the set of all

DCs from trade partner k will be denoted as Jk, k 2 K, and we have
P

k2K Jk = J.

• xi,j,t: order quantity of drug i 2 I from distribution center j 2 J to manufacturer at

time t

• yi,j,t: inventory of drug i 2 I in distribution center j 2 J at time t

• Xit: cumulative order quantity of drug i 2 I from all DCs to manufacturer at time t,

i.e., Xit =
P

j2J xi,j,t

• Yit: cumulative inventory of drug i 2 I across all DCs at time t, i.e., Yit =
P

j2J yi,j,t

• p, q: number of time period lags for order quantity and inventory, respectively, i.e,

the most recent p weeks of order quantity and q weeks of inventory will be used in

the forecasting model

• h: forecast horizon, measured in weeks

• X̂i,t+h: predicted cumulative order quantity for drug i 2 I at time t+h, made at time

t, i.e., predict at time t the demand in h periods in the future

When including the past p weeks of order quantities of all drugs in set I and q weeks

of corresponding downstream inventory information, we design a cross-all-drug training

model as follows

X̂i,t+h =f(Xi,t, · · · , Xi,t�p+1, Yi,t, · · · , Yi,t�q+1), 8i 2 I (4.1)

where the forecast of drug i is obtained from drug i’s features only, but the mapping

f is learned from data of all drugs. While learning across drugs greatly increases the
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sample size hence provides a solution to the lack of data issue, we must also consider

the tradeoff between sample size and sample quality for advanced models: learning and

training across more “similar” drugs would potentially bring better sample quality. There-

fore, a more advanced cross-training model would first group drugs according to some

schemes, and build a forecasting model for these drugs cross-trained within each group.

This idea will be further explored below.

4.1.2 Grouping Schemes

The key question in cross-drug training is which drugs should be trained and predicted to-

gether. In this section, we propose three grouping schemes based on different rationales

including domain knowledge of the pharma industry.

Grouping by Demand Volume and Volatility The first scheme is based on demand volume

(average order quantity per NDC) and demand volatility (measured by coefficient of vari-

ation - CV). Industry has also used these two criteria to group drugs in various situations

(e.g., for product segmentation). Using the medians of demand volume and volatility, we

partition all NDCs into four non-overlapping groups using the respective medians, namely,

high volume-low volatility (HL), high volume-high volatility (HH), low volume-low volatility

(LL) and low volume-high volatility (LH). Summary statistics regarding order quantities

(EU) of each group are summarized in Table 4.1.

Table 4.1: Order quantities (EU) in four groups based on volume/volatility
Group Name Mean Median CV. Min Max # of NDCs # of Obser.

HL 393,084 29,160 3.13 0 25,086,100 55 2,434,628
HH 179,289 3,784.04 3.22 0 9,064,080 11 167,734
LL 3,124 1,200 1.91 0 145,920 11 354,526
LH 1,704 0 5.18 0 514,967 56 487,987

With these four groups, we build four models, one for each group. Each model is

trained using only the information from the drugs belonging to that specific group. The
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model is shown in Eq. (4.2) as follows

X̂(g)
i,t+h = fV V (X(g)

i,t , X
(g)
i,t�1, · · · , X

(g)
i,t�p+1, Y

(g)
i,t , Y (g)

i,t�1, · · · , Y
(g)
i,t�q+1), g 2 {HL,HH, LL, LH},

(4.2)

where X(g)
i,t and Y (g)

i,t stand for the order quantity and inventory information of drug i in

group g at time t, respectively, that our model will include. The forecast of drug i is still

obtained using drug i’s features but the mapping fV V (with “VV” for volume and volatility)

is now learned using the data of the drugs in the same demand volume and volatility

group.

Grouping by ATC code The second way we propose to group the drugs is through ATC

code. Recall that drugs in the same ATC code have similar therapeutic, pharmacological,

and chemical properties. Thus, we can think of ATC Code as a product-characteristics

criteria while volume and volatility as a product-demand criteria to segment the drugs.

Drugs in our dataset belong to 6 major ATC code groups, namely, A, B, C, G, J and N,

where A refers to Alimentary tract and metabolism drugs, B refers to blood and blood

forming organs, C refers to cardiovascular system, G refers to genito-urinary system and

sex hormones, J refers to anti-infectives for systemic use, and N refers to nervous system

[88]. Summary statistics of order quantities from NDCs in each ATC code group are

provided in Table 4.2. Observe that some ATC groups havemore NDCs and observations

than others. The cross-drug training model by ATC code can be expressed as

X̂(�)
i,t+h = fA(X(�)

i,t , X
(�)
i,t�1, · · · , X

(�)
i,t�p+1, Y

(�)
i,t , Y (�)

i,t�1, · · · , Y
(�)
i,t�q+1),� 2 {A,B,C,G, J,N},

(4.3)

where X(�)
i,t and Y (�)

i,t stand for the order quantity and inventory information of drug i at

time t, respectively, with ATC code �. Now, the mapping fA (with “A” for ATC codes) is

learned using the data of drugs in the same ATC code group.

Grouping by clustering algorithm So far, we have proposed a demand-based approach
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Table 4.2: Order quantities (EU) in ATC code groups
Group Name Mean Median CV. Min Max # of NDCs # of Obser.

A 72,223 7,200 2.66 0 2,930,385 44 568,582
B 416,259 4,881 2.07 0 6,558,360 12 344,521
C 137,728 6,443 2.31 0 4,741,848 18 840,984
G 2,351,915 130,375 2.07 0 25,086,100 7 234,391
J 31,472 3,600 2.59 0 857,400 26 64,229
N 88,855 2,100 4.08 0 9,064,080 17 768,342

recognized by industry and a product-based domain knowledge approach to create fea-

tures to group NDCs for cross-drug training. If such domain knowledge is not readily

available, we propose to use clustering algorithms. Here, we use an unsupervised ma-

chine learning technique called K-means clustering on the drugs historical demand to

group the NDCs into K different clusters so that drugs in the same group are more sim-

ilar to each other than to those in other groups. In particular, we adopt the dynamic

time warping (DTW) algorithm [9] to measure the similarity between two demand time-

series. Essentially, DTW finds the optimal alignment between two drugs’ demand time

series, and thereby measures their shape similarity accordingly. Due to the magnitude

differences in the order quantities of different drugs, we normalize each time series (by

subtracting it by the respective mean and then dividing by the standard deviation) prior to

DTW computation.

Selecting the optimal number of clusters of drugs, K, requires a balance between the

clustering quality and the number of observations in each cluster. To do so, we use the

Davies-Bouldin index (DBI) as the clustering evaluation metric, defined as

DBI =
1

K

KX

i=1

max
j 6=i

✓
�i + �j
d(ci, cj)

◆
, (4.4)

where �i and �j are the intra-cluster distances of clusters ci and cj , respectively. Note

that an intra-cluster distance measures the average DTW distances of all pairs of drugs’

demand time series within the same cluster. In contrast, the inter-cluster distance d(ci, cj)
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measures the distance between the two clusters ci and cj , that is, the average DTW

distances between all pairs of drugs’ demand time series in which one is selected from

cluster ci and the other is selected from cj . The number of clusters K is selected so that

it has the lowest value of DBI, which indicates better quality for the respective clustering

performance. For our data, our approach results in five clusters. Table 4.3 provides the

summary statistics of order quantities of drugs in each cluster.

Table 4.3: Order quantities (EU) in the generated clusters
Cluster Index Mean Median CV. Min Max # of NDCs # of Obser.

1 225,470 4,000 6.42 0 25,086,100 20 851,298
2 961 0 11.19 0 514,967 18 86,908
3 161,985 10,274 2.52 0 5,469,480 32 1,137,336
4 3,744 46 3.91 0 453,570 27 392,932
5 529,288 61,560 2.17 0 13,720,620 36 976,401

The cross-drug training model by clustering can be expressed as

X̂()
i,t+h = fC(X()

i,t , X
()
i,t�1, · · · , X

()
i,t�p+1, Y

()
i,t , Y ()

i,t�1, · · · , Y
()
i,t�q+1), 2 {1, 2, . . . ,K},

(4.5)

where X()
i,t and Y ()

i,t stand for the order quantity and inventory information of drug i at

time t in cluster , respectively. The mapping fC (with “C” for clustering) is learned using

the data of drugs in the same cluster.

4.1.3 Machine Learning Models

With the groups obtained from the preceding schemes, we next develop the learning

model to predict future drugs’ demand in each group. As discussed, vector auto-regression

(VAR), a method used for multiple time-series forecasting, is not suitable in our problem

because in practice, it is recommended to use on a small number of time-series that are

correlated with each other [52]. This practical guideline clearly limits the applicability of

VAR to our dataset. Indeed, if we build a model to predict demand for 10 drugs using 8
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lags (2 months of data), there are 81 coefficients per VAR equation, giving a total of 810

coefficients to be estimated. Further, as noted before, VAR only captures linear relation-

ships.

We propose to use a ML algorithm to forecast drugs’ demand in a group. Since the

data exhibits non-linear patterns, we focus the discussion on non-linear methods, while

linear methods will be used as one of the baseline models (see Section 4.1.4). Among a

plethora of non-linear methods, there are three widely-used classes in the literature: sup-

port vector regression (SVR), random forest (RF), and neural networks. A basic structure

for neural networks is the fully connected neural network (FC). Next, we will give a short

description of these methods.

Linear Regression (LR) is the simplest machine learning algorithm to capture linear

patterns from the data. Compared with ES, which assumes the influence of historical

observations to future variable decays exponentially over time, linear regression is more

flexible. Furthermore, linear regression can incorporate different types of data, but re-

quires the mapping f (in Section 4.1.2) to be linear in the inputs. In our case, the re-

sponse variable is the prediction of drug order quantity, and the inputs are the historical

order quantities and possibly inventory information at the DCs. For example, if we want

to use drug i’s past p weeks order quantity to forecast its next week order quantity, the

linear model Li is shown in Equation (4.6):

Li : X̂i,t+1 = �i,1Xi,t + �i,2Xi,t�1 + · · ·+ �i,pXi,t�p+1 (4.6)

where �i = (�i,1,�i,2, · · · ,�i,p) are parameters or weights for each of the p periods. Both

the ES and linear models can only recognize linear patterns in time series. To further

explore nonlinear patterns, we need to use nonlinear models.

Random Forests (RF) is an ensemble learning method for both classification and

regression tasks. It constructs many decision trees at training time since a combination

of learning models help increase the overall result. Decision tree is a popular machine
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learning algorithm which can fit complex dataset. A decision tree starts from a root node

which includes all the training data. If the standard deviation of the data in the current node

is larger than the threshold, it builds a decision boundary for a feature. The boundary splits

the data into two subgroups and saves the subgroups in the child nodes. This procedure

is performed recursively for each node until the standard deviation of the data in the node

is lower than the threshold. Note that random forest is essentially a bagging algorithm, it

builds a large collection of trees and then average them, to help reduce the variance of

the estimated prediction function. To further prevent overfitting, tree pruning can also be

used to remove tree leads with high errors and complexity.

Support Vector Regression (SVR) is a non-parametric technique based on kernel

function. Using different implicit mappings with various kernel functions, one can trans-

form our data into the dual space, and find an optimum function to fit the data pattern.

Equation (4.7) shows how to apply SVR to our time series data.

X̂i,t+1 =
NX

n=1

(↵n � ↵⇤
n)G([X(n)

t , · · · , X(n)
t�p+1], [Xi,t, · · · , Xi,t�p+1]) (4.7)

whereX(n)
t is the nth training data at time t, ↵n and ↵⇤

n are two non-negative multipliers for

the nth training data, function G(.) is the kernel function. Linear kernel, Gaussian kernel

and Polynomial kernel are widely used kernel functions.

Artificial neural networks (ANN) have been used in time series forecasting problems

due to their effectiveness in capturing nonlinear patterns (see Hill et al., 1996 and the

references therein). In this dissertation, we explore two popular architecture of ANNs,

including a traditional fully connected neural network (FC) and a more modern structure

called recurrent neural network (RNN).

Fully Connected Neural Network (FC) is the basic architecture of ANNs with great

learning ability suited for many kinds of applications. In addition, FC without hidden layers

is reduced to the learning process of linear models. The input of our neural network is a
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vector:

[Xi,t, Xi,t�1, · · · , Xi,t�p+1, Yi,t, Yi,t�1, · · · , Yi,t�q+1]

and the output is a scalar, which is the prediction of the order quantity X̂i,t+1. The structure

of FC is shown in Figure 4.1. FC is also known as a feed forward neural network, indicating

the one-way flow of data from the previous layer to the next layer.

Figure 4.1: Fully connected neural network

To learn demand patterns such as the demand spikes with SVR and RF, the timing of

the spikes needs to be treated as categorical variables. However, mixed data of numeri-

cal and categorical data usually hurt the performance of both SVM and RF. In contrast, a

Recurrent Neural Network (RNN), a special type of neural network with memory cells to

enable tracking of short and long-term dependencies in the input, can potentially capture

hidden patterns well in our data. Note that RNN is particularly suitable for processing se-

quential data, e.g., time-series data [48], hence making it a great candidate. The structure

of RNN is schematically shown in Figure 4.2.

Each computation unit of RNN is called a cell. Different RNNs may have different

cell structures (LSTM, GRU, etc.), but their most crucial feature is that each cell’s outputs

have connections backward. Therefore, at each time step, the cell receives inputs as well

as its own output from the previous time step. As a result, a cell’s outputs are influenced

not only by the most recent input, but also by the entire history of past inputs. Further,
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Figure 4.2: Recurrent neural network

each cell implements a series of gates in which information can be passed on or forgotten.

This particular architecture makes it possible for RNN to explore the temporal dynamic

information from a time series [60]. In our demand forecasting context, the input of the

cell at period t is the order quantity and inventory at period t as well as the output of the

cell at period t� 1. The output is the prediction of order quantity at time t.

4.1.4 Baseline/benchmark models

Unfortunately we cannot obtain the company’s internal forecast (it is missing from the

data shared with us). Hence, we select the baseline based on the reported benchmarks

in the literature (Table 1), the current practice in the industry (Section 1.1), and the results

from the mentioned questionnaire about the current demand forecasting practices (Sec-

tion 1.2). These sources converge to the forecasting methods of moving average (MA),

linear regression (LR), and simple exponential smoothing (ES). Hence, to be inclusive

and conservative, we include all three (MA, LR, ES) and choose the best out of the three

as our baseline models. Further, to make sure that the state-of-the-art baseline models

are used, we improve the aforementioned simple baseline models (e.g., ES models) by

utilizing the innovative state space model developed by Hyndman and Athanasopoulos

[52], which include 30 separate models. Note that these sophisticated models were de-

veloped to automatically forecast demands for thousands of drugs. Each model has an

observation equation and transition equations, one for each state (level, trend, seasonal)
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with additive or multiplicative errors. The ETS forecast package in R, implementing the

above model, automatically chooses the most appropriate ES method as well as the op-

timal parameters for the forecasting task. ETS model empirically provides slightly more

accurate forecasts than ARIMA [52], which is hence not selected as one of the bench-

marks.

While the aforementioned baseline models help us understand the value of our pro-

posed cross-drug forecasting approach compared to the current demand forecasting prac-

tices in the pharma industry, we also would like to validate the performance and robust-

ness of RNN, compared to other machine learning algorithms, i.e., linear regression (LR),

support vector regression (SVR), and random forrest (RF). Hence, we report the perfor-

mances of thesemodels as well for the completeness of the study, as robustness checks.

4.1.5 Implementation Details

Time lags. To estimate the future order quantity, we use past weeks’ information (e.g,

the previous p weeks’ historical demand to the manufacturer and/or q weeks’ inventory

information). We test different time lags p, q = 1, 2, . . . and choose the best performing

combination of p and q values for eachmodel via cross-validation. For instance, whenever

a model uses inventory information, we test all combinations of time lags for order quantity

(p = 1, 2, . . . , 10 weeks) and inventory information (q = 0, 1, . . . , 10 weeks) and report the

best one. Thus, in total, we test 110 combinations for each model.

Time-series Cross-validation. To ensure a model robustness across different time pe-

riods, its performance is measured using the time-series cross-validation technique [52].

In particular, we use three consecutive years as the training set and the fourth year as

the test set. Within each training set, we perform cross-validation by using a rolling fore-

casting origin. That is, we use the observations in a rolling window to train the model

and the observation outside the window to validate. In each cross-validation round, we

compute the accuracy metrics and select the model parameters that achieve the best
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performance on the test set. This time-series cross-validation procedure for model eval-

uation is suited to time-series data since serial correlation and potential non-stationarity

may exist [8]. When available, we also include p weeks of data before the start of the

training set time to ensure all the training samples will have the right inputs. For example,

suppose the training set is from 2008 to 2010. We include in the training set the last p

weeks’ order quantities at the end of 2007 to predict the order quantity for the first week

in 2008. Generation of the training and test set is demonstrated in Figure 4.3.

Figure 4.3: Training set and test set

Using the processing methods described above, we create a data matrix for each

training and test set. Since we have records of I drugs in a given three years, and there

are k weeks in these three years, we want to use the past p weeks of order quantity and

q weeks of inventory data to predict the order quantity for the next week. As a result, we

obtain an Ik⇥(p+q+1)matrix. The first column of this matrix contains the order quantity

to be predicted, labeled as the response variable.

Parameter Tuning. In RNN, there are several hyperparameters to be tuned, e.g., the

number of neurons, the number of layers, learning rate, batch size, etc. We also need to

decide the suitable number of lags used in themodel. This can be done using the standard

grid-search and cross validation methods outlined above. At the end of this process,

we will obtain the optimal set of hyperparameters to forecast demand. In particular, p

and q can vary from 1 to 10, the number of neurons ranging from 100 to 1000 in each

cell, initial learning rate ranging from 1e-4 to 1e-1, batch size ranging from 24 to 26, the

number of epochs ranging from 100 to 300. Regarding the optimizer for RNN, we use
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the adaptive moment estimation (Adam) optimization algorithm, which is known to work

well in most practical applications, with the exponential decay rate for the first moment

estimates ranging from 0.9 to 0.999, and the second moment estimate set at the default

value of 0.999. The L2 regularization parameter ranges from 10�3 to 10�1.

Evaluation Metrics. Note that the popular mean absolute percentage error (MAPE) can-

not be used for our dataset due to the possibility of zero demands. Thus, we use nor-

malized mean square error (NMSE), normalized mean absolute error (NMAE) and bias to

evaluate our models’ performance. Normalization is used to facilitate comparison across

different models and different NDCs. For a thorough review of forecast accuracy mea-

sures [53]. In reporting the forecasting accuracy, for a given forecasting horizon (e.g., 1

week), we evaluate the forecasting accuracy for each group by taking the average across

all drugs in that group. For most of the models we report results for forecasting horizon

of 1 week, with the robustness check of the forecasting horizon varying from 1-8 weeks

in Section 4.2.6.

4.2 Results and Discussion

This section reports results of our proposed framework in terms of benefit of cross-drug

forecasting, benefit of grouping drugs, value of inventory information, value of supply

chain structure information, and their implications in the pharma demand forecasting con-

text. We then conclude with a few robustness checks.

4.2.1 Performance of Baseline Models

As discussed, the selected baseline models represent the state-of-the-art forecasting ap-

proach in the pharma industry. In this section, we first compare their performance against

the company’s internal forecasts, which are only available from January 2012 to March

2016. Table 4.4 presents the performance measures, along with the respective 95% con-
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fidence intervals, of the internal forecasts in comparison with the baseline models, i.e.,

moving average (MA), exponential state-space models (ES), and linear regression (LR).

Table 4.4: Forecasting bias and accuracy measures of the baseline models vs. internal forecasts

The numerical results in Table 4.4 clearly show that the baseline models clearly out-

perform the company’s internal forecasts across different accuracy measures. This also

confirms the soundness in our (conservative) choice of the baseline models. Due to the

superior performance of the baseline models against the company’s internal forecasts, for

the remainder of the computational study, we only report the performance of the baseline

models.

4.2.2 Benefit of Cross-drug Forecasting

Table 4.5 presents the performance measures of the cross-all-drugs training models in

comparison with the baseline models, i.e., moving average (MA), exponential state-space

models (ES), and linear regression (LR). None of the baseline models use cross-drug

training, i.e., it builds one model for each drug.

Table 4.5: Forecasting bias and accuracy measures of cross training models using all drugs

The numerical results in Table 4.5 show that, except for VAR, cross-drug training

is beneficial across all performance metrics, and RNN performs the best. In general,

cross-drug training with more advanced models gives better results. In contrast, using
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cross-training on all drugs with just simple models like LR, or even SVR do not give much

improvement. With RNN’s performance significantly exceeding that of the linear models,

this result indicates that RNN is able to pick up some nonlinear patterns. The other non-

linear models do not perform well on the dataset, possibly because RNN is better suited

for time-series data [48], as we mentioned. Indeed, our analysis later shows that RNN is

the only method that can efficiently capture demand spikes (Section 4.3). As previously

discussed, VAR is not suitable for the cross-drug training we propose to do. Indeed, its

performance is significantly worse than even those of the baseline models (without cross-

training); and thus, in the remaining analysis, VAR is not further considered.

While cross-all-drugs forecasting increases the sample size, hence brings good im-

provements for some ML models, we next see how grouping the drugs and building a

separate model for each group (i.e., decrease the sample size for each model while in-

creasing the sample quality) could further improve the forecasting performances using

ML models.

4.2.3 Benefit of Grouping Drugs

In reporting the results, the suffix “4” indicates grouping by the four volume/volatility cat-

egories, “ATC” by ATC code, and “DTW” by clustering. To facilitate comparison between

competing methods, we only report the best performing baseline model’s performance

measures and percentage improvement of cross-drug training models over that of the

best baseline. We use a dash whenever a model is worse than the baseline. Further, for

easy exposition, we only report the performance of LR and RNN and move those of other

ML models (which are all inferior to RNN) to Appendix. For brevity, we also move “bias”

to Appendix.

Tables 4.6 and 4.7 show the benefit of grouping by demand volume/volatility and by

ATC, respectively. The tables show that the performance of RNN is significantly better

than that of LR and in general, both LR and RNN benefit from grouping. For example,
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improvement in NMSE over the baseline for all drugs has increased from 5.4% to 7.2% for

linearmodels, and from 41.3% to 46.7% for RNNwhen grouping by demand volume/volatil-

ity. Further, only RNN achieves consistent improvement for all drug groups, especially

for the low volume drugs (Table 4.6). For different ATC code groups, RNN has signifi-

cant improvement for most of the groups. Even for the ATC group with smaller sample

size (group J), training within ATC groups shows improvement of 10.8%. This result sug-

gests that, in practice, if we can segment the drugs with similar proprieties with a sufficient

sample size, cross-product training using ATC code can offer great benefit.

Table 4.6: Improvement of cross-drug training models with grouping by volume/volatility

Table 4.7: Improvement of cross-drug training models with grouping by ATC code

Table 4.8 reports and compares different models’ performance under all three group-
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ing schemes. While both LR and RNN show benefits from using any grouping schemes,

RNN has superior performance. In particular, using clustering, over all drugs, RNN has

achieved 53% improvement in NMSE over the baseline compared to 41.3% improvement

when no grouping is used. Generally, all grouping schemes improves RNN performance

across different groups. In addition, while the performance of cross-drug training models

using different grouping schemes are generally comparable to each other for the high-

volume products, grouping helps RNN to particularly improve the low-volume products,

whose demands are typically very difficult to forecast. For low-volume products, grouping

by demand volume/variance performs the best, followed by grouping by clustering, then

ATC code.

Table 4.8: Improvement of cross-drug training models with grouping schemes

In summary, the reported results demonstrate that learning across drugs that are more

similar to each other helps to better detect common trends and patterns shared by the

drugs in that group. In other words, it is more effective when we build a machine learning

model for each group with more similar drugs and sufficient size. While grouping drugs by

volume/volatility or by ATC codes has better interpretability, grouping by clustering does

not require any knowledge of the data and also performs well.

60



4.2.4 Value of Downstream Inventory Information

This section reports the value of downstream inventory information in manufacturer’s de-

mand forecasting. Specifically, Table 4.9 shows RNN’s performance for models using

and not using inventory information for various grouping schemes. For performance of

LR and the other nonlinear models, we refer to Table 8 in Appendix. Generally, adding

inventory information almost always improves RNN’s performance on all groups regard-

less of the grouping schemes, except for the low volume and high volatility drugs when

using clustering. It is particularly helpful when grouping by demand volume and volatility.

In addition, we find that among the many lags we tried for the inventory information, q = 1

typically provides the best results. In other words, inventory information in the distant

past does not help, i.e., including the inventory information in the most recent period is

sufficient to garner most benefit.

Table 4.9: Improvement of cross-drug training models by using inventory information

4.2.5 Value of Supply Chain Structure Information

The goal of this study is to forecast the manufacturer’s demand for each drug. So far,

we do so by forecasting the aggregate demand from all DCs from all trade partners (TP).

Another approach is to forecast demand at the TP-level or DC-level and then aggregate

forecasts to obtain the total demand required for each drug at the manufacturer. With
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this approach, not only do we learn from other drugs, we could also learn from other DCs

or learn amongst the group of DCs belonging to the same TP. One can argue that this

forecasting approach can be beneficial because all DCs from the same TP must share

some similarities such as ordering patterns. However, predicting at the downstream level

also sees more volatility. Thus, it remains a question whether the benefit will overcome

the drawback. This approach falls under the category of group time series forecasting,

which is of significant interest to many researchers [51]. Thus, this section explores this

forecasting paradigm and provides detailed discussion on the findings.

At DC-level, a model for DC j with input consisting of last p weeks’ order quantity and

q weeks’ inventory is shown in Eq. (4.8) below

x̂i,j,t+h =fDC(xi,j,t, · · · , xi,j,t�p+1, yi,j,t, · · · , yi,j,t�q+1), (4.8)

where the mapping fDC is learned using the data of drugs at DC j. Note that some

DCs may not have sufficient training data, i.e., rank deficiency problem. For the DC-level

model, given there are 247 DCs, we should have 247 models, one for each DC. However,

as mentioned, due to the amount of data at the DC or TP level, the more complex machine

learning models can suffer from overfitting. Thus, we could only build DC-level model

using linear regressions. In particular, when building the DC-level model, we first train a

model across all DCs, dubbed LR_DC. If a specific DC is rank deficient, we will use the

predictions obtained from the LR_DC model for that DC.

To train the TP-level model, we use cross training among all DCs from the same trade

partner. The rationale is that DCs from the same trade partner share the similar supply

chain management system; hence, the ordering policies and inventory control of these

DCs are more likely to follow similar patterns. If DC j belongs to trade partner ', we can

use Eq. (4.9) with input of last p weeks’ order quantity and q weeks’ inventory to make
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predictions as follows

x̂(')i,j,t+h = fTP (x(')i,j,t, · · · , x
(')
i,j,t�p+1, y

(')
i,j,t, · · · , y

(')
i,j,t�q+1), (4.9)

where x(')i,j,t and y(')i,j,t are the order quantity and inventory of distribution center j which

belongs to trade partner ' at time t.

Tables 5-7 in Appendix compare the performances of the three different levels of mod-

els: the aggregate level, the TP level and the DC level. The results confirm that in general,

the performances of the models at the TP or DC level are no better than that from the ag-

gregatemodel across all metrics (NMSE, NMAE and bias). Given the amount of additional

effort it requires to run each TP-level or DC-level model, forecasting at these levels may

not be worthwhile unless each TP has a large number of DCs and each DC has a large

amount of data.

4.2.6 Robustness Check

Robustness of RNN’s performance. So far, we explored four machine learning mod-

els (LR, SVR, RF, FC) compared to RNN, in combination with three different grouping

schemes to predict future drug demands, with and without cross-drug information. All

findings confirm that RNN has significantly better performance in terms of its forecast

accuracy than the other ML models (see Appendix for complete results).

Robustness of forecasting horizon. Forecast horizon refers to how far in the future

we predict the demand. Figure 4.4 shows that, as expected, the forecast accuracy for

all models decreases as we forecast further in the future (from 1 week to 8 weeks) be-

cause of higher uncertainty. This trend continues as the forecasting horizon goes beyond

8 weeks. However, regardless of the grouping schemes, cross-drug training with down-

stream inventory information consistently leads to significant forecast improvements for

all horizons.

Impact of RNN forecasting models on inventory performance. To further validate the
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Figure 4.4: NMSE of Cross Training Models with RNN Over Prediction Horizon

benefits of our forecast models, we roughly estimate its respective service level (mea-

sured by the average number of weeks with stockout per year), the average annual stock-

out costs, and the average annual inventory cost (when the order-up-to policy is used for

inventory replenishment). The inventory cost computes the total value of inventory across

drugs. Table 4.10 shows that RNN with different grouping schemes significantly outper-

forms the baseline in terms of service level, stockout and inventory cost.

Table 4.10: Service level and inventory cost of RNN with different grouping strategy

4.3 Explanation of the Benefits of RNN

So far we have seen that RNN consistently outperforms other ML methods (LR is the

simplest MLmethod). In this section, we try to provide some insights into the effectiveness

of RNN over other methods for drug demand forecasting.
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First, previous explorations of drugs’ demand patterns suggest that many drugs demon-

strate demand spikes in January, June, and December (see Figure 4.5). Specifically, a

demand is considered to be a spike if it is three standard deviations above the annual

average demand. This phenomenon is closely related to the prevalent investment buying

behavior of the pharma distributors that is well-documented and studied in the literature

[101, 123]. Specifically, investment buying refers to the phenomenon where distributors

intentionally purchase large quantities of pharma products in anticipation of manufactur-

ers’ price increases in order to make profits by speculation on inventory. While exact

price increase dates for different drugs are uncertain, these price increases often occur

at the beginning, end, and/or in the middle of the year. Such timing may also reflect the

manufacturer’s incentive to get rid of inventory to meet financial/sales targets at certain

times of the year. Given the prevalence of such phenomena, a good forecasting model

should be able to capture such spikes.

Figure 4.5: Timing of Demand Spikes from Our Data

RNN is capable of capturing temporal feature, e.g., demand spikes, due to its special

design with memory cells that can remember distant past. Figure 4.6 shows the weekly

spikes distribution in different months from the data and from the preditions using RNN and

LR. If there are five weeks in a month, we merge the fifth week spikes into the fourth week.

Observe that demand spikes’ pattern generated fromRNN’s predictionsmatches well with

the ground truth. In using LR, we tried two models: with and without indicator variables,

which are added manually to capture the demand spikes in Jan, June and December.
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While LR’s predictions without indicator variables cannot capture the demand spikes in

June, LR with indicator variables is too aggressive in the way that many non-spikes values

are mistaken for spikes, which leads to its poor performance. On the other hand, RNN

predictions ”mimic” the ground truth more closely.

Second, RNN outperforms the other models due to its ability to generate rather com-

plicated non-linear features through its hidden layers. To empirically validate this obser-

vation, we purposely help the competing methods (LR, SVR, RF and FC) with feature

engineering. That is, we extract new features from existing data and use them as ex-

tra inputs to enhance performance of these models. These features include exponential

moving averages of historical order quantities, the minimum, maximum, variance, max-

imum absolute deviation around the mean of order quantities, and the linear slope of

past order quantities computed for respective window sizes from 2 to 10. In total, there

are about 50 newly created features. However, even with the inclusion of engineered

non-linear features, other models cannot achieve similar performance as RNN. This ex-

periment confirms that RNN can capture many hidden demand patterns which are missed

by other methods. This helps to explain the better performance of RNN.

4.4 Conclusion

Demand forecasting drives many operational decisions and directly relates to companies’

financial goals. Demand forecasting in the pharma industry is especially critical to drug

manufacturers due to the unique features of the industry. However, the performance of

existing forecasting models in the pharma industry seems to have reached a bottleneck,

often limited by the amount of available data. At the same time, the availability of supply

chain channel data and the rise of machine learning technologies provide new opportu-

nities. Under this situation, in this dissertation, we propose a new forecasting framework

which leverages information across drugs regarding historical demand, and non-demand

channel information such as downstream inventory data as well as supply chain struc-

66



(a) Ground Truth (b) Predictions by RNN

(c) Predictions by LR (d) Predictions by LR using Indicator Variables

Figure 4.6: Spiked patterns captured by different forecasting models

ture information in demand forecasting. This framework not only helps us to gain a large

amount of data that allows for more complex machine learning models, but also pro-

poses various grouping schemes to guarantee sample quality for cross-drug training to

capture common hidden factors affecting demand, hence improving the forecasting ac-

curacy. Further, while analytical work has long shown the value of downstream inventory

information, we are the first to empirically capture such value in the cross-drug demand

forecast setting.

Using the dataset from the top drug manufacturer, we conducted extensive computa-

tional experiments to test our proposed forecasting framework. Our results provide some
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important insights:

• Training across drugs indeed improves demand forecasting accuracy, showing sig-

nificant benefits in forecast accuracy compared to the baseline.

• Cross-drug training is most effective for demand forecasting of low-volume drugs,

whose forecasts are the most difficult in practice, possibly because it helps the most

to alleviate the problem of the lacking of data.

• Cross-drug training with different grouping schemes based on product-specific infor-

mation, either by demand volume/volatility or by product-based domain knowledge

(ATC code in our case), is effective. On the other hand, clustering algorithms can

be a great option when lacking domain knowledge in grouping.

• RNN consistently performs the best, far exceeding the others ML methods because

(1) it can most effectively capture hidden factors such as demand spikes caused

by investment buying behavior and (2) its special architecture makes it suitable for

time-series data. While the latter is reported in many other studies in the literature,

we are the first to document the former in the pharma context.

• Downstream inventory information is indeed beneficial in demand forecasting; how-

ever, as expected, any distant past inventory information does not bring additional

benefit. This finding empirically confirms the value of downstream inventory infor-

mation as shown in the operations management literature, but also complements

that with more practical guidelines of what product groups’ inventory information to

collect.

• While more detailed supply chain structure information such as the downstream

DC-level or TP-level data is helpful to learn across DCs or TPs to capture possible

common hidden factors, its benefits do not seem to overcome the loss of accuracy

due to disaggregation. As a result, it may not be worthwhile to collect the more

detailed DC-level data for the aggregate demand forecasting.
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Our proposed forecasting framework (including grouping schemes, using downstream

inventory and supply chain structure information, in combination with the RNN models)

can be applied to other pharma manufacturers, wholesalers, and possibly other industry

based on its robust performances. Domain knowledge is important for making modifi-

cations to this framework when adapting to other industries. This industry-specific cus-

tomization could be a promising research direction since products in different industries

may have unique characteristics that can be extracted and incorporated into the fore-

casting framework to fully boost its performance. Finally, as leading pharma companies

(Pfizer, Sanofi, etc.) have already considered using AI platforms to help the drug devel-

opment process, these companies might also benefit from using AI applications in their

pharma supply chains (e.g., demand forecasting), as suggested by this research.
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Chapter 5

Generalizability of Cross-Series

Learning

The findings in Chapter 4 demonstrate that learning across similar time-series can be very

suitable for pharma demand forecasting. We can summarize the learning process across

products in pharma settings as follows: drug product attributes (e.g., ATC code) were

used to group time series and downstream inventory and supply chain structure informa-

tion was used to assist in demand forecasting. Compared with benchmark models, our

cross-series learning models achieved significant improvements for our pharma dataset.

In order to verify the generalizability of the cross-series methods to other industries, this

chapter aims to develop a generic framework that includes the entire cross-series learn-

ing process from data preprocessing, time series grouping to model training, testing, and

validation. First, we reproduced our experiments on the first pharma dataset, then vali-

dated our findings on the second pharma dataset, and finally confirmed the effectiveness

of the framework on a retail sales dataset.

In Section 5.1, we provide a detailed description of the proposed forecasting frame-

work. This framework is then tested on the second pharma dataset and the retail dataset,

and the obtained experimental results are presented in Section 5.2. Finally, a summary

of our observations is given in Section 5.3.
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5.1 Generic Cross-Series Learning Framework

In our forecasting framework, there are four steps from reading in the raw time series data

to obtaining the prediction results. First, it is necessary to perform data preprocessing op-

erations and generate synchronized features for each time series data. Then, according

to different grouping schemes, we divide the global time series into subgroups contain-

ing similar time series. Subsequently, we construct a machine learning model for each

group of time series, use a rolling forecast origin to validate performance and find optimal

hyperparameters through grid search. Finally, we postprocess the predictions generated

by the well trained models. The structure of our framework is illustrated in Figure 5.1.

Figure 5.1: Generic Cross-Series Learning Framework

Each step in the above process corresponds to a component in the framework. Next,

the operations included in each component are detailed.

5.1.1 Data Preprocessing

Raw time series data needs preprocessing before being used for training. The prepro-

cessing operations are different for various types of time series and applications. Our

framework implements some common operations including data selection, normalization,
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and deseasonalisation. The introduction and generation of additional features can also

be conducted at this stage.

• Data Selection

In practical applications, the underlying patterns often vary with time. Distant past data

is of little use for current predictions, and it may also distract the focus of learning from

the most recent patterns. Therefore, we try to select the latest data as training data,

similar to the drug demand forecasting (i.e., using the data of the last three years). For

clearly categorized time series, we can roughly select the related time series without

grouping schemes. For example, in the retail sales dataset, we can first choose similar

products sold in the same region (e.g., food sold in CA), and then perform amore precise

separation in the grouping stage.

• Normalization

Since we are training on different time series and the value ranges of observations

are not the same, normalization is necessary for some machine learning models (e.g.,

SVR). We use the mean value of the time series to normalize each observation, called

mean-scale transformation. Equation (5.1) shows this operation.

x̃i,t =
xi,t

1
T

PT
⌧=1 xi,⌧

(5.1)

where xi,t indicates the observation at time t of ith time series, T is the total number of

time points, and x̃i,t stands for the corresponding normalized observation.

It is worth noting that normalization does not always improve performance because it

may wash out features related to scale, such as drug volume in the pharma demand

forecasting problem. Hence, normalization is an optional operation that should be de-

termined according to the model’s performance.

72



• Deseasonalisation

According to the results of M competition [77], researchers found that machine learn-

ing models trained with deseasonalized data can generate more accurate predictions.

Nelson et al. [47] also compared the performance of neural networks trained with and

without deseasonalized time series data and concluded that neural networks also ben-

efit from deseasonalisation. However, studies show that neural networks are univer-

sal estimators of functions [31, 39, 50], capable of modeling complex and non-linear

patterns including seasonality [79, 111]. Moreover, in our pharma demand forecast-

ing experiments, even without deseasonalisation, RNN models still manage to capture

spikes at the beginning, middle, and end of the year, which proves the advantages of

neural networks in modeling intricate seasonal patterns. Nelson et al. [85] discuss the

necessity of time series deseasonalisation when using neural networks. They note that

the mathematical proof for the feasibility of neural networks for seasonality modeling is

only valid when there is no upper limit on the number of neurons. In practical forecast-

ing applications, limited data availability may not support large-scale neural networks

that can capture seasonal patterns. Deseasonalisation can also make neural networks

focus on learning other patterns, such as trends and cyclic movements. Therefore,

we implemented deseasonalisation operations in the preprocessing component by us-

ing the Seasonal and Trend decomposition using Loess (STL) methods developed by

Cleveland et al. [29]. STL decompose a time series into seasonal, trend and residual

components. Figure 5.2 shows an example of seasonal and trend decomposition of a

weekly retail sales time series with the period equal to 4 (monthly seasonality).

After decomposition, we recompose the trends and residuals as deseasonalized inputs.

Since cross-series learning can help overcome the data limitation when constructed

large scale neural networks, the benefits of deseasonalisation are not always obvious.

Like normalization, the usage of deseasonalisation is also optional depending on the

application and model performance.
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Figure 5.2: Seasonal and trend decomposition of retail sales

• Additional Features Generation

For synchronized digital information (e.g., inventory information in the pharma demand

dataset and price information in the retail sales dataset), we can import them directly

as additional features. These features may also need preprocessing, such as normal-

ization. For non-synchronized information, interpolation or sampling is necessary to

maintain synchronization with the original time series. Non-digital information should

be mapped to corresponding digital values, such as indicators for special events. If

there is no additional information, the time series itself can be used to generate useful

features. From the sub-series in a sliding window before each observation, features

can be obtained such as exponential smoothing moving average, maximum value, min-

imum value, standard deviation, linear-gradient, coefficient of variation, etc. Seasonal

components and trend components generated by STL can also be used as new fea-

tures.
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5.1.2 Time Series Grouping

To avoid time series with widely different properties from interfering with each other and

to balance the tradeoff between sample size and sample quality, the global time series

is separated into subgroups containing similar time series. There are two types of met-

rics used to measure the similarity of time series. One is from the domain knowledge of

corresponding applications, and the other is based on time series clustering. Both met-

rics have their advantages. Grouping schemes based on domain knowledge are more

convenient, intuitive, and interpretable. Schemes based on time series clustering can

be applied to a wide range of time series and do not require additional information. In

the pharma demand forecasting experiments, two types of grouping schemes achieved

comparable improvements, and accordingly, the type of grouping scheme depends on

the model’s actual performance.

• Grouping with Domain Knowledge

Cross-series learning is based on the assumption that the related time series may have

the same behavior patterns. In the product prediction environment, the most intuitive

grouping standard is product property, such as medicines to treat the same disease,

products of the same type, and clothing of the same style. If the product classification

information is available in the data, for example the ATC code in the pharma demand

dataset and the department id in the retail sales dataset, we can directly use them to

group the time series in the data selection stage. Otherwise, there are conventional

segmentation methods based on time series statistical features, including average, co-

efficient of variation, etc. For example, in Figure 5.3(a), drugs are grouped according to

the order quantity volume (i.e., average) and volatility (i.e., coefficient of variation) and

in Figure 5.3(b), food products are divided based on their average sales and prices.

• Grouping with Time Series Clustering

For general prediction tasks that lack domain knowledge, we can group time series by
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(a) Grouping by volume and volatility (b) Grouping by average of sales and prices

(c) Clustering by volume and volatility (d) Clustering by average of sales and prices

Figure 5.3: Grouping by time series statistical features

using clustering approaches. Specifically, we constructed a symmetric distance matrix

whose elements correspond to the dissimilarity of each pair of time series sample and

then input the distance matrix into the clustering algorithm. There are two approaches

to compare the similarity between time series. The first approach is to generate a fea-

ture vector for each time series, that is, to map each time series to a point in the feature

space [5]. Still taking the volume and volatility of drugs and the sales and prices of retail

goods as examples, Figure 5.3(c) and Figure 5.3(d) show the clustering results of K-
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means on pharma and food products. Grouping schemes based on clustering optimize

the similarity of time series within the group, but interpretability is worse than schemes

based on domain knowledge. Hyndman et al. [55] proposed features for capturing time

series dynamics, including strength of linearity, strength of trends, strength of season-

ality, first order of autocorellation, etc. Another approach is to use the nature of the time

series itself instead of any handcrafted features. The most common method is to aver-

age the Euclidean distance of the observations at the corresponding positions between

the two time series. Moreover, there are other time series for oriented distance, such

as dynamic time warping distance (DTW) [95], Hausdorff distance [93], Gower distance

[43], and symmetric segment-path distance (SSPD) [10]. One problem with the sec-

ond approach is that the time series may contain long runs of missing values. Figure

5.4 illustrates our solution, which is to estimate the average of distance between the

overlapping segments (i.e., red parts) in the time series.

Figure 5.4: Estimate time series distance with missing values

In addition to K-means, we also use Density-Based Spatial Clustering of Applications

with Noise (DBSCAN) [62] and Hierarchy Clustering Analysis (HCA) [91] clustering al-

gorithms implemented by Matlab.

5.1.3 Cross-Series Training

After grouping, we start to train the machine learning models for each subgroup of the

time series. First, we transform all inputs into a data matrix that meets the requirements

of different types of machine learning models. Next, a machine learning model is built

based on predefined hyperparameters. Finally, the best performing models are chosen
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and used to generate predictions.

• Generation of Data Matrix from Multiple Time Series

The method for generating the data matrix is a technique called rolling forecast origin

[112]. Figure 5.5 depicts the procedure of using a rolling forecast origin to create a data

matrix from multiple time series. As shown in the figure, two types of time series (i.e.,

white and blue) represent two input features. The first feature (i.e., white) is also the one

to be predicted. The windows (i.e., the red frames) with different sizes roll along with

the two types of time series respectively. The last position of each window is called the

forecast origin. Each time a window moves, a sample at the current forecast origin is

generated. Observations in the window are the predictor values, and the response value

(i.e., grey and dark blue) is right after the forecast origin. By concatenating the predictor

values generated from the two types of time series at the same forecast origin, we get

the predictor matrix (i.e., X). The response values from the first time series constitute

the response vector (i.e., y). Finally, the data matrices generated from the time series

(i.e., TS1, TS2, etc.) in the same subgroup should be combined as the final data matrix.

Figure 5.5: Rolling forecast origin

The data matrix generated in Figure 5.5 can be used as input for linear regression,
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support vector regression, random forest, andmultilayer perceptron. However, the input

matrix of RNN uses another method to concatenate the samples with different features,

as shown in Figure 5.6.

Figure 5.6: Data Matrix of RNN

• Machine Learning Models and Hyperparameters

In the pharma demand forecasting problem, cross-series learning improves the predic-

tion accuracy of machine learning models, including linear regression, support vector

regression, random forest, fully connected neural network and recurrent neural network.

In the generic framework, we formalize these machine learning models and the bench-

mark models (e.g., exponential smoothing and moving average) into a unified training

process. First, a model is built based on predefined hyperparameters, then the data

matrix is generated by rolling forecast origin to train the model, and finally, model per-

formance is evaluated, and the trained model is saved for future use. The parameters

shared by all the models are the number of time lags, forecast horizon, input features,

output (predicted) feature, path to save the model, etc. Additionally, there are parame-

ters for training neural networks, such as learning rate, batch size, number of epochs,

etc. Table 5.1 lists the parts of the essential hyperparameters owned by each model
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implemented in our framework. The open-source Python libraries that we used to im-

plement each machine learning model are attached after each model’s name.

Table 5.1: Important hyperparameters of different machine learning models

• Hyperparameters Tuning

The parameter selection process is performance-driven. Model performance should be

evaluated with various possible parameter combinations to obtain the optimal hyperpa-

rameters. An automated grid search pipeline was implemented for this laborious task:

(1) write the tuning parameters and their ranges into a configure file, (2) recursively

traverse all the parameter combinations, (3) build and train a model based on the pa-

rameters, (4) record the out of sample performance for the model, and (5) select the

best performing model and corresponding parameters.
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5.1.4 Postprocessing

Postprocessing mainly performs reverse preprocessing operations on the prediction re-

sults. For example, if we use deseasonalisation in the preprocessing stage, it is necessary

to recompose the seasonal components with the predictions. Then the results should be

converted back to the original scale if we apply the mean-scale transformation to the time

series.

Our python library of generic cross-series learning framework is in github repository:

https://github.com/zxdan523/CrossSeriesForecast.

5.2 Experiments and Results

5.2.1 Validation on the second pharma dataset

To further validate the performance of our proposed forecasting framework, we tested the

proposed cross-drug forecasting models on a second dataset from a different manufac-

turer using the same forecasting model framework and cross-validation procedure. This

dataset includes all transactions over the period from Jan 2011 to Dec 2017 between a

drug manufacturer and its trade partners’ DCs, collected weekly for 112 unique NDCs via

5 TPs and 73 DCs.

Table 5.2 clearly shows our framework is indeed beneficial, VAR is not a suitable

method of choice, and RNN has the best performance across different accuracy metrics.

Table 5.2: Forecasting bias and accuracy measures of cross training models using all drugs
(second dataset)
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Table 5.3 confirms the superior performance of RNNacross different grouping schemes

(particularly grouping by demand volume/volatility and clustering), which is consistent with

our previous observations in the first dataset. For the counterparts of information in Ta-

bles 4.6 and 4.7, refer to Appendix. Table 5.4 verifies the benefit of downstream inventory

information in pharma demand forecasting.

Table 5.3: Improvement of cross-drug training models with grouping schemes (second dataset)

Table 5.4: Improvement of cross-drug training models by using inventory information (second
dataset)

The above results show that our model framework works well and major insights hold

true to the second dataset. This, together with our discussion and justification of the

models we choose (Section 4.1) as well as the possible explanation of the effectiveness

of the RNN models (Section 4.3), provides evidence of the generalizability of our model

framework and results.
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5.2.2 Validation on the retail dataset

To ensure that the cross-series learning method can be extended to other industrial prod-

ucts, we test our generic framework onWalmart retail sales dataset. The dataset contains

weekly sales and weekly prices of 216 food products from 10 Walmart stores in Califor-

nia from 2011 to 2016. The generic framework completes the entire process from data

preprocessing, model training to performance evaluation.

In the preprocessing stage, we use three consecutive years data as the training set

and the fourth year data as the test set, as we did with the pharma demand dataset in

Section 4.1.5. Therefore, there are three sets of training data with test year from 2014

to 2016. We applied mean-scale transformation and deseasonalisation on the time se-

ries. According to the numerical experiment, deseasonalisation indeed accelerates the

convergence of RNN.

We use three grouping schemes to group the food products.

Grouping by sales volume and volatility. The first grouping scheme is based on the

same criteria as pharma product segmentation, which is using the volume and volatility

of product sales/demands. We retain the drug grouping convention of dividing the time

series into four groups: HL, HH, LL, and LH. The statistics regarding product sales of

each group are summarized in Table 5.5

Table 5.5: Sales in four groups based on volume/volatility
Group Name Mean Median CV. Min Max # of products # of Obser.

HL 17.34 11.00 1.36 0.00 247.00 68 18,632
HH 13.04 7.00 1.49 0.00 230.00 40 10,960
LL 3.62 3.00 1.12 0.00 33.00 40 10,960
LH 3.34 2.00 1.27 0.00 95.00 68 18,632

Due to the lack of relevant domain knowledge, the remaining two schemes are based

on time series clustering.

Clustering by statistical features. The first clustering metric is the statistical features

that describe the dynamics of time series, includingmean, standard deviation, the strength
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of linearity, the strength seasonality, the strength of trend, and the first order of autocor-

relation [55]. We map each time series to a feature vector containing statistical feature

values and use the Euler distance between the two time series feature vectors to eval-

uate their similarity. The clustering algorithm we applied for statistical feature vectors is

K-Means. As described in Section 4.1.5, we cluster the sales series into three groups by

exploring the elbow point of the Davies-Bouldin index (DBI) curve. Table 5.6 summarizes

the statistics of product sales in each cluster.

Table 5.6: Sales in three clusters based on statistical features
Group Name Mean Median CV. Min Max # of products # of Obser.
STAT_1 5.24 4.00 1.20 0.00 95.00 174 47,676
STAT_2 56.06 55.00 0.74 0.00 247.00 10 2,740
STAT_3 18.75 16.00 1.01 0.00 192.00 32 8,768

Clustering by time series distance. The second clusteringmetric is dynamic time warp-

ing (DTW) distance, which is used to evaluate the shape similarity of two time series [95].

We use DBSCAN and the DTW distance matrix to cluster the time series. By balancing

the clustering quality (i.e., DBI) and sample size in each clusters, we get two groups of

time series. The statistics of product sales in each cluster are summarized in Table 5.7.

Table 5.7: Sales in two clusters based on dynamic time warping distance
Group Name Mean Median CV. Min Max # of products # of Obser.

DTW_1 3.44 2.00 1.21 0.00 95.00 118 32,332
DTW_2 15.75 10.00 1.41 0.00 247.00 98 26,852

The retail dataset also contains the product weekly price which is now served as an

additional feature. Market observations and research literature reported that price fluctu-

ations may affect the sales of goods [124, 104].

On the retail sales dataset, we conducted experiments similar to drug demand pre-

diction and used the same naming convention: (model name)_(grouping scheme)_(ad-

ditional feature). Recall that STAT represents a grouping scheme based on statistical

features, and prc indicates that the model uses price as an additional feature. For exam-

ple, LR_STAT is a linear regression model with the grouping scheme based on statistical
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feature while RNN_DTW_prc is a RNN with the grouping scheme based on clustering

and uses price as an additional feature.

• Benefits of cross-products learning.

In the numerical experiments on the retail sales dataset, we also use moving aver-

age (MA), exponential smoothing (ES) and basic linear regression (LR) trained on single

time series as our baseline models. Advanced models including support vector regres-

sion (SVR), random forest (RF), fully Connected neural network (FC) and recurrent neural

network (RNN) are optimized by cross-series training. Cross-series linear regression is

used as a comparison reference. As mentioned, Vector Autoregression (VAR) also uti-

lizes cross-series training, but instead of making the time series share one temporal vari-

able, it builds an independent temporal variable for each time series. Table 5.8 compares

the performance of our cross-series learning models with VAR and the baseline models.

Table 5.8: Forecasting bias and accuracy measures of cross training models using all food prod-
ucts

VAR also does not apply to retail dataset settings. Before applying cross-series learn-

ing, we observe that the performance of advanced models (such as SVR, RF, and neural

networks) is comparable to or even worse than basic linear regression without cross-

series learning. This situation can be caused by severe overfitting problems from using

more advanced models. From Table 5.8, we can see that apart from VAR, all cross-

series models have achieved significant improvements, especially RNN. Therefore, for

retail sales forecasting problems, data limitations remain to be a bottleneck for adopting

the more advanced models to help enhance sales forecasting performance.

• Global training v.s. group training

From the extensive numerical experiments on the two pharma datasets, we have no-
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ticed that if we directly train the model on the global time series, the prediction results of

many low volume and high volatility drugs will be inaccurate. One possible reason is that

the training process tends to satisfy samples that have a large impact on the loss function

(i.e., high volume products). However, even if the time series are normalized in advance,

the performance of the cross-series model on low volume products still has no improve-

ment. Even worse, normalization makes the training process lose focus on high volume

products, resulting in a decrease in the accuracy of high volume products. We believe

this is caused by products with different volumes and volatility following different behavior

patterns. Hence, the grouping scheme based on volume and volatility is proposed. To

facilitate discussion, we now refer to the model trained on the global time series as the

global training model, and the model trained on the subgroups as the group training

model. In the retail sales forecasting, we also compare the performance of the global

training model and the group training model based on volume and volatility in Table 5.9.

Table 5.9: Improvement of cross-products training models with grouping by volume/volatility

Table 5.9 indicates that global training is beneficial to both high volume and low volume

products. At the same time, the RNN model trained by the group has further improved

the NMSE of LL product sales forecasts from 59.64% to 71.68% and the NMSE of LH

product sales forecasts from 60.81% to 79.24%. Therefore, in the retail sales forecasting,

although low volume foods are not affected by global training like low volume drugs, they

still have the potential for further improvement.
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Group training optimize the sample quality to make the training process focus on the

temporal patterns shared by similar time series. For general purpose predictions without

domain knowledge, time series can also be grouped by clustering. In this case, the choice

of criteria for time series similarity will affect the final performance as will be seen in the

following discussion.

The first similarity considered is the dynamic characteristics of the time series. We

use a statistical feature vector to describe the dynamics of time series. Table 5.10 lists

the performance of the global training model and group training model for all products and

each cluster. By comparing the performance of the global training RNN model and the

group training RNN model on clusters, it can be seen that the STAT_1 with the largest

sample size benefits the most from the group training, and the accuracy of STAT_2 de-

teriorates due to the small sample size. This observation also exposes the problem of

clustering-based grouping, that is, uneven sample size distribution. Clustering can gen-

erate subgroups with high similarity, but it will also lead to an insufficient sample size of

individual groups.

Table 5.10: Improvement of cross-products training models with clustering by statistical features

Another clustering criterion is the similarity of time series shapes which is discussed

in Section 4.1. In this method, we balanced the clustering quality and sample size. Table

5.11 presents the performance of the global training model and group training model for

all products and the two clusters(DTW_1 and DTW_2).
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Table 5.11: Improvement of cross-products training models with clustering by DTW

By using DTW based clustering, we obtain a group of time series (i.e., DTW_1) on

which the baseline model has poor performance. Compared with the globally training

RNN, the DTW based group training RNN significantly improves the NMSE on DTW_1

from 61.15% to 77.76%. In addition to equal-length time series, DTW distance can also

measure the similarity between the time series with different lengths or asynchronous

sampling rates. Another advantage of using the shape-based similarity is its ability to

compare various types of time series (e.g., physical trajectories).

The benefits of different grouping schemes for linear regression and RNN are shown in

Table 5.12. Compared with linear regression, the benefits of the cross-series RNN from

the grouping scheme are more significant. Group training RNN models have achieved

consistent improvements for low volume products on all metrics.

Table 5.12: Improvement of cross-products training models with grouping schemes

According to the above experiments, product segmentation information (i.e., volume

and volatility) is beneficial for time series grouping. In the absence of domain knowledge,
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clustering-based methods can also achieve comparable improvements but need to take

into account the number of samples in the group.

• Sales forecasting with price information

The results of using downstream inventory information for pharma demand forecasting

indicate that features with strong contemporaneous impact can help improve the accu-

racy of the forecast. For retail products, sales may be correlated with the selling price.

Therefore, we introduce price information as an additional feature. Table 5.12 shows

RNN’s performance for models using and not using price information for various grouping

schemes.

Table 5.13: Improvement of cross-products training models by using price information

The price information helps improve the forecasting accuracy of RNN models on low

volume products when grouping by volume & volatility and DTW based clustering. More-

over, both the accuracy of RNN_STAT_prc on high volume low volatility products and

the accuracy of RNN_4_prc on high volume high volatility products benefit from price in-

formation across all metrics. In summary, using price information as an additional feature

achieves improvements for certain products.

5.3 Conclusion

In this chapter, we show the generalizability of cross-series learning and introduce our

generic cross-series learning framework. The framework includes all operations required

for cross-series learning into four components, which are: preprocessing, grouping, cross-
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series training, and postprocessing. To validate the performance of the forecasting frame-

work, we tested the cross-series learning models for pharma demand forecasting on the

second pharma demand dataset. The experimental results are consistent with the insights

obtained from the first pharma dataset. Afterward, we conducted extensive experiments

on a retail dataset using our generic cross-series learning framework. Based on the cross-

series model’s performance, we confirm the effectiveness of the generic framework and

obtain the following observations:

• Cross-series learning can overcome the data limitation of high dimensional time

series and enhance the performance of advanced models.

• Grouping by product volume and volatility is beneficial to sales and demand fore-

casting.

• Clustering can generate groups with similar time series but the sample size is un-

evenly distributed. The balance between group quality and the sample size is nec-

essary for grouping based on time series clustering.

• In the absence of domain knowledge, grouping by time series clustering can achieve

comparable improvements.

• The accuracy of group training RNN models on certain subgroups benefits from the

price information.

In summary, cross-series learning and grouping schemes are generalizable to the

forecasting problems in other fields.
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Chapter 6

Conclusion

High dimensional time series with a large number of zeros often appear in supply chain

demand, retail sales, etc. In industry, accurate and reliable prediction of high dimensional

time series is critical. Manufacturers need demand forecasts for supply chain planning;

power plants need energy consumption forecasts for resource allocation; retailers need

sales forecasts for business management, among others. However, sparse high dimen-

sional time series prediction faces three problems in practical applications: (1) simple

models fail to capture complex patterns, (2) insufficient data prevents us from pursuing

more advanced models, and (3) time series in the same dataset may have widely different

properties. These problems prevent the current prevalent methods in the industry from

providing reliable predictions, and theoretically successful advanced models fail to work

in actual use.

To overcome the challenges in the sparse high dimensional time series forecasting, we

started with a pharma demand forecasting problem, which predicts drug products future

demand by using their historical order quantity. We developed a cross-series learning

framework that trains a machine learning model on multiple related time series and uses

cross-series information to improve prediction accuracy. Cross-series learning allows us

to explore more advanced models, including support vector regression, random forests,

and neural networks. We adopted three grouping schemes based on domain knowledge
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and time series clustering to balance the tradeoff between sample size and sample quality.

We introduced the downstream inventory information as an additional feature to assist

demand forecasting. Compared with the benchmark models, our cross-series learning

models achieved significant improvements in pharma demand forecasting.

To verify the generalizability of cross-series learning, we tested the pharma demand

forecasting framework on another pharma demand dataset and obtained the observations

consistent with the insights from the first dataset. We developed a generic framework that

contains the operations required for cross-series learning from data preprocessing, group-

ing, cross-series training to postprocessing. Extensive experiments were conducted on a

retail dataset to validate the effectiveness of the generic cross-series learning framework.

We further confirmed the benefits of cross-series learning for advanced models, espe-

cially RNN. In addition to grouping schemes based on product characteristics, we also

use time series clustering to group time series without domain knowledge. The criterion

of clustering is the time series dynamic features and shape similarity. Finally, the price

information is introduced to support retails sales forecasting.

Experimental results provide us following insights:

• Cross-series learning overcomes the data limitations of high dimensional time series

and improves the prediction accuracy of advanced machine learning models.

• For product demand and sales forecasting, low volume products benefit the most

from cross-series learning, because the low volume products have more severe

data shortages than the high volume products.

• Cross-series training with different grouping schemes based on product-specific in-

formation, either by demand volume/volatility or by product-based domain knowl-

edge (ATC code in our case), is effective. In the absence of domain knowledge,

grouping by time series clustering can also achieve comparable improvements, but

the balance between cluster quality and the sample size is required.
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• Due to the unique feedback architecture, cross-series RNNs are always superior

to other machine learning models. Moreover, RNN can capture intricate non-linear

patterns, such as spikes in pharma demand. At the same time, cross-series learning

provides RNN with sufficient data to construct a deeper network with more neurons.

• Introducing features with a strong contemporaneous impact is indeed helpful for en-

hancing the prediction accuracy, for example, pharma demand forecasting benefits

from downstream inventory.

In this dissertation, we combine optimized cross-series learning technology with ad-

vanced machine learning models to generate accurate and reliable predictions for sparse

high dimensional time series. Our cross-series learning framework can be applied to

pharma manufacturers, wholesalers, and possibly other industries based on its robust

performances. The dissertation provides practical guidelines for executing such a frame-

work with corresponding domain knowledge. At the same time, our experimental results

can provide a reference for other academic researches related to sparse high-dimensional

time series.
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.1 Performance of Cross-drug Forecasting Models

Table 1: Forecasting bias and accuracy measures of cross-drug training models grouped by vol-
ume/volatility

Table 2: Forecasting bias and accuracy measures of cross-drug training models grouped by ATC
codes
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Table 3: Forecasting bias and accuracy measures of cross-drug training models grouped by DTW

Table 4: Benefit of inventory information

Note that the notation “LR_DC” means a linear regression model is built using data

from all DCs, while “LR_DC_each” means a linear regression model is fitted for each DC’s

data. Note that if we train the model using information across DCs within the same trade

partner, the second part will be “TP”, instead of “DC”. If we have “_inv,” that means we
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include inventory data in the training step.

Table 5: NMSE of cross-drug training models using supply chain structure
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Table 6: NMAE of cross-drug training models using supply chain structure

112



Table 7: Forecasting bias of cross-drug training models using supply chain structure
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Table 8: NMSE of cross-drug training models with inventory information
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Table 9: NMAE of cross-drug training models with inventory information
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Table 10: Forecasting bias of cross-drug training models with inventory information
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.2 Performance of Cross-drug ForecastingModels on the Sec-

ond Dataset

Table 11: Forecasting performance of cross-drug training models with grouping schemes

Table 12: Forecasting performance of RNN models with and without inventory information
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Table 13: Improvement of cross-drug trainingmodels with grouping based on volume and variance

Table 14: Improvement of cross-drug training models with grouping based on ATC code
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.3 Questionnaire of Pharma Forecasting Practices

1. Your organization is

2 Retailer/Pharmacy

2 Pharmaceutical distributor

2 Pharmaceutical manufacturer

2 Other, please specify:

2. Which group has primary responsibility for the demand forecasting process in your

[organization/division]?

2 Manufacturing

2 Supply Chain

2 Marketing or Sales

2 Finance

2 Multiple groups have responsibility for their own forecasting process

2 A functionally independent forecasting group

2 Other, please specify:

3. Which of the following best describes demand forecasts in your [organization/divi-

sion]?

2 Made by a statistical software package without involving human judgement.

2 Based on a statistical forecast, but adjusted by human judgement.

2 Based entirely on human judgment.

2 Other, please specify:

4. What statistical methods/models do you (or your software) use primarily for prepar-

ing forecast?

2 Moving average
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2 Exponential smoothing

2 Regression models

2 Machine smoothing

2 I don’t know

2 Other, please specify:

5. Does your statistical forecast model (software) incorporate the following information

into your demand forecasts?

2 Historical sales

2 Seasonality

2 I don’t know what goes into our statistical forecasts

2 Other, please specify:

6. a) If human judgement is involved in your demand forecast, how frequent is that?

2 Rarely (< 10% of the time)

2 Sometimes (10� 30% of the time)

2 Very often (30� 60% of the time)

2 Extremely often (> 60% of the time)

b) If human judgement is incorporated into demand forecast, to what extent does

human judgement incorporate the following information into your demand fore-

casts?

Not at all Some A great deal

Planned promotions 2 2 2

New product launches 2 2 2

Other, please specify: 2 2 2

7. How often are the demand forecasts generated?

2 Daily
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2 Weekly

2 Monthly

2 Quarterly

2 Yearly

2 Other, please specify:

8. How much historical data do you use for generating demand forecast?

2 Last 3 months

2 Last 6 months

2 Last year

2 Last 2 years

2 More than last two years

2 Other, please specify:

9. How far ahead do you generate your demand forecast?

2 One week

2 Two weeks

2 One month

2 Two months

2 Three months

2 Other, please specify:

10. Does your [organization/division] use the demand forecast in any of the following

decisions?
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Yes No Don’t know

Inventory orders 2 2 2

Capacity plans 2 2 2

Cash flow plans 2 2 2

Workforce plans 2 2 2

Production plans 2 2 2

Sales target 2 2 2

Demand/promotion plan 2 2 2

Other, please specify: 2 2 2

11. Demand forecasts can bemade directly for a hierarchical level, or they can bemade

indirectly by summing up lower-levels or breaking up a higher level. At which of the

following levels does your [organization/division] make demand forecasts directly?

Yes No Don’t know

SKU level 2 2 2

Customer level 2 2 2

Store level 2 2 2

Distribution center level 2 2 2

Regional level 2 2 2

National level 2 2 2

Product family level 2 2 2

Other, please specify: 2 2 2

12. More advanced models (e.g., machine learning) have been complained about their

interpretability (as compared to say, linear regression). While there has been much

progress in the interpretability of these models, does the following sentence reflect

your [organization/division]’s attitude toward these models? “As long as the more

advancedmodels demonstrate significant accuracy improvement (e.g.,> 10%), we

are open to using them.”

2 Yes
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2 No

2 Other, please specify:
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