
W&M ScholarWorks W&M ScholarWorks

Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects

2020

Design And Analysis Of Memory Management Techniques For Design And Analysis Of Memory Management Techniques For

Next-Generation Gpus Next-Generation Gpus

Haonan Wang
William & Mary - Arts & Sciences, haonan.wang07@gmail.com

Follow this and additional works at: https://scholarworks.wm.edu/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Wang, Haonan, "Design And Analysis Of Memory Management Techniques For Next-Generation Gpus"
(2020). Dissertations, Theses, and Masters Projects. Paper 1616444486.
http://dx.doi.org/10.21220/s2-e46y-k152

This Dissertation is brought to you for free and open access by the Theses, Dissertations, & Master Projects at
W&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an
authorized administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.

https://scholarworks.wm.edu/
https://scholarworks.wm.edu/etd
https://scholarworks.wm.edu/etds
https://scholarworks.wm.edu/etd?utm_source=scholarworks.wm.edu%2Fetd%2F1616444486&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.wm.edu%2Fetd%2F1616444486&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.21220/s2-e46y-k152
mailto:scholarworks@wm.edu

Design and Analysis of Memory Management Techniques
for Next-generation GPUs

Haonan Wang

Zibo, Shandong, China

Bachelor of Science, East China University of Science and Technology, 2013
Master of Science, College of William & Mary, 2017

A Dissertation presented to the Graduate Faculty of
The College of William & Mary in Candidacy for the Degree of

Doctor of Philosophy

Department of Computer Science

College of William & Mary
August 2020

©

ABSTRACT

Graphics Processing Unit (GPU)-based architectures have become the default accel-
erator choice for a large number of data-parallel applications because they are able
to provide high compute throughput at a competitive power budget. Unlike CPUs
which typically have limited multi-threading capability, GPUs execute large num-
bers of threads concurrently to achieve high thread-level parallelism (TLP). While
the computation of each thread requires its corresponding data to be loaded from
or stored to the memory, the key to supporting the high TLP of GPUs lies in the
high bandwidth provided by the GPU memory system. However, with the continu-
ous scaling of GPUs, the challenges of designing an efficient GPU memory system
have become two-fold. On one hand, to keep the growing compute and memory
resources highly utilized, co-locating two or more kernels in the GPU has become
an inevitable trend. One of the major roadblocks in achieving the maximum ben-
efits of multi-application execution is the difficulty to design mechanisms that can
efficiently and fairly manage the application interference in the shared caches and
the main memory. On the other hand, to maintain the continuous scaling of GPU
performance, the increasing energy consumption of the memory system has become
a major problem because of its limited power budget. This limitation of the GPU
memory energy restricts its maximum theoretical bandwidth and in turn limits the
overall throughput.
To address the aforementioned challenges, this dissertation proposes three different
approaches. First, this dissertation shows that high efficiency and fairness can be
achieved for GPU multi-programming with novel TLP management techniques. We
propose a new metric, effective bandwidth (EB), to accurately estimate the shared re-
sources in the GPU memory hierarchy. Meanwhile, we propose pattern-based search-
ing scheme (PBS) that can quickly and accurately achieve efficiency or fairness via
managing the TLP of each application. Second, to reduce data movement and
improve GPU throughput, this dissertation develops Address-Stride Assisted Ap-
proximate Value Predictor (ASAP) for GPUs. We show that by utilizing address
stride and value stride correlation present in GPGPU applications, significant data
movement reduction and throughput improvement can be achieved at a much lower
application quality loss and hardware overhead. ASAP achieves this by predicting
load values if it detects strides in their corresponding addresses. Third, this dis-
sertation shows that GPU memory energy can be significantly reduced by utilizing
novel memory scheduling techniques. We propose a lazy memory scheduler which
significantly improves the row buffer locality of GPU memory by leveraging the la-
tency and error tolerance of GPGPU applications. Finally, our new work targets
data movement reduction with flexible data precisions. We present initial results to
motivate novel data types and architectural support to dynamically reduce the data
size transferred per each memory operation. Altogether, this dissertation develops
several innovative techniques to improve the GPU memory system efficiency, which
are necessary for enabling the development of next-generation GPUs.

TABLE OF CONTENTS

Acknowledgments vi

Dedication vii

List of Tables viii

List of Figures ix

1 Introduction 2

1.1 Problem Statement . 3

1.2 Contributions . 3

1.2.1 Achieving Efficiency and Fairness in GPU Multi-programming

via Effective Bandwidth Management 4

1.2.2 Reducing GPU Data Movement by Efficient Approximate

Value Prediction . 5

1.2.3 Improving GPU Memory Energy Efficiency with Lazy Memory

Scheduling . 5

2 A General Background on Graphics Processing Units (GPUs) 8

2.1 Baseline GPU Architecture . 8

2.2 GPU Memory Organization . 9

2.3 GPU Memory Operations and Scheduling Techniques 10

i

3 Efficient and Fair Multi-programming in GPUs via Effective Bandwidth

Management 12

3.1 Introduction . 12

3.2 Background and Evaluation Methodology 15

3.2.1 Evaluation Methodology . 16

3.3 Analyzing Application Resource Consumption 19

3.3.1 Understanding Effects of TLP on Resource Consumption 19

3.3.2 Quantifying Resource Consumption 20

3.4 Motivation and Goals . 22

3.5 Pattern-based Searching (PBS) . 26

3.5.1 Overview . 26

3.5.2 Optimizing WS via PBS-WS 27

3.5.3 Optimizing Fairness via PBS-FI 29

3.5.4 Optimizing HS via PBS-HS . 30

3.5.5 Implementation Details and Overheads 31

3.6 Experimental Evaluation . 33

3.6.1 Effect on Weighted Speedup . 34

3.6.2 Effect on Fairness Index . 36

3.6.3 Effect on Harmonic Weighted Speedup 37

3.6.4 Case Studies . 38

3.7 Related Work . 40

3.8 Chapter Summary . 42

4 Address-Stride Assisted Approximate Load Value Prediction in GPUs 43

4.1 Introduction . 43

4.2 Background . 46

4.2.1 Baseline Architecture and Metrics 46

ii

4.2.2 Baseline Value Predictors . 47

4.3 Motivation and Analysis . 50

4.3.1 Analysis of Address and Value Strides 50

4.3.2 Motivation . 51

4.4 Design and Operation . 53

4.4.1 Design of ASAP . 53

4.4.2 Operation of ASAP . 57

4.4.3 Use Cases of ASAP . 58

4.4.4 Output Quality Control . 61

4.4.5 Hardware Overhead . 63

4.5 Evaluation Methodology . 64

4.5.1 Application Characteristics . 64

4.5.2 Choice of the Restricted Address Strides 65

4.6 Experimental Evaluation . 65

4.6.1 Effect on Output Quality . 65

4.6.2 Effect on Performance and Energy 68

4.7 Sensitivity Studies . 69

4.8 Related Work . 71

4.9 Chapter Summary . 72

5 Exploiting Latency and Error Tolerance of GPGPU Applications for an

Energy-efficient DRAM 73

5.1 Introduction . 73

5.2 Background and Metrics . 76

5.2.1 Evaluation Methodology and Metrics 77

5.3 Motivation and Analysis . 79

5.3.1 Delayed Memory Scheduling (DMS) 79

iii

5.3.2 Approximate Memory Scheduling (AMS) 82

5.3.3 Delayed and Approximate Scheduling 84

5.3.3.1 How can approximate memory scheduling help delayed

memory scheduling . 84

5.3.3.2 How can delayed memory scheduling help approximate

memory scheduling . 85

5.4 Design and Operation . 87

5.4.1 Overview . 87

5.4.2 Delayed Memory Scheduling Schemes 88

5.4.3 Approximate Memory Scheduling Schemes 90

5.4.4 Value Prediction Unit . 93

5.4.5 Hardware Overhead . 94

5.5 Experimental Results . 95

5.6 Related Work . 101

5.7 Chapter Summary . 102

6 Towards Architectural Support for Flexible Data Precisions 103

6.1 Background and Metrics . 104

6.1.1 Floating-Point Data Storage Formats 104

6.1.2 Value Dependency for Data Movement Energy 106

6.1.3 Evaluation Methodology and Metrics 107

6.2 Motivation and Analysis . 108

6.2.1 Analysis of Floating-point Formats 108

6.2.2 Value Truncation for Floating-point Formats 110

6.2.3 Symmetrical Floating-point (SFP) Format 112

6.2.4 A Flexible Memory System . 114

6.3 Conclusions . 115

iv

7 Conclusion and Future Work 116

7.1 Summary of Dissertation Contributions 116

7.2 Future Work . 118

Bibliography 118

Vita 137

v

ACKNOWLEDGMENTS

I sincerely thank my advisor, Adwait Jog, for his thoughtful and diligent mentoring.

I also thank my labmates, Fan Luo, Gurunath Kadam, Hongyuan Liu and Mohamed
Ibrahim for their help and companionship in my Ph.D. life.

I extend my gratitude to my dissertation committee members, Xu Liu, Bin Ren,
Evgenia Smirni, and Onur Kayiran for their generous support and attentive
feedback.

Finally, I would like to thank my parents, who have always been the firmest support
on the road of my education. I would like to thank all my family members for their
care and encouragement.

vi

To my dear parents.

vii

LIST OF TABLES

3.1 Key configuration parameters of the simulated GPU configuration.

See GPGPU-Sim v3.2.2 [34] for the complete list. 16

3.2 List of evaluated TLP configurations. 17

3.3 List of evaluated metrics. 17

3.4 GPGPU application characteristics: (A) IPC@bestTLP: The value of

IPC when the application executes with bestTLP, (B) EB@bestTLP:

The value of the effective bandwidth when the application executes with

bestTLP, (C) Group information: Each application is categorized into

one of the four groups (G1-G4) based on their individual EB values. . 18

4.1 Key configuration parameters of the simulated GPU configuration.

See GPGPU-Sim v3.2.2 [34] for the full list. 47

4.2 List of evaluated GPGPU applications. 63

5.1 Key configuration parameters of the simulated GPU. 76

5.2 List of evaluated GPGPU applications. See Table 5.3 for more details. 95

5.3 Application features and intensity classifications. The thresholds are

used only to facilitate the discussion in Section 5.5. 96

6.1 Configurations of common floating-point data formats. 106

6.2 Configurations of symmetrical floating-point data formats. 112

viii

LIST OF FIGURES

2.1 Overview of GPU Architecture. 9

3.1 Weighted Speedup (WS) and Fairness Index (FI) for BFS2 FFT. Eval-

uation methodology is described in Section 3.2. 14

3.2 Effect of TLP on performance and other metrics for BFS2. 20

3.3 Effective Bandwidth at different levels of the hierarchy. For brevity,

we show only one core (with attached L1 cache) and one L2 cache

partition. 21

3.4 Effect of different TLP combinations on application: a) slowdown and

b) effective bandwidth. 22

3.5 IPCAR vs. EBAR . 24

3.6 Illustrating the patterns observed in BLK TRD. 28

3.7 Illustrating the working of PBS-FI (a & b) and PBS-HS (c & d)

schemes for BLK TRD. 30

3.8 Proposed hardware organization. Additional hardware is shown via

shaded components and dashed arrows. 31

3.9 Impact of our schemes on Weighted Speedup. Results are normalized

to ++bestTLP. 35

3.10 Impact of our schemes on Fairness. Results are normalized to ++best-

TLP. 35

3.11 Effect of changes in TLP over time for BLK BFS2 with: a) PBS-WS

and b) PBS-FI. 36

ix

3.12 Impact of our schemes on HS. 37

3.13 Effect of PBS over ++bestTLP with: a) core partitioning, b) cache

partitioning, c) 3-application scaling. 38

4.1 Pixel values of consecutive row and column positions. 45

4.2 Baseline GPU Architecture with a value predictor. 46

4.3 Design of the baseline value predictors. 48

4.4 Illustrating the relationship between average value stride of data with

different address strides for a variety of inputs. 50

4.5 Illustrative example showing the importance of request order on value

strides and the ease of value predictability. 51

4.6 Normalized Stride Difference (in log scale) between consecutively ob-

served value strides. Considering address-stride-based (2nd and 3rd

bar) improves the value predictability over traditional PC-based ap-

proach (1st bar). 53

4.7 Design of the Address-Stride assisted value predictor. 55

4.8 Operation of ASAP and its advantages over OSP. The matched ad-

dresses, predicted values, relevant strides are shaded. 57

4.9 Working steps of ASAP in Scenario I: Regular Address Pattern. The

address stream considered is: 0, 1, 2, 3, 10, 11, 12, 13. The matched

addresses and relevant strides are shaded. 59

4.10 Working steps of ASAP in Scenario II: Interleaving Address Pattern.

The addresses considered are: 1, 2, 4, 5, 7, 8, 10, 11. The matched

addresses and relevant strides are shaded. 60

4.11 Working steps of ASAP in Scenario III: Missing Intermediate Address

Pattern. The addresses considered are: 0, 1, 2, 3, 5. The matched

addresses and relevant strides are shaded. 61

x

4.12 Application Error for different value predictors at (a) 10% (b) 20%

coverage. 66

4.13 EMBOSS(2DCONV) outputs at 10% coverage. 67

4.14 GPU performance and total energy consumption at different coverages. 69

4.15 Effect of AddressStrideLong on Miss Match Rate. 69

4.16 Miss Match Rate with different entry numbers. 70

4.17 Miss Match Rate with GTO and RR Scheduler. 71

5.1 Effect of pending queue size on the number of row activations (Act.).

Results are normalized to the case of pending queue size 128. 77

5.2 An example illustrating the benefits of delayed memory scheduling

due to increased visibility to the memory controller. Eight requests

are shown in total destined to four DRAM rows (R1, R2, R3, R4). . 79

5.3 Effect of delayed memory scheduling on the number of activations

and performance. Results are normalized to the baseline architecture

(Section 5.2), which does not employ delayed or approximate scheduling. 80

5.4 Effect of delayed memory scheduling on activation proportions of each

RBL. x-axis indicates delay. y-axis indicates each component’s pro-

portion to the total number of activations. 81

5.5 The cumulative distribution of total row activations for requests asso-

ciated with different RBLs. x-axis is the proportion of requests sorted

by their RBLs. 83

5.6 Examples illustrating how approximate memory scheduling can help

delayed memory scheduling. 84

5.7 Example illustrating how delayed memory scheduling (DMS) can help

approximate memory scheduling (AMS) by comparing different schemes. 86

xi

5.8 Design overview of the lazy memory scheduler and associated compo-

nents. 88

5.9 Illustrating the relationship between IPC and BWUTIL. 89

5.10 Effect of reducing ThRBL. 92

5.11 Comparison of different schemes with different metrics for applications

with Medium or High Error Tolerance. Row Energy and IPC results

are normalized to the baseline that does not adopt DMS or AMS. . . 97

5.12 Comparison between the accurate and the approximate output (which

has 17% Application Error and is generated when the Dyn-DMS and

Dyn-AMS schemes are applied together) for application laplacian. . 99

5.13 Effect of pending queue size on the number of activations (normalized

to the baseline) with DMS(2048). 99

5.14 Comparison of different schemes in the delay-only mode for applica-

tions with Low Error Tolerance. 100

6.1 FP32 layout. 105

6.2 Number of ones and bit toggling for FP32 and SFP32. 108

6.3 Average relative error distribution for LSTM and MNIST when using

short formats. 109

6.4 Layouts of the symmetrical floating-point (SFP) formats. 111

6.5 Flit mapping strategy enabled by SFP. 114

xii

Design and Analysis of Memory Management Techniques

for Next-generation GPUs

2

Chapter 1

Introduction

Graphics Processing Unit (GPU)-based architectures have become the default accelerator

choice for a large number of data-parallel applications because GPUs are able to provide

high compute throughput at a competitive power budget. Nowadays, GPU accelerated

application are widely used in fields like machine learning [5, 89, 114], image and video

processing [117, 27, 85], physical simulation [100, 13, 136], gene sequencing [105, 124, 109,

123] and even cryptography [18, 70, 31, 126]. On the other hand, GPUs are being employed

into almost all kinds of computing systems, including many machines on Top500 [4] and

Green500 lists [3].

Unlike CPUs which typically have limited multi-threading capability, GPUs execute

large numbers of threads concurrently to achieve high thread level parallelism (i.e., TLP).

While the computation of each thread requires its corresponding data to be loaded from

or stored to the memory, the key to supporting the high TLP of GPUs lies in the high

bandwidth provided by the GPU memory system. The GPU memory system consists of

two levels of cache, L1 cache and L2 cache, and the L2 cache is further connected to the

the memory channel. With the state of the art high-bandwidth memory technology (i.e.,

HBM, HBM2), each memory channel is able to provide 16-32 GB/Sec bandwidth [82,

68]. Meanwhile, the GPU is usually equipped with multiple memory channels, which all

work independently of each other. Therefore, a peak bandwidth of 900 GB/Sec can be

CHAPTER 1. INTRODUCTION 3

achieved in the latest GPU model [81]. With each new generation of GPUs, peak memory

bandwidth and throughput are growing at a steady pace [2, 128], and it is expected

to continue as technology scales and new emerging high-bandwidth memories become

mainstream.

1.1 Problem Statement

With the continuous scaling of GPU, the challenges of designing the GPU memory system

have become two-fold. On one hand, to keep the growing compute and memory resources

highly utilized, co-locating two or more kernels (originating from the same or different

applications) in the GPU has become an inevitable trend [84, 46, 8, 35, 132, 47, 118, 135,

66, 86, 63, 72, 125, 87]. However, one of the major roadblocks in achieving the maximum

benefit of multi-application execution is the difficulty to design mechanisms that can effi-

ciently and fairly manage the application interference in the shared caches and the main

memory. On the other hand, to maintain the continuous scaling of GPU performance, the

energy efficiency of the memory system has become a major problem because of its high

energy consumption and the limited GPU total power budget [16, 83, 57]. This limita-

tion of the GPU memory can either restrict the GPU’s maximum theoretical throughput

directly or prevent the GPU memory from reaching its peak bandwidth, which in return

reduces the overall throughput of the GPU. Therefore, in this dissertation, we focus to

answer the following three questions: 1. How can we efficiently and fairly mange the mem-

ory resources for multiple co-running applications in the GPU? 2. How can we reduce the

data movement in the memory hierarchy and improve the throughput of the GPU? 3.

How can we improve the energy efficiency of the GPU memory?

1.2 Contributions

This dissertation addresses the three questions above by three different approaches. First,

this dissertation shows that efficiency and fairness can be achieved in the GPU multi-

CHAPTER 1. INTRODUCTION 4

programming environment with more accurate metrics to measure the memory resources

and efficient TLP management policies. Second, this dissertation shows that by utilizing

address stride and value stride correlation, memory throughput can be improved through

data movement reduction with low application quality loss and small hardware overhead.

Third, this dissertation shows that GPU memory energy efficiency can be significantly

improved by utilizing novel memory scheduling techniques. In the rest of this chapter, we

discuss theses three contributions in details.

1.2.1 Achieving Efficiency and Fairness in GPU Multi-programming via

Effective Bandwidth Management

We perform a detailed analysis of the TLP management techniques in the context of

multi-application execution in GPUs and show that new TLP management techniques, if

developed carefully, can significantly boost the system throughput and fairness. In this

context, our goal is to develop techniques that can find the optimal TLP combination

that allows a judicious and good use of all the available shared memory resources. To

measure such use, we propose a new metric, effective bandwidth (EB), which calculates

the effective shared resource usage for each application considering its private and shared

cache miss rates and memory bandwidth consumption. We find that a TLP combination

that maximizes the total effective bandwidth across all co-located applications while pro-

viding a good balance of individual applications’ effective bandwidth leads to high system

throughput and fairness. Instead of incurring the high overheads of an exhaustive search

across all the different combinations of TLP configurations that achieve these goals, we

propose pattern-based searching (PBS) that cuts down a significant amount of overheads

by taking advantage of the trends (which we call patterns) in the way application’s effective

bandwidth changes with different TLP combinations.

CHAPTER 1. INTRODUCTION 5

1.2.2 Reducing GPU Data Movement by Efficient Approximate Value

Prediction

We propose a novel value approximation technique to reduce data movement for GPUs

with low application quality loss and hardware overhead. One of the major challenges

in achieving this goal is to identify the value stride pattern(s) in a highly multi-threaded

environment where thousands of memory requests can be on-the-fly and their access or-

der is highly dependent on GPU-specific features such as warp scheduling and coalesc-

ing. Previous works for CPUs used large per-thread prediction tables to achieve high

accuracy [120, 75, 106]. However, it can become prohibitively expensive to apply those

approaches directly to the highly multi-threaded environment in GPUs [139]. To address

this problem, we take advantage of our key new observation that consideration of mem-

ory addresses and the relationship with their value strides is effective for providing high

value prediction accuracy. Specifically, we find that for many realistic inputs used by

GPGPU applications, particular address strides have linear correlations with their value

strides. Based on this new observation, we propose an Address-Stride Assisted Approxi-

mate Value Predictor (ASAP), which predicts the values only if it detects strides in their

corresponding addresses. Each entry in the ASAP prediction table carefully keeps track

of one type of address stride and their corresponding value stride. We find that as the

number of address stride patterns in typical GPGPU applications is usually limited, the

number of prediction table entries is significantly reduced, thereby making it area and

power-efficient. We also show that ASAP remains effective even under different address

patterns, which can be influenced by warp scheduling and coalescing.

1.2.3 Improving GPU Memory Energy Efficiency with Lazy Memory

Scheduling

We observe that several GPGPU applications suffer from poor row buffer reuse (also

referred to as row thrashing). To address this problem, we performed a detailed charac-

CHAPTER 1. INTRODUCTION 6

terization of row buffer locality in GPUs and revealed two key insights. First, the current

GPU memory scheduling policies are too aggressive in reducing latencies of requests: re-

quests in the pending queue are issued to their destined DRAM banks as soon as these

DRAM banks finish serving the previous requests. Second, the current memory scheduling

policies are too strict in terms of fetching only the exact values from the DRAM banks.

Therefore, an entire DRAM row has to be fetched into the row buffer even if it is poorly

reused. We argue that these aggressive and strict policies are sub-optimal towards improv-

ing row buffer locality. To this end, we propose the lazy memory scheduler which relaxes

the aforementioned constraints by leveraging the fact that several GPGPU applications

are latency and error tolerant [134, 50]. First, we demonstrate that delaying the scheduling

of memory requests can significantly improve the overall row buffer locality because the

memory controller can find more requests that can be scheduled back to back to the same

row. Given that several GPGPU applications are latency tolerant, we do not observe no-

table performance reduction in such applications. To control the performance loss caused

by delays, we devise a low-overhead dynamic mechanism that limits the delay by ensuring

that utilization of DRAM stays above a certain threshold. Second, we demonstrate that

a small fraction of memory requests can cause a large fraction of row activations (i.e.,

there is non-uniform reuse of row buffers). Therefore, approximating a limited number

of requests (bounded by the prediction coverage) can significantly reduce the row energy,

without notably degrading the output quality of error-tolerant GPGPU applications. To

improve the row buffer locality more effectively under a limited prediction coverage, we

devise a low-overhead dynamic mechanism that is able to prioritize the approximation of

requests with relatively low row buffer localities.

The rest of this dissertation is organized as follows. Chapter 2 provides a general

background for GPU and GPU memory architectures. In Chapter 3, we present PBS for

multi-programming in GPUs. In Chapter 4, we present the novel value approximation

technique ASAP. In Chapter 5, we present the lazy memory scheduler. In Chapter 6,

we present motivational results in order to develop architectural support for flexible data

CHAPTER 1. INTRODUCTION 7

precisions. Finally, in Chapter 7, we conclude this dissertation and discuss about future

work.

8

Chapter 2

A General Background on

Graphics Processing Units (GPUs)

In this chapter, we provide a general background of Graphics Processing Units (GPUs).

Specifically, we focus on the GPU organization and operations of GPU memory.

2.1 Baseline GPU Architecture

GPUs achieve high throughput because it is capable of executing a large number of threads

concurrently. To facilitate this, GPUs consists of a large number of processing elements

(PEs), which are organized in a hierarchical fashion. As shown in Figure 2.1, a group of

PEs are clustered together in a core, also known as Streaming Multi-processors (SM) in

NVIDIA terminology. The threads from a GPGPU application are uniformly distributed

on the SMs at the granularity of a thread-block. Each SM is capable of handling threads

from multiple thread-blocks and executes them at the granularity of a warp (or wave-

front in AMD terminology). A warp is essentially a collection of (usually 32) individual

threads that execute in a lock-step manner on the PEs of the same SM. These threads

from the same warp execute a single instruction at a time on different data (i.e., imple-

ment SIMD). Multiple warps residing on the same SM facilitate in hiding long memory

CHAPTER 2. A GENERAL BACKGROUND ON GPUS 9

latencies via executing in a pipelined and multiplexed manner and hence improving the

utilization/throughput of the SM.

Interconnect

…

…

L1 Caches

SM/Core

L1 Caches

PE PE…

L2 Cache

DRAM
Module

Memory
Controller

L2 Cache
Memory

Controller

L2 Cache
Memory

Controller
DRAM
Module

DRAM
Module

Register File Register File

SM/Core

PE PE…

Memory
Partition

Figure 2.1: Overview of GPU Architecture.

2.2 GPU Memory Organization

We consider the memory hierarchy under a generic GPU architecture consisting of several

cores, which are connected to memory partitions via an interconnect as shown in Fig-

ure 2.1. In order to support large amount of thread-level parallelism in GPUs, each SM

consists of several processing elements (PEs), supported by a large register file (for saving

context of a large number of concurrent threads so as to minimize context switch over-

head) and all memory partitions manage high bandwidth memories (for fast data access

to large number of concurrent threads). Each SM also has a private L1 cache and each

memory partition is attached to a shared L2 cache. Each memory partition also has a

memory controller that is responsible to schedule L2 cache misses (i.e., memory requests

sent from the L2 cache) to the GPU memory.

The data is spread across multiple channels (partitions) for achieving high memory

bandwidth. For each channel, the memory operations are performed at the granularity of

CHAPTER 2. A GENERAL BACKGROUND ON GPUS 10

DRAM banks. Each bank consists of the cell arrays and a row buffer (sense amplifier) to

read data from or write data to the cell arrays [110]. The cell arrays are where the data

is stored and consist of many rows (pages) and columns (bits). Each memory channel is

also associated with a memory controller, which buffers the pending memory requests in

a request pending queue and determines the order to serve them in their destined banks.

2.3 GPU Memory Operations and Scheduling Techniques

GPU memory operations. In order to serve a read or write request to a bank, a

whole row in the cell array must first be activated (i.e., opened) to fetch its data into

the row buffer. After the pending accesses to the current row are served and before the

pending accesses for other rows can be served, the data present in the row buffer must

be restored back to the cell arrays to safely keep the correct data values of the row.

Finally, a precharge operation also needs to be performed in order to ensure that the

next activation operation of a row can be performed successfully. The access energy is

dependent on the access type. The row buffer hit request consumes less energy compared

to the row buffer miss request. It is because serving the row buffer miss request involves

costly operations such as activation, restore and precharge. The energy consumed by

these operations (referred to as row energy in this dissertation) contributes significantly

to the total DRAM energy consumption [16], especially when the row buffer locality is

low (i.e., the ratio of row buffer miss requests is high among all DRAM requests). Note

that although we use GDDR5 DRAM model as our example, the row locality concerns

are pervasive across all GPU memory technologies (e.g., HBM, HBM2) [16, 83].

GPU Memory Scheduling Techniques. For the purpose of improving the row buffer

locality of the GPU memory, several techniques can be applied. First-Row First-Come-

First-Serve (FR-FCFS) [97, 146, 98, 12] is one of the commonly employed memory schedul-

ing technique that optimizes for row buffer locality in GPUs. Specifically, FR-FCFS pri-

oritizes row buffer hit requests over other requests, including older ones. If no request is a

CHAPTER 2. A GENERAL BACKGROUND ON GPUS 11

row buffer hit, then FR-FCFS prioritizes older requests over younger ones. The open-row

policy is often used together with the FR-FCFS scheduler to minimize the row activations.

The open-row policy leaves the row open (i.e., does not proceed to restore and precharge

operations) as long as no other request is destined to the same bank. Therefore, if the next

access is also requesting the same row, the restore, precharge, and activation operations

are not necessary. On the contrary, a closed-row policy closes the row (i.e., restores the

row and precharges) immediately after the first access to the row. This can be harmful to

the row buffer locality, but can also reduce the overall access latency for applications that

have low row buffer locality. Also, a large re-order pending request queue can potentially

help in reducing the number of row activations by making more requests visible to the

FR-FCFS memory scheduler.

12

Chapter 3

Efficient and Fair

Multi-programming in GPUs via

Effective Bandwidth Management

3.1 Introduction

The idea of co-locating two or more kernels 1 (originating from the same or different

applications) has been shown to be beneficial in terms of both GPU resource utilization and

throughput [84, 46, 47]. One of the major roadblocks in achieving the maximum benefits of

multi-application execution is the difficulty to design mechanisms that can efficiently and

effectively manage the application interference in the shared caches and the main memory.

Several researchers have proposed different architectural mechanisms (e.g., novel resource

allocation [23, 22, 21], cache replacement [95, 94], and memory scheduling [46, 47]), both in

CPU and GPU domains, to address the negative effects of the shared-resource application

interference on the system throughput and fairness. In fact, a recent surge of works [54, 99,

50, 49, 55] considered the problem of managing inter-thread cache/memory interference

even for the single GPU application execution. In particular, the techniques that find

1In this chapter, we evaluate workloads where concurrently executing kernels originate from separate
applications. Hence, we use the terms kernels and applications interchangeably.

CHAPTER 3. GPU MULTI-PROGRAMMING MANAGEMENT 13

the optimal thread-level parallelism (TLP) of a GPGPU application were found to be

very effective in improving the GPU performance both for cache and memory-intensive

applications [54, 99]. The key idea behind these techniques is to exploit the observation

that executing a GPGPU application with the maximum possible TLP does not necessarily

result in the highest performance. This is because as the number of concurrently executing

threads increases, the contention for cache space and memory bandwidth also increases,

which can lead to sub-optimal performance. Therefore, many of the TLP management

techniques proposed to limit the TLP via limiting the number of concurrently executing

warps (or wavefronts) to a particular value.

Inspired by the benefits of such TLP management techniques, this chapter delves into

the design of new TLP management techniques that can significantly improve the system

throughput and fairness by modulating the TLP of each concurrently executing appli-

cation. To understand the scope of TLP modulation in the context of multi-application

execution, we analyzed three different scenarios. First, both applications are executed with

their respective best-performing TLP (bestTLP), which are found by statically profiling

each application separately by running it alone on the GPU. Note that these individual

best TLP configurations can also be effectively calculated using previously proposed run-

time mechanisms (e.g., DynCTA [54], CCWS [99]). We call this multi-application TLP

combination as ++bestTLP. Second, both applications are executed with their respective

maximum possible TLP (maxTLP). We call this multi-application TLP combination as

++maxTLP. Third, both applications are executed with TLP such that they collectively

achieve the highest Weighted Speedup (WS) (or Fairness Index (FI))2 and defined as

optWS (or optFI).

Figure 3.1 shows the WS and FI when BFS2 and FFT are executed concurrently under

these three aforementioned scenarios3. The results are normalized to ++bestTLP. We

2We find this combination by profiling 64 different combinations of TLP and picking the one that
provides the best WS (or FI).

3BFS2 FFT is one of the representative workloads, which demonstrates the scope of the problem. Other
workloads are discussed in Section 3.6.

CHAPTER 3. GPU MULTI-PROGRAMMING MANAGEMENT 14

0

0.2

0.4

0.6

0.8

1

1.2

1.4

++maxTLP optWS

N
o

rm
a
li
z
e
d

 W
S

0

0.5

1

1.5

2

2.5

++maxTLP optFI

N
o

rm
a
li
z
e
d

 F
I++bestTLP

++bestTLP

(b)(a)

Figure 3.1: Weighted Speedup (WS) and Fairness Index (FI) for BFS2 FFT. Evaluation
methodology is described in Section 3.2.

find that there is a significant difference in WS and FI between optimal (optWS and

optFI) and ++bestTLP combinations, which suggests that blindly using the bestTLP

configuration for each application in the context of multi-application execution is a sub-

optimal choice. It is because each application in the ++bestTLP or ++maxTLP scenario

consumes disproportionate amounts of shared resources as it assumes no other application

is co-scheduled. That leads to high cache and memory contention.

Contributions. To our knowledge, this is the first work that performs a detailed analysis

of the TLP management techniques in the context of multi-application execution in GPUs

and shows that new TLP management techniques, if developed carefully, can significantly

boost the system throughput and fairness. In this context, our goal is to develop techniques

that can find the optimal TLP combination that allows a judicious and good use of all the

available shared resources (thereby reducing cache and memory bandwidth contention,

and improving WS and FI). To measure such use, we propose a new metric, effective

bandwidth (EB), which calculates the effective shared resource usage for each application

considering its private and shared cache miss rates and memory bandwidth consumption.

We find that a TLP combination that maximizes the total effective bandwidth across all

co-located applications while providing a good balance of individual applications’ effective

bandwidth leads to high system throughput (WS) and fairness (FI). Instead of incurring

CHAPTER 3. GPU MULTI-PROGRAMMING MANAGEMENT 15

the high overheads of an exhaustive search across all the different combinations of TLP

configurations that achieve these goals, we propose pattern-based searching (PBS) that

cuts down a significant amount of overheads by taking advantage of the trends (which

we call patterns) in the way application’s effective bandwidth changes with different TLP

combinations.

Results. Our newly proposed PBS schemes improve the system throughput (WS)

and fairness (FI) by 20% and 2×, respectively over ++bestTLP, and 10% and 1.44×,

respectively over the recently proposed TLP modulation and cache bypassing scheme

(Mod+Bypass [66]) for multi-application execution for GPUs. Also, our PBS schemes are

within 3% and 6% of the optimal TLP combinations: optWS and optFI, respectively for

the evaluated 50 two-application workloads.

3.2 Background and Evaluation Methodology

Multi-application execution. Recent GPUs by AMD [9] and NVIDIA [80] support

the execution of multiple tasks/kernels. This advancement led to a large body of work

in GPU multiprogramming [84, 46, 8, 35, 132, 47, 118, 135, 66, 86, 63, 72]. Execution

of multiple tasks can potentially increase GPU utilization and throughput [84, 46, 8,

131, 119]. While it is possible to execute different independent kernels from the same

application concurrently, in this work, we execute different applications simultaneously. To

understand how these applications interfere in the shared memory system, each application

is mapped to an exclusive set of cores and allowed to use resources beyond the cores

(e.g., L2, DRAM). We allocate an equal number of cores to each concurrently executing

application. Sensitivity to different core and L2 cache partitioning techniques is discussed

in Section 3.6.4.

TLP configurations. We assume that different TLP configurations are implemented at

the warp granularity via statically or dynamically limiting the number of actively executing

warps [99]. Table 3.2 lists different TLP configurations that are evaluated in the work.

CHAPTER 3. GPU MULTI-PROGRAMMING MANAGEMENT 16

The maximum value of TLP is 24 as the total number of possible warps on a core is 48

and there are two warp schedulers per core. The baseline GPU uses the best-performing

TLP (bestTLP) when it executes only one application at a time.

Table 3.1: Key configuration parameters of the simulated GPU configuration. See
GPGPU-Sim v3.2.2 [34] for the complete list.

Core Features 1400MHz core clock, 30 cores, SIMT width = 32 (16 × 2)
Resources / Core 32KB shared memory, 32684 registers

Max. 1536 threads (48 warps, 32 threads/warp)
L1 Caches / Core 16KB 4-way L1 data cache

12KB 24-way texture cache, 8KB 2-way constant cache,
2KB 4-way I-cache, 128B cache block size

L2 Cache 16-way 256 KB/memory channel (1536 KB in total)
128B cache block size

Features Memory coalescing and inter-warp merging enabled,
immediate post dominator based branch divergence handling

Memory Model 6 GDDR5 Memory Controllers (MCs), FR-FCFS scheduling
16 DRAM-banks, 4 bank-groups/MC, 924 MHz
memory clock Global linear address space is
interleaved among partitions in chunks of 256 bytes [33]
Hynix GDDR5 Timing [43], tCL = 12, tRP = 12,
tRAS = 28, tCCD = 2, tRCD = 12, tRRD = 6

Interconnect 1 crossbar/direction (30 cores, 6 MCs),
1400MHz interconnect clock, islip VC and switch allocators

3.2.1 Evaluation Methodology

We evaluate our proposed techniques on MAFIA [47], a GPGPU-Sim [12] based framework

that can execute two or more applications concurrently. The memory performance model

is validated across several GPGPU workloads on an NVIDIA K20m GPU [12, 47]. The

key parameters of the GPU (Table 3.1) are faithfully simulated. All evaluated metrics are

summarized in Table 3.3.

Performance- and Fairness-related Metrics. We report Weighted Speedup (WS) [113,

84] and Fairness Index (FI) [47] to measure system throughput and fairness (imbalance of

performance slowdowns), respectively. Both metrics are based on individual application

slowdowns (SDs) in the workload, where SD is defined as the ratio of performance (IPC)

achieved in the multi-programmed environment (IPC-Shared) to the case when it runs

alone on the same set of cores with bestTLP (IPC-Alone). The maximum value of WS

is equal to the number of applications in the workload assuming there is no constructive

CHAPTER 3. GPU MULTI-PROGRAMMING MANAGEMENT 17

Table 3.2: List of evaluated TLP configurations.

Acronym Description

maxTLP Single application is executed with the maximum possible value of TLP.
++maxTLP Two or more applications are executed concurrently with their own

respective maxTLP configurations.
bestTLP Single application is executed with the best-performing TLP.

++bestTLP Two or more applications are executed concurrently with their own
respective bestTLP configurations.

DynCTA Single application is executed with DynCTA.
++DynCTA Two or more applications are executed concurrently with each one using

DynCTA.
optWS Two or more applications are executed concurrently with their own

TLP configurations such that Weighted-speedup (WS) is maximized.
optFI Two or more applications are executed concurrently with their own

TLP configurations such that Fairness Index (FI) is maximized.
optHS Two or more applications are executed concurrently with their own

TLP configurations such that Harmonic Weighted-speedup (HS)
is maximized.

Table 3.3: List of evaluated metrics.

Acronym Description

SD Slowdown. SD = IPC-Shared/IPC-bestTLP.
WS Weighted Speedup. WS = SD-1 + SD-2 .
FI Fairness Index. FI = Min(SD-1/SD-2, SD-2/SD-1)
HS Harmonic Speedup. HS = 1/(1/SD-1 + 1/SD-2).

BW Attained Bandwidth from Main Memory.
CMR Combined Miss Rate (MR). CMR = L1MR × L2MR.

EB Effective Bandwidth. EB = BW/CMR.
EB-WS EB-based Weighted Speedup. EB-WS = EB-1 + EB-2 .
EB-FI EB-based Fairness Index. EB-FI = Min(EB-1/EB-2, EB-2/EB-1).
EB-HS EB-based Harmonic Speedup. EB-HS = 1/(1/EB-1 + 1/EB-2).

interference among applications. An FI value of 1 indicates a completely fair system. We

also report Harmonic Weighted Speedup (HS), which provides a balanced notion of both

system throughput and fairness in the system [59]. In this work, we refer to all these

metrics as SD-based metrics.

Auxiliary Metrics. We consider Attained Bandwidth (BW), which is defined as the

amount of DRAM bandwidth that is useful for the application (i.e., the useful data trans-

ferred over the DRAM interface) normalized to the theoretical peak value of the DRAM

bandwidth. We also consider Combined Miss Rate (CMR), which is defined as the product

of L1 and L2 miss rates. Note that BW and L1/L2 miss rates are separately calculated for

each application even in the multi-application scenario. The Effective Bandwidth (EB) of

an application is the ratio of BW to CMR. It gauges the rate of data delivery to cores by

considering how the bandwidth achieved from DRAM is amplified by the caches (e.g., a

CHAPTER 3. GPU MULTI-PROGRAMMING MANAGEMENT 18

Table 3.4: GPGPU application characteristics: (A) IPC@bestTLP: The value of IPC
when the application executes with bestTLP, (B) EB@bestTLP: The value of the effective
bandwidth when the application executes with bestTLP, (C) Group information: Each
application is categorized into one of the four groups (G1-G4) based on their individual
EB values.

Abbr. IPC EB Group Abbr. IPC EB Group
LUD [17] 40 0.13 G1 LIB [79] 211 0.93 G2
NW [17] 31 0.21 G1 LUH [53] 87 1.08 G2

HISTO [115] 471 0.29 G1 SRAD [17] 229 1.19 G3
SAD [115] 651 0.31 G1 CONS [79] 397 1.35 G3
QTC [20] 26 0.59 G2 FWT [79] 195 1.41 G3
RED [20] 180 0.70 G2 BP [17] 580 1.42 G3

SCAN [20] 151 0.72 G2 CFD [17] 95 1.49 G3
BLK [79] 457 0.79 G2 TRD [20] 238 1.67 G3
HS [17] 578 0.79 G2 FFT [115] 261 1.77 G4
SC [17] 173 0.80 G2 BFS2 [79] 18 1.78 G4

SCP [79] 307 0.85 G2 3DS 457 2.19 G4
GUPS 9 0.87 G2 LPS [79] 410 2.20 G4

JPEG [79] 330 0.92 G2 RAY [79] 328 3.12 G4

miss rate of 50% effectively doubles the bandwidth delivered.). We append the application

ID (or application’s abbreviation (Table 3.4)) to the end of these metrics to denote per-

application metrics (e.g., CMR-1 is the combined miss rate for application 1 and EB-BLK

is the effective bandwidth for CUDA Blackscholes Application).

EB-based Metrics. In addition to standard SD-based metrics that we finally report,

our proposed techniques take advantage of runtime EB-based metrics. These metrics are

calculated in a similar fashion as SD-based metrics with the difference that they use EB

instead of SD. For example, EB-WS is defined as the sum of EB-1 and EB-2. More details

are in Table 3.3 and in upcoming sections.

Application suites. For our evaluations, we use a wide range of GPGPU applications

with diverse memory behavior in terms of cache miss rates and memory bandwidth. These

applications are chosen from Rodinia [17], Parboil [115], CUDA SDK [12], and SHOC [20]

based on their effective bandwidth (EB) values such that there is a good spread (from

low to high – see Table 3.4). In total, we study 50 two-application workloads (span-

ning 26 single applications) that exhibit the problem of multi-application cache/memory

interference.

CHAPTER 3. GPU MULTI-PROGRAMMING MANAGEMENT 19

3.3 Analyzing Application Resource Consumption

In this section, we first discuss the effects of TLP on various single-application metrics

followed by a discussion on succinctly quantifying those effects.

3.3.1 Understanding Effects of TLP on Resource Consumption

GPU applications achieve significant speedups in performance by exploiting high TLP.

Therefore, GPU memory has to serve a large number of memory requests originating from

many warps concurrently executing across different GPU cores. Consequently, memory

bandwidth can easily become the most critical performance bottleneck for many GPGPU

applications [37, 50, 32, 96, 54, 47, 129, 128]. Many prior works have proposed to address

this bottleneck by improving the bandwidth utilization and/or by effectively using both

private and shared caches in GPUs via modulating the available TLP [54, 99]. These

modulation techniques strive to improve performance via finding the level of TLP such

that it is neither too low so as not to under-utilize the on/off-chip resources nor too high

so as not to cause too much contention in caches and memory leading to poor cache miss

rates and row-buffer locality, respectively. To understand this further, consider Figure 3.2

(a–c), which shows the impact of the change in TLP (i.e., different levels of TLP) for BFS2

on IPC, BW, and CMR. These metrics are normalized to that of bestTLP (best performing

TLP for BFS2 is 4). We observe that with the initial increase in TLP, both BW and IPC

start to increase rapidly. However, at higher TLP, the increase in CMR starts to negate

the benefits of high BW, ultimately leading to decrease in performance. For example,

when TLP limit increases from 4 to 24, BW increases by 2.7×, but CMR also increases

by 2.9× leading to drop in performance. In such cases, the increase in TLP not only

hampers performance but also consumes unnecessary memory bandwidth. In summary,

we conclude that the changes in performance with different TLP configurations are directly

related to changes in cache miss-rate and memory bandwidth resource consumption.

CHAPTER 3. GPU MULTI-PROGRAMMING MANAGEMENT 20

0

0.5

1

1.5

2

2.5

3

1 2 4 8 12 16 20 24

N
o

rm
a
li

z
e

d
 B

W

TLP

0

0.5

1

1.5

2

2.5

3

1 2 4 8 12 16 20 24

N
o

rm
a

li
z
e

d
 C

M
R

TLP

0

0.2

0.4

0.6

0.8

1

1.2

1 2 4 8 12 16 20 24
N

o
rm

a
li

z
e
d

 E
B

TLP

(c) (d)

(b)

0

0.2

0.4

0.6

0.8

1

1.2

1 2 4 8 12 16 20 24

N
o

rm
a
li

z
e
d

 I
P

C

TLP

(a)

bestTLP bestTLP

bestTLP bestTLP

Figure 3.2: Effect of TLP on performance and other metrics for BFS2.

3.3.2 Quantifying Resource Consumption

To measure such resource consumption via a single combined metric, we introduce a new

metric called as effective bandwidth (EB). It is defined as the ratio of bandwidth to miss

rate, and is calculated based on the level of hierarchy under consideration as depicted

in Figure 3.3. For example, the value of EB observed by L1 (B) is defined as the ratio

of BW (A) to the L2 miss rate. Similarly, the value of EB observed by the core (C)

is defined as the ratio of EB observed by L1 (B) to the L1 miss rate. This value is

also equivalent to the ratio of BW (A) to CMR. The EB observed by the core essentially

measures how well the DRAM bandwidth is utilized. It also considers the usefulness of the

caches in amplifying the performance impact of the attained DRAM bandwidth, where the

amplification is based on the combined miss rate. If the CMR is 1, it implies that caches

are not useful and cores will obtain the same return bandwidth that is attained from the

DRAM. Therefore, EB is equal to BW for cache insensitive applications (e.g., BLK). On

the other hand, a lower CMR would allow cores to obtain more return bandwidth than

what is attained from the DRAM, which is the case for cache-sensitive applications (e.g.,

BFS2). In an ideal case, when combined miss rate is zero, the effective bandwidth observed

CHAPTER 3. GPU MULTI-PROGRAMMING MANAGEMENT 21

by the core would be equal to the L1 cache bandwidth of the GPU system4.

Core L1 L2 DRAM

BWBW/L2MRBW/(L1MR*L2MR) Effective

Bandwidth

ABC

= BW/CMR

Figure 3.3: Effective Bandwidth at different levels of the hierarchy. For brevity, we show
only one core (with attached L1 cache) and one L2 cache partition.

Connecting back to Figure 3.2, we observe that effective bandwidth observed by the

core (C) and performance closely follow each other (Figure 3.2(d)) with changes in TLP.

This concludes that the impact of changes in TLP on performance can be accurately

estimated by directly measuring only the changes in EB, without the need to consider any

architecture-independent parameters such as compute-to-memory ratio of an application.

Although we demonstrate the validity of these conclusions for BFS2, we verified that these

conclusions hold true for all the considered applications5 listed in Table 3.4.

To substantiate the conclusions analytically, we revisit our prior work [47], which

showed that GPU performance (IPC) is proportional to the ratio of BW to L2 misses per

instruction (MPI),

IPC ∝
BW

L2MPI
(3.1)

which in turn is proportional to the ratio of BW to rm × CMR, where rm is the ratio

of memory instructions to the total number of instructions. rm is an application-level

property6. Therefore, IPC is proportional to the ratio of EB to rm, where

IPC ∝
BW

rm × L2MR× L1MR
∝

BW

rm × CMR
∝

EB

rm
(3.2)

4It is assumed that the return packets from the memory system do not bypass the L1 cache.
5Applications that make heavy use of the software-managed scratchpad memory observe higher EB at

the cores due to additional bandwidth from the scratchpad memory. Because the scratchpad memory is
not susceptible to contention due to high TLP in our evaluation setup, our calculations do not consider
the bandwidth provided by the scratchpad to the core.

6Arithmetic intensity (i.e., ratio between compute to memory instructions) of an application is equal
to (1-rm)/rm.

CHAPTER 3. GPU MULTI-PROGRAMMING MANAGEMENT 22

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

+
+

b
e
s

tT
L

P
o

p
tW

S
o

p
tF

I
o

p
tI

T

+
+

b
e
s

tT
L

P
o

p
tW

S
o

p
tF

I
o

p
tI

T

+
+

b
e
s

tT
L

P
o

p
tW

S
o

p
tF

I
o

p
tI

T

+
+

b
e
s

tT
L

P
o

p
tW

S
o

p
tF

I
o

p
tI

T

+
+

b
e
s

tT
L

P
o

p
tW

S
o

p
tF

I
o

p
tI

T

+
+

b
e
s

tT
L

P
o

p
tW

S
o

p
tF

I
o

p
tI

T

+
+

b
e
s

tT
L

P
o

p
tW

S
o

p
tF

I
o

p
tI

T

+
+

b
e
s

tT
L

P
o

p
tW

S
o

p
tF

I
o

p
tI

T

+
+

b
e
s

tT
L

P
o

p
tW

S
o

p
tF

I
o

p
tI

T

+
+

b
e
s

tT
L

P
o

p
tW

S
o

p
tF

I
o

p
tI

T

3DS_TRD BFS2_FFT BLK_BFS2 BLK_TRD FFT_TRD FWT_TRD JPEG_CFD JPEG_LIB JPEG_LUH SCP_TRD

S
u

m
 o

f
S

D

SD-1 SD-2

0
0.5

1
1.5

2
2.5

3

+
+

b
e
s

tT
L

P
o

p
tW

S
o

p
tF

I
o

p
tI

T

+
+

b
e
s

tT
L

P
o

p
tW

S
o

p
tF

I
o

p
tI

T

+
+

b
e
s

tT
L

P
o

p
tW

S
o

p
tF

I
o

p
tI

T

+
+

b
e
s

tT
L

P
o

p
tW

S
o

p
tF

I
o

p
tI

T

+
+

b
e
s

tT
L

P
o

p
tW

S
o

p
tF

I
o

p
tI

T

+
+

b
e
s

tT
L

P
o

p
tW

S
o

p
tF

I
o

p
tI

T

+
+

b
e
s

tT
L

P
o

p
tW

S
o

p
tF

I
o

p
tI

T

+
+

b
e
s

tT
L

P
o

p
tW

S
o

p
tF

I
o

p
tI

T

+
+

b
e
s

tT
L

P
o

p
tW

S
o

p
tF

I
o

p
tI

T

+
+

b
e
s

tT
L

P
o

p
tW

S
o

p
tF

I
o

p
tI

T

3DS_TRD BFS2_FFT BLK_BFS2 BLK_TRD FFT_TRD FWT_TRD JPEG_CFD JPEG_LIB JPEG_LUH SCP_TRD

S
u

m
 o

f
E

B

EB-1 EB-2

(a)

(b)

Figure 3.4: Effect of different TLP combinations on application: a) slowdown and b)
effective bandwidth.

We conclude that EB is able to effectively measure the good and judicious use of cache

and memory bandwidth resources and is optimal at the bestTLP configuration.

3.4 Motivation and Goals

As the total shared resources are limited, understanding how these resources should be

allocated to the concurrent applications for maximizing system throughput and fairness

is a challenging problem. To this end, we consider the TLP of each application as a knob

to control its shared resource allocation. Although previously proposed TLP modulation

techniques (e.g., DynCTA [54] and CCWS [99]) have been shown to be effective in opti-

mizing TLP for single-application execution scenarios, they rely only on different kinds

of per-core heuristics (e.g., latency tolerance, IPC, cache/memory contention) and do not

consider the shared resource consumption of co-scheduled applications. In other words,

each application under such TLP configurations (including bestTLP) attempts to max-

imize its own effective bandwidth, ultimately taking disproportionate amount of shared

resources. This causes too much contention in caches and memory, ultimately hampering

CHAPTER 3. GPU MULTI-PROGRAMMING MANAGEMENT 23

the system-wide metrics such as system throughput and fairness.

To understand this further, consider Figure 3.4(a), which shows the WS of 10 repre-

sentative workloads under ++bestTLP and opt TLP combinations7. WS for each two-

application workload is split into its respective slowdowns for each application (SD-1 and

SD-2). We find that there is a significant gap between ++bestTLP and optWS for all

workloads. For example, in BFS2 FFT and BLK BFS2, this difference is 29% and 21%, re-

spectively. In terms of fairness, the gap is up to 2× (observed from the imbalance between

SD values in ++bestTLP compared to balanced values in optFI) in BFS2 FFT. We con-

clude that new TLP management techniques are needed to close this system throughput

and fairness gap.

Analysis of Weighted Speedup. We find that a TLP management scheme that opti-

mizes for EB-based metrics is useful in improving system performance and fairness. To

understand this analytically, we first focus on system throughput (weighted speedup) via

equations 3.3, 3.4, and 3.5. First, let us define IPC alone ratio (IPCAR) and EB alone ra-

tio (EBAR) of two applications (App-1 and App-2) when each of them separately execute

alone on the GPU:

IPCAR =
IPCAlone−1

IPCAlone−2

EBAR =
EBAlone−1

EBAlone−2

(3.3)

Next, as WS is the sum of slowdowns of co-scheduled applications, we derive the

following Equation:

WS =
IPCShared−1

IPCAlone−1
+

IPCShared−2

IPCAlone−2

WS ∝ IPCShared−1 + IPCShared−2 × IPCAR

(3.4)

Finally, with the help of Equation 3.2,

WS ∝ EBShared−1 + EBShared−2 × EBAR (3.5)

We observe that WS is a function of instruction throughput (sum of IPCs of individ-

ual applications) and also a function of EB-WS (sum of EBs of individual applications).

7The opt combinations are chosen via an exhaustive search of 64 different TLP combinations.

CHAPTER 3. GPU MULTI-PROGRAMMING MANAGEMENT 24

0

10

20

30

40

50

60

70

80

A
lo

n
e
 R

a
ti

o
 (

A
R

)

Workloads

IPC_AR EB_ARIPCAR EBAR

Figure 3.5: IPCAR vs. EBAR

However, maximizing IT or EB-WS will lead to sub-optimal WS, if IPCAR and EBAR

are much greater than 1. This is due to the bias caused by alone ratios (IPCAR and

EBAR) towards one of the co-scheduled applications. On average across all possible two-

application workloads formed using the evaluated 26 applications, we find that EBAR is

much lower than IPCAR, as shown in Figure 3.58. Therefore, we choose EB to optimize

system-wide metrics.

To substantiate this claim quantitatively, Figure 3.4(b) shows EB-WS for each work-

load along with its respective EBs for each application (EB-1 and EB-2). We make the

following two observations:

• Observation 1: The TLP combination that provides the highest sum of EB (EB-

WS) provides also the highest system throughput (WS). This trend is present in almost

all evaluated workloads (a few exceptions are discussed in Section 3.6). We find this

observation interesting as it means that optimizing for EB-WS is likely to improve WS

(SD-based metric) as discussed earlier via Equation 3.5. Also, EB-WS metric does not

incorporate any alone-application information making it easier to calculate directly in a

multi-application environment.

8As the alone ratio bias can be towards any one of the co-scheduled applications, we show max(M1/M2,
M2/M1), where M is IPCAR or EBAR.

CHAPTER 3. GPU MULTI-PROGRAMMING MANAGEMENT 25

• Observation 2: The TLP combination (optIT) that provides the highest instruction

throughput (IT) (i.e., sum of IPCs across all the concurrent applications) does not always

provide the highest WS and FI (e.g., in BFS2 FFT, BLK BFS2). It implies that a mechanism

that attempts to maximize IT may not be optimal to improve system throughput as

analytically demonstrated earlier.

Analysis of Fairness. Extending the above discussion for fairness, we also find that EB-

FI correlates well with the SD-based FI (i.e., differences in SDs in a workload is correlated

with those of EBs.). Therefore, a careful balance of effective bandwidth allocation among

co-scheduled applications can lead to higher fairness in the system (as demonstrated by

optFI in Figure 3.4(b)). However, there are a few outliers (e.g., BLK TRD) (i.e., the differ-

ence between EB-1 and EB-2 is much larger than that of SD-1 and SD-2 breakdowns). The

main reason behind these outliers is EBAR, which can still be larger than one (Figure 3.5)

leading to a bias towards one of the applications. To reduce the outliers and increase the

correlation between EB-FI and SD-FI, we appropriately scale the EB with the alone EB

information of each application. These scaling-factors either can be supplied by the user

or can be calculated at runtime. In the former case, each application uses the average

value of alone EB for the group it belongs to (see Table 3.4). In the latter case, each

application uses the value of EB when it executes alone and uses bestTLP. As we cannot

get this information unless we halt the other co-running applications, we approximate it

by executing the co-runners with the least amount of TLP (i.e., 1) so that they induce

the least amount of interference possible. Note that in our evaluated workloads, we did

not find the necessity of using these scaling factors while optimizing WS because of the

limited number of outliers (Section 3.6). However, we do use them to further optimize

fairness and harmonic weighted speedup.

In summary, we conclude that maximizing the total effective bandwidth (EB-WS) for

all the co-runners is important for improving system throughput (WS). Further, a better

balance between the effective bandwidth (determined by EB-FI) of the co-scheduled appli-

cations is required for higher fairness (FI).

CHAPTER 3. GPU MULTI-PROGRAMMING MANAGEMENT 26

3.5 Pattern-based Searching (PBS)

In this section, we provide details on the proposed TLP management techniques for multi-

application execution followed by the implementation details and hardware overheads.

3.5.1 Overview

Our goal is to find the TLP combinations that would optimize different EB-based metrics.

A naive method to achieve this goal is to periodically take samples for all the possible

TLP combinations over the course of workload execution and ultimately choose the com-

bination that satisfies the optimization criteria. However, that would incur significant

runtime overheads in terms of performance. Instead of high-overhead naive searching, we

take advantage of the following guidelines and patterns to minimize the search space for

optimizing the EB-based metrics.

Guideline-1. The EB-based metrics are sub-optimal when a particular TLP combination

leads to under-utilization of resources (e.g., DRAM bandwidth). Therefore, for obtaining

the optimal system throughput, it is important to choose a TLP combination that does

not under-utilize the shared resources.

Guideline-2. When increasing an application’s TLP level, its EB starts to drop only

when the increase in its BW can no longer compensate for the increase in its CMR (i.e.,

EB at its inflection point). Therefore, it is important to choose a TLP combination that

would not overwhelm resources as it is likely to cause sharp drops in one or all applications’

EB, leading to inferior system throughput and fairness.

Patterns. In all our evaluated workloads, we find that when resources in the system are

sufficiently utilized, distinct inflection points emerge in EB-based metrics. These inflection

points tend to appear consistently at the same TLP level of an application, regardless of

the TLP levels of the other co-running application. We name this consistency of the

inflection points as patterns. Moreover, the sharpest drop in EB-based metrics is usually

attributed to one of the co-running applications, namely the critical application.

CHAPTER 3. GPU MULTI-PROGRAMMING MANAGEMENT 27

High-level Searching Process. We utilize the observed patterns to reduce the search

space of finding the optimal TLP combination. We first ensure that the TLP values

are high enough to sufficiently utilize the shared resources. Subsequently, we find the

critical application and its TLP value that leads to the inflection point in the EB-based

metrics. Once the TLP of the critical application is fixed, the TLP value of the non-critical

application is tuned to further improve the EB-based metric. Because of the existence

of the patterns, we expect that the critical application’s TLP still leads to a inflection

point regardless of the changes in TLP of the non-critical application. This final stage of

tuning is similar to the one application scenario, where tuning of TLP is performed for

optimizing the effective bandwidth (Section 3.3.1). We find that this searching process

based on the patterns (i.e., pattern-based searching (PBS)) is an efficient way (reduces

the number of TLP combinations to search) to find the appropriate TLP combination

targeted for optimizing a specific EB-based metric. In this context, we propose three PBS

mechanisms: PBS-WS, PBS-FI, and PBS-HS to optimize for Weighted Speedup (WS),

Fairness Index (FI), and Harmonic Weighted Speedup (HS), respectively.

3.5.2 Optimizing WS via PBS-WS

As per our discussions in Section 3.4, our goal is to find the TLP combination that would

lead to the highest total effective bandwidth (EB-WS). We describe this searching process

for two-application workloads, however, it can be trivially extended for three or more

application workloads as described later in Section 3.6.4.

Consider Figure 3.6(a) that shows the EB-WS for the workload BLK TRD. We show

individual EB values of each application, that is, EB-BLK and EB-TRD in Figure 3.6(b).

The pattern demonstrating sharp drop in EB-WS (i.e., inflection points) is in the shaded

region. We follow the high-level searching process described earlier. First, when both

applications execute with TLP values of 1, the EB-WS is low (0.55) due to low DRAM

bandwidth utilization (29%, not shown). Therefore, as per Guideline-1, this TLP combi-

nation is not desirable.

CHAPTER 3. GPU MULTI-PROGRAMMING MANAGEMENT 28

(b)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 2 4 8 12 16 20 24

E
B

-T
R

D

E
B

-B
L

K

TLP-BLK

0.5

0.7

0.9

1.1

1.3

1.5

1 2 4 8 12 16 20 24

E
B

-W
S

TLP-BLK

(a)

++bestTLP

optWS

BLK X TRD Overall

TLP-TRD = 1 TLP-TRD = 2 TLP-TRD = 4

TLP-TRD = 8 TLP-TRD = 24

Figure 3.6: Illustrating the patterns observed in BLK TRD.

Second, we focus on finding the critical application. The process is as follows. We

execute each application with TLP of 1, 2, 4, 8 etc. by keeping the TLP of the other

application to be fixed at 24. The TLP value of 24 ensures that the GPU system is

not under-utilized. This process is repeated for every application in the workload. The

application that exhibits a larger drop in EB-WS is critical and its TLP is fixed. We

decide BLK as the critical application as it affects EB-WS the most (Figure 3.6(a)) – the

sharp drop in EB-WS after TLP-BLK=2 is prominent.

Third, the next step is to tune the TLP for the non-critical application to reduce the

contention and further improve the EB-WS. The searching for TLP of the non-critical

application is stopped when the EB-WS no more increases. Therefore, in our example,

after fixing TLP-BLK to 2, we start tuning the TLP-TRD to further optimize the EB-WS.

The searching process stops at the TLP-TRD = 8, leading to the optimal TLP combination

to be (2,8), which is also the optWS9. As evident, the whole search process requires only

a few samples and does not require an exhaustive search across all combinations.

9There is a possibility that this final process of tuning can free up just enough resources so that the
infection point of EB-WS shifts to the right (i.e., pattern does not hold), leading to a sub-optimal TLP
combination. However, we never observed such a scenario in our experiments.

CHAPTER 3. GPU MULTI-PROGRAMMING MANAGEMENT 29

3.5.3 Optimizing Fairness via PBS-FI

In this scheme, our goal is to find a TLP combination that would lead to a better balance

between the individual effective bandwidth of the co-scheduled applications. Therefore,

we strive to find the TLP combination that would lead to the highest EB-FI. For all the

evaluated workloads, we find that a pattern also exists in their EB-FI curves (not shown).

As a result, we are able to first find the critical application that affects the EB-FI the

most, followed by tuning the TLP of other non-critical applications.

To intuitively understand the searching process, we study the EB-difference between

two applications and plot this difference against TLP to understand the trends in them.

A lower absolute value of the difference indicates a fairer system (higher EB-FI) as the

EB values of applications are similar (see Section 3.4).

Consider the example of BLK TRD in the context of fairness. Figure 3.7 (a) and (b)

show two different views of the same data related to EB-difference – one being TLP-BLK

as x-axis and curves representing iso-TLP-TRD states (Figure 3.7 (a)), and vice versa for

the second view (Figure 3.7 (b)).

We examine the effect on EB-difference when the TLP of a particular application

changes with the TLP of the other application fixed at 24. This process is repeated for

every application in the workload. The application that causes larger changes in EB-

difference is considered to be critical. For example, in Figure 3.7 (a) and (b), BLK is

more critical than TRD because changes in TLP-BLK of BLK induces larger changes in the

EB-difference, when TLP-TRD is kept constant at 24 (Figure 3.7 (a)). We then keep the

critical application’s TLP fixed (e.g., TLP-BLK is 2), where EB-difference is near zero.

After fixing, we start to tune the TLP of the other application (i.e., TRD). The searching

is stopped when the lowest absolute EB-difference is found.

We observe that this searching process stops when TLP-TRD is 4 (Figure 3.7 (b)).

However, optFI is (2,20) instead of (2,4). This difference is caused because the EB-FI uses

scaling factor that is approximately calculated by either sampling or user-given group

CHAPTER 3. GPU MULTI-PROGRAMMING MANAGEMENT 30

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 2 4 8 12 16 20 24

E
B

-H
S

TLP-TRD

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 2 4 8 12 16 20 24

E
B

-H
S

TLP-BLK

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1 2 4 8 12 16 20 24

E
B

-d
if

fe
re

n
c
e

TLP-TRD

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1 2 4 8 12 16 20 24

E
B

-d
if

fe
re

n
c
e

TLP-BLK
(a) (b)

(c) (d)

++bestTLP

optFI

++bestTLP

optHS

TLP = 1 TLP = 2 TLP = 4

TLP = 8 TLP = 24 TLP = 2(S)

Figure 3.7: Illustrating the working of PBS-FI (a & b) and PBS-HS (c & d) schemes for
BLK TRD.

information. We plot the curve (dashed red line, Figure 3.7 (b)) with the exact scaling

factor (Table 3.4). We are able to locate the correct optFI (2,20) as that point is the

closest to 0 on the dashed red line.

3.5.4 Optimizing HS via PBS-HS

In this scheme, our goal is to optimize EB-WS. We again take advantage of the patterns

and observations discussed earlier in the context of PBS-WS and PBS-FI. For all the

evaluated workloads, we find that a pattern exists in their EB-HS curves. Therefore, we

are able to first find the critical application that affects the EB-HS the most, followed by

TLP tuning of the non-critical application.

Consider the example of BLK TRD in the context of HS. Figure 3.7 (c) and (d) show

two different views of the same data related to EB-HS metric – one being TLP-BLK as

x-axis and curves representing iso-TLP-TRD states (Figure 3.7 (c)), and vice versa for the

second view (Figure 3.7 (d)). PBS-HS starts with examining the effect on EB-HS when

CHAPTER 3. GPU MULTI-PROGRAMMING MANAGEMENT 31

GTO
priority

logic

Ready
warps [1:N]

Prioritized
warps
[1:N; 1:N]

Warp-limiting
scheduler

(SWL)

Warps to be
scheduled

Interconnect

Warp Issue Arbiter

PBS mechanism

APP 2 APP 1

TLP1

Fetch/Decode

I-Buffer/Scoreboard

Warp Issue Arbiter

Registers/Execute

Memory Unit

GPU cores

Fetch/Decode

I-Buffer/Scoreboard

Warp Issue Arbiter

Registers/Execute

Memory Unit

GPU cores

L1D cache Shared
Mem.access miss

Memory Partition

L2 Cache partition Off-chip DRAM Channel Controller

access miss Bandwidth utilization

M
e

m
o

ry
 P

ar
ti

ti
o

n

L2 Cache partition Off-chip DRAM Channel Controller

access-1 miss-1 Attained-Bandwidth-1

Fetch/Decode

I-Buffer/Scoreboard

Warp Issue Arbiter

Registers/Execute

Memory Unit

GPU cores

Fetch/Decode

I-Buffer/Scoreboard

Warp Issue Arbiter

Registers/Execute

Memory Unit

GPU cores

L1D cache Shared
Mem.access miss

1

7

8

9

10

Sampling table

EB-1 (1, 1) EB-2 (1, 1)

EB-1 (4, 1) EB-2 (4, 1)

.

EB-1 (24, 1) EB-2 (24, 1)

EB-1 (1, 4) EB-2 (1, 4)

.

EB-1 (1, 24) EB-2(1, 24)

Pattern of
each app.

Modulation

Effective
Bandwidth

fr
o

m
fr

o
m

fr
o

m

2

fr
o

m

L1 Miss Rate-2 L1 Miss Rate-1

access-2 miss-2
4 5

Attained-Bandwidth-2
6

local from 1

local from 2

1 2

3

Figure 3.8: Proposed hardware organization. Additional hardware is shown via shaded
components and dashed arrows.

the TLP of a particular application changes and the TLP of the other application is fixed

at 24. This process is repeated for every application in the workload. The application

that causes larger drops in EB-HS value is considered to be critical. For example, in

Figure 3.7 (c) and (d), BLK is again the critical application as it affects the EB-HS the

most (larger drop in TLP-TRD=24 curve as TLP-BLK increases, Figure 3.7(a)). After

fixing TLP-BLK to be 2, we start tuning TLP-TRD so as to further optimize the EB-HS.

The searching process stops at TLP-TRD=8, leading to the optimal combination of (2,8),

which is exactly the optHS.

3.5.5 Implementation Details and Overheads

Our mechanism requires periodic sampling of cache miss rates at L1 and L2, and memory

bandwidth utilization. In our experiments, we observe uniform miss rate and bandwidth

distribution among the memory partitions and uniform L1 miss rates across cores that ex-

ecute the same application. Therefore, to calculate EB in a low-overhead manner, instead

CHAPTER 3. GPU MULTI-PROGRAMMING MANAGEMENT 32

of calculating EB by collecting information from every core and L2/memory partition,

we collect: a) L1 miss rate information only from one core per application, and b) at-

tained bandwidth and L2 miss rate information of every application only from one of the

L2/memory partitions.

Figure 3.8 shows the architectural view of our proposal. First, after each sampling

period, we use the total number of L1 data cache accesses (1) and misses (2), from each

designated core, and calculate the miss rate of the application. The calculated miss rates

are sent through the interconnect to the designated memory partition and stored in their

respective buffers (3). Then, the miss rate of each application, L2 cache accesses (4)

and misses (5), and attained bandwidth (6) from the designated memory partition are

forwarded to each core to be used along with the locally collected L1 data. Such data

is used, per core, to calculate EB (7). The calculated EB values are then fed to our

PBS mechanism (8), which resides inside the warp issue arbiter within each core, and

stored in a small table (9). In this table, each line represents the EB of both applications,

corresponding to the TLP combination used for the current sampling period (indicated

by the subscript). After sampling, our PBS mechanism extracts the pattern from each

application and then changes the TLP value for one application accordingly. The next step,

modulation (10), varies the TLP value of the other application to maximize the relevant

EB-based metric. Finally, the calculated TLP is sent to the warp-limiting scheduler.

We break down overhead in terms of storage, computation, and communication. In

terms of storage, two 12-bit registers per core, and three 12-bit registers and one 15-bit

register per memory partition are required to track per-application L1 miss rate, L2 miss

rate, and BW, respectively. The sampling table needs 60 bytes. In terms of computation,

the sampled data is fed to the PBS mechanism module (8), which performs a simple search

over the 16 × 2 samples collected over the sampling window. In terms of communication,

using a crossbar, the designated memory partition relays the collected information (12

bits × 6 + 15 bits × 2 = 102 bits) to the cores every sampling window. We conservatively

assume that the counter values are sent to the cores with a latency of 20 cycles.

CHAPTER 3. GPU MULTI-PROGRAMMING MANAGEMENT 33

All the runtime overheads are modeled in the PBS results presented in Section 3.6.

We empirically find that a monitoring interval of 3000 cycles for each TLP combination

searched via PBS is sufficient as trends do not change significantly beyond 3000 cycles.

The PBS is re-started when any kernel is re-launched.

3.6 Experimental Evaluation

In this section, we evaluate our proposed PBS schemes (Section 3.5) and compare them

against ++bestTLP, opt (optWS, optFI, optHS), and the following additional schemes:

Brute-Force (BF). BF scheme performs an offline exhaustive search across all the pos-

sible TLP combinations (64) to find the one that provides the best EB-based metric.

Therefore, BF has three different versions: BF-WS, BF-FI, and BF-HS that optimizes

EB-WS, EB-FI, and EB-HS, respectively. BF schemes provide a good estimate of the

potential of improving the SD-based metrics (the ones we finally report) via optimizing

EB-based runtime metrics. Note that opt schemes are also brute-force but instead they

perform an exhaustive search to find the best SD-based metric.

PBS (Offline). PBS-Offline schemes follow the exact same procedure as previously

described in the PBS schemes (Section 3.5) but do not consider: a) any runtime overheads,

and b) dynamic changes in interference across different kernel executions in the workload.

We consider this comparison point to decouple the runtime effects from the inherent

benefits of the proposed schemes. Similar to PBS, PBS-Offline also has three versions:

PBS-WS (Offline), PBS-FI (Offline), and PBS-HS (Offline).

Mod+Bypass [66]. In addition to ++DynCTA, we compare the PBS mechanisms

against the recently proposed TLP management mechanism Mod+Bypass [66] for multi-

application scenario. They use both CTA modulation and cache bypassing mechanism to

enhance the system throughput.

CHAPTER 3. GPU MULTI-PROGRAMMING MANAGEMENT 34

3.6.1 Effect on Weighted Speedup

Figure 3.9 shows the impact of different schemes on the WS for 10 representative workloads

(out of 50 evaluated) along with Gmean across evaluated workloads. The results are

normalized to the WS obtained under ++bestTLP. Six observations are in order. First,

on average, benefits of BF-WS are as good as optWS (within 2%) implying that optimizing

EB-WS is a good candidate to improve SD-based WS. However, as EB-WS is a proxy for

WS and it may not work for all workloads as discussed in Section 3.4. As the number of

outliers are very few, we did not consider scaling factors for optimizing WS. Second, PBS-

WS (Offline) overall performs as good as optWS. This shows the inherent effectiveness of

PBS in finding the TLP combination that results in higher WS over ++bestTLP.

Third, on average, PBS also performs as good as the PBS-WS (Offline). Note that

PBS-WS (Offline) offers a trade-off. As it is a static technique it does not incur runtime

overhead but also cannot adapt to different runtime interference patterns for locating

better TLP combination within the same workload execution. Therefore, we observe that

the benefits of PBS-WS can be: 1) similar to PBS-WS (Offline) (e.g., BLK TRD), where

the runtime benefits cancel out with the overheads; 2) worse than PBS-WS (Offline) (e.g.,

FWT TRD, where the runtime overheads hamper the WS; or 3) better than PBS-WS (Offline)

(e.g., 3DS TRD, BLK BFS2), where the runtime tuning of TLP combination provides benefits.

To illustrate the last point, Figure 3.11(a) shows the dynamic changes in TLP (TLP-BLK

above and TLP-BFS2 below) over the course of BLK BFS2 execution. The shaded areas

represent the sampling period including the time during which the decision cannot be

taken because the execution time of the kernel is too short. As expected and discussed

before in Section 3.3, (2,2) is the most preferred TLP combination for BLK BFS2 and is

chosen for the longest duration of time. Other TLP combinations are chosen during other

time intervals to boost the WS further.

Fourth, ++DynCTA provides additional benefits over ++bestTLP (7% on average)

because of its ability to adapt under a shared environment. However, it is still far from PBS

CHAPTER 3. GPU MULTI-PROGRAMMING MANAGEMENT 35

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

3DS_TRD BFS2_FFT BLK_BFS2 BLK_TRD FFT_TRD FWT_TRD JPEG_CFD JPEG_LIB JPEG_LUH SCP_TRD Gmean

N
o

rm
a

li
z
e

d
W

S

++DynCTA Mod+Bypass PBS-WS PBS-WS (Offline) BF-WS optWS

Figure 3.9: Impact of our schemes on Weighted Speedup. Results are normalized to
++bestTLP.

0.5

1

1.5

2

2.5

3

3.5

3DS_TRD BFS2_FFT BLK_BFS2 BLK_TRD FFT_TRD FWT_TRD JPEG_CFD JPEG_LIB JPEG_LUH SCP_TRD Gmean

N
o

rm
a

li
z
e

d
 F

I

++DynCTA Mod+Bypass PBS-FI PBS-FI(Offline) BF-FI optFI

Figure 3.10: Impact of our schemes on Fairness. Results are normalized to ++bestTLP.

and other schemes as ++DynCTA attempts to enhance the performance based on applica-

tion’s local information and hence can overwhelm the memory system. Fifth, Mod+Bypass

technique helps in improving the performance further over ++DynCTA mainly because

it also bypasses the application that does not take advantage of caches, thereby reducing

the cache contention. However, this mechanism is still far from optWS as it does not con-

sider the memory bandwidth consumption and the combined effects of TLP modulation.

Finally, PBS-WS performs significantly better (20%, on average) than the ++bestTLP

because of the reasons extensively discussed in Section 3.3 and Section 3.5. FWT TRD is

the only exception as PBS-WS is not able to find the optimal TLP combination due to a

smaller sampling period.

CHAPTER 3. GPU MULTI-PROGRAMMING MANAGEMENT 36

0

1

2

3

4

5
T

L
P

-B
L

K

Time

0

1

2

3

4

5

T
L

P
-B

F
S

2

Time

(a) Optimizing WS

0

1

2

3

4

5

T
L

P
-B

L
K

Time

0

5

10

15

20

25

T
L

P
-B

F
S

2

Time

(b) Optimizing FI

Figure 3.11: Effect of changes in TLP over time for BLK BFS2 with: a) PBS-WS and
b) PBS-FI.

3.6.2 Effect on Fairness Index

Figure 3.10 shows the impact of different schemes on FI for 10 representative workloads

(out of 50 evaluated) along with Gmean across evaluated workloads. The results are

normalized to the FI obtained under ++bestTLP. Five observations are in order. First,

on average, benefits of BF-FI are not as close as optFI implying that runtime optimizations

play an important role in achieving high fairness. To evaluate the impact of scaling factor,

we calculated BF-FI both using grouping as well as sampling information (Section 3.4).

We find that BF-FI calculated using grouping information is 16% (not shown) better in FI,

averaged across all workloads. However, the grouping information needs to be supplied by

the user. If exact scaling factors are used (Table 3.4), BF-FI is close to optFI as expected.

For a fair comparison, Figure 3.10 shows the sampling-based BF-FI for comparisons against

other dynamic counterparts.

Second, PBS-FI (Offline) overall performs as good as BF-FI implying that the scheme

itself is effective in providing high fairness. Third, PBS-FI is able to capture the runtime

effects well and is better than PBS-FI (Offline) in many workloads. As an example, Fig-

ure 3.11(b) shows the dynamic changes in TLP (TLP-BLK above and TLP-BFS2 below)

over the course of BLK BFS2 execution. The shaded areas represent the sampling period.

We observe that despite higher sampling overhead (as it includes additional sampling to

CHAPTER 3. GPU MULTI-PROGRAMMING MANAGEMENT 37

calculate the scaling factor), PBS-FI is able to provide much higher benefits than other

schemes. It is because TLP combination of (4,2) allowed to reduce the slowdown of BLK

while preserving the slowdown for BFS2 when it was executing non-cache sensitive ker-

nels. Fourth, ++DynCTA and Mod+Bypass provide additional benefits over ++bestTLP

(12% and 42% on average, respectively) because of their ability to adapt under a shared

environment. However, both ++DynCTA and Mod+Bypass themselves are not designed

to improve fairness in the multi-application environment and only focus on performance.

Finally, PBS-FI performs significantly better (2×, on average) than the ++bestTLP be-

cause of the reasons discussed before.

3.6.3 Effect on Harmonic Weighted Speedup

0.6

0.8

1

1.2

1.4

G12 G13 G14 G22 G23 G24 G33 G34 G44 Gmean

N
o

rm
a
li

z
e
d

 H
S

 PBS-HS optHS

Figure 3.12: Impact of our schemes on HS.

Figure 3.12 shows the impact of the schemes on all the evaluated 50 workloads. For

brevity, we do not show the results for each workload separately. Instead, we use the

grouping information (Table 3.4) to form 2-application clusters and report the average

(geometric mean) of the HS improvements of every workload in the cluster. As there

are four groups, 10 such clusters are possible. Figure 3.12 shows the results of nine

such clusters. We do not study G11 cluster as both the applications belonging to that

cluster have low individual EB and interference. We observe that PBS-HS enhances HS on

average by 15% over ++bestTLP. Additionally, compared to optHS, PBS-HS performance

is behind by 2%, on average. We conclude that PBS-HS is a technique that can significantly

enhance both system throughput and fairness over ++bestTLP.

CHAPTER 3. GPU MULTI-PROGRAMMING MANAGEMENT 38

3.6.4 Case Studies

We perform four sensitivity studies to understand the impact of the proposed schemes

under different core and cache partitioning, application scaling, and memory scheduling

scenarios.

Core partitioning. We test PBS under two different core partitioning scenarios: 2:1

and 1:2 partitioning (e.g., in 2:1, the first and the second applications are assigned 20

and 10 cores, respectively) and compare it to our baseline that allocates 15 cores to each

application. Figure 3.13(a) shows the benefits of PBS over ++bestTLP observed in WS,

FI, and HS averaged across all our 50 workloads. The bar denoted by Equal represents

the average improvement of PBS with equal partitioning, and the bar denoted by Unequal

represents the average improvement of PBS with the best performing partitioning scheme

among 2:1 and 1:2 (found separately for each workload and then averaged). PBS enhances

WS, FI, and HS under both equal and unequal core partitioning scenarios, compared to

++bestTLP. However, the benefits of PBS reduce with unequal partitioning because with

different core partitioning each application executes with a different amount of TLP. As

we choose the best (among 2:1 and 1:2) core partitioning configuration, the interference

is also alleviated because of core partitioning itself in addition to our TLP management

schemes. As the design of core partitioning is itself an interesting and non-trivial research

problem, we conclude that these techniques still do not completely solve the interference

problem and TLP management techniques like PBS can provide additional benefits.

(a)

0
0.5

1
1.5

2
2.5

E
q

u
a
l

U
n

e
q

u
a
l

E
q

u
a
l

U
n

e
q

u
a
l

E
q

u
a
l

U
n

e
q

u
a
l

WS FI HS

Im
p

ro
v
e

m
e

n
t

0
0.5

1
1.5

2
2.5

S
h

a
re

d

E
q

u
a
l

S
h

a
re

d

E
q

u
a
l

S
h

a
re

d

E
q

u
a
l

WS FI HS

0
0.5

1
1.5

2
2.5

 2

A
p

p

 3

A
p

p

 2

A
p

p

 3

A
p

p

 2

A
p

p

 3

A
p

p

WS FI HS

(b) (c)

Figure 3.13: Effect of PBS over ++bestTLP with: a) core partitioning, b) cache parti-
tioning, c) 3-application scaling.

CHAPTER 3. GPU MULTI-PROGRAMMING MANAGEMENT 39

Cache partitioning. Figure 3.13(b) shows the benefits of PBS when the L2 is way-

partitioned equally (denoted by Equal) across two applications, and compare it to our

baseline where the L2 cache is shared (denoted by Shared). We observe that PBS improves

all three metrics (WS, FI, and HS) under both the scenarios. Cache partitioning can

alleviate the interference at L2, but it might be suboptimal in scenarios where different

applications in the same workload utilize the caches differently. This might lead to a

portion of the cache to be not utilized well. On the other hand, PBS changes the cache

demand of each application by TLP modulation.

Application Scalability. For a k-application workload, we first rank the criticality

of each application in the workload based on the magnitude of the EB drop. While

determining the ranking, the TLP of other applications is fixed at 24 (same as discussed

before in Section 3.5). If N is the number of TLP choices, the procedure for deciding the

criticality takes less than N × k steps. Subsequently, the tuning of TLP of each application

would take N × (k−1) steps. Therefore, the associated overall search complexity is linear

to the number of applications (O(N × k)). In this case study, we evaluate PBS on

three-application workloads by performing some straightforward extensions to the PBS.

Therefore, we find the critical application one by one under the interference of the other

two remaining applications, keeping other steps the same. We choose 20 representative

three-application workloads to compare the average benefits to that of workloads with two

applications (Figure 3.13(c)). We observe that the benefits of PBS are reasonably stable

as the number of applications scales. We conclude that our techniques are not limited to

workloads that consist of only two applications.

Memory scheduling. We find that PBS provides significant benefits (15% in WS and

1.92× in FI, on average across 50 workloads) over WEIS memory scheduler designed

for multi-GPU execution [48]. We conclude that TLP management techniques are more

effective than the previously proposed memory scheduling techniques.

CHAPTER 3. GPU MULTI-PROGRAMMING MANAGEMENT 40

3.7 Related Work

To our knowledge, this is the first work that proposes TLP management techniques for

improving system throughput and fairness in a multi-application environment for GPUs.

In this section, we outline some particularly relevant works.

TLP management techniques in GPUs. Rogers et al. proposed a mechanism that

limits the TLP based on the level of thrashing in each core’s private L1 data cache [99].

Kayiran et al. proposed a TLP optimization technique that works based on the latency

tolerance of individual GPU cores [54]. Jia et al. proposed a mechanism that consists of

a reference reordering technique and a bypassing technique such that the cache thrashing

and also resource stalls at the caches reduce [44]. The input to this mechanism is from the

L1 caches, and the decision is local. Sethia and Mahlke devised a method that controls

the number of threads and core/memory frequency of GPUs [112]. Sethia et al. used a

priority mechanism that allows better overlapping of computation and memory accesses

by limiting the number of warps that can simultaneously access memory [111]. The work

by Zheng et al. allows the execution of many warps concurrently without thrashing the

L1 cache by employing cache bypassing [145]. All these works use local metrics available

at the GPU cores and do not consider resource contention at the L2 caches and the

memory. However, we propose mechanisms where all GPU applications control their TLP

while being aware of each other. Further, our mechanisms are optimized for improving

system throughput and fairness and not instruction throughput, which was the focus of

aforementioned works.

Hong et al. proposed various analytical methods for estimating the effect of TLP on

performance [41, 42], but do not propose run-time mechanisms. Kayiran et al. devised

a mechanism where GPU cores modulate their TLP based on system-level congestion

when GPU applications execute alongside CPU applications in a shared environment [56].

Their mechanism uses system-level metrics to unilaterally control the TLP of a single GPU

application, whereas our mechanisms control TLP while being aware of all applications in

CHAPTER 3. GPU MULTI-PROGRAMMING MANAGEMENT 41

the system.

Concurrent execution of multiple applications on GPUs. Xu et al. proposed

running multiple GPU applications on the same GPU cores and assigning CTAs slots

to different applications to improve resource utilization of GPU cores [135]. Likewise,

Wang et al. proposed running multiple GPU applications on the same GPU cores, and

augmented it with a warp scheduler that adopts a time-division multiplexing mechanism

for the co-running applications based on static profiling [133]. These intra-core partitioning

techniques are used to partition resources within a core. However, co-running kernels

interfere with each other significantly, especially in small L1 GPU caches. In such cases,

running these kernels separately on different cores can be more effective for avoiding intra-

core contention. GPU Maestro dynamically chooses between intra-core and inter-core

techniques to reap the benefits of both [87]. However, none of these mechanisms change

the shared cache and memory footprint of each application, and thus directly alleviate the

shared memory interference. Our goal is to address the shared resource contention in L2

caches and main memory by managing TLP of each application differently. PBS allows

each application to dynamically change its cache and memory footprint cognizant of the

other applications’ state. Pai et al. proposed elastic kernels that allow a fine-grained

control over their resource usage [84]. Their work targets increasing the utilization of

computing resources by accounting for the parallelism limitation imposed by the hardware,

whereas our mechanism considers the memory system contention to modulate parallelism.

Li et al. proposed a technique to adjust TLP of concurrently executing kernels [66], which

we quantitatively and qualitatively compare in Section 3.6. We conclude that even if a new

resource partitioning technique (see case study (Section 3.6.4)) is employed, the problem

of multi-application contention in the memory system remains.

Cache and memory management. In the context of traditional CPUs, several works

have investigated coordinated cache and memory management, and throttling for lower

memory system contention. Zahedi et al. proposed a game-theory based approach for

partitioning cache capacity and memory bandwidth for multiple software agents [141].

CHAPTER 3. GPU MULTI-PROGRAMMING MANAGEMENT 42

Ebrahimi et al. proposed a throttling technique that improves system fairness and per-

formance in multi-core memory systems [24]. Eyerman et al. analyzed the effects of

varying degrees of TLP on performance, in various multi-core designs [26]. Heirman et al.

proposed a technique that matches the application’s cache working set size and off-chip

bandwidth demand with the available system resources [38]. Qureshi and Patt proposed

a cache partitioning mechanism in the context of multi-core CPUs [95]. Their mecha-

nism, based on the cache demand of each application, allocates cache space to co-running

applications, whereas our mechanism changes the cache demand of each application by

controlling their TLP.

3.8 Chapter Summary

This chapter analyzed the problem of shared resource contention between multiple concur-

rently executing GPGPU applications and showed that there is an ample scope for TLP

management techniques for improving system throughput and fairness in GPUs. Our de-

tailed analysis showed that these metrics are highly correlated with effective bandwidth,

which is defined as the ratio of attained DRAM bandwidth to the combined cache miss

rate. Based on this observation, we designed pattern-based effective bandwidth manage-

ment schemes to quickly locate the most efficient and fair TLP configuration for each

application. Results show that our proposed techniques can significantly improve the sys-

tem throughput and fairness in GPUs compared to previously proposed state-of-the-art

mechanisms. While this work focused on a specific platform with concurrently executing

GPU applications, we believe that the presented analysis and the insights can be extended

to other systems (e.g., chip-multiprocessors, systems-on-chip with accelerator IPs, server

processors) where contention in shared caches and memory resources are performance-

critical factors.

43

Chapter 4

Address-Stride Assisted

Approximate Load Value

Prediction in GPUs

4.1 Introduction

A promising strategy for reducing data movement is value prediction, whereby the values

are not necessarily required to be fetched from memory as they can be predicted at the

core. In the context of CPUs, previous techniques [90, 92, 91, 28, 25, 107, 108, 67] used to

both predict and fetch the data. The predicted values are later compared with the fetched

values. If the prediction turns out to be correct, the data-dependent stall cycles are

reduced significantly. However, in the case of a misprediction, the execution is rolled back

leading to the flushing of the dependent instructions in the pipeline. Such performance

and data movement overheads are the critical impediments towards leveraging the benefits

of value prediction. To address the challenges of precise value prediction, recent research

has explored approximate value usage [73, 104, 103, 134, 139, 58], which leverages the

observation that for approximable applications the requirement of rollbacks can be omitted

as long as the application-level loss in quality is within an acceptable range.

CHAPTER 4. GPU VALUE APPROXIMATION 44

While rollback-free value approximation has received significant attention in the con-

text of CPUs [73, 104, 103, 127, 58], only a few works have explored it in the context

of GPUs [134, 139]. Application execution in GPUs relies on multi-threading, where as-

sociated threads are scheduled on GPU cores at the granularity of warps, where a warp

usually consists of 32 threads. Each load instruction in a warp can generate one or more

cache block request depending on how well the data is coalesced across threads within the

warp. As hundreds of warps can concurrently execute and cache sizes in GPUs are much

smaller than CPUs [80], data movement between caches and memory is a serious perfor-

mance and energy efficiency bottleneck [129, 49, 50, 54]. If values of these requests can be

correctly predicted at the core, the data movement and stall cycles can be significantly re-

duced thereby improving latency tolerance, performance, and energy efficiency. However,

if the predictor predicts incorrectly, each mispredicted cache line leads to a certain level

of quality loss in the application’s final output. This quality loss is dependent on many

factors such as the prediction coverage (defined as the ratio of predicted load requests

to the total load requests), the magnitude of error in value prediction, and the error re-

silience of instructions that use erroneous values as their operands. Therefore, if values

can be predicted more accurately, higher coverage can be applied for better performance

and energy efficiency.

The goal of this work is to improve the accuracy of value prediction in GPUs. One

of the major challenges in achieving this goal is to identify the value stride pattern(s)

in a highly multi-threaded environment where thousands of memory requests can be on-

the-fly and their access order is highly dependent on GPU-specific features such as warp

scheduling and coalescing. Previous works for CPUs used large per-thread prediction

tables to achieve high accuracy [120, 75, 106]. However, it can become prohibitively

expensive to apply those approaches directly to the highly multi-threaded environment in

GPUs [139]. To address this problem, we take advantage of our key new observation that

consideration of memory addresses and the relationship with their value strides is effective

for providing high value prediction accuracy. Specifically, we find that for many realistic

CHAPTER 4. GPU VALUE APPROXIMATION 45

inputs used by GPGPU applications, particular address strides have linear correlations

with their value strides. For example, Figure 4.1 shows that for the extracted pixels, an

address stride of 1×data size correlates to a value stride of −1. Meanwhile, an address

stride of 1×row size correlates to a value stride of 1.

Figure 4.1: Pixel values of consecutive row and column positions.

Based on this new observation, we propose an Address-Stride Assisted Approximate

Value Predictor (ASAP), which predicts the values only if it detects strides in their corre-

sponding addresses. Each entry in the ASAP prediction table carefully keeps track of one

type of address stride and their corresponding value stride. We find that as the number of

address stride patterns in typical GPGPU applications is usually limited, the number of

prediction table entries is significantly reduced, thereby making it area and power-efficient

(Section 4.4). We also show that ASAP remains effective even under different address

patterns, which can be influenced by warp scheduling and coalescing (Section 4.6).

To the best of our knowledge, this is the first work that shows that there is a high

correlation between address stride and value strides in several GPGPU applications and

this observation can be used to design an efficient GPU-specific value predictor. Our

simulation results across a set of diverse GPGPU applications show that ASAP can sig-

nificantly improve the prediction accuracy over the state-of-the art GPU value predictor

CHAPTER 4. GPU VALUE APPROXIMATION 46

while providing high performance improvement (up to 40%) and energy reduction (up to

30%). Specifically, the previously proposed RFVP-style value predictor [139] incurs 3.48%

(up to 40.08%) and 8.10% (up to 63.59%) Application Error, at 10% and 20% coverage,

respectively. In contrast, under a similar area budget, our ASAP predictor produces on

average only 0.26% and 0.43% Application Error, respectively.

4.2 Background

This section provides background on the GPU architecture followed by details of the

existing value prediction techniques in GPUs.

4.2.1 Baseline Architecture and Metrics

Figure 4.2 shows the baseline GPU architecture with a value predictor (VP). We assume a

value predictor is attached to each SM. We simulate our baseline architecture using a cycle-

level simulator – GPGPU-Sim [12] and faithfully model all key parameters (Table 4.1).

The energy measurements are gathered using GPUWattch [64].

L1

L2

DRAM

Core2 Core30

Interconnect

Core1

VP L1 VP L1 VP

Core

L1 Cache
Value

Predictor
(VP)

Address

Request Info (FP/INT, R/W, PC, WID, etc.)

Miss Signal

Training/Update Data

Approximate Data

Drop Signal

Interconnect

L2 Cache DRAM

L1 Read
Misses

L1 Read
Requests

Prediction
Count

…

…

L2

DRAM
L2

DRAM

Figure 4.2: Baseline GPU Architecture with a value predictor.

CHAPTER 4. GPU VALUE APPROXIMATION 47

Table 4.1: Key configuration parameters of the simulated GPU configuration. See
GPGPU-Sim v3.2.2 [34] for the full list.

Core Features 1400MHz core clock, 30 SMs, SIMT width = 32 (16 × 2)
Resources / Core 32KB shared memory, 32KB register file

Up to 1536 threads (48 warps, 32 threads/warp)
L1 Caches / Core 16KB 4-way L1 data cache

12KB 24-way texture cache, 8KB 2-way constant cache,
2KB 4-way I-cache, 128B cache block size

L2 Cache 8-way 128 KB/memory channel (768KB in total)
128B cache block size

Features Memory coalescing and inter-warp merging enabled,
immediate post dominator based branch divergence handling

Memory Model 6 GDDR5 Memory Controllers (MCs)
FR-FCFS scheduling, 16 DRAM-banks, 4 bank-groups/MC,
924 MHz memory clock Global linear address space is
interleaved among partitions in chunks of 256 bytes
Hynix GDDR5 Timing [43], tCL = 12, tRP = 12, tRC = 40,
tRAS = 28, tCCD = 2, tRCD = 12, tRRD = 6, tCDLR = 5, tWR = 12

Interconnect 1 crossbar/direction (30 SMs, 6 MCs),
1400MHz interconnect clock, islip VC and switch allocators

Evaluation Metrics. We summarize the metrics evaluated in this work with the help of

Figure 4.2. Coverage is the ratio between Prediction Count C (i.e., cache lines that are

predicted and not sent to the lower level) and L1 Read Requests A . Since the number

of L1 Read Requests is constant for an application, the prediction accuracy across differ-

ent predictors can be compared at the same coverage. Miss Match Rate (MMR) is the

maximum achievable ratio between Prediction Count C and L1 Read Misses B . The pre-

diction quality is measured in terms of Application Error, which is defined as the average

relative error between the output of the approximate version and the baseline accurate

version of an application.

4.2.2 Baseline Value Predictors

Figure 4.2 (right side) shows the general structure of the value predictor and its op-

eration. The value prediction works concurrently with the cache access. We rely on

user-supplied annotations to identify approximable instructions (more details are in Sec-

tion 4.4.4). When a load request is issued from the core, its information (e.g., address,

program counter (PC), Warp ID (WID), a bit to indicate floating-point vs. integer value

(FP/INT), user-supplied annotation, memory space) is passed to the predictor. If the

CHAPTER 4. GPU VALUE APPROXIMATION 48

cache access results in a miss, a miss signal is generated to inform the value predictor. If

the value predictor is able to predict the associated cache line, it will: a) issue a drop sig-

nal to inform the MSHR to not send the cache request to the lower level of the hierarchy,

and b) fill the L1 cache with the predicted data. Whenever the L1 cache is filled with a

request fetched from the lower level of memory, it will be sent to the value predictor for

training and update (see Section 4.4.1).

Our baseline value predictor is based on rollback free value predictor (RFVP) for

GPUs [139]. RFVP takes advantage of the prediction tables implemented in the hardware

to track the patterns in the data values. Specifically, RFVP uses a hash of Warp ID and

PC to map different requests to particular entries in the prediction table. The prediction

is performed at a granularity of the memory access size (typically 4 bytes) of a thread.

However, as the prediction of all the words in a cache line is desired, the observation of

intra-warp value similarity is used to predict values within the cache line. Our baseline

predictor has two sub-predictors [139]. The first sub-predictor is responsible for predicting

the first word, which is then copied to the first half of words (words 1 to 15). Similarly, the

second sub-predictor is used for the second half (words 17 to 31). The following discussion

provides the necessary background on two different RFVP-style baseline predictors.

....

word 0-15 word 16-31

Value
Base0

Hash
Fn

PC

Warp ID

Value
Stride1

Value
Base16

Value
Stride2

(a) One Stride Predictor (OSP)

....

word 0-15 word 16-31

Value
Base0

Value
Base16

Value
Stride1

Value
Stride2

Hash
Fn

PC

Warp ID

Value
StrideA

Value
StrideB

(b) Two Stride Predictor (TSP)

Figure 4.3: Design of the baseline value predictors.

RFVP-Style One Stride Value Predictor (OSP). Figure 4.3(a) shows the design of

OSP, which uses a hash function [139] based on PC and Warp ID to map requests to entries

in the prediction table. Each cache line is predicted with two one-stride sub-predictors.

CHAPTER 4. GPU VALUE APPROXIMATION 49

The predicted value of word 0 (which is later copied to words 1 through 15) is the sum

of ValueBase0 and ValueStride1 (1). Similarly, the predicted value of word 16 (which is

later copied to words 17 through 31) is the sum of ValueBase16 and ValueStride2 (2).

Before prediction, both sub-predictors need to be trained. For the training, at least

two successive cache lines are needed from the main memory. ValueBase0 is updated by

the word 0 of the second cache line and ValueStride1 is updated to the difference between

the word 0 of the second cache line and the first cache line. The same process is repeated

for ValueBase16 and ValueStride2 of the second sub-predictor with word16 (instead of

word0) of the two successive cache lines. To control the accuracy, data is periodically

fetched from the main memory to update the base and stride values.

RFVP-Style Two Stride Value Predictor (TSP). Figure 4.3(b) shows the design

of TSP, which uses the same hash function as OSP. However, the cache line is predicted

with the help of two two-stride sub-predictors. The prediction process of TSP is similar

to OSP. The predicted value of word 0 (which is later copied to words 1 through 15) is

the sum of ValueBase0 and ValueStride1 (1), and the predicted value of word 16 (which

is later copied to words 17 through 31) is the sum of ValueBase16 and ValueStride2

(2). The training process of TSP is different from OSP only regarding how the stride

is calculated. For the training, at least three cache lines are needed from the memory.

With three successive cache lines, ValueBase0 is updated by the word 0 of the third cache

line, and the ValueStrideA is updated to the difference between the word 0 of the third

and the second cache line. ValueStride1 is updated to the value of ValueStrideA only if

ValueStrideA also equals the difference between the word 0 of the second and the first

cache line, otherwise, the sub-predictor is considered to be not trained. The second sub-

predictor adopts the same process for the values of ValueBase16 and ValueStride2. The

training process stops when both ValueStride1 and ValueStride2 are found. Again, the

accuracy can be controlled by periodically fetching data from the memory.

CHAPTER 4. GPU VALUE APPROXIMATION 50

cameraman flowers house lake lena moon sails walkbridge earth goldhill jetplane mandril peppers sun us021 woman_darkhair

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
0

10

20

Address Stride

A
vg

 V
al

ue
 S

tr
id

e

mandril peppers sun us021 woman_darkhair

(a) Addresses are incremented row-wise.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
0

10

20

#4096Address Stride

A
vg

 V
al

ue
 S

tr
id

e

mandril peppers sun us021 woman_darkhair

(b) Addresses are incremented column-wise.

Figure 4.4: Illustrating the relationship between average value stride of data with differ-
ent address strides for a variety of inputs.

4.3 Motivation and Analysis

In this section, we first analyze the relationship between address and value strides in the

inputs of GPGPU applications, followed by a discussion on how this relationship helps in

improving the accuracy of the value prediction.

4.3.1 Analysis of Address and Value Strides

We find that a wide range of GPGPU workloads work on inputs that have regular val-

ues strides (also discussed in Section 4.1). In general, we observe that a large number of

nearby pixels in the image are similar or have gradually changing grayscales leading to

regular value strides. To validate this observation, we picked a series of images including

the commonly used standard test images to analyze the correlation between their address

strides and value strides. Figure 4.4 shows the average absolute value strides with increas-

ing address strides for all pixels in each image. For example, for the address stride of 1,

the corresponding average absolute value stride is the average absolute value difference

between every two pixels with consecutive addresses. The unit of the address stride is the

size of the data type used. Specifically, Figure 4.4(a) shows how the average value stride

changes along the row of the image. Meanwhile, Figure 4.4(b) shows how the average

value stride changes along the column of the image. As we can observe from the two

figures, different images show different extent of linear correlations. Overall, the smaller

CHAPTER 4. GPU VALUE APPROXIMATION 51

Value
Base

Value
Stride

0 −
2 2

4 2

Training
Prediction

Sequence1 (𝒂𝒅𝒅𝒓𝟎 → 𝒂𝒅𝒅𝒓𝟏 → 𝒂𝒅𝒅𝒓𝟐)

Value
Base

Value
Stride

0 −
4 4

8 4

Sequence2 (𝒂𝒅𝒅𝒓𝟎 → 𝒂𝒅𝒅𝒓𝟐 → 𝒂𝒅𝒅𝒓𝟏)

0
0𝒗𝒂𝒍

𝒂𝒅𝒅𝒓

Trained

2
2 4
1

00

21

42

00

42

21

Trained

Sequence 1 Sequence 2

𝒂𝒅𝒅𝒓 𝒗𝒂𝒍 𝒂𝒅𝒅𝒓 𝒗𝒂𝒍

Figure 4.5: Illustrative example showing the importance of request order on value strides
and the ease of value predictability.

the address stride, the more linear the correlation. Specifically, for the value strides of

the next three nearby pixels (i.e., on the left of the red dashed line) both row-wise and

column-wise, all images show nearly constant slopes between their address strides and

value strides.

4.3.2 Motivation

We find that the observation of linear correlation between address stride and value stride

can help to improve the accuracy of value prediction in GPUs. Consider an illustrative

example shown in Figure 4.5. Assume that three cache line requests are generated from

three different warps with addresses 0,1,2 and values 0,2,4, respectively (A). Therefore,

the address stride and value stride are linearly correlated. However, these requests can

be generated in different orders based on the warp scheduling policy in a GPU. Consider

two possibles address sequences: Sequence I (0,1,2) (B) and Sequence II (0,2,1) (C), as

shown in Figure 4.5.

In the first sequence, OSP is trained with the first two accesses. It can accurately

predict the third value for Sequence I because the predicted value stride conforms with

the actual stride. However, if the predictor is trained with Sequence II, a large relative

error is detected because the calculated stride is incorrect. Hence, if a new value predic-

CHAPTER 4. GPU VALUE APPROXIMATION 52

tor is able to take advantage of the address and value stride correlation, then it is able

to generate an approximation with better quality for images with similar attributes as

shown in Figure 4.4. Meanwhile, the same data movement reduction and performance

improvements are also achieved (Section 4.6).

To confirm this intuition, we analyzed a variety of real GPGPU applications1. Our

profiling analysis examines the value strides by calculating the average stride difference

between every two consecutive observed value strides. For example, if the values of three

consecutive loads are V1, V2, V3, we examine the difference between (V2-V1) and (V3-

V2). A smaller stride difference means that strides are more regular and hence it is easier to

predict the values of future loads. As the value of stride difference is dependent on the load

access order, we measure it on a simulated baseline GPU architecture (Section 4.5) under

three scenarios. Note that we use the first 4B of cache lines accessed by load instructions to

determine value strides. First, the stride difference is calculated from the loads belonging

to the same PC and are generated as determined by the baseline GTO warp scheduler.

Such a scenario mimics a PC-based value predictor that only considers value patterns of

loads that have the same PCs (i.e., PC-Based). Second, the stride difference is calculated

from loads that do not necessarily belong to the same PC but their addresses have regular

strides (i.e., Address-Stride-Based). Third, as indicated in Figure 4.4 that nearby data

tend to show stronger address and value stride correlation, we use the same design as

in the second scenario but restrict the address stride to accept the closest data only for

each application depending on their inputs (i.e., Address-Stride-Based-Restricted). The

selection process of the restricted address stride is described in Section 4.5.2.

Figure 4.6 shows the normalized results for these scenarios: PC-based, Address-Stride-

Based and Address-Stride-Based-Restricted, respectively. We observe that in the second

scenario where the address strides are considered, the average stride difference is much

lower. This indicates that consideration of memory addresses with regular strides can

1More details on the application characteristics/inputs and evaluation methodology are discussed in
Section 4.5.

CHAPTER 4. GPU VALUE APPROXIMATION 53

GESUMMV SYR2K SYRK 2DCONV SLA ATAX BICG 3DCONV SCP CONS LPS

10-6

10-4

10-2

100

102

N
or

m
al

iz
ed

 S
tr

id
e

D
iff

.

PC-Based Address-Stride-Based Address-Stride-Based-Restricted

Figure 4.6: Normalized Stride Difference (in log scale) between consecutively observed
value strides. Considering address-stride-based (2nd and 3rd bar) improves the value
predictability over traditional PC-based approach (1st bar).

facilitate detecting regularities among value strides. In the third scenario, the average

stride difference is even lower, as the average stride difference of many applications even

reach 0. This confirms our observation in Figure 4.4. However, this scenario requires

the user to specify an acceptable address stride. Considering that the Address-Stride-

Based scenario already provides good improvements, we propose Address-Stride Assisted

Value Predictor (ASAP) with the default mode and also evaluate the restricted mode for

comparison purposes.

4.4 Design and Operation

In this section, we describe the design and operation of ASAP via answering the following

these high-level questions: 1) How do we recognize the patterns in the memory address

stream and leverage them for improving the accuracy of value prediction? 2) How do we

handle irregular memory access orders? and 3) How do we ensure the design of the value

predictor to be area-efficient?

4.4.1 Design of ASAP

Overview. The Address-Stride Assisted Value Predictor (ASAP) provides two modes:

default mode and restricted mode. Both of them have the same operations and working

sequence except that the restricted mode only accepts user-defined address strides. For

this reason, we do not differentiate them when introducing the design of ASAP. Figure 4.7

CHAPTER 4. GPU VALUE APPROXIMATION 54

shows the overall design of ASAP that is built upon the baseline predictor as described

earlier in Section 4.2.2. There are two major changes associated with ASAP. First, ASAP

does not rely on the PC or Warp ID based tags or hash functions but uses the address of

the memory requests to map them to the prediction table entries. Second, each prediction

table entry is appended with additional fields containing the information of AddressBase

(i.e., Cache Block Index) and AddressStrides (1) to facilitate in predicting the strides in

the memory addresses. The key idea behind these changes is to identify and then leverage

address patterns in the memory requests in order to facilitate value prediction. If the

next address is predicted correctly, only then its corresponding value can be predicted.

Essentially, we treat each entry of the prediction table as a holder for a certain kind of

address pattern in the access stream. As we observe that the types of different address

stride patterns in GPGPU applications are limited, we find that eight entries are sufficient

(sensitivity studies are discussed in Section 4.7).

ASAP has two versions: ASAP-OSP and ASAP-TSP, based on the type of sub-

predictor it employs. For brevity, we only discuss the design of ASAP-OSP (Figure 4.7)

as it captures all the design issues of ASAP-TSP. We use the same entry to store either

floating-point or integer data and use 1 bit (FP/INT bit) to differentiate between them.

The FP bit also indicates whether floating-point adders or integer adders should be used.

The Prediction Process. In order to track various stride patterns in the memory access

stream, we use two types of AddressStride fields: AddressStrideShort and AddressStride-

Long. For tracking the strides in the value stream we use two types of ValueStride fields:

ValueStrideShort and ValueStrideLong. If the incoming address equals to (i.e., the address

matches) the sum of AddressBase and AddressStrideShort or AddressStrideLong (2)),

then its value can be predicted. We define such a situation as a match (3). For example,

if an entry has AddressBase 2, AddressStrideLong 2, and AddressStrideShort 1, then the

entry is able to match the next request with address 3 or 4. Once a match is detected

and if the address is correctly predicted using AddressStrideShort or AddressStrideLong,

then the value of word0 is predicted with the sum of ValueBase0 and ValueStrideShort1 or

CHAPTER 4. GPU VALUE APPROXIMATION 55

Upcoming
Address

word 0-15

Address
Base

Value
Base0

Address
Stride

Short(S)

Value
Stride
Short1

Address
Stride

Long(L)

Value
Stride
Long1

Value
Base16

Value
Stride
Short2

Value
Stride
Long2

En
tr

ie
s

w
ith

LR
U

 E
vi

ct
io

n

word 16-31

MUXS/L MUXS/L

S/L match

m
at

ch

m
at

ch

....

....

25 bits 9 bits 32 bits 32 bits 32 bits 32 bits 32 bits 32 bits8 bits

Figure 4.7: Design of the Address-Stride assisted value predictor.

ValueStrideLong1 (4), which is later copied to words 1 through 15. The value of word16 is

predicted with the sum of ValueBase16 and ValueStrideShort2 or ValueStrideLong2 (5),

which is later copied to words 17 through 31. After each prediction, AddressBase is up-

dated to the matched address. ValueBase0 and ValueBase16 are updated to the predicted

values of word0 and word16, respectively.

The Training Process. Before prediction, an entry must be trained. Each entry is

responsible for tracking different address stride patterns in the access stream and is trained

with at least two memory requests. For a sequence of requests, AddressBase will be

set to the last address that accessed the entry. AddressStrideShort will be set to the

difference between the two most recent addresses. A third request is required to train

AddressStrideLong as it is the sum of the most recent two AddressStrideShort values.

Therefore, the training is based on the last three requests mapped to the entry. For

example, let us assume that addresses 1, 2, 4 will consecutively update an entry. After

the 2nd address comes, AddressBase will be 2, AddressStrideShort will be 1 (2-1), and

AddressStrideLong will remain unchanged. After the 3rd address comes, AddressBase will

be 4, AddressStrideShort will be 2 (4-2), and AddressStrideLong will be 3 (1+2). During

an entry’s training phase, we also create and update a new entry with the 2nd and 3rd

CHAPTER 4. GPU VALUE APPROXIMATION 56

requests of that entry. This step is performed to warm-up new entries for faster matching.

New entries are created based on least recently used policy.

The Matching Process. At the first match of an entry, it leaves its training phase (i.e.,

it is trained) and enters the prediction phase. The value of AddressStrideShort will be set

to the chosen stride (Short or Long) and the value of AddressStrideLong will be set to twice

the value of AddressStrideShort in order to capture missing intermediate addresses as we

will discuss in Section 4.4.3. Similarly, the corresponding Value-Stride (ValueStrideShort

or ValueStrideLong) will be assigned to ValueStrideShort, and the ValueStrideLong will be

twice the value of ValueStrideShort. Subsequently, the values of AddressStrideShort and

AddressStrideLong will remain fixed during the lifetime of the entry. Note that before

an entry is trained, StrideLong is not necessarily equal to the twice of StrideShort, as

mentioned in the training process.

The Updating Process. When an L1 Miss is not predicted, the fetched cache line

is used to update the AddressBase, ValueBase, ValueStrideShort, and ValueStrideLong

of the matched entries to increase the accuracy of future predictions, while the Ad-

dressStrideShort and AddressStrideLong remain unchanged. The ratio of prediction and

update is controlled by the desired coverage that a user can specify. Hence, the predictor

will predict only if the desired coverage has not been reached. Both the prediction and

the update can only happen in a matched entry. To ensure the updates are evenly dis-

tributed, we predict and update in a fine-grained manner. For example, 50% coverage can

be achieved by doing 5 consecutive predictions followed by 5 consecutive updates.

Note that there should be at least 2 consecutive updates for ASAP-OSP and 3 for

ASAP-TSP in order to update the value strides in their corresponding sub-predictor (Sec-

tion 4.2.2). When an update or a prediction request comes to the predictor, entries are

checked one by one to see if there is a match in any of the entries. We find that this small

extra latency does not affect the performance benefits obtained from dropping the request.

The match for AddressStrideShort and AddressStrideLong inside each entry happens in

parallel. If no match is found, we replace an old entry with a new entry based on LRU

CHAPTER 4. GPU VALUE APPROXIMATION 57

policy and start its training phase.

4.4.2 Operation of ASAP

Figure 4.8 illustrates the operation of ASAP-OSP and its advantages over RFVP-Style-

OSP by considering a sequence of addresses (0,1,2,4,3,5). The corresponding data values

are shown in boxes next to each other (A). In this example, we assume that the address

sequence is generated from the same PC. When RFVP-Style-OSP is employed (B), the

first two requests train the entry. After training, ValueBase is 2 and ValueStride is 2.

The third request is correctly predicted because its value is the sum of ValueBase and

ValueStride. However, the values of fourth and fifth memory requests are incorrectly pre-

dicted because the ValueStride of 2 does not correctly capture the value pattern. However,

the value of the sixth request is correctly predicted as it matches with the sum because

the ValueBase was still being updated even when the predictions were wrong. Overall,

the coverage is 66% (4 out of 6 requests are predicted) and accuracy is 50% (2 out of 4

predictions are accurate).

4 2
6 2
8 2
10 2

1

0

Value
Base

Value
Stride

0 −
2 2

Training

Prediction

0 2 4𝒗𝒂𝒍 8 6 10
Value
Base

Value
Stride
Short

Value
Stride
Long

0 − −
2 2 −

Address
Base

Address
Stride
Short

Address
Stride
Long

0 − −
1 1 −

RFVP-Style-OSP ASAP-OSP

Trained

Coverage = 3 / 6
Accurate Predictions = 3 / 3

Coverage = 4 / 6
Accurate Predictions = 2 / 4

Address Sequence: 0 → 1 → 2 → 4 → 3 → 5

0
2

2 4
4 8
3 6
5 10

2 1 2
4 1 2

5 1 2
Not Applicable

0
2

4
8
6
10

4 2 4
8 2 4

10 2 4
No Prediction

𝒗𝒂𝒍 𝒗𝒂𝒍𝒂𝒅𝒅𝒓

Figure 4.8: Operation of ASAP and its advantages over OSP. The matched addresses,
predicted values, relevant strides are shaded.

In the case of ASAP-OSP (C), AddressBase, AddressStrideShort, and AddressStride-

Long are responsible for detecting strides in the addresses. After the first two accesses,

CHAPTER 4. GPU VALUE APPROXIMATION 58

AddressBase and AddressStrideShort are trained in addition to ValueBase and Val-

ueStrideShort. As the third address is the sum of AddressBase and AddressStrideShort,

it implies that there is a match and its corresponding value can be predicted. We ob-

serve that ASAP-OSP can correctly predict its value as its sum is equal to ValueBase and

ValueStrideShort. At this point, AddressStrideLong and ValueStrideLong are also set as

equal to twice of AddressStrideShort and ValueStrideShort, respectively. The fourth ad-

dress is also a correct match as the sum of AddressBase and AddressStrideLong matches

with the predicted address. Therefore, its value can be predicted using the sum of Val-

ueBase and ValueStrideLong, which is also correctly predicted. The fifth request is not

predicted because its address does not match the pattern in the addresses (Addr 3 is

neither equal to the sum of AddressBase and AddressStrideShort nor AddressBase and

AddressStrideLong). Finally, the sixth request can be correctly predicted as its address

pattern can be captured via AddressStrideShort. Overall, the coverage is 50% (3/6 re-

quests are predicted) and accuracy is 100% (3/3 predictions are accurate). In summary, as

opposed to the RFVP-Style-OSP, ASAP-OSP can take advantage of the readily available

address information and improve the accuracy significantly by trading-off coverage.

4.4.3 Use Cases of ASAP

For the address sequences which are generated from the core, we find that there are two

possible cases which can make them difficult to be captured. The first case is that in an

address sequence with a particular stride some of the intermediate addresses are missing.

The second case is that multiple address sequences are interleaved together leading to a

complicated address sequence. Our ASAP design takes these two cases into consideration

and we will also evaluate its effectiveness with real applications later in Section 4.7. To

help understand how ASAP can capture different kinds of strides in the addresses, we

present three scenarios.

Scenario I: Regular Address Pattern – Demonstrating the utility of multiple

entries. Consider a scenario when consecutive address sequences: (0, 1, 2, 3) and (10,

CHAPTER 4. GPU VALUE APPROXIMATION 59

Block
Index

Entry0 Entry1 Entry2

Address
Base

Address
Stride
Short

Address
Stride
Long

Address
Base

Address
Stride
Short

Address
Stride
Long

Address
Base

Address
Stride
Short

Address
Stride
Long

0 0 NA NA
1 1 1 NA 1 NA NA
2 2 1 2 2 1 NA 2 NA NA
3 3 1 2

10 10 8 9 10 8 NA
11 11 1 9
12 12 1 2
13 13 1 2

R
eq

ue
st

 O
rd

er

Figure 4.9: Working steps of ASAP in Scenario I: Regular Address Pattern. The address
stream considered is: 0, 1, 2, 3, 10, 11, 12, 13. The matched addresses and relevant strides
are shaded.

11, 12, 13) are generated back to back. Figure 4.9 shows the values of AddressBase,

AddressStrideShort, and AddressStrideLong for each entry. For brevity, we only show

the first three entries that are relevant for this example. After the first two addresses

are mapped to the first entry (Entry0), the remaining addresses of the sequence (2,3) are

matched as they belong to the same stride pattern (AddressStrideShort of Entry0 is set

to 1). Note that AddressStrideLong is set to twice of AddressStrideShort and the next

Entry (Entry1) is also prepared in anticipation of other possible patterns in the addresses

by setting the AddressBase to be 2 and AddressStrideShort to be 1.

When the second sequence of addresses arrive at the predictor, the first address (10)

among them cannot be matched by Entry0 because neither the sum of AddressStrideShort

or AddressStrideLong with AddressBase matches with the address. Therefore, it will be

mapped to Entry1. AddressStrideShort is set to 8 (10-2) and AddressStrideLong becomes

the sum of the previous two AddressStrideShort (8+1) for Entry1. After Entry1 is trained

with 3 requests, it cannot match the next address 11, so again 11 is put into a new entry

(Entry2). The Entry2 is trained with 2, 10, 11 and is able to match remaining addresses

of the sequence (12,13).

Scenario II: Interleaved Address Pattern – Demonstrating the utility of Ad-

CHAPTER 4. GPU VALUE APPROXIMATION 60

dressStrideLong. The interleaved address pattern may be caused by the interleaved

execution of two warps, or by the poorly coalesced requests from certain load instructions.

For example, one warp generates addresses (1, 2), another warp generates (4, 5), and so

on. Figure 4.10 demonstrates such a sequence: (1, 2, 4, 5, 7, 8, 10, 11). For Entry0, it is

trained with three addresses 1, 2, 4. Also, 2, 4 are copied to Entry1. For the next address

5, since Entry0 has reached its maximum training count of 3, it can only be put into

Entry1 which still has 1 slot for training. At this point, both Entry0 and Entry1 have Ad-

dressStrideLong equal to 3. So when address 7 comes, it matches with AddressStrideLong

in Entry0. The next address 8 also matches with AddressStrideLong in Entry1. Addresses

10, 11 can also be matched with Entry0 and Entry1, respectively.

Block
Index

Entry0 Entry1

Address
Base

Address
Stride
Short

Address
Stride
Long

Address
Base

Address
Stride
Short

Address
Stride
Long

1 1 NA NA
2 2 1 NA 2 NA NA
4 4 2 3 4 2 NA
5 5 1 3
7 7 3 6
8 8 3 6

10 10 3 6
11 11 3 6

R
eq

ue
st

 O
rd

er

Figure 4.10: Working steps of ASAP in Scenario II: Interleaving Address Pattern. The
addresses considered are: 1, 2, 4, 5, 7, 8, 10, 11. The matched addresses and relevant
strides are shaded.

Scenario III: Missing Intermediate Address Pattern. We present an example of

handling a missing intermediate address in a consecutive address sequence. The missing

intermediate address pattern may be caused by the non-consecutive scheduling of warps

or control divergence. Figure 4.11 demonstrates such case with a sequence: (0, 1, 2, 3, 5).

After 0, 1, 2 are mapped to Entry0, it is trained with the value of AddressStrideShort to be

1 and AddressStrideLong to be 2. Hence, after address 3 is matched, it can match address

5 from the AddressBase 3 directly using AddressStrideLong. Without the AddressStride-

CHAPTER 4. GPU VALUE APPROXIMATION 61

Long, we would not have matched with address 5, thereby limiting the coverage.

Block
Index

Entry0 Entry1

Address
Base

Address
Stride
Short

Address
Stride
Long

Address
Base

Address
Stride
Short

Address
Stride
Long

0 0 NA NA
1 1 1 NA 1 NA NA
2 2 1 2 2 1 NA
3 3 1 2
5 5 1 2B

lo
ck

 In
de

x
4

is
 m

is
si

ng

R
eq

ue
st

 O
rd

er

Figure 4.11: Working steps of ASAP in Scenario III: Missing Intermediate Address
Pattern. The addresses considered are: 0, 1, 2, 3, 5. The matched addresses and relevant
strides are shaded.

4.4.4 Output Quality Control

The rollback-free value prediction eliminates pipeline rollbacks, which is prohibitively ex-

pensive in GPUs. However, it also introduces errors in GPU pipelines. These errors lead

to different types of consequences if no restrictions are enforced to control them. First,

the application may crash or lead to an unknown behavior if errors are generated for

critical values. For example, an incorrect PC or address value will likely cause a fatal

error. Second, the application’s execution trace can become vastly different and produces

unexpected results if errors are generated for values involved in conditional branching. For

example, an incorrect counter in a for loop can produce unusual results in an application’s

output. Third, the application’s output can lose a certain level of quality. For example,

some mispredicted values in an input matrix may cause a certain level of distortion to an

application’s output. In this case, the level of quality loss depends on: a) the accuracy of

the individual predictions, b) the number of values predicted (i.e., prediction coverage),

and c) the future operations that will be applied to these predicted values.

ASAP guarantees that only limited output quality loss can happen by requiring the

programmer’s annotations of approximable load values and taking the input of prediction

coverage values. The compiler is also slightly modified to accept these additional directives

CHAPTER 4. GPU VALUE APPROXIMATION 62

to facilitate value approximation. For example, as shown in Listing 5.1, 10% prediction

coverage is specified by the fetch and predict ratio of 9 to 1. The programmer has also

indicated to approximate the value of vector B in the following memory load operation.

Therefore, as shown in Listing 4.2, the added directives will inform the predictor on two

items: a) the amount of load requests to approximate (i.e., coverage), and b) which load

instruction to approximate.

#pragma add_pred{fetch , 9, predict , 1}

...

#pragma approx{B}

C[i] = A[i] + B[i];

Listing 4.1: annotated CUDA code

.fetch 9

.predict 1

...

ld.global.u32.approx %r0 , [%r1]

Listing 4.2: generated PTX code

ASAP uses prediction coverage to trade off output quality for performance. To sat-

isfy a certain output quality threshold, ASAP can rely on the programmer to provide

an appropriate prediction coverage so as to maximize the performance gains under this

threshold. Previous works [14, 69, 102, 88] have indicated that the application error can-

not be bounded automatically in the first kernel invocation as the error of approximation

depends on the semantics of the application. However, a multi-invocation approach is still

able to automatically find the optimal prediction coverage. Hence, ASAP can employ a

searching method which is similar to the proposed approach of prior work [101] to find the

highest prediction coverage for a given output quality requirement. As we will show in

Section 4.6.1, at the same prediction coverage, ASAP can lead to less output quality loss

CHAPTER 4. GPU VALUE APPROXIMATION 63

Table 4.2: List of evaluated GPGPU applications.

Abbr. Input Category Coalescing Int.
GESUMMV [93] 2048 × 2048 Matrix BW-Bound Good No

SYR2K [93] 128 × 128 Matrix × 3 Latency-Bound Good No
SYRK [93] 256 × 256 Matrix × 2 Latency-Bound Good No

EMBOSS (2DCONV) [93] 4096 × 4096 Image BW-Bound Poor Yes
BLUR (2DCONV) [93] 4096 × 4096 Image BW-Bound Poor Yes

ATAX [93] 4096 × 4096 Matrix Latency-Bound Good No
BICG [93] 3072 × 3072 Matrix Latency-Bound Good No

3DCONV [93] 256 × 256 × 256 Matrix BW-Bound Poor Yes
SLA [12] Size 24000000 Array Energy-Bound Good No
LPS [12] 256 × 256 × 256 Matrix BW-Bound poor Yes
SCP [12] Vector × 16384 BW-Bound Good No

CONS [12] 8192 × 8192 Matrix Energy-Bound Good Yes

than the state-of-the-art value predictor for GPUs. Reciprocally, ASAP is able to achieve

higher performance improvements under the same output quality threshold.

4.4.5 Hardware Overhead

Figure 4.7 shows that ASAP-OSP uses 234 bits per entry. Additionally, it uses three fields

(not shown) namely Status (5 bits), LRU (3 bits), and Floating-point (1 bit), making the

overhead per entry 243 bits. Status bits are used to track the current status of the entry

(e.g., training phase, predicting phase or update phase) in order to decide the entry’s

action for the next matched request. We have discussed the transitions between different

statuses in Section 4.4.1. The LRU bits are used to track the LRU information. The

Floating-point bit is used to differentiate the floating-point and integer data. Since ASAP

uses eight entries per core, the total overhead is 243 bits ×8 = 1944 bits/Core. ASAP-TSP

has four extra fields per entry. These fields are ValueStrideShortA, ValueStrideShortB,

ValueStrideLongA, and ValueStrideLongB, thus, the total overhead is (243+32×4)×8 =

2968 bits/Core (0.36KB/Core). In addition to these bits, each core employs four integer

adders, two floating-point adders, four 2×1 MUXes, two comparators, and one OR gate.

CHAPTER 4. GPU VALUE APPROXIMATION 64

4.5 Evaluation Methodology

4.5.1 Application Characteristics

We consider a variety of GPGPU applications from Polybench [93] and CUDA SDK [12]

as shown in Table 4.2. We chose them as they show diversity in terms of memory intensity

and coalescing behavior. Also, these applications use matrix or vector inputs with strided

values provided by their corresponding benchmark suites and they can accept realistic im-

ages as their inputs. We use annotations to mark the approximable loads. We ensure that

they do not contain pointers or lead to fatal errors, and thus can be approximated safely.

The programmer can also tune the aggressiveness of value approximation by adjusting the

prediction coverage [73, 103, 139] or using only restricted address strides (Section 4.5.2).

If there are drastic variations in value strides for all given address strides, the programmer

can choose to turn off the value predictor.

We classify applications into multiple categories. The BW-Bound applications have

high DRAM bandwidth utilization (at least 40%) and relatively low IPC (at most 500).

The Latency-Bound applications have low IPC (less than 100) and low bandwidth uti-

lization (less than 10%). For both these classes, we expect value prediction would provide

performance and data movement reduction benefits. The Energy-Bound applications

have high IPC (more than 500) and significant off-chip traffic. For such applications, we

expect value prediction would provide data movement reduction benefits but not necessar-

ily performance benefits. Finally, we also considered coalescing conditions. The loads of

EMBOSS, BLUR, 3DCONV, and LPS are poorly-coalesced (i.e., two or more cache line requests

are generated per load instruction per warp.). Other applications have good coalescing

characteristics. Our applications use integer or floating point data. The last column of

Table 4.2 shows whether the data type is integer (Int.) or floating point.

CHAPTER 4. GPU VALUE APPROXIMATION 65

4.5.2 Choice of the Restricted Address Strides

For the restricted mode of ASAP, we manually set the acceptable address strides. As we

have discussed in Section 4.3, we would prefer address strides that correspond to closer

data on the same row or column of the input. However, as cache lines in GPUs typically

contain 128 consecutive bytes, the address stride need to be set to at least 128 in order

to predict cache lines in the same row. Therefore, the address stride of ±row size of

inputs is used for all applications, which corresponds to the closest cache lines in the same

column. Also, other address strides are used if they show linear correlations with their

corresponding value strides.

4.6 Experimental Evaluation

We compare the proposed ASAP design with the prior RFVP-Style predictors adopting

both OSP and TSP sub-predictors (Section 4.2.2). For a fair comparison, we use the same

number of entries (i.e., 8) across all predictors. They are RFVP-OSP-8, RFVP-TSP-

8, ASAP-OSP-8, ASAP-TSP-8, ASAP-OSP-8-Restricted and ASAP-TSP-8-Restricted.

We also compare ASAP design with the oracle implementations of RFVP-Style-OSP

and RFVP-Style-TSP, namely RFVP-OSP-Unlimited and RFVP-TSP-Unlimited, respec-

tively. These oracle implementations assume unlimited hardware budget for the prediction

table entries. Hence, the loads from each PC and Warp ID combination can use a separate

entry such that predictions from different PCs and warps do not affect each other.

4.6.1 Effect on Output Quality

Figure 4.12 shows the comparison of Application Error of 10% and 20% coverage. We limit

the predictors’ coverage to be under 20% to restrict the error. However, if the user has

knowledge of the application’s good predictability (e.g., SCP), coverage can be set higher

for more performance and data movement reduction benefits. We make the following

observations. First, we find that at the same coverage, our proposed predictors have

CHAPTER 4. GPU VALUE APPROXIMATION 66

RFVP-OSP-Unlimited RFVP-TSP-Unlimited RFVP-OSP-8 RFVP-TSP-8 ASAP-OSP-8 ASAP-TSP-8 ASAP-OSP-8-Restricted ASAP-TSP-8-Restricted

GESUMMV SYR2K SYRK EMBOSS BLUR SLA ATAX BICG
0

20
40
60
80

100

99
.9

5

A
pp

. E
rr

or
 (

%
)

3DCONV SCP
0

0.02
0.04
0.06
0.08
0.1

CONS LPS GMean
0
2
4
6
8

10

(a) 10% coverage

GESUMMV SYR2K SYRK EMBOSS BLUR SLA ATAX BICG
0

20
40
60
80

100

10
0.

0

A
pp

. E
rr

or
 (

%
)

3DCONV SCP
0

0.02
0.04
0.06
0.08
0.1

0.
20

9
0.

21
3

0.
83

2
0.

82
6

CONS LPS GMean
0
2
4
6
8

10

(b) 20% coverage

Figure 4.12: Application Error for different value predictors at (a) 10% (b) 20% coverage.

better accuracy than the previous predictors, even when the number of entries for ASAP

is much less than RFVP. On average, RFVP-Unlimited predictors predict more accurately

than RFVP-8 predictors, and ASAP-8 predictors are more accurate than RFVP-Unlimited

predictors. Also, for each category of predictors, the TSP predictors are more accurate

than the OSP predictors, showing the effectiveness of predicting with more regular strides.

At 10% coverage, both ASAP-TSP-8 and ASAP-TSP-8-Restricted reduce Application

Error by 92% over RFVP-TSP-8 and 84% over RFVP-TSP-Unlimited. At 20% coverage,

ASAP-TSP-8 reduces Application Error by 94% over RFVP-TSP-8 and 89% over RFVP-

TSP-Unlimited. ASAP-TSP-8-Restricted reduces Application Error by 95% over RFVP-

TSP-8 and 91% over RFVP-TSP-Unlimited.

Second, we find that for certain applications, (i.e., EMBOSS, BLUR, SLA, 3DCONV, SCP,

CONS, LPS), the increase in application error with increasing coverage is at a much slower

rate in ASAP compared to that in other predictors. This implies that ASAP is able to

better exploit the relationship between address and value strides to improve the accuracy

even at higher coverages. For applications SYR2K, SYRK, ATAX, BICG, the accuracy ben-

efits of ASAP and RVFP are comparable, implying no obvious address and value stride

correlations exist in them. There are cases where RFVP-8 predictors have better accu-

racy than the RFVP-Unlimited predictors (i.e., GESUMMV, LPS). This indicates that not

sharing the prediction table entries across warps degrades the prediction accuracy in some

CHAPTER 4. GPU VALUE APPROXIMATION 67

cases. However, ASAP-TSP-8 and ASAP-TSP-8-Restricted still have better accuracy in

this case, because they capture more stable value strides according to the address pattern

observed across different warps and PCs.

(a) RFVP-TSP-Unlimited (b) RFVP-TSP-8

(c) ASAP-TSP-8 (d) ASAP-TSP-8-Restricted

Figure 4.13: EMBOSS(2DCONV) outputs at 10% coverage.

For the image output quality, we pick EMBOSS(2DCONV) at 10% coverage to study the

difference between predictors. As shown in Figures 4.13(a) to (d), there is significantly

less noise in ASAP-TSP-8 and ASAP-TSP-8-Restricted than in RFVP-TSP-8. Further,

there is slightly less noise in ASAP-TSP-8 and ASAP-TSP-8-Restricted than in RFVP-

TSP-Unlimited. This trend matches the Application Error result. For these outputs,

CHAPTER 4. GPU VALUE APPROXIMATION 68

ASAP-TSP-8 shows 13.6% Application Error and ASAP-TSP-8-Restricted shows 13.5%.

We find that these errors do not cause significant quality losses.

We conclude that by leveraging the address and value stride correlation, (regardless

of the PC and Warp ID information), ASAP can effectively improve the prediction ac-

curacy over the RFVP-Style predictors with a similar or lower area budget. Without

extra burden on the user, ASAP’s default mode can provide accuracy close to that of the

restricted mode. Meanwhile, the restricted mode can further increase the accuracy with

user-specified address strides.

4.6.2 Effect on Performance and Energy

Figure 4.14 shows the performance and energy benefits of applying value prediction. For

brevity, we show results of RFVP-TSP-Unlimited, RFVP-TSP-8, and ASAP-TSP-8 from

each of the three predictor categories. We also confirm that other predictors show similar

trends. Since the RFVP and ASAP predictors predict similar numbers of cache lines at the

same coverage, they provide similar IPC and energy benefits. However, ASAP produces

smaller errors. On average, ASAP-TSP-8 improves IPC by 7% at 10% coverage and

improves IPC by 15% at 20% coverage. Specifically, for the Latency-Bound applications,

we observe an average IPC improvement of 11% at 10% coverage and an average IPC

improvement of 29% at 20% coverage. On the other hand, ASAP-TSP-8 reduces GPU

energy consumption by 7% at 10% coverage and reduces GPU energy consumption by

14% at 20% coverage. We conclude that the prediction coverage is the dominant factor

of performance and energy benefits in value approximation. Value approximation can

effectively improve performance and reduce energy consumption. Also, these benefits

grow larger when the prediction coverage increases.

On average, the best performing ASAP predictor produces only 0.26% (up to 13.51%)

Application Error at 10% coverage and 0.43% (up to 24.47%) Application Error at 20%

coverage. In contrast, with the same number of entries, the best performing RFVP pre-

dictor incurs 3.48% (up to 40.08%) Application Error at 10% coverage and 4.57% (up to

CHAPTER 4. GPU VALUE APPROXIMATION 69

5% RFVP-Unlimited 5% RFVP-8 5% ASAP-8 10% RFVP-Unlimited 10% RFVP-8 10% ASAP-8 15% RFVP-Unlimited 15% RFVP-8 15% ASAP-8 20% RFVP-Unlimited 20% RFVP-8 20% ASAP-8

GESUMMV SYR2K SYRK 2DCONV SLA ATAX BICG 3DCONV SCP CONS LPS GMean
0.8
0.9

1
1.1
1.2
1.3
1.4

N
or

m
al

iz
ed

 IP
C

(a) Normalized IPC for different value predictors

GESUMMV SYR2K SYRK 2DCONV SLA ATAX BICG 3DCONV SCP CONS LPS GMean
0.6
0.7
0.8
0.9

1
1.1

N
or

m
al

iz
ed

 E
ne

rg
y

(b) Normalized total energy consumption for different value predictors

Figure 4.14: GPU performance and total energy consumption at different coverages.

54.54%) Application Error at 20% coverage. Even when using different entries for each

PC and Warp ID combination, RFVP incurs 1.65% (up to 51.74%) Application Error

at 10% coverage and 8.10% (up to 63.59%) Application Error at 20% coverage, which is

much higher than that of ASAP with 8 entries. This means that ASAP can employ higher

coverages and consequently obtain more performance and energy benefits if a certain error

threshold needs to be satisfied. We conclude that ASAP can achieve more performance

and energy benefits under a specific error threshold.

4.7 Sensitivity Studies

GESUMMV SYR2K SYRK 2DCONV SLA ATAX BICG 3DCONV SCP CONS LPS Mean
0

20

40

60

80

100

M
is

s
M

at
ch

 R
at

e
(%

) ASAP-OSP-8 With StrideLong ASAP-OSP-8 Without StrideLong

Figure 4.15: Effect of AddressStrideLong on Miss Match Rate.

Effect of AddressStrideLong. The Miss Match Rate (MMR) reflects how effective

ASAP is able to capture the address patterns in GPUs. It is important for ASAP to achieve

an acceptable MMR, as it determines the maximum coverage of ASAP. For example, the

MMR needs to reach at least 20% for applications with 100% L1 Miss Rate, if the desired

coverage is 20%. To prove the effectiveness of AddressStrideLong, we show the MMR

CHAPTER 4. GPU VALUE APPROXIMATION 70

of ASAP-OSP-8 with and without it. As shown in Figure 4.15, we find that for poorly-

coalesced applications (i.e., EMBOSS, BLUR, 3DCONV, LPS), ASAP-OSP-8 has much higher

MMRs with StrideLong. We also find that for well-coalesced applications, the MMR can

become low if StrideLong is not employed (i.e., SLA, SCP, CONS). This limits their maximum

coverage, data movement reduction, and performance benefits. This effectively shows

ASAP’s ability to match for interleaving and missing intermediate address patterns with

the help of AddressStrideLong (see Section 4.4). Other ASAP predictors also show the

same trend. We conclude that ASAP’s address matching ability under complex patterns

can be significantly improved with AddressStrideLong.

GESUMMV SYR2K SYRK 2DCONV SLA ATAX BICG 3DCONV SCP CONS LPS
0

20

40

60

80

100

M
is

s
M

at
ch

 R
at

e
(%

) 2 entries 4 entries 6 entries 8 entries 10 entries

Figure 4.16: Miss Match Rate with different entry numbers.

Effect of Number of Entries. Figure 4.16 shows the MMR of ASAP-OSP-8 with

different numbers of entries. We make two observations. First, applications SLA, 3DCONV,

SCP, CONS need more entries to achieve high MMR as there are more co-existing address

patterns. Others can reach high MMR even with 2 entries, which indicates that they

have fewer co-existing address patterns. Second, after size 8, all applications’ MMRs do

not improve significantly and therefore we use it as ASAP’s default configuration. Other

ASAP predictors also show the same trend. We conclude that ASAP achieves good MMR

and accuracy without incurring large hardware overhead.

Effect of Warp Scheduling Policy. The choice of warp scheduler can affect the warp

execution order, thereby affecting the address patterns [50]. Figure 4.17 shows the MMR

of ASAP-OSP-8 working under: The baseline, Greedy-Then-Oldest (GTO) scheduler, and

Round-Robin (RR) scheduler. We make two major observations. First, ASAP-OSP-8 has

high MMR for both schedulers proving that it is adaptive for different warp schedulers.

CHAPTER 4. GPU VALUE APPROXIMATION 71

GESUMMV SYR2K SYRK 2DCONV SLA ATAX BICG 3DCONV SCP CONS LPS Mean
0

20

40

60

80

100

M
is

s
M

at
ch

 R
at

e
(%

) ASAP-OSP-8 With GTO Scheduler ASAP-OSP-8 With RR Scheduler

Figure 4.17: Miss Match Rate with GTO and RR Scheduler.

Second, ASAP-OSP-8 usually achieves higher MMR with the RR scheduler. This is be-

cause the address order is more regular under the RR scheduler [50].

4.8 Related Work

Previously proposed RFVP for GPUs [139] relies significantly on the program counter

(PC) to detect value patterns in the memory requests. Such PC-based mapping mech-

anism implicitly assumes that the memory requests originated from that particular PC

are ordered such that they would facilitate the prediction of values. However, as multi-

ple warps can execute the same instruction (i.e., using the same PC) independently at

different times in GPUs, the memory request order from a particular PC can be highly

influenced by factors such as the choice of warp scheduling scheme. Therefore, as we show

quantitatively in Section 4.6, the PC-based predictors cause a significant loss of accuracy

in GPUs. This problem can be partially addressed by using a separate entry for each PC

and Warp ID combination. However, such a mechanism can become prohibitively expen-

sive as the number of concurrent warps and schedulers grows with each new generation

of GPUs [84, 46, 86, 63, 72]. Moreover, using separate entries also disallow the detection

of value patterns that might exist across requests from different warps (e.g., when nearby

pixels of an image with regular value strides are handled by nearby warps). Wong et

al. [134] proposed to exploit the intra-warp value similarity such that only one represen-

tative thread within a warp is required to perform the computation. Value approximation

techniques [65] are proposed to reduce GPU energy consumption by carefully consider-

ing lower precision data/instructions. We believe ASAP is complementary to them as it

CHAPTER 4. GPU VALUE APPROXIMATION 72

eliminates the need for accessing the main memory for the predicted cache lines.

Several value prediction techniques [90, 92, 91, 28, 25, 107, 108, 67] in the context of

CPUs are based on PC-based hash mechanisms, which have similar limitations as that of

RVFP described earlier. Load-value approximation techniques [73, 104, 103] and context-

based value predictors [120, 75, 106] designed for CPUs consider memory addresses and

other metadata for effective approximations. However, such techniques require significant

per-thread hardware resources, which can become prohibitively expensive in GPUs as it

concurrently executes thousands of threads.

4.9 Chapter Summary

In this chapter, we presented a low-overhead value predictor for GPUs that considers

the correlation between address strides and value strides in order to improve the predic-

tion accuracy. Compared to the state-of-the-art value predictor, RFVP, we find that our

predictor can significantly improve value prediction accuracy even at a high value of pre-

diction coverage (leading to significant performance and data movement benefits). We also

show it is also able to function effectively even under complicated address patterns. We

believe that this work can open up interesting research avenues that consider other readily

available information locally at the core (e.g., address stride information) to improve the

accuracy of value prediction.

73

Chapter 5

Exploiting Latency and Error

Tolerance of GPGPU Applications

for an Energy-efficient DRAM

5.1 Introduction

A large fraction of DRAM access energy is related to the fact that multiple high-energy

consuming DRAM operations such as row activations and precharges must be performed,

so as to access data from a DRAM row (page). These operations are required to ensure the

data from the correct row is present in the row buffer, which is a limited-sized hardware

structure attached to each DRAM bank. If accesses to the same row can be scheduled

together without switching in and out the row buffer data (i.e., row buffer locality can

be enhanced), they can incur much less row energy. Quantitatively, this energy can be

around 25-50% of the total DRAM energy [142, 122, 16, 83] and is dependent on the row

buffer locality workloads (higher the row buffer locality, the lower the DRAM energy).

Hence, it is preferred to reuse the buffered data of a row as much as possible to improve

the row buffer locality and reduce the energy consumption.

We observe that several GPGPU applications suffer from poor row buffer reuse (also

CHAPTER 5. LAZY MEMORY SCHEDULING FOR GPUS 74

referred to as row thrashing). It can happen even with the popular First-Row First-Come-

First-Serve (FR-FCFS) scheduler that leverages a large re-order pending request queue

and an open-row policy which is typically employed to maximize the row buffer locality.

This is not only caused by the GPU scheduling policies at the core but is also dependent on

the applications’ algorithms and their data placement mechanisms. Moreover, the multi-

threading nature of the GPUs can cause severe contention and interleaving of requests

at the memory controller, which can also lead to poor row buffer locality. To address

this problem, we performed a detailed characterization of row buffer locality in GPUs and

revealed two key insights. First, the current GPU memory scheduling policies are too

aggressive in reducing latencies of requests: requests in the pending queue are issued to

their destined DRAM banks as soon as these DRAM banks finish serving the previous

requests. Second, the current memory scheduling policies are too strict in terms of fetching

only the exact values from the DRAM banks. Therefore, an entire DRAM row has to be

fetched into the row buffer even if it is poorly reused. We argue that these aggressive and

strict policies are sub-optimal towards improving row buffer locality.

Our lazy memory scheduler relaxes the aforementioned constraints by leveraging the

fact that several GPGPU applications are latency and error tolerant [134, 50]. Specifically,

our proposed memory scheduler works in two modes: delayed and approximate. The

delayed memory scheduling (DMS) carefully delays (i.e., increases the access latency) the

issuing of both read and write pending memory accesses so that more requests can be

accumulated in the FR-FCFS pending queue. This helps the memory scheduler to find

more requests (i.e., will have more visibility) that can be co-scheduled back to back to

the same DRAM row leading to improved row buffer locality. Because several GPGPU

applications are inherently latency tolerant as they spawn thousands of threads to hide the

long memory access latencies (which is not the case for most of the workloads executed

on CPUs), we find that the additional delay does not affect performance significantly

for many GPGPU applications. However, for certain applications that cannot tolerate

latency significantly, DMS is also able to find an appropriate delay to avoid severe loss in

CHAPTER 5. LAZY MEMORY SCHEDULING FOR GPUS 75

performance.

The approximate memory scheduling (AMS) is based on our observation that a large

portion of row activations is caused by only a small portion of memory accesses. To this

end, the goal of AMS is to find these accesses with low row buffer localities in the pending

queue and return them immediately instead of issuing them to the DRAM banks. The

values of such a small portion of memory accesses can then be approximated using various

existing techniques [104, 103, 139] on their way back to the cores. These techniques bound

the error with the help of programmer annotations and by predicting only a fraction of

memory requests (called as prediction coverage). We demonstrated the effect of approxi-

mation on the application output by using a simple value predictor, which makes use of

the readily available data in the associated L2 caches of the memory partitions. Because

of the fact that many GPGPU applications are error tolerant or can accept limited losses

in the output quality [134, 139], we find that such an approach can help in significantly

reducing the number of row activations. Overall, AMS focuses on the problem of when

to approximate and allow the new or existing works [104, 103] to address the equally

important problem of how to approximate.

To the best of our knowledge, this is the first work that improves the row buffer

locality and reduces row energy in GPUs via carefully delaying and/or approximating the

memory requests (i.e., trading-off modest performance and application accuracy for better

row buffer locality). In summary, this work makes the following contributions.

• We demonstrate that delaying the scheduling of memory requests can significantly

improve the overall row buffer locality because the memory controller can find more re-

quests that can be scheduled back to back to the same row. Given that several GPGPU

applications are latency tolerant, we do not observe notable performance reduction in such

applications. To control the performance loss caused by delays, we devise a low-overhead

dynamic mechanism that limits the delay by ensuring that utilization of DRAM stays

above a certain threshold.

• We demonstrate that a small fraction of memory requests can cause a large fraction of

CHAPTER 5. LAZY MEMORY SCHEDULING FOR GPUS 76

row activations (i.e., there is non-uniform reuse of row buffers). Therefore, approximating

a limited number of requests (bounded by the prediction coverage) can significantly reduce

the row energy, without notably degrading the output quality of error-tolerant GPGPU

applications. To improve the row buffer locality more effectively under a limited prediction

coverage, we devise a low-overhead dynamic mechanism that is able to prioritize the

approximation of requests with relatively low row buffer localities.

• Our newly proposed lazy memory scheduler for GPUs realizes the aforementioned

contributions via delayed memory scheduling (DMS) and approximate memory scheduling

(AMS), respectively. We show that DMS and AMS can work separately or together while

improving the effectiveness of each other. Our evaluation shows that across a variety of

GPGPU applications, row energy can be reduced by 12% using DMS, 33% using AMS,

and 44% using a combination of both schemes. We achieve these results with less than 1%

IPC loss, with an acceptable loss in application accuracy, and without requiring additional

buffer space beyond what already exists in the baseline memory controllers.

5.2 Background and Metrics

Table 5.1: Key configuration parameters of the simulated GPU.

SM Features 1400MHz core clock, 30 SMs, SIMT width = 32 (16 × 2)
Resources / Core 32KB shared memory, 32KB register file, Max.

1536 threads (48 warps, 32 threads/warp)
L1 Caches / Core 16KB 4-way L1 data cache

12KB 24-way texture cache, 8KB 2-way constant cache,
2KB 4-way I-cache, 128B cache block size

L2 Cache 8-way 128 KB/memory channel (768KB in total)
128B cache block size

Features Memory coalescing and inter-warp merging enabled,
immediate post-dominator based branch divergence handling

Memory Model 6 GDDR5 Memory Controllers (MCs), FR-FCFS scheduling [98],
16 DRAM-banks/MC, 4 bank-groups/MC,
924 MHz memory clock, global linear address space is
interleaved among partitions in chunks of 256 bytes
Hynix GDDR5 Timing, tCL = 12, tRP = 12, tRC = 40,
tRAS = 28, tCCD = 2, tRCD = 12, tRRD = 6, tCDLR = 5

Interconnect 1 crossbar/direction (30 SMs, 6 MCs),
1400MHz interconnect clock, islip VC and switch allocators

CHAPTER 5. LAZY MEMORY SCHEDULING FOR GPUS 77

size 16 size 64 size 256 size Infinite

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

LP
S
BIC

G
SCP

GEM
M

M
VT

jm
ein

t

ATAX

3D
CONV

RAY

inv
er

se
k2

j
3M

M

m
ea

nf
ilte

r

lap
lac

ian

ne
wto

n-
ra

ph
FW

T

CONS
sr

ad

bla
ck

sc
ho

les
2M

M
SLA

co
nv

olu
tio

n

GESUM
M

V
so

be
l

GM
ea

n

N
or

m
al

iz
ed

 A
ct

.

Figure 5.1: Effect of pending queue size on the number of row activations (Act.). Results
are normalized to the case of pending queue size 128.

5.2.1 Evaluation Methodology and Metrics

We use First-Row First-Come-First-Serve (FR-FCFS) with a open-row policy as our base-

line memory configuration (Chapter 2.3). For a series of GPGPU applications, Figure 5.1

shows that the number of activations reduces (i.e., row buffer locality increases) with larger

pending queue sizes. As the rate of decrease saturates after the size of 128, we use it as

our baseline configuration. We evaluate the proposed techniques on a cycle-level GPU

simulator – GPGPU-Sim [12] (Table 5.1) and collect energy-related measurements using

GPUWattch [64]. We summarize the definitions that will be used in this work.

DRAM Locality-related Terminology. Row Buffer Locality (RBL) is defined as the

number of requests that are scheduled back-to-back to the same DRAM row during the

time it is activated in the row buffer. In this context, the notation RBL(X) would imply

that X requests access the same row back-to-back before it is closed. The Average Row

Buffer Locality (Avg-RBL) is defined as the ratio of the total number of memory requests

to the total number of row activations. We also use the notation RBL(X - Y) to denote

all the rows which have RBLs that belong to the range RBL(X) to RBL(Y).

Delay-related Terminology. We define Delay as the minimum number of required

cycles spent by every request in the pending queue before it can be considered for schedul-

CHAPTER 5. LAZY MEMORY SCHEDULING FOR GPUS 78

ing. These required cycles are enforced by our proposed delayed memory scheduling (DMS)

which will be introduced in the following sections. In this context, we use the notation

DMS(X), where X indicates the minimum required cycles of delay, to denote the delay

configuration of the pending queue. The largest value of X at which the application per-

formance (in terms of Instructions-per-Cycle (IPC)) degrades no more than a user-defined

percentage is defined as the Maximum Tolerable Delay (MTD). For our purposes, we tol-

erate up to 5% IPC degradation compared to the baseline but this number can also be

changed by the user.

Approximation-related Terminology. The coverage is defined as the percentage of

memory global read requests that are not served by the DRAM banks but instead dropped

from the memory pending queue and returned immediately to the reply queue. It will

then be recognized and approximated by the value predictor on its way back to the core.

We consider these global read requests for approximation only when they are in rows with

low RBLs. In this context, we define RBL-Threshold, ThRBL, which is the value up to

which the row is considered to have low RBL and hence those requests are the candidates

for approximation. For example, if ThRBL is equal to 3, it implies that all rows with

RBL(1), RBL(2), and RBL(3) have low RBL. The dropping of requests in rows with low

RBL is executed by our proposed approximate memory scheduling (AMS), which will be

introduced in the following sections. We use AMS(ThRBL) to denote the approximation

configuration. The approximation conducted by AMS and value predictor can cause a

certain level of output quality degradation, which we estimate with the application error.

The application error is defined as the average relative error between the output of the

baseline version of an application and the output of the same application with load value

approximation. In general, higher coverage can lead to larger application error [139].

CHAPTER 5. LAZY MEMORY SCHEDULING FOR GPUS 79

…… ……

requests currently
In the pending queue

oldest
request

R1R2R3R4

future
requests

R2

request
X cycles away

R4 R3 R1

For R1 through R4:
Activations = 8
Requests = 8

Locality = 8/8 = 1

(a) Pending queue with the baseline FR-FCFS scheduling.

…… ……

requests currently
In the pending queue

request stalled
for X cycles

R1R2R3R4

future
requests

R2R4 R3 R1

For R1 through R4:
Activations = 4
Requests = 8

Locality = 8/4 = 2

(b) Pending queue with DMS.

Figure 5.2: An example illustrating the benefits of delayed memory scheduling due to
increased visibility to the memory controller. Eight requests are shown in total destined
to four DRAM rows (R1, R2, R3, R4).

5.3 Motivation and Analysis

Our goal is to improve the average row buffer locality (i.e., Avg-RBL) by reducing the

number of poorly reused rows. To this end, we propose two mechanisms: a) delayed

memory scheduling (DMS), which trade-off scheduling delay (and potentially performance)

for better Avg-RBL and b) approximate memory scheduling (AMS) which trade-off output

quality for better Avg-RBL. In this section, we will motivate these trade-offs and show

their effectiveness. We will also discuss how both these scheduling techniques can work

together for even higher improvements in the Avg-RBL.

5.3.1 Delayed Memory Scheduling (DMS)

The baseline FR-FCFS scheduler attempts to schedule pending memory requests to the

DRAM bank as soon as it is idle. Interestingly, we find that such timely scheduling of

requests by the memory controllers actually disallows optimal reuse of data present in

row buffers. To understand this observation, consider an illustrative example shown in

Figure 5.2. The first scenario in Figure 5.2(a) depicts the baseline case of FR-FCFS

CHAPTER 5. LAZY MEMORY SCHEDULING FOR GPUS 80

DMS(64) DMS(128) DMS(256) DMS(512) DMS(1024) DMS(2048)

0

0.2

0.4

0.6

0.8

1

LPS BICG SCP
GEMM MVT jmeint

ATAX
3DCONV RAY

inversek2j 3MM
meanfilter

laplacian
newton-raph FWT

CONS srad
blackscholes 2MM SLA

GMeanN
or

m
al

iz
ed

 A
ct

.

(a) Effect of delay on the number of row activations.

0

0.2

0.4

0.6

0.8

1

LPS BICG SCP
GEMM MVT jmeint

ATAX
3DCONV RAY

inversek2j 3MM
meanfilter

laplacian
newton-raph FWT

CONS srad
blackscholes 2MM SLA

GMean

0.95

N
or

m
al

iz
ed

 IP
C

(b) Effect of delay on performance (IPC).

Figure 5.3: Effect of delayed memory scheduling on the number of activations and per-
formance. Results are normalized to the baseline architecture (Section 5.2), which does
not employ delayed or approximate scheduling.

scheduling. As shown in the figure, there are currently four pending requests in the

memory controller’s pending queue and these four requests belong to four different DRAM

rows (R1, R2, R3, R4) of the same bank. Also, there are many more requests destined

to the same bank but have not yet arrived at the pending request queue. Among such

requests, there are four more requests that belong to the same four DRAM rows (R1, R2,

R3, R4). For the baseline scheduler that timely issues all these requests, we find that

the first four requests in the pending queue are issued back to back to the DRAM bank,

leading to 4 activations for R1 through R4. When the remaining four requests arrive at the

pending queue, four additional activations will also be required to serve them. Therefore,

eight activations are required to serve all eight requests of R1 through R4, leading to an

Avg-RBL of 1.

In order to improve the Avg-RBL, we propose the delayed memory scheduling (DMS).

DMS carefully delays the issuing of each pending memory request in the hope that more

requests destined to the same row of a bank will show up in the pending queue. To

illustrate this, consider the case as shown in Figure 5.2(b) where the issuing of all requests

have been delayed for X cycles. Hence, by the time the other four requests have reached

CHAPTER 5. LAZY MEMORY SCHEDULING FOR GPUS 81

RBL(1) RBL(2) RBL(3 - 8) RBL(9 - max)

0 64 128 256 512 1024 2048
0

20

40

60

80

100
A

ct
iv

at
io

ns
 (

%
)

(a) SCP

0 64 128 256 512 1024 2048
0

20

40

60

80

100

A
ct

iv
at

io
ns

 (
%

)

(b) 3DCONV

Figure 5.4: Effect of delayed memory scheduling on activation proportions of each RBL.
x-axis indicates delay. y-axis indicates each component’s proportion to the total number
of activations.

the pending queue, the first four requests to R1 through R4 are still in the pending queue.

Therefore, only four activations are required to serve all eight requests, leading to an

Avg-RBL of 2 (twice of the baseline case).

Figure 5.3(a) shows the normalized number of activations across a variety of GPGPU

applications. For all of these applications, each of their requests (that does not lead to

a row hit) is delayed by X cycles in the pending queue, denoted by DMS(X), before it

can be served by a DRAM bank (more details are explained in Section 5.4). We show

the results for when X is equal to 64, 128, 256, 512, 1024, and 2048 cycles. We find that

many applications are sensitive to delay – the higher the delay, the higher the chance

of finding requests destined to the same rows, which leads to fewer row activations. On

average, the activation reduction can be as high as 31%, when a delay of 2048 cycles

is used. Figure 5.4 shows the distribution of row activations based on their RBLs with

different delays for two applications. As we observe, for both applications, the proportion

of row activations with RBL(1) (i.e., only one request accesses the activated row before it

is closed – Section 5.2.1) reduces significantly with the increase of delay. Meanwhile, the

proportions of row activations with higher RBLs have increased. This shift in the RBL

of row activations effectively shows how DMS can help to improve the Avg-RBL for real

applications.

CHAPTER 5. LAZY MEMORY SCHEDULING FOR GPUS 82

On the negative side, the increase in delay can degrade the overall performance.

Thanks to the latency tolerance of GPGPU applications, the increase of delay has a

limited impact on the performance as shown in Figure 5.3(b). Many applications retain

their baseline performance up to 95% even at very large delays (e.g., 1024 cycles). How-

ever, IPC’s sensitivity to delay varies for different applications and hence it is critical to

determine an appropriate value of delay to carefully trade-off the activation reduction with

the performance.

5.3.2 Approximate Memory Scheduling (AMS)

In order to further improve the Avg-RBL, we determine which pending requests have low

RBLs and propose to return these requests immediately instead of issuing them to the

DRAM banks. Subsequently, their values are approximated using existing techniques on

their way back to the cores. Our proposal is motivated by the observation that for many

GPGPU applications, a small portion of memory requests contributes to a high proportion

of total row activations. The cause of this is multi-fold as it depends not only on the

applications’ algorithms and data placement mechanisms but also on the runtime behaviors

driven by the warp or thread-block scheduling techniques. Nevertheless, as we will discuss

further, our proposed techniques are also complementary to other optimizations that may

improve Avg-RBL separately.

AMS works on row activations that only contain memory read accesses, as memory

write accesses are typically not the targets for value approximation techniques. Figure 5.5

shows the proportion of row activations from the rows that are opened to serve only

global read requests. We sort these requests in increasing order of their associated row

activations’ RBLs. Note that the x-axis denotes the proportion to the total number of

requests. The y-axis denotes the proportion to the total number of activations. The

shaded regions on the curve indicate the portions contributed by each RBL category. As

shown in Figure 5.5(a), for GEMM around 10% of memory read requests associated with

RBL(1) and RBL(2) cause about 65% of the total row activations. Similarly, as shown in

CHAPTER 5. LAZY MEMORY SCHEDULING FOR GPUS 83

RBL(1) RBL(2) RBL(3 - 8) RBL(9 - max)

0% 5% 10%
0

20

40

60

80

100
A

ct
iv

at
io

ns
 (

%
)

(a) CDF for GEMM

0% 0.2% 0.4% 0.6%
0

20

40

60

80

100

A
ct

iv
at

io
ns

 (
%

)

(b) CDF for 3MM

Figure 5.5: The cumulative distribution of total row activations for requests associated
with different RBLs. x-axis is the proportion of requests sorted by their RBLs.

Figure 5.5(b), for 3MM around 0.2% of memory read requests associated with RBL(1) and

RBL(2) cause about 45% of the total row activations. This implies that a large fraction

of row activations is caused by only a small fraction of memory requests.

In order to leverage this observation to further reduce row activations, we propose

approximate memory scheduling (i.e., AMS). AMS first recognizes the pending read re-

quests which are not destined to the same rows as any of the pending write requests.

Then AMS decides if these requests are associated with low-RBL row activations, which

means that the RBLs that these requests are expected to bring are no greater than a

specific RBL-Threshold (i.e., ThRBL, more details in Section 5.4). Subsequently, AMS

returns these requests immediately without issuing them to the DRAM banks. Finally,

the values of such requests will be provided by a value approximation technique on their

way back to the cores. We denote this as AMS(ThRBL). Such an approach eliminates

these low-RBL row activations in the DRAM banks, thereby significantly improving the

Avg-RBL and reducing the DRAM energy. On the negative side, such an approach can

lead to application-level error, which needs to be acceptable to the user. To control the

application-level error, the number of approximated requests (i.e., prediction coverage)

needs to be limited. Thus, within the coverage limit, finding the row activations with

relatively low RBLs among all the activations is the goal of AMS. Further details of AMS

are in Section 5.4.

CHAPTER 5. LAZY MEMORY SCHEDULING FOR GPUS 84

Normalized IPC Normalized Act. App. Error

DMS(256) DMS(512) AMS(8)
0

0.2

0.4

0.6

0.8

1
0.95

(a) LPS

DMS(128) DMS(256) AMS(8)
0

0.2

0.4

0.6

0.8

1
0.95

DMS(256)
+ AMS(8)

(b) SCP

Figure 5.6: Examples illustrating how approximate memory scheduling can help delayed
memory scheduling.

5.3.3 Delayed and Approximate Scheduling

Having discussed the benefits of DMS and AMS separately, we now discuss how both DMS

and AMS can work together to provide further benefits in terms of reducing the number of

row activations and improving the performance. In this context, we consider the following

two questions:

5.3.3.1 How can approximate memory scheduling help delayed memory

scheduling

We find that AMS can help DMS especially for applications that belong to two categories:

Case 1. The application’s number of row activations is not sensitive to the change of

delay. For example, Figure 5.6(a) shows the normalized IPC and the normalized number

of row activations for application LPS under three different cases. LPS has only a limited

activation reduction (i.e., 2%) with its maximum tolerable delay (MTD) of 256 cycles.

However, with a delay value of 512 cycles, LPS can reach its highest activation reduction

(i.e., 6%), but also at the price of an IPC loss of 11%. On the contrary, if AMS is applied

instead and approximates the requests associated with RBL(1-8) row activations (i.e.,

AMS(8)), LPS can get 16% activation reduction and 5% IPC improvement, only at the

cost of less than 1% application error which is a minimal quality loss. Therefore, AMS

is useful when DMS cannot effectively reduce the number of row activations as shown in

CHAPTER 5. LAZY MEMORY SCHEDULING FOR GPUS 85

this case.

Case 2. The application’s number of row activations is sensitive to the change of

delay, but the performance loss is preventing DMS from adopting higher delay values. For

example, Figure 5.6(b) shows different metrics for application SCP under four different

cases. With DMS(128), the activation reduction can reach 9% at the cost of a 4% IPC

loss. As the value of delay increases from 128 to 256, the activation reduction can further

reach 15% at the cost of a 7% IPC loss. However, if we required that the performance

loss must be under 5%, then DMS(256) should not be adopted and the further activation

reduction cannot be achieved.

On the other hand, when applying AMS alone (the results of AMS(8) as shown in

Figure 5.6(b)), the number of row activations reduces and also the IPC increases at the

cost of increased application error. However, if we combine both DMS and AMS together

(the results of DMS(256) + AMS(8) as shown in Figure 5.6(b)), SCP can adopt DMS(256)

to obtain more activation reduction and still achieve less than 5% IPC loss. This means

that the increase of IPC provided by AMS can compensate for the IPC loss caused by

DMS. As a result, the value of delay can be further increased to obtain more activation

reduction from DMS. In addition, AMS is able to work synergistically with DMS to further

reduce the number of row activations, leading to a higher activation reduction. Therefore,

AMS is useful to help increase the delay value in DMS as shown in this case.

5.3.3.2 How can delayed memory scheduling help approximate memory

scheduling

We find that DMS can also help AMS in terms of activation reduction, as delaying the

issuing of pending requests can help to more accurately identify the low-RBL row acti-

vations. To illustrate this, consider Figure 5.7, which shows that 9 requests are destined

across 5 rows (i.e., R1 through R5) of the same DRAM bank and AMS is trying to find

a request associated with an RBL(1) row activation to drop. Figure 5.7(a) shows a case

when AMS is applied alone and there are 4 more requests destined to R1 through R4 of

CHAPTER 5. LAZY MEMORY SCHEDULING FOR GPUS 86

the same bank that have not yet reached the pending queue. Also, the time required for

the bank to serve a request is sufficient for these 4 future requests to reach the queue.

Since that the memory scheduler only has visibility of the requests currently in the pend-

ing queue, it observes 5 RBL(1) row activations at this point. Therefore, if AMS were

to choose a request to be dropped, it would drop the first R1 as it is the oldest pending

request. However, this would lead to even an Avg-RBL decrease from 1.8 (9/5) to 1.6

(8/5). This is because the total number of activations for these 9 requests is still 5, but

the total number of requests is reduced from 9 to 8 (the first R1 is dropped). AMS cannot

accurately drop R5 because the row indexes of future requests are unknown.

……

requests currently
In the pending queue

oldest
request

R1R2R3R4

future
requests

R5R2R4 R3 R1

If no request is dropped:
Activations = 5

Locality = 9/5 =1.8

If the oldest is dropped:
Activations = 5

Locality = 8/5 =1.6

request
4 cycles away

(a) FR-FCFS pending queue with AMS.

……

requests currently
In the pending queue

R1R2R3R4

future
requests

R5

If the request to
R5 is dropped:
Activations = 4

Locality = 8/4 =2R2R4 R3 R1

request stalled
for 4 cycles

(b) FR-FCFS pending queue with DMS+AMS.

Figure 5.7: Example illustrating how delayed memory scheduling (DMS) can help ap-
proximate memory scheduling (AMS) by comparing different schemes.

On the other hand, Figure 5.7(b) shows the case when AMS is applied together with

DMS. As a result of the added delay by DMS, AMS will correctly drop R5 as it can observe

now that only R5 has an RBL(1) row activation. Hence, the total number of activations

is reduced from 5 to 4, and the total number of requests is reduced from 9 to 8, leading to

an Avg-RBL increase from 1.8 (9/5) to 2 (8/4). In this case, AMS can more accurately

identify low-RBL row activations as more requests are visible in the pending queue on

account of applying DMS.

In summary, we find that both DMS and AMS can provide significant benefits in terms

CHAPTER 5. LAZY MEMORY SCHEDULING FOR GPUS 87

of activation reduction. Furthermore, they can also improve the efficiency of each other

when applied together. In the next section, we will provide implementation details for

both memory scheduling techniques.

5.4 Design and Operation

5.4.1 Overview

Figure 5.8 shows a high-level overview of our design. The L2 misses A are buffered at

the pending queue after they arrive at the memory controller. These pending requests

are then issued to the DRAM banks following the FR-FCFS scheduling policy B as soon

as their destined DRAM banks become available (Section 5.2). Our proposal focuses on

seamlessly integrating our new memory scheduling schemes: DMS and AMS with the

baseline FR-FCFS scheduler. In this context, Figure 5.8 shows three major components

(shaded in gray color) of the lazy memory scheduler: delayed memory scheduling unit

(DMS unit), approximate memory scheduling unit (AMS unit), and value prediction unit

(VP unit). The DMS and AMS units coordinate with the memory controller to decide

which and when the requests should be issued to the DRAM banks. The AMS unit also

coordinates with the VP unit to decide which and how the requests will be approximated.

Consequently, these units decide the sequence of row activations of DRAM banks so as to

maximize the Avg-RBL.

The DMS unit can either work independently or with the AMS unit. In the former

case, before opening a new DRAM row, the DMS unit checks whether the oldest request

has spent at least X cycles (i.e., DMS(X)) in the pending queue. If true, then this oldest

request is issued to the memory banks B and its corresponding DRAM row is opened. The

other pending requests destined to the same row are also issued back to back (regardless of

their ages) as per FR-FCFS policy. To keep track of the delayed cycles per request, each

request is assigned with a time stamp when it enters the pending queue. This time stamp

is used by the DMS unit to check against the current time to get the value of delay C

CHAPTER 5. LAZY MEMORY SCHEDULING FOR GPUS 88

Dropped
Reads

Main Memory

Bank

Row Buffer

Cell Arrays

…… R1R2R3

Pending Queue

DMS	Unit

AMS	Unit

Interconnect

L2 Cache
Value	

Predictor

Issued
Requests

L2 Misses

Address &
Read/Write

Timestamp

Field	per	Request

Baseline:
Address

…

Read/Write
Size

Timestamp

Memory
Controller

Normal
Reads

Figure 5.8: Design overview of the lazy memory scheduler and associated components.

(more details are in Section 5.4.2).

In the latter case, the DMS unit also checks whether the oldest request has spent

at least X cycles in the pending queue. If true, it then checks the current prediction

coverage, ThRBL, and the pending requests’ information D to decide if this request should

be dropped (more details are in Section 5.4.3). If all criteria are satisfied, the AMS unit

will drop the request from the pending queue and send a dropped read signal E to the

VP unit to generate an approximate value. Otherwise, if the criteria are not satisfied, the

request is issued to the memory banks B , and the L2 cache is filled with accurate data

served by the memory banks F (the same as the baseline case).

5.4.2 Delayed Memory Scheduling Schemes

As discussed earlier in Section 5.3, finding an appropriate value for delay is important for

DMS. Higher values of delay would create more opportunities for the memory scheduler

to improve the Avg-RBL, however, at the possible loss of performance. In this context,

we propose two schemes: Static-DMS and Dyn-DMS, which calculates the value of X

statically and dynamically, respectively.

CHAPTER 5. LAZY MEMORY SCHEDULING FOR GPUS 89

Static-DMS: Static Delayed Memory Scheduling. The Static-DMS uses a delay of

128 cycles (i.e., DMS(128)), based on our empirical evaluations. As shown in Figure 5.3,

128 cycles is the maximum delay that can lead to less than 5% IPC losses across all

tested applications. However, this static value of delay misses out on the opportunity

of improving Avg-RBLs in applications with higher latency tolerances. It may also lead

to more than 5% IPC losses in untested applications. Therefore, we further propose a

scheme that dynamically decides the value of delay based on the latency tolerance of an

application.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Normalized BWUTIL

N
or

m
al

iz
ed

 IP
C

Figure 5.9: Illustrating the relationship between IPC and BWUTIL.

Dyn-DMS: Dynamic Delayed Memory Scheduling. We propose a profiling-based

dynamic scheme, which is based on the fact that the performance degradation can be

tracked locally at the memory controller via observing the bandwidth utilization (BWU-

TIL). For all the applications we used, we tested their BWUTILs and IPCs with different

values of delay. As shown in Figure 5.9, their BWUTILs and IPCs are linearly correlated,

which is also confirmed in previous works [47, 130]. For this reason, we can track the

changes in DRAM bandwidth utilization locally at the memory controller to keep track

of the changes in the overall performance.

Our Dyn-DMS mechanism is an iterative mechanism that attempts to find the maxi-

mum value of delay such that performance (reflected by bandwidth utilization) does not

CHAPTER 5. LAZY MEMORY SCHEDULING FOR GPUS 90

drop significantly (our threshold is 5%) compared to the baseline no-delay scenario. Dyn-

DMS first samples the baseline BWUTIL for a window of 4096 memory cycles.1 Note that

in order to accurately sample the baseline BWUTIL, the co-running AMS scheme is tem-

porarily halted during this window when applying DMS and AMS together. Then starting

from a delay value of 128 cycles, the DMS unit gradually increases the value of delay (X)

for the following 4096-cycle windows in steps of 128 delay cycles. At a particular delay,

if the BWUTIL of that window starts to drop below 95% of the baseline, the iterative

method stops and set the delay to be the last value that leads to a BWUTIL more than

95% of the baseline. This delay value X is also recorded. To capture the phases changes

within an application, we restart the process after every 32 windows, however, we set the

previously recorded delay value of X as the starting point for this iterative procedure to

quickly settle to the optimal value. Note that the maximum value of X we use is 2048 and

the minimum is 0 (baseline case).

5.4.3 Approximate Memory Scheduling Schemes

As discussed earlier in Section 5.3, with a coverage limitation, finding and dropping re-

quests associated with relatively low RBLs are more favorable to reduce the number of

activations. Therefore, an appropriate value for ThRBL is important for AMS(ThRBL).

High values of ThRBL would lead to unnecessarily approximating requests associated with

high RBLs and wasting the limited prediction coverage. On the other hand, low values

of ThRBL may not provide enough opportunities to approximate if there are not enough

requests associated with low RBLs, thereby limiting the potentials of Avg-RBL improve-

ments.

The working procedure of the AMS unit has multiple steps. As using approximate

value for critical data (e.g., pointers) may cause fatal errors for applications, we use

pragma to annotate the approximable regions of data to guarantee the safety of applying

1Based on our experiments, 4096 cycles is a suitable window size. An overly large window does not
timely reflect the current BWUTIL, meanwhile, an overly small window is too sensitive to local spikes in
BWUTIL (or coverage).

CHAPTER 5. LAZY MEMORY SCHEDULING FOR GPUS 91

value approximation. Hence, the AMS unit will only proceed if it detects that the oldest

pending request is approximable. Second, the AMS unit verifies if the oldest request

satisfies the delay criteria determined by DMS. Third, if the first criterion is satisfied, the

AMS unit calculates the coverage based on the total number of requests dropped and the

total number of requests received so far. It then checks if the coverage is less than the

user-defined coverage value (we use 10%). Fourth, if the second criterion is also satisfied,

the AMS unit iterates through the pending queue to obtain the RBL value associated

with the request and checks if it is less or equal to ThRBL. Also, during this iteration,

the AMS unit ensures that all the other requests destined to the same row are global

read requests, as we only approximate load values. If the fourth criterion is also satisfied,

then this request will be dropped from the pending queue, instead of being issued to the

memory bank. In addition, all other pending requests destined to the same row will also

be dropped sequentially in the following memory cycles. If any of these three steps are

not successful, as default, the request will be issued to the memory banks following the

FR-FCFS policy.

We propose two schemes to realize the above goals and procedures: Static-AMS and

Dyn-AMS, which calculates the value of ThRBL statically and dynamically, respectively.

Static-AMS: Static Approximate Memory Scheduling. Based on our empirical

evaluations, we found that the ThRBL value of 8 is appropriate as it does not allow un-

necessary approximations for requests associated with very high RBLs and at the same

time provides enough prediction coverage for many applications. Therefore, AMS(8) is

used for Static-AMS scheme. However, as different applications have very different RBL

distributions, a static ThRBL can be sub-optimal for some of the applications. For exam-

ple, if the ThRBL is too high for them, AMS cannot accurately target requests associated

with lower RBLs under a limited prediction coverage. On the other hand, if the ThRBL is

too low for them, AMS cannot effectively reduce the number of activations because there

are not enough requests for it to approximate. Therefore, there is a need to dynamically

modulate the value of ThRBL so as to more accurately target the low-RBL row activations

CHAPTER 5. LAZY MEMORY SCHEDULING FOR GPUS 92

RBL(1) RBL(2) RBL(3 - 8) RBL(9 - max)

8 7 6 5 4 3 2 1
0.6

0.65

0.7

0.75

0.8

N
or

m
al

iz
ed

 A
ct

.

(a) The effect on activation reduction by re-
ducing ThRBL (x-axis) for SCP.

0% 20% 40% 60% 80%
0

20

40

60

80

100

A
ct

iv
at

io
ns

 (
%

)

(b) CDF for SCP’s activations. x-axis is request
percentage of read-only rows sorted by RBL.

Figure 5.10: Effect of reducing ThRBL.

while also maintaining the user-defined coverage (10%).

Dyn-AMS: Dynamic Approximate Memory Scheduling. For some applications,

the Static-AMS (i.e., AMS(8)) may be suboptimal. For example, as shown in Fig-

ure 5.10(a), application SCP’s number of activations can be further reduced when ThRBL

is reduced from 8 to 1. The reason for this can be explained with Figure 5.10(b). As shown

in the Figure, most of the requests within the ThRBL of 8 are associated with RBL(2 - 8).

However, there are already more than 10% of the total requests associated with RBL(1)

(i.e., the portion on the left of the red dashed line). Therefore, a ThRBL value of 1 is most

beneficial, as approximating 10% requests associated with RBL(1) leads to the highest

activation reduction. Hence, dynamically modulating the ThRBL is necessary to further

improve the activation reduction for applications like SCP.

Based on this observation, we designed a profiling-based Dyn-AMS scheme. Similar to

the Dyn-DMS, the Dyn-AMS is also an iterative approach that attempts to find the lowest

value of ThRBL such that the prediction coverage does not drop below the user-defined

value. Note that we empirically use 10% coverage throughout the work and the ThRBL

range we use in the Dyn-AMS is 1 to 8. The AMS unit starts with the ThRBL value

of 8 and samples the coverages for consecutive windows of 4096 memory cycles. First,

as long as the coverage can achieve the user-defined coverage, the AMS unit gradually

decreases the ThRBL value in steps of 1 in consecutive 4096-cycle windows. Second, once

CHAPTER 5. LAZY MEMORY SCHEDULING FOR GPUS 93

the coverage goes below the user-defined coverage in a window, the AMS unit gradually

increases the ThRBL value in steps of 1 until the coverage returns to the user-defined

coverage again in consecutive 4096-cycle windows. These steps are repeated until the end

of application execution.

5.4.4 Value Prediction Unit

The Value Prediction Unit (VP unit) is responsible for approximating the values of re-

quests that are dropped by the AMS unit. Since the VP unit works independently and is

orthogonal to the memory scheduling schemes, we can support a large variety of previously

proposed value prediction mechanisms such as [104, 73, 139, 103]. Similar to prior works,

AMS uses programmer annotations to bound the approximation errors as the criticality of

instructions presumably could only be identified by the programmer [14, 69, 102, 138, 88].

AMS requires the following information from the programmer, as shown in the example

of Listing 5.1: a) the approximable loads which are error tolerant, and b) the prediction

coverage which limits the total number of approximations.

#pragma pred_coverage {10%}

#pragma pred_var{B}

C[i] = A[i] + B[i];

Listing 5.1: Example of Code Annotation.

To demonstrate how AMS works, we designed a simple but effective VP unit that is

based on the intuition that nearby addresses may store similar values and hence the value

of a cache line can be approximated by a nearby cache line with limited error [104]. In order

to predict the values for the dropped requests, we search in the nearby cache sets of the

L2 cache and use the values from cache lines with nearest addresses as their approximate

values.2 To minimize the searching overhead, we carefully choose the search radius of

2In this simple model, we did not consider the error propagation caused by the reuse of approximated
cache lines. However, we have tested with a more advanced model (that considers reuse) and have observed
similar application error results.

CHAPTER 5. LAZY MEMORY SCHEDULING FOR GPUS 94

nearby sets and take advantage of the existing associative search hardware to search in

the cache ways of a set. We find that the searching overhead is negligible compared to

the performance improvement introduced by value approximation. We will discuss the

performance and output quality results in Section 5.5. Note that we first warm up the L2

cache with a sufficient number of requests to prepared for the searches, and thus AMS is

initially disabled until the cache is ready.

5.4.5 Hardware Overhead

The DMS unit requires one comparator and one adder to do comparisons for the DMS

functionalities. One 16-bit counter is required for Static-DMS and Dyn-DMS to store

the current delay value of X. For Dyn-DMS, the DMS unit requires one 32-bit counter

to store the baseline BWUTIL, one 32-bit counter to store the current BWUTIL, one

16-bit counter to store the cycles during profiling, one 8-bit counter to store the number

of windows during profiling. The AMS unit requires one multiplier, one adder and one

comparator for the operations of AMS. Static-AMS and Dyn-AMS require 1 bit to store

the read/write condition and 1 bit to store the current memory space condition for the

row of the oldest request, two 64-bit counters to store the total number of requests and

approximated requests for calculating coverage, one 8-bit counter to store the RBL of the

current request’s row, one 8-bit counter to store the current ThRBL, one 32-bit counter

to store the index of the dropped request’s row. For Dyn-AMS, the AMS unit requires

one 16-bit counter to store the cycles during profiling.The VP unit requires nine adders,

one MUX, one comparator for searching the nearest cache line, one 8-bit counter to store

the radius, one 64-bit counter to store the tag of the dropped read request, two 64-bit

counters to store the minimal tag distance and its corresponding address. Overall, the lazy

memory scheduler requires 1 multiplier, 11 adders, 1 MUX, 3 comparators and 498 bits

of buffer space in addition to the baseline memory controller. We believe this hardware

overhead is modest compared to the energy savings provided by DMS and AMS. Finally,

our mechanisms do not require any modification to the existing DRAM protocols.

CHAPTER 5. LAZY MEMORY SCHEDULING FOR GPUS 95

Table 5.2: List of evaluated GPGPU applications. See Table 5.3 for more details.

Abbr. Input Group
Thrashing Delay Related Approximation Related

Level Delay Tol. Act. Sens. ThRBL Sens. Err. Tol.
RAY [12] Matrix 3 High High High Low High

inversek2j [137] Coordinates 3 High High High Low High
newtonraph [137] Image 4 High High High Low Low

FWT [12] Matrix 4 High Medium High High Low
MVT [93] Matrix 2 High Medium High Low High

jmeint [137] Coordinates 2 High Medium High Low Medium
ATAX [93] Matrix 4 High Medium High Low Low

3DCONV [93] Matrix 2 High Medium High Low Medium
CONS [93] Matrix 4 High Medium High Low Low
srad [12] Image 4 High Medium High Low Low
LPS [12] Matrix 1 High Medium Low High High

BICG [93] Matrix 1 High Low High High Medium
SCP [12] Matrix 1 High Low High High Medium

GEMM [93] Matrices 4 High Low Medium High Low
blackscholes [137] Matrix 4 Medium Medium High High Low

2MM [93] Matrices 4 Medium Medium Medium Low Low
3MM [93] Matrices 3 Low High High Low High
SLA [12] Matrix 4 Low High Medium Low Low

meanfilter [137] Image 3 Low High Low Low High
laplacian [137] Images 3 Low Medium Low Low Medium

5.5 Experimental Results

We evaluate our lazy memory scheduling techniques on a wide range of applications de-

scribed in Table 5.2. The applications are selected so as to cover all important features

that are relevant to our schemes. We list these features and their intensity classifications

(e.g., Low, Medium, High) in Table 5.3. We use annotations to make sure that we only

approximate global read requests which do not contain pointers or lead to fatal errors

so that value approximation can be applied to all applications safely. For the ease of

presenting results in this section, we group these applications into 4 different groups:

Group-1: These applications have high or medium error tolerance and also show high

ThRBL sensitivity. Therefore, both AMS and DMS can be applied and likely to benefit.

Group-2: These applications have high or medium error tolerance, thus the AMS related

schemes can be applied. However, they show low ThRBL sensitivity, so Dyn-AMS may

not show clear benefits in terms of activation reduction.

Group-3: These applications have high or medium error tolerance, thus the AMS related

schemes can be applied. However, since they either have very few requests associated with

CHAPTER 5. LAZY MEMORY SCHEDULING FOR GPUS 96

Table 5.3: Application features and intensity classifications. The thresholds are used
only to facilitate the discussion in Section 5.5.

Feature Description
Categories (by X Range)
Low Medium High

Thrashing Level
The application has X% requests in rows with RBL(1 - 8).

[0, 3) [3, 10) [10, 100)

Delay Tolerance
The application has a MTD of X.

[0, 256) [256, 1024) [1024,+∞)

Activation Sensitivity
The application’s activation reduction is X% compared to
the baseline when 2048 cycles delay is applied to the
FR-FCFS pending queue.

[0, 10) [10, 20) [20, 100)

ThRBL Sensitivity
The application’s maximum activation reduction is X%
compared to the baseline when reducing its ThRBL from 8
to lower values.

[0, 5) NA [5, 100)

Error Tolerance

The application shows X% application error when using
our proposed value approximation technique (Section 5.4.4)
at 10% coverage or its maximum available coverage less
than 10%.

[20,+∞) [5, 20) [0, 5)

RBL(1 - 8) (Low Thrashing Level), or have very limited rows that are only accessed by

read requests when opened, their coverages cannot reach 10%.

Group-4: These applications have low error tolerance and thus the AMS related schemes

should not be applied. However, for these applications, the DMS schemes can still be

applied for reducing the number of row activations.

Effect on Row Energy. Figure 5.11(a) shows the normalized row energy across all

schemes. We make four observations. First, overall the Static-DMS and Dyn-DMS are

able to reduce row energies by 8% and 12%, respectively. Second, overall the Static-AMS

is able to reduce 33% of row energy, which is more than that of the Static-DMS schemes.

The Dyn-AMS does not show improvement over the Static-AMS for Group-2 and Group-3

applications. However, Group-1 applications overall show 7% row energy reduction in the

Static-AMS and 11% in the Dyn-AMS. Third, for Group-1 and Group-2 applications, when

combining Static-DMS and Static-AMS together, their average row energy reduces by 27%.

This is 7% more than when Static-DMS and Static-AMS are applied separately. When

combining Dyn-DMS and Dyn-AMS together, it shows the largest row energy reduction

of 34%. This reduction is 7% more than when applying Static-DMS and Static-AMS

together, and is 13% more than the total reduction of when applying Dyn-DMS and Dyn-

AMS separately. Finally, when applying Dyn-AMS together with Dyn-DMS, Group-1,

CHAPTER 5. LAZY MEMORY SCHEDULING FOR GPUS 97

Static-DMS Dyn-DMS Static-AMS Dyn-AMS Static-DMS & Static-AMS Dyn-DMS & Dyn-AMS

0

0.2

0.4

0.6

0.8

1

LPS
BICG SCP MVT

jmeint
3DCONV RAY

inversek2j
3MM

meanfilter
laplacian

GMeanN
or

m
al

iz
ed

 R
ow

 E
ne

rg
y

(a) Normalized Row Energy

0

0.2

0.4

0.6

0.8

1

1.2

LPS
BICG SCP MVT

jmeint
3DCONV RAY

inversek2j
3MM

meanfilter
laplacian

GMean

0.95

N
or

m
al

iz
ed

 IP
C

(b) Normalized IPC

0

20

40

LPS
BICG SCP MVT

jmeint
3DCONV RAY

inversek2j
3MM

meanfilter
laplacian

Mean

A
pp

. E
rr

or
 (

%
)

(c) Application Error

0

20

40

LPS
BICG SCP MVT

jmeint
3DCONV RAY

inversek2j
3MM

meanfilter
laplacian

Mean

C
ov

er
ag

e
(%

)

(d) Coverage

Figure 5.11: Comparison of different schemes with different metrics for applications
with Medium or High Error Tolerance. Row Energy and IPC results are normalized to
the baseline that does not adopt DMS or AMS.

Group-2 and Group-3 applications overall achieve 44% row energy reduction. However,

a few Group-3 applications (i.e., 3MM, meanfilter, laplacian) show less row energy

reduction than the other AMS related schemes. This is due to a small coverage decrease

as shown in Figure 5.11(d) because Group-3 applications already have limited coverage

and the profiling of Dyn-DMS reduces the number of requests dropped by Dyn-AMS

(Section 5.4.2).

Effect on Memory Energy and Peak Bandwidth. The lazy memory scheduler’s ben-

efit in row energy reduction is caused by the improvement of the application’s Avg-RBL.

Therefore, it is independent of the memory technology used as long as it adopts similar

structures as the row buffer. However, system-wise, its energy reduction is dependent on

the memory technology. For example, if we apply Dyn-DMS and Dyn-AMS together on

HBM1 where row energy constitutes nearly 50% of the memory system energy [16], we

observe on average 22% memory system energy reduction with our tested applications.

Similarly, for HBM2 where row energy can constitute 25% of its total energy, we observe

on average 11% memory system energy reduction. Traditionally, the overall power bud-

get of a high-end GPU card is limited to around 300W and its memory power budget is

generally capped at 60W when operating at peak bandwidth. [83]. Therefore, in terms

CHAPTER 5. LAZY MEMORY SCHEDULING FOR GPUS 98

of absolute savings with HBM2, the lazy memory scheduler can achieve: a) up to 8W

memory power reduction while achieving the same peak bandwidth or b) up to 90 GB/sec

higher peak bandwidth under the same 60W memory power budget.

Effect on Performance. Figure 5.11(b) shows the changes in IPC across all schemes.

Overall, we find that all our schemes do not lose more than 5% IPC. We make three

observations. First, the Static-DMS and Dyn-DMS show larger IPC losses because of the

additional delay. Also, the IPC of Dyn-DMS can approach closer to the 95% threshold,

resulting in more row energy reductions. Second, the Static-AMS and Dyn-AMS show IPC

improvement. Specifically, overall Dyn-AMS shows more improvement than Static-AMS,

indicating that it can improve more performance by potentially dropping the requests in

rows with lower RBLs. Finally, when combining Static-DMS and Static-AMS together,

overall the IPC improves by 2%. When combining Dyn-DMS and Dyn-AMS together,

overall the IPC loss is less than 1%. Both cases show higher IPC than the Static-DMS

or Dyn-DMS scheme, because of the usage of AMS. We conclude that all our schemes are

able to effectively restrict the IPC loss to be less than 5%. Specifically, AMS can help

to compensate for the IPC loss caused by DMS. The combination of DMS and AMS can

provide a good trade-off between row energy reduction and performance loss.

Effect on Application Error. Figure 5.11(c) shows application errors across all schemes.

Note that the application error for the Static-DMS and Dyn-DMS are all zeros because

no approximation is applied. We find that with our VP unit design, different applications

show different application errors, meanwhile for each application, there are only small

differences of application error with similar prediction coverages (Figure 5.11(d)) across

different schemes. With the 10% coverage limitation, the average application error is

7% for all the AMS related schemes. Figure 5.12 shows the image output of application

laplacian for the accurate baseline case and the Dyn-DMS and Dyn-AMS combination

case. We observe that with 17% application error, the image shows a limited level of

quality degradation. We conclude that under our VP unit design, limiting the coverage is

an effective way to limit the application error. Moreover, value approximation is a feasible

CHAPTER 5. LAZY MEMORY SCHEDULING FOR GPUS 99

(a) Accurate Output (b) Approximate Output

Figure 5.12: Comparison between the accurate and the approximate output (which has
17% Application Error and is generated when the Dyn-DMS and Dyn-AMS schemes are
applied together) for application laplacian.

size 16 size 32 size 64 size 128 size 256 size 512 size 1024

0
0.2
0.4
0.6
0.8

1
1.2

LPS BICG SCP
GEMM MVT jmeint

ATAX
3DCONV RAY

inversek2j 3MM
meanfilter

laplacian
newton-raph FWT

CONS srad
blackscholes 2MM SLA

GMeanN
or

m
al

iz
ed

 A
ct

.

Figure 5.13: Effect of pending queue size on the number of activations (normalized to
the baseline) with DMS(2048).

way to reduce row energy and improve performance as many applications can tolerate

certain levels of error and are suitable for applying the AMS schemes. We also expect to

see significant application error reduction if the AMS related schemes are applied together

with the previously proposed value prediction techniques [104, 73, 139, 103] because they

are more sophisticated and have shown much less application output quality loss when

working with the same 10% coverage limitation.

Effect of FR-FCFS Pending Queue Size. When applying DMS, more requests are

likely to be piled up in the pending queue, increasing the possibility to find row hits.

However, if the pending queue is frequently full, future requests may often be blocked

from entering it, limiting the Avg-RBL improvement of DMS. Therefore, it is important

CHAPTER 5. LAZY MEMORY SCHEDULING FOR GPUS 100

Static-DMS Dyn-DMS

0

0.2

0.4

0.6

0.8

1

ne
wto

n-
ra

ph
FW

T

CONS
sr

ad

bla
ck

sc
ho

les
2M

M
SLA

GEM
M
ATAX

GM
ea

n

N
or

m
al

iz
ed

 R
ow

 E
ne

rg
y

(a) Normalized Row Energy

0

0.2

0.4

0.6

0.8

1
0.95

ne
wto

n-
ra

ph
FW

T

CONS
sr

ad

bla
ck

sc
ho

les
2M

M
SLA

GEM
M
ATAX

GM
ea

n

N
or

m
al

iz
ed

 IP
C

(b) Normalized IPC

Figure 5.14: Comparison of different schemes in the delay-only mode for applications
with Low Error Tolerance.

that the pending queue size is sufficient to support the increased pending requests in DMS.

Figure 5.13 shows the effect on the number of row activations when using different pending

queue sizes with the maximum allowed delay (i.e. DMS(2048)). And starting from size

128 the activation numbers for all applications tend to be stable. We conclude that a

pending queue size of 128 (i.e., the baseline size) is sufficient to apply DMS.

Delay-Only Mode for Low Error Tolerance Applications. For applications with

low error tolerance, even if AMS cannot be applied, we can still use DMS to reduce their

row energy. Figure 5.14(a) and (b) show normalized row energy and IPC, respectively

for Group-4 applications with the DMS schemes. We make two observations. First, both

Static-DMS and Dyn-DMS can reduce row energy for Group-4 applications (one outlier is

Static-DMS for application 2MM). Also, Dyn-DMS can more effectively reduce row energy

than Static-DMS. Second, both Static-DMS and Dyn-DMS have less than 5% IPC loss.

And the IPC of Dyn-DMS can approach closer to 95% of the baseline. We conclude that

for applications with low error tolerance, the DMS schemes can still effectively reduce

their row energy with no more than 5% IPC loss. Dyn-DMS reduces more row energy by

trading off a little more performance.

CHAPTER 5. LAZY MEMORY SCHEDULING FOR GPUS 101

5.6 Related Work

To the best of our knowledge, this is one of the first works in the context of GPUs that

consider the interplay between memory scheduling and application’s tolerance to latency

and errors. Our mechanisms achieve significant memory system energy savings while

allowing the underlying hardware to remain dependable both in terms of performance and

correctness [77, 121, 78]. Several prior works in the CPU domain [140, 143, 116, 144, 74,

76, 29] have focused on improving the row buffer locality. The goal of these works was to

reduce the DRAM access latency because it is a first-order performance concern in single-

threaded CPU workloads [15, 19, 36]. Other memory scheduling techniques for CPUs

propose to partially delay the write request [74, 76], or conditionally employ an open-row

policy [29] to improve the row buffer locality. But the purposes of these works are still

to reduce the overall DRAM access latency. In contrast, DRAM access latency is not

a primary concern in GPGPU applications as GPUs are capable of hiding long memory

access latencies by spawning thousands of concurrent threads. Hence, in this work, we

exploited this property to further enhance the row buffer locality for GPU memory.

In the context of GPUs, Jog et al. [51] proposed a criticality-aware memory scheduling

mechanism to trade-off row buffer locality for servicing latency-critical requests. However,

it will likely increase the DRAM energy consumption due to sub-optimal row buffer lo-

cality. Prior work on warp scheduling and throttling policies [50, 49, 54] can also improve

the row buffer locality. However, these throttling/warp-scheduling decisions and memory

scheduling decisions do not always remain in sync as they are taken physically far away

from each other and are conducted at different granularities. This makes it important to

design new memory scheduling decisions (as we do in this work) that consider the current

DRAM status. Moreover, we believe our work is complementary to these prior works as

they can provide additional benefits by shaping the access patterns such that they can

benefit DMS and AMS.

CHAPTER 5. LAZY MEMORY SCHEDULING FOR GPUS 102

5.7 Chapter Summary

This chapter focused on improving the DRAM row buffer locality in GPUs to reduce the

memory system energy consumption. To this end, we proposed a lazy memory scheduler

that can work in two modes: delayed or approximate. In the delayed mode, it carefully

delays the scheduling of memory requests to allow more of them to accumulate at the

memory pending queue. Such a mechanism increases the visibility of the memory scheduler

thereby improving the chances of finding more requests that can be served by reusing the

data in the row buffer. In the approximate mode, it carefully identifies a small fraction

of requests with low row buffer locality and does not issue them to the DRAM banks.

Instead, a simple but effective value predictor can be used to approximate the values

for such requests. We also find that both these modes are synergistic and improve the

effectiveness of each other when employed together. Our evaluation across a variety of

GPGPU applications shows that row energy can be reduced by 12% with delayed memory

scheduling, 33% with approximate memory scheduling, and 44% with a combination of

both schemes. We hope that this work can open up new research directions that consider

the interactions between scheduling, error resilience, and latency tolerance techniques at

different levels of the memory hierarchy.

103

Chapter 6

Towards Architectural Support for

Flexible Data Precisions

Despite the energy consumption of preserving the stored data, a large proportion of GPU

memory energy is spent on transferring data across the memory hierarchy. This movement

of data consumes the limited available bandwidth and power budget of GPU memory.

Meanwhile, the energy consumed by data movement also depends on the value of the

data itself. For example, when data transfers on the data IO bus of the memory, a bit

value of 1 consumes considerably more energy than a bit value of 0 for the data’s binary

representation. Therefore, both the quantity and the bit values of the data transferred in

the memory are important factors to determine the total memory energy consumption.

The goal of this work is to improve the memory energy efficiency by reducing the

amount of data transferred and the per-bit energy cost of data movement. We observe

that for several GPGPU applications (e.g., machine learning, image processing, etc.), the

quantity of the data transferred can be reduced as not all values of bits in their data are

required to perform an accurate or highly precise computation. Also, we observe that

the bit values of the data transferred are sometimes not energy efficient because of the

way the values are represented with the floating-point format. Furthermore, not all bit

positions in the data’s binary representation contribute equally towards the total memory

CHAPTER 6. GPU VALUE TRUNCATION 104

energy consumption. Based on these observations, we propose a novel memory system

architecture to improve memory energy efficiency. Overall, this work makes the following

contributions. First, through a detailed analysis of the floating-point format, we observe

that different bytes positions in the data do not contribute equally to the energy consump-

tion. Second, we propose a new data format to store the data, which requires minimal

changes to the standard IEEE floating-point format. This data format is highly flexible

and efficient in terms of data type conversion. Third, we make a case for a novel memory

system architecture with a complete memory hierarchy that can dynamically determine

the transfer energy and precision requirement of data. Therefore, data movement can be

reduced by transferring fewer bytes when the precision requirement of data is low. To-

gether with our newly proposed data format, this new memory architecture can convert

data types locally at the DRAM banks without fetching them out of the memory. Finally,

we will show the detailed evaluation results in the future.

6.1 Background and Metrics

6.1.1 Floating-Point Data Storage Formats

The floating-point data storage format is used to store floating-point numbers, as opposed

to the integer data storage format which can only store integer numbers. Depending on

the requirement, the floating-point format has different configurations. For example, the

single-precision floating-point, or FP32, uses 32 binary bits to store floating-point data. As

per the IEEE 754-2008 standard, FP32 has 1 sign bit, 8 exponent bits, and 24 significand

bits, as shown in Figure 6.1. To calculate the value that the format represents, we can

simply use equation 6.1 with all the given bit values. As shown in the equation, in most of

the cases, the format just represents normal values. The normal values can be calculated

with the use of sign bits, exponent bits, significand bits, and an offset for the exponent.

This offset is usually format-specific and is used to adjust the magnitude coverage of the

format. We have summarized the offsets as well as other configurations for some commonly

CHAPTER 6. GPU VALUE TRUNCATION 105

0 1 1 00 0 0 0 0 0 1

sign exponent significand

31 30 - 23 22 - 0
Bit

Index:

Use:

Byte Index: 3 2 1 0

Figure 6.1: FP32 layout.

used floating-point formats in Table 6.1.

Also, there are four special cases of the floating-point value calculation. When the

exponent bits equal their maximum representable value (i.e., all bits are 1), it can represent

NaN (i.e. not a number) or Infinity cases, depending on the significand bits. If the

exponent bits equal their minimum representable value (i.e., all bits are 0), then the

format can represent 0 or subnormal values (i.e., values that are smaller than the smallest

normal value), depending on the significand bits. As an example, we will show the value

calculation process of the floating-point number shown in Figure 6.1. First, we recognize

that the exponent is 129, which is neither the maximum nor the minimum value of the

exponent. Therefore, secondly, we use the equation for normal value with sign equal 0,

exponent equal 129, offset equal 127 (see Table 6.1), and 1.significand (a binary fraction)

equal 1.5. This will give us the final result of 6, which is the value that the floating-point

data represent.

V alue =



(−1)sign × Infinity, if exponent = Exp.Max and significand = 0

NaN (not a number), if exponent = Exp.Max and significand 6= 0

0, if exponent = 0 and significand = 0

(−1)sign × 21−offset × 0.significand, if exponent = 0 and significand 6= 0 (subnormal value)

(−1)sign × 2exponent−offset × 1.significand, otherwise (normal value)

(6.1)

CHAPTER 6. GPU VALUE TRUNCATION 106

Table 6.1: Configurations of common floating-point data formats.

Format Description Sign Exponent Exp. Max Significand Offset Actual Exp. Range
FP64 IEEE double precision 1 bit 11 bits 2047 52 bits 1023 [-1022, 1023]
FP32 IEEE single precision 1 bit 8 bits 255 23 bits 127 [-126, 127]
FP16 IEEE half precison 1 bit 5 bits 31 10 bits 15 [-14, 15]
BF16 Brain floating point 1 bit 8 bits 255 7 bits 127 [-126, 127]
TF19 Nvidia Tensorfloat 1 bit 8 bits 255 10 bits 127 [-126, 127]
FP24 AMD fp24 1 bit 7 bits 127 16 bits 63 [-62, 63]

6.1.2 Value Dependency for Data Movement Energy

For the GPU’s streaming multi-processors (i.e., SMs) to perform any computation, it first

needs to fetch data from the off-chip memory, through the on-chip interconnect. This

movement of data across the memory hierarchies consumes a substantial proportion of

the total GPU energy [1, 6]. Recent studies have shown that the data movement energy

is not only related to the quantity of data movement, but is also dependent on the values

and order of the data moved [30, 7]. Primarily, it depends on two factors: the number

of ones in the moved data (i.e., Hamming weight) and the number of bit toggling (i.e.,

Hamming distance) between moved data.

Number of Ones. The number of ones or Hamming weight in the binary data is simply

the amount of bits that have value 1 in the data. For example, for an 8-bit variable A

with binary representation 00001111, the number of ones or Hamming weight is 4. Prior

work [30] have shown that the number of ones can significantly affect the memory read

and write energy. Also, it slightly affects interconnect transfer energy. Therefore, the

value of the moved data can affect data movement energy.

Number of Bit Toggling. The number of bit toggling or Hamming distance between

binary data is the number of bit positions that have different values between consecutively

transferred data. For example, let us assume that we are fetching data on an 8-bit wide

data bus and we need three 8-bit variables A, B, and C with binary representations

00000000, 11111111, and 00000000 respectively. If we fetch them in order A, B, and C,

the total bit toggling will be 16. This is because all eight bit positions will toggle from 0

to 1, and then toggle back to 0 again. However, if we fetch them in order A, C, and B,

CHAPTER 6. GPU VALUE TRUNCATION 107

the total bit toggling will be reduced to 8. This is because all eight bit positions will not

toggle for the first two variables, A and C, but will only toggle from 0 to 1 when fetching

the last variable, B. As shown in prior work [7], the number of bit toggling has a signficant

impact on the interconnect transfer energy. Also, it has a small impact on the memory

read and write energy. In this way, both the value and the order of the moved data can

affect the data movement energy.

Data Bus Inversion. One of the effective ways to reduce either number of ones or bit

toggling is to apply DBI (i.e., Data Bus Inversion) [40] to the memory system. DBI simply

checks the number of ones or bit toggling of the current flit (i.e., the unit by which the

data is transferred) to decide if all of its bits should be inverted or not. For example, DBI

can be used to reduce the number of ones for memory reads. If more than half of the bits

in the current flit are 1s, DBI can invert all bits of it so that more than half of its bits

will be 0s. Also, DBI can be used to reduce bit toggling for the interconnect by storing

the history value of the last flit. If more than half of the bit positions in the current flit

are different from that of the last flit, DBI can invert all bits of the current flit so that

more than half of its bit positions will not toggle. Because of its effectiveness and simple

design, DBI is adopted by many newly released architectures [81].

6.1.3 Evaluation Methodology and Metrics

We use a memory model as described in Chapter 2.3. Our evaluation is performed on

a cycle-level GPU simulator – GPGPU-Sim [12] (Table 5.1). We modified the memory

controller implementation and added support for DBI for our experiments. Energy-related

measurements are collected using GPUWattch [64]. We refined the logic of memory and

interconnect power calculation to reflect the effect of data values on energy. We also

introduce several truncation-related terminology used in this paper. The truncation ratio

is defined as the ratio between the truncated data length and the original data length.

The truncation coverage is the percentage of data that is truncated. The truncation error

is the relative error of the truncated data value compared to its original value.

CHAPTER 6. GPU VALUE TRUNCATION 108

-118 -110 -102 -94 -86 -78 -70 -62 -54 -46 -38 -30 -22 -14 -6 2 10 18 26 34 42 50 58 66 74 82 90 98 106 114 122
0

16
32
48
64
80
96

112
128
144

N
um

be
r

of
 O

ne
s

FP32 Byte 3 FP32 Byte 2 FP32 Byte 1 FP32 Byte 0 SFP32 Byte 3 SFP32 Byte 2 SFP32 Byte 1 SFP32 Byte 0

-118 -110 -102 -94 -86 -78 -70 -62 -54 -46 -38 -30 -22 -14 -6 2 10 18 26 34 42 50 58 66 74 82 90 98 106 114 122
0

16
32
48
64
80
96

112
128
144

N
um

be
r

of
 O

ne
s

1st byte float 2nd byte float 3rd byte float 4th byte float 1st byte new 2nd byte new 3rd byte new 4th byte new

(a) Number of ones

-118 -110 -102 -94 -86 -78 -70 -62 -54 -46 -38 -30 -22 -14 -6 2 10 18 26 34 42 50 58 66 74 82 90 98 106 114 122
0

16
32
48
64
80
96

112
128
144

B
it

T
og

gl
in

g

1st byte float 2nd byte float 3rd byte float 4th byte float 1st byte new 2nd byte new 3rd byte new 4th byte new

(b) Bit toggling

Figure 6.2: Number of ones and bit toggling for FP32 and SFP32.

6.2 Motivation and Analysis

The goal of this work is to reduce the data movement energy with novel data format and

memory system design. In this section, we will start by analyzing the current floating-point

format. We will discuss why value truncation techniques are suitable for floating-point

formats and what are the difficulties of applying value truncation techniques. Next, we

introduce our proposed symmetrical floating-point (SFP) format. We will compare it

with the current floating-point format in terms of value-dependent energy cost and value

truncation overhead. Furthermore, we will discuss the unique memory system design

opportunities enabled by the SFP and their benefits.

6.2.1 Analysis of Floating-point Formats

In terms of reducing value-dependent energy costs, we found that value truncation can

bring large benefits. As shown in Figure 6.2, we tested the average number of ones and

bit toggling in 128-byte-long cache lines with uniformly distributed FP32 values. We

generated 16384 cache lines1 for each label on the x-axis, which indicates the maximum

actual exponent value that the FP32 data can have (i.e., it defines the value range in terms

of 2’s power). Note that we use the flit size of 32 bytes. Also, results are summarized

according to the FP32 byte indices as shown in the legend.

1Experiments with more samples show negligible differences.

CHAPTER 6. GPU VALUE TRUNCATION 109

MNIST SFP16 MNIST SFP8 LSTM SFP16 LSTM SFP8
0

0.5

1

%
 o

f c
ac

he
 li

ne
s

>100% (10%, 100%] (1%, 10%] (0.1%, 1%] (0.01%, 0.1%] exact

LSTM SFP16 LSTM SFP8 MNIST SFP16 MNIST SFP8
0

0.5

1

%
 o

f c
ac

he
 li

ne
s

>100% (10%, 100%] (1%, 10%] (0.1%, 1%] (0.01%, 0.1%] exact

Figure 6.3: Average relative error distribution for LSTM and MNIST when using short
formats.

As shown in the FP32 results of Figure 6.2a and Figure 6.2b, for both metrics, all

bytes show results near 128 except for the byte 3 of FP32. Since we only have 256 bits

for each byte index and have DBI enabled (Section 6.2.4), this shows the top level of data

movement energy consumption. If we look at the FP32 format as shown in Figure 6.1,

almost all the bits in byte 0, 1, 2 are bits from the significand and only byte 2 contains

the lowest bit of exponent. For a certain range of data, these bits are most sensitive to

the value changes of data. So these bits can have high chances of having the values of one

and being toggled. On the other hand, for byte 3, except for the sign bit, all the exponent

bits need a much larger change of the FP32 value than the significand bits in order to be

toggled. Also, the chance of being one in exponent bits largely depend on the range of

data and it can only be high for certain ranges. Hence, we can observe that in general,

the number of ones is slightly lower in byte 3 than that of the other byte indices. And the

bit toggling is much lower in byte 3 than that of the other byte indices. This means that

less data movement energy is caused by byte 3.

However, similarly, the subtle changes of the FP32 value are captured by the lower

bits of the significand. Meanwhile, the changes of higher bits of the significand, the

exponent bits, and the sign bit represent much larger FP32 value changes. Therefore, this

makes it very beneficial to reduce the length of the significand even with the loss of some

information. Next, we will discuss in detail the techniques to achieve this purpose.

CHAPTER 6. GPU VALUE TRUNCATION 110

6.2.2 Value Truncation for Floating-point Formats

As we have discussed earlier, the significand bits of floating-point format can contribute to

more data movement energy consumption but have less impact on the value of the data.

If such bits contain the value of 0, then the data format can simply discard these bits

without losing any information2 when being converted to a shorter format. However, if

such bits contain a value of 1, some information will be lost during the conversion. We

call this action of discarding bits directly as value truncation.

However, despite the simplicity of value truncation, it cannot be used on the exponent

bits of the floating-point format. As shown in Table 6.1, the offsets are different for format

in different sizes. In order to be converted to a shorter format, the exponent will need

to subtract its own offset and then add the new offset of the shorter format. Only after

this, we are able to know if any information will be lost during the conversion by checking

if the leading 1 of the result exceeds the length of the shorter exponent. And unlike the

significand, any information loss in the exponent is undesirable due to its high impact on

the value. Therefore, values which have smaller actual exponent ranges would be better

targets to be converted into shorter formats to save energy. Fortunately, many data sets

and applications heavily use this kind of data. For example, as shown in Figure 6.3,

we show the average relative error distribution of the LSTM weight data in the Tango

benchmark [52] and MNIST data set [62]. We show the result of when all their FP32 data

is converted into two shorter formats, 16-bit-long SFP16 and 8-bit-long SFP8, which we

will introduce shortly. We can see that for SFP16, almost all of the data shows very low

error or no error. For SFP16, still, parts of the data show low or no error, which indicates

that many of them fall into a good range for using shorter formats.

To be able to use shorter formats, existing techniques [11, 60, 61] would require to

generate the converted data and copy them to the GPU memory before its usage. However,

this approach has a few major drawbacks. First, as memory capacity is a major bottleneck

2We assume that data is zero-padded when converting to longer formats.

CHAPTER 6. GPU VALUE TRUNCATION 111

0 1 00 0 0 0 0 1 0

sign exponent significand

29 - 23 22 - 0
Bit

Index:

Use:

Byte Index: 3 2 1 0

0

31-30

(a) SFP32

0 1 0 0 0 0 0 00 0 1 0

sign exponent significand

13 - 10
Bit

Index:

Use:

Byte Index: 1 0

0

15-14 9 - 0

0 0 0

(b) SFP16

0 1 00 0 1 0

sign exponent significand

5 - 2
Bit

Index:

Use:

Byte Index: 0

0

7-6 1-0

(c) SFP8

Figure 6.4: Layouts of the symmetrical floating-point (SFP) formats.

for current GPUs [10, 45, 71], this approach can make the situation worse, especially if

multiple copies of different formats are used. Second, this approach is not dynamic, which

means that the intermediate data generated during the execution does not benefit from

shorter formats. Third, it depends on the programmer to provide means to control the

error caused by the conversion. On the other hand, if we only store the original data

in the GPU memory, it is almost prohibitively expensive to convert the data locally at

the memory before sending it to the cores. To do the conversion, data must first be

read from the memory, which produces data movement energy at the memory. This step

alone would partially cancel the benefit of shorter formats. Moreover, the computation

involved in the conversion could incur large energy costs, delays, and hardware overhead.

To tackle these problems, we propose a new type of floating-point format, symmetrical

floating-point (SFP). Next, we will introduce the SFP and the unique memory system

design opportunities enabled by it.

CHAPTER 6. GPU VALUE TRUNCATION 112

V alue =



(−1)sign × Infinity, if exponent = Exp.Max and E-sign = 0 and significand = 0

NaN (not a number), if exponent = Exp.Max and E-sign = 0 and significand 6= 0

0, if exponent = 0 and E-sign = 1 and significand = 0

(−1)sign × 21−Exp.Max × 0.significand, if exponent = 0 and E-sign = 0 and significand 6= 0 (subnormal)

(−1)sign × 2(−1)E-sign×exponent × 1.significand, otherwise (normal)

(6.2)

Table 6.2: Configurations of symmetrical floating-point data formats.

Format Sign E-sign Exponent Exp. Max Significand Offset Actual Exp. Range
SFP64 1 bit 1 bit 10 bits 1023 52 bits NA [-1022, 1023]
SFP32 1 bit 1 bit 7 bits 127 23 bits NA [-126, 127]
SFP16 1 bit 1 bit 4 bits 15 10 bits NA [-14, 15]
SFP8 1 bit 1 bit 4 bits 15 7 bits NA [-126, 127]

6.2.3 Symmetrical Floating-point (SFP) Format

As introduced in Section 6.2.4, one feature of the current floating-point formats is that the

raw values of their exponent bits are not symmetrical around 0. This means that in order

to get the actual exponent value, an offset must be deducted from the raw exponent value.

Depending on the format specification, this offset is also different (Table 6.1). Due to this

feature, its exponent bits cannot be simply truncated during a conversion, as discussed

earlier. To this end, we propose the symmetrical floating-point (SFP) format as shown in

Figure 6.4.

The key feature of SFP is that its actual exponent values are symmetrical around 0

so that the offset is not needed. This means that the raw value of any actual exponent

value equals its own absolute value. The length of exponent bits is also one bit shorter

than that of its corresponding FP format. Meanwhile, an E-sign (i.e., exponent sign) bit

is added to the sign bit, to represent the sign of the exponent. For example, both the

actual exponent value of 1 and -1 will have the same exponent bits 0000001, with E-sign

0 and 1 respectively. Despite the changes in the exponent, SFP can store the exact same

information as FP formats with the same length. For example, an SFP data as shown in

CHAPTER 6. GPU VALUE TRUNCATION 113

Figure 6.4a stores the exact same content as an FP data as shown in Figure 6.1. Also, as

shown in Table 6.2, we listed the corresponding SFP formats for FP64, FP32, and FP16.

Compared to Table 6.1, we can see that although SFP has a different exponent design,

its actual exponent ranges are not affected. To calculate the represented value of SFP,

we can use equation 6.2 with all the given bit values. We can observe that this formula

is almost identical to equation 6.1, except for the exponent calculation and simple E-sign

condition checks. Therefore, the SFP requires little or no changes to the existing hardware

for calculation. Also, it can be converted to FP formats efficiently.

Compared to the FP formats, SFP formats show several advantages. First, it can

be easily converted into different SFP formats without any additional computation. For

example, SFP32 as shown in Figure 6.4a can be easily converted into SFP16 (Figure 6.4b)

and further into SFP8 (Figure 6.4c). We can observe that, since no offset is involved for

the exponent, we can simply truncate the high bits of exponent and low bits of significand.

Note that we can easily guarantee that no information is lost in the exponent by checking

if the truncated exponent bits contain 1 or not. This leads to the high flexibility in the

usage of the format. For example, even if SFP8 does not have a corresponding FP8 format

supported, it can be converted into SFP32 by padding zeros whenever needed. But SFP8

can be used only during the data movement from the memory. Second, SFP favors value-

dependent energy cost for values that have smaller actual exponent ranges, which are

better targets to be converted into shorter formats to save energy. For example, as shown

in Figure 6.2, the byte 3 results of SFP32 are lower than that of FP32 when the actual

exponent values are between 2 and 32, between 2 and 10, respectively for the number of

ones and bit toggling. This is due to the fact that small actual exponent values do require

fewer exponent bits for SFP, but always need all exponent bits for FP. Third, SFP does

not consume additional space in the memory to benefit from shorter formats. One copy of

SFP data can be truncated into shorter formats on-demand locally at the memory without

any overhead. Fourth, SFP can dynamically use intermediate shorter formats, as different

SFP formats can switch flexibly. Finally, as we will show later, error bounding for SFP

CHAPTER 6. GPU VALUE TRUNCATION 114

0 1 00 0 0 0 0 1 0

29 - 23 22 - 0
Bit

Index:

Byte Index: 3 2 1 0

0

31-30

Flit
Index: 3 2 1 0

128 Byte Cache Line

Figure 6.5: Flit mapping strategy enabled by SFP.

can be done efficiently without programmer effort. Due to these advantages, SFP enables

new memory system design opportunities.

6.2.4 A Flexible Memory System

The flexible feature of SFP enables several unique memory system design opportunities.

These novel designs do not incur large changes to the existing memory system but can

bring large energy and performance benefits. Prior work [39] has discussed the usage of

shorter formats at the cores. However, the memory system design enabled by SFP can

provide benefits even without using these schemes at the cores.

First, a memory mapping strategy can be used together with SFP to eliminate the

need to fetch certain parts of the cache line out of memory bank. As shown in Figure 6.5,

within an SFP32 data, all bits involved in the SFP8 when converted can be mapped

into a single flit 3. Similarly, all bits involved in the SFP16 can be mapped into flit 3

and flit 2. Therefore, only the required flit needs to be fetched from the memory when

using shorter formats, implicitly completing the conversion. Second, a comparator can

be used to dynamically bound the error of the data. Due to the simplicity of the format

conversion enabled by SFP, a simple comparator will be sufficient to provide a bound for

truncation error, which has low latency and hardware overhead. Third, a tagging scheme

can be used to mark the desired cache line for truncation. A single cache line can have

CHAPTER 6. GPU VALUE TRUNCATION 115

as low as 1 bit to indicate whether it can be a target for using shorter formats or not.

Therefore, it is possible for us to store the metadata for all or part of the cache lines. This

metadata can be used to indicate if a cache line have high number of ones, bit toggling,

or truncation error, etc.. Fourth, minimal changes are required for the cache to support

SFP with shorter length, therefore, significantly improving its capacity. Similar to the

memory, the cache only requires one copy of the data in order to generate SFP formats of

other lengths. Therefore, its capacity can be effectively 3 times larger if it stores values

as SFP8.

In summary, these techniques enabled by SFP is able to help us design a more efficient

memory system. In the future, we will further explore the possibilities of this novel memory

system design, and provide the implementation details for Flexmem.

6.3 Conclusions

In this chapter, we presented initial results on our current work, Flexmem. We did a

detailed analysis of floating-point format and discussed the reason why value truncation

is useful for it. We then proposed a novel floating-point format, symmetrical floating-

point (SFP). SFP has several advantages over the previous floating-point format design.

Most importantly, it enables a novel memory system design, which significantly improves

performance and energy-efficiency. We conclude that Flexmem can be used towards de-

veloping architectural support for flexible data precisions and is a useful tool to enhance

the scalability of GPUs.

116

Chapter 7

Conclusion and Future Work

7.1 Summary of Dissertation Contributions

GPUs are designed to provide high compute throughput via high thread-level parallelism.

For each generation of GPUs, the number of cores continuously grow, providing higher

peak throughput. To support the continuous scaling of GPU cores, it is crucial to develop

new generation of GPU memories that can achieve higher theoretical bandwidth within a

limited power budget. Thus, we answer the aforementioned three questions (Chapter 1)

by summarizing the contributions of this dissertation.

1. How can we efficiently and fairly mange the memory resources for multiple

co-running applications in the GPU? With the continuous scaling of GPUs, GPU

multi-programming has become an inevitable trend to improve the occupancy of GPUs.

However, one major challenge of this is the difficulty of avoiding the contentions between

multiple applications on the shared resources. We analyzed the problem of shared resource

contention between multiple concurrently executing GPGPU applications and showed that

there is an ample scope for TLP management techniques for improving system throughput

and fairness in GPUs. Therefore, in the first research, we propose pattern-based searching

(PBS) that cuts down a significant amount of the searching overhead of the optimal

TLP combinations. To facilitate this, we propose a new metric, effective bandwidth (EB),

CHAPTER 7. CONCLUSION AND FUTURE WORK 117

which more accurately measures the effective shared resource usage for each application by

considering its private and shared cache miss rates and memory bandwidth consumption.

This research shows that the pattern-based searching for TLP can significantly improve the

system throughput and fairness in GPUs compared to previously proposed state-of-the-art

mechanisms. We also believe that the presented analysis and the insights can be extended

to other systems (e.g., chip-multiprocessors, systems-on-chip with accelerator IPs, server

processors) where contention in shared caches and memory resources are performance-

critical factors.

2. How can we reduce the data movement in the memory hierarchy and im-

prove the throughput of the GPU? As the number of GPU cores continue to grow,

increasing data movements will be imposed on the GPU memory. In order to alleviate

such burdens, value approximation techniques recently have received attention. In the sec-

ond research, we propose Address-Stride Assisted Approximate Value Predictor (ASAP),

which utilizes the address stride and value stride correlation in many realistic inputs and

predicts the values only if it detects strides in their corresponding addresses. ASAP is

designed to identify the value stride pattern(s) in a highly multi-threaded environment

where thousands of memory requests can be on-the-fly and their access order is highly de-

pendent on GPU-specific features such as warp scheduling and coalescing. This research

shows that ASAP can significantly improve value prediction accuracy even at a high value

of prediction coverage, leading to significant performance and data movement benefits.

Compared to prior works, ASAP also incurs lower hardware overhead. We believe that

this work can open up interesting research avenues that consider other readily available

information locally at the core (e.g., address stride information) to improve the accuracy

of value prediction.

3. How can we improve the energy efficiency of the GPU memory? The high

energy consumption of GPU memory is another reason that limits the growth of its peak

bandwidth, due to the limited memory power budget. We observe that several GPGPU

applications suffer from poor row buffer reuse, which contributes to a significant proportion

CHAPTER 7. CONCLUSION AND FUTURE WORK 118

of GPU memory energy consumption. In the third research, we propose the lazy memory

scheduler which leverages the latency and error tolerance of GPGPU applications. The

lazy memory scheduler works in two modes: delayed or approximate. In the delayed mode,

it carefully delays the scheduling of memory requests to allow more of them to accumulate

at the memory pending queue. Such a mechanism increases the visibility of the memory

scheduler thereby improving the chances of finding more requests that can be served by

reusing the data in the row buffer. In the approximate mode, it carefully identifies a

small fraction of requests with low row buffer locality and does not issue them to the

DRAM banks. Instead, a simple but effective value predictor can be used to approximate

the values for such requests. This research shows that both these modes are effective

in improving the row buffer locality while reserving the system throughput. Moreover,

they can work synergistically and improve the effectiveness of each other when employed

together. We hope that this work can open up new research directions that consider

the interactions between scheduling, error resilience, and latency tolerance techniques at

different levels of the memory hierarchy.

7.2 Future Work

Architectural Support for Flexible Data Precisions. We propose a new memory

architecture which supports low overhead data precision conversion locally at the memory.

This work targets to dynamically managing the precision of data in the GPU memory such

that the system throughput and memory energy efficiency can be improved with no or

limited application quality loss.

119

Bibliography

[1] 1st Workshop on Hardware/Software Techniques for Minimizing Data Movement.

http://insight-archlab.github.io/minmove.html.

[2] NVIDIA GTX 780-Ti. http://www.nvidia.com/gtx-700-graphics-cards/gtx-780ti/.

[3] The Green500 List - June 2015. http://www.green500.org/lists/green201506.

[4] Top500 Supercomputer Sites - June 2015. http://www.top500.org/lists/2015/06/.

[5] Mart́ın Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,

Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving,

Michael Isard, Manjunath Kudlur, Josh Levenberg, Rajat Monga,

Sherry Moore, Derek G. Murray, Benoit Steiner, Paul Tucker, Vi-

jay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang

Zheng. Tensorflow: A system for large-scale machine learning. In 12th USENIX

Symposium on Operating Systems Design and Implementation (OSDI 16), pages

265–283, Savannah, GA, November 2016. USENIX Association.

[6] V. Adhinarayanan, I. Paul, J. L. Greathouse, W. Huang, A. Pattnaik,

and W. c. Feng. Measuring and modeling on-chip interconnect power on real

hardware. In 2016 IEEE International Symposium on Workload Characterization

(IISWC), pages 1–11, Sept 2016.

BIBLIOGRAPHY 120

[7] V. Adhinarayanan, I. Paul, J. L. Greathouse, W. Huang, A. Pattnaik,

and W. Feng. Measuring and modeling on-chip interconnect power on real

hardware. In 2016 IEEE International Symposium on Workload Characterization

(IISWC), pages 1–11, 2016.

[8] J.T. Adriaens, K. Compton, Nam Sung Kim, and M.J. Schulte. The Case

for GPGPU Spatial Multitasking. In HPCA, 2012.

[9] Advanced Micro Devices Inc. AMD Graphics Cores Next (GCN) Architecture,

2012.

[10] Neha Agarwal, David Nellans, Mark Stephenson, Mike OConnor, and

Stephen W. Keckler. Page placement strategies for gpus within heterogeneous

memory systems. SIGARCH Comput. Archit. News, 43(1):607618, March 2015.

[11] Marc Baboulin, Alfredo Buttari, Jack Dongarra, Jakub Kurzak, Julie

Langou, Julien Langou, Piotr Luszczek, and Stanimire Tomov. Acceler-

ating scientific computations with mixed precision algorithms. Computer Physics

Communications, 180(12):2526 – 2533, 2009. 40 YEARS OF CPC: A celebratory

issue focused on quality software for high performance, grid and novel computing

architectures.

[12] A. Bakhoda, G.L. Yuan, W.W.L. Fung, H. Wong, and T.M. Aamodt.

Analyzing CUDA Workloads Using a Detailed GPU Simulator. In ISPASS, 2009.

[13] Benjamin Block, Peter Virnau, and Tobias Preis. Multi-gpu accelerated

multi-spin monte carlo simulations of the 2d ising model. Computer Physics Com-

munications, 181(9):1549 – 1556, 2010.

[14] Michael Carbin, Sasa Misailovic, and Martin C Rinard. Verifying Quan-

titative Reliability for Programs That Execute on Unreliable Hardware. ACM SIG-

PLAN Notices, 48(10):33–52, 2013.

BIBLIOGRAPHY 121

[15] Kevin K Chang, Abhijith Kashyap, Hasan Hassan, Saugata Ghose, Kevin

Hsieh, Donghyuk Lee, Tianshi Li, Gennady Pekhimenko, Samira Khan,

and Onur Mutlu. Understanding Latency Variation in Modern DRAM Chips: Ex-

perimental Characterization, Analysis, and Optimization. In SIGMETRICS, 2016.

[16] Niladrish Chatterjee, Mike OConnor, Donghyuk Lee, Daniel R John-

son, Stephen W Keckler, Minsoo Rhu, and William J Dally. Architecting

an Energy-Efficient DRAM System for GPUs. In HPCA, 2017.

[17] Shuai Che, M. Boyer, Jiayuan Meng, D. Tarjan, J.W. Sheaffer, Sang-Ha

Lee, and K. Skadron. Rodinia: A Benchmark Suite for Heterogeneous Comput-

ing. In IISWC, 2009.

[18] A. E. Cohen and K. K. Parhi. Gpu accelerated elliptic curve cryptography

in gf(2m). In 2010 53rd IEEE International Midwest Symposium on Circuits and

Systems, pages 57–60, Aug 2010.

[19] Vinodh Cuppu and Bruce Jacob. Concurrency, Latency, or System Overhead:

Which Has the Largest Impact on Uniprocessor DRAM-system Performance? In

ISCA, 2001.

[20] Anthony Danalis, Gabriel Marin, Collin McCurdy, Jeremy S. Mered-

ith, Philip C. Roth, Kyle Spafford, Vinod Tipparaju, and Jeffrey S.

Vetter. The Scalable Heterogeneous Computing (SHOC) Benchmark Suite. In

GPGPU, 2010.

[21] Reetuparna Das, Rachata Ausavarungnirun, Onur Mutlu, Akhilesh Ku-

mar, and Mani Azimi. Application-to-core Mapping Policies to Reduce Memory

Interference in Multi-core Systems. In PACT, 2012.

BIBLIOGRAPHY 122

[22] Reetuparna Das, Onur Mutlu, Thomas Moscibroda, and Chita R. Das.

Application-aware Prioritization Mechanisms for on-chip Networks. In MICRO,

2009.

[23] Reetuparna Das, Onur Mutlu, Thomas Moscibroda, and Chita R. Das.

Aergia: Exploiting Packet Latency Slack in on-chip Networks. In ISCA, 2010.

[24] Eiman Ebrahimi, Chang Joo Lee, Onur Mutlu, and Yale N. Patt. Fairness

via Source Throttling: A Configurable and High-performance Fairness Substrate for

Multi-core Memory Systems. In ASPLOS, 2010.

[25] Richard J Eickemeyer and Stamatis Vassiliadis. A Load-Instruction Unit

for Pipelined Processors. IBM Journal of Research and Development, 37(4):547–564,

1993.

[26] Stijn Eyerman and Lieven Eeckhout. The Benefit of SMT in the Multi-core

Era: Flexibility Towards Degrees of Thread-level Parallelism. In ASPLOS, 2014.

[27] J. Farrugia, P. Horain, E. Guehenneux, and Y. Alusse. Gpucv: A frame-

work for image processing acceleration with graphics processors. In 2006 IEEE

International Conference on Multimedia and Expo, pages 585–588, July 2006.

[28] Freddy Gabbay. Speculative Execution Based on Value Prediction. Technical

Report 1080, Technion - Israel Institute of Technology, 1996.

[29] Mohsen Ghasempour, Aamer Jaleel, Jim D Garside, and Mikel Luján.

HAPPY: Hybrid Address-based Page Policy in DRAMs. In Proceedings of the Second

International Symposium on Memory Systems, 2016.

[30] Saugata Ghose, Abdullah Giray Yaglikçi, Raghav Gupta, Donghyuk

Lee, Kais Kudrolli, William X. Liu, Hasan Hassan, Kevin K. Chang, Ni-

ladrish Chatterjee, Aditya Agrawal, Mike OConnor, and Onur Mutlu.

BIBLIOGRAPHY 123

What your dram power models are not telling you: Lessons from a detailed experi-

mental study. Proc. ACM Meas. Anal. Comput. Syst., 2(3), December 2018.

[31] Johannes Gilger, Johannes Barnickel, and Ulrike Meyer. Gpu-

acceleration of block ciphers in the openssl cryptographic library. In Information

Security, Dieter Gollmann and Felix C. Freiling, editors, pages 338–353, Berlin,

Heidelberg, 2012. Springer Berlin Heidelberg.

[32] Nilanjan Goswami, Bingyi Cao, and Tao Li. Power-performance Co-

optimization of Throughput Core Architecture Using Resistive Memory. In HPCA,

2013.

[33] GPGPU-Sim v3.2.1. Address mapping.

[34] GPGPU-Sim v3.2.1. GTX 480 Configuration.

[35] Chris Gregg, Jonathan Dorn, Kim Hazelwood, and Kevin Skadron. Fine-

grained Resource Sharing for Concurrent GPGPU Kernels. In HotPar, 2012.

[36] Nagendra Gulur, Mahesh Mehendale, Raman Manikantan, and Ra-

maswamy Govindarajan. ANATOMY: An Analytical Model of Memory System

Performance. In SIGMETRICS, 2014.

[37] Zvika Guz, Evgeny Bolotin, Idit Keidar, Avinoam Kolodny, Avi Mendel-

son, and Uri C. Weiser. Many-Core vs. Many-Thread Machines: Stay Away from

the Valley. CAL, January 2009.

[38] Wim Heirman, Trevor E Carlson, Kenzo Van Craeynest, Ibrahim Hur,

Aamer Jaleel, and Lieven Eeckhout. Undersubscribed Threading on Clus-

tered Cache Architectures. In HPCA, 2014.

[39] N. Ho and W. Wong. Exploiting half precision arithmetic in nvidia gpus. In 2017

IEEE High Performance Extreme Computing Conference (HPEC), pages 1–7, 2017.

BIBLIOGRAPHY 124

[40] T. M. Hollis. Data bus inversion in high-speed memory applications. IEEE Trans-

actions on Circuits and Systems II: Express Briefs, 56(4):300–304, 2009.

[41] Sunpyo Hong and Hyesoon Kim. An Analytical Model for a GPU Architecture

with Memory-level and Thread-level Parallelism Awareness. In ISCA, 2009.

[42] Sunpyo Hong and Hyesoon Kim. An Integrated GPU Power and Performance

Model. In ISCA, 2010.

[43] Hynix. Hynix GDDR5 SGRAM Part H5GQ1H24AFR Revision 1.0.

[44] W. Jia, K. A. Shaw, and M. Martonosi. MRPB: Memory Request Prioritization

for Massively Parallel Processors. In HPCA, 2014.

[45] G. Jin, T. Endo, and S. Matsuoka. A parallel optimization method for sten-

cil computation on the domain that is bigger than memory capacity of gpus. In

2013 IEEE International Conference on Cluster Computing (CLUSTER), pages 1–

8, 2013.

[46] Adwait Jog, Evgeny Bolotin, Zvika Guz, Mike Parker, Stephen W.

Keckler, Mahmut T. Kandemir, and Chita R. Das. Application-aware Mem-

ory System for Fair and Efficient Execution of Concurrent GPGPU Applications. In

GPGPU, 2014.

[47] Adwait Jog, Onur Kayiran, Tuba Kesten, Ashutosh Pattnaik, Evgeny

Bolotin, Nilardish Chatterjee, Steve Keckler, Mahmut T. Kandemir,

and Chita R. Das. Anatomy of GPU Memory System for Multi-Application

Execution. In MEMSYS, 2015.

[48] Adwait Jog, Onur Kayiran, Tuba Kesten, Ashutosh Pattnaik, Evgeny

Bolotin, Nilardish Chatterjee, Steve Keckler, Mahmut T. Kandemir,

and Chita R. Das. MAFIA - Multiple Application Framework in GPU Architec-

tures. URL: https://github.com/adwaitjog/mafia, 2015.

BIBLIOGRAPHY 125

[49] Adwait Jog, Onur Kayiran, Asit K. Mishra, Mahmut T. Kandemir, Onur

Mutlu, Ravishankar Iyer, and Chita R. Das. Orchestrated Scheduling and

Prefetching for GPGPUs. In ISCA, 2013.

[50] Adwait Jog, Onur Kayiran, Nachiappan C. Nachiappan, Asit K. Mishra,

Mahmut T. Kandemir, Onur Mutlu, Ravishankar Iyer, and Chita R.

Das. OWL: Cooperative Thread Array Aware Scheduling Techniques for Improving

GPGPU Performance. In ASPLOS, 2013.

[51] Adwait Jog, Onur Kayiran, Ashutosh Pattnaik, Mahmut T. Kandemir,

Onur Mutlu, Ravi Iyer, and Chita R. Das. Exploiting Core Criticality for

Enhanced Performance in GPUs. In SIGMETRICS, 2016.

[52] A. Karki, C. Palangotu Keshava, S. Mysore Shivakumar, J. Skow,

G. Madhukeshwar Hegde, and H. Jeon. Tango: A deep neural network bench-

mark suite for various accelerators. In 2019 IEEE International Symposium on

Performance Analysis of Systems and Software (ISPASS), pages 137–138, 2019.

[53] I. Karlin, A. Bhatele, J. Keasler, B.L. Chamberlain, J. Cohen, Z. De-

Vito, R. Haque, D. Laney, E. Luke, F. Wang, D. Richards, M. Schulz,

and C.H. Still. Exploring Traditional and Emerging Parallel Programming Mod-

els using a Proxy Application. In IPDPS, 2013.

[54] Onur Kayiran, Adwait Jog, Mahmut T. Kandemir, and Chita R. Das.

Neither More Nor Less: Optimizing Thread-level Parallelism for GPGPUs. In PACT,

2013.

[55] Onur Kayiran, Adwait Jog, Ashutosh Pattnaik, Rachata Ausavarung-

nirun, Xulong Tang, Mahmut T Kandemir, Gabriel H Loh, Onur Mutlu,

and Chita R Das. µC-States: Fine-grained GPU Datapath Power Management.

In PACT, 2016.

BIBLIOGRAPHY 126

[56] Onur Kayiran, Nachiappan Chidambaram Nachiappan, Adwait Jog,

Rachata Ausavarungnirun, Mahmut T. Kandemir, Gabriel H. Loh, Onur

Mutlu, and Chita R. Das. Managing GPU Concurrency in Heterogeneous Ar-

chitectures. In MICRO, 2014.

[57] Stephen W Keckler, William J Dally, Brucek Khailany, Michael Gar-

land, and David Glasco. GPUs and the future of parallel computing. Micro,

IEEE, 31(5):7–17, 2011.

[58] D. S. Khudia, B. Zamirai, M. Samadi, and S. Mahlke. Rumba: An Online

Quality Management System for Approximate Computing. In ISCA, 2015.

[59] Yoongu Kim, M. Papamichael, O. Mutlu, and M. Harchol-Balter. Thread

Cluster Memory Scheduling: Exploiting Differences in Memory Access Behavior. In

MICRO, 2010.

[60] Pradeep V Kotipalli, Ranvijay Singh, Paul Wood, Ignacio Laguna, and

Saurabh Bagchi. Ampt-ga: Automatic mixed precision floating point tuning for

gpu applications. In Proceedings of the ACM International Conference on Supercom-

puting, ICS 19, page 160170, New York, NY, USA, 2019. Association for Computing

Machinery.

[61] Ignacio Laguna, Paul C. Wood, Ranvijay Singh, and Saurabh Bagchi.

Gpumixer: Performance-driven floating-point tuning for gpu scientific applications.

In High Performance Computing, Michèle Weiland, Guido Juckeland, Carsten Trini-

tis, and Ponnuswamy Sadayappan, editors, pages 227–246, Cham, 2019. Springer

International Publishing.

[62] Yann LeCun, Corinna Cortes, and CJ Burges. Mnist handwritten digit

database. ATT Labs [Online]. Available: http://yann.lecun.com/exdb/mnist, 2,

2010.

BIBLIOGRAPHY 127

[63] Janghaeng Lee, Mehrzad Samadi, and Scott A. Mahlke. Orchestrating

Multiple Data-Parallel Kernels on Multiple Devices. In PACT, 2015.

[64] Jingwen Leng, Tayler Hetherington, Ahmed ElTantawy, Syed Gilani,

Nam Sung Kim, Tor M. Aamodt, and Vijay Janapa Reddi. GPUWattch:

Enabling Energy Optimizations in GPGPUs. In ISCA, 2013.

[65] Ang Li, Shuaiwen Leon Song, Mark Wijtvliet, Akash Kumar, and Henk

Corporaal. SFU-Driven Transparent Approximation Acceleration on GPUs. In

ICS, 2016.

[66] Xiuhong Li and Yun Liang. Efficient Kernel Management on GPUs. In DATE,

2016.

[67] Mikko H Lipasti and John Paul Shen. Exceeding the Dataflow Limit via Value

Prediction. In MICRO, 1996.

[68] Joe Macri. Amd’s next generation gpu and high bandwidth memory architecture:

Fury. In 2015 IEEE Hot Chips 27 Symposium (HCS), pages 1–26. IEEE, 2015.

[69] Divya Mahajan, Kartik Ramkrishnan, Rudra Jariwala, Amir Yazdan-

bakhsh, Jongse Park, Bradley Thwaites, Anandhavel Nagendrakumar,

Abbas Rahimi, Hadi Esmaeilzadeh, and Kia Bazargan. Axilog: Abstractions

for Approximate Hardware Design and Reuse. In MICRO, 2015.

[70] S. A. Manavski. Cuda compatible gpu as an efficient hardware accelerator for

aes cryptography. In 2007 IEEE International Conference on Signal Processing and

Communications, pages 65–68, Nov 2007.

[71] L. Mattes and S. Kofuji. Overcoming the gpu memory limitation on fdtd through

the use of overlapping subgrids. In 2010 International Conference on Microwave and

Millimeter Wave Technology, pages 1536–1539, 2010.

BIBLIOGRAPHY 128

[72] Konstantinos Menychtas, Kai Shen, and Michael L. Scott. Disengaged

Scheduling for Fair, Protected Access to Fast Computational Accelerators. In ASP-

LOS, 2014.

[73] Joshua San Miguel, Mario Badr, and Enright Natalie Jerger. Load Value

Approximation. In MICRO, 2014.

[74] Young-Suk Moon, Yongkee Kwon, Hong-Sik Kim, Dong-gun Kim, Hyung-

dong Hayden Lee, and Kunwoo Park. The Compact Memory Scheduling

Maximizing Row Buffer Locality. In 3rd JILP Workshop on Computer Architecture

Competitions: Memory Scheduling Championship, 2012.

[75] Tarun Nakra, Rajiv Gupta, and Mary Lou Soffa. Global Context-Based

Value Prediction. In HPCA, 1999.

[76] Chitra Natarajan, Bruce Christenson, and Fayé Briggs. A Study of Per-

formance Impact of Memory Controller Features in Multi-processor Server Envi-

ronment. In Proceedings of the 3rd workshop on Memory performance issues: in

conjunction with the 31st international symposium on computer architecture, 2004.

[77] Bin Nie, Devesh Tiwari, Saurabh Gupta, Evgenia Smirni, and James H

Rogers. A Large-scale Study of Soft-errors on GPUs in the Field. In HPCA, 2016.

[78] Bin Nie, Lishan Yang, Adwait Jog, and Evgenia Smirni. Fault Site Pruning

for Practical Reliability Analysis of GPGPU Applications. In MICRO, 2018.

[79] NVIDIA. CUDA C/C++ SDK Code Samples. http://developer.nvidia.com/cuda-

cc-sdk-code-samples, 2011.

[80] NVIDIA. NVIDIA’s Next Generation CUDA Compute Architecture: Kepler

GK110, 2012.

[81] NVIDIA. NVIDIA Tesla V100 GPU Architecture Whitepaper. Technical report,

2018.

BIBLIOGRAPHY 129

[82] Mike OConnor. Highlights of the high-bandwidth memory (hbm) standard. In

Memory Forum Workshop, 2014.

[83] Mike O’Connor, Niladrish Chatterjee, Donghyuk Lee, John Wilson,

Aditya Agrawal, Stephen W Keckler, and William J Dally. Fine-grained

DRAM: Energy-efficient DRAM for Extreme Bandwidth Systems. In MICRO, 2017.

[84] Sreepathi Pai, Matthew J. Thazhuthaveetil, and R. Govindarajan. Im-

proving GPGPU Concurrency with Elastic Kernels. In ASPLOS, 2013.

[85] I. K. Park, N. Singhal, M. H. Lee, S. Cho, and C. Kim. Design and perfor-

mance evaluation of image processing algorithms on gpus. IEEE Transactions on

Parallel and Distributed Systems, 22(1):91–104, Jan 2011.

[86] Jason Jong Kyu Park, Yongjun Park, and Scott A. Mahlke. Chimera:

Collaborative Preemption for Multitasking on a Shared GPU. In ASPLOS, 2015.

[87] Jason Jong Kyu Park, Yongjun Park, and Scott A. Mahlke. Dynamic

Resource Management for Efficient Utilization of Multitasking GPUs. In ASPLOS,

2017.

[88] Jongse Park, Hadi Esmaeilzadeh, Xin Zhang, Mayur Naik, and William

Harris. Flexjava: Language Support for Safe and Modular Approximate Program-

ming. In Proceedings of the 2015 10th Joint Meeting on Foundations of Software

Engineering, 2015.

[89] Peilong Li, Yan Luo, Ning Zhang, and Yu Cao. Heterospark: A hetero-

geneous cpu/gpu spark platform for machine learning algorithms. In 2015 IEEE

International Conference on Networking, Architecture and Storage (NAS), pages

347–348, Aug 2015.

[90] Arthur Perais and André Seznec. Practical Data Value Speculation for Future

High-End Processors. In HPCA, 2014.

BIBLIOGRAPHY 130

[91] Perais, Arthur and Seznec, André. EOLE: Paving the Way for an Effective

Implementation of Value Prediction. In ISCA, 2014.

[92] Perais, Arthur and Seznec, André. BeBoP: A Cost Effective Predictor Infras-

tructure for Superscalar Value Prediction. In HPCA, 2015.

[93] Louis-Noël Pouchet. Polybench: the polyhedral benchmark suite.

http://www.cs.ucla.edu/∼pouchet/software/polybench/, 2012.

[94] Moinuddin K. Qureshi, Daniel N. Lynch, Onur Mutlu, and Yale N. Patt.

A Case for MLP-Aware Cache Replacement. In ISCA, 2006.

[95] Moinuddin K Qureshi and Yale N Patt. Utility-based Cache Partitioning: A

Low-overhead, High-performance, Runtime Mechanism to Partition Shared Caches.

In MICRO, 2006.

[96] Minsoo Rhu, Michael Sullivan, Jingwen Leng, and Mattan Erez. A

Locality-Aware Memory Hierarchy for Energy-Efficient GPU Architectures. In MI-

CRO, 2013.

[97] Scott Rixner. Memory Controller Optimizations for Web Servers. In MICRO,

2004.

[98] Scott Rixner, William J. Dally, Ujval J. Kapasi, Peter Mattson, and

John D. Owens. Memory Access Scheduling. In ISCA, 2000.

[99] Timothy G. Rogers, Mike O’Connor, and Tor M. Aamodt. Cache-

Conscious Wavefront Scheduling. In MICRO, 2012.

[100] Diego Rossinelli, Michael Bergdorf, Georges-Henri Cottet, and Pet-

ros Koumoutsakos. Gpu accelerated simulations of bluff body flows using vortex

particle methods. Journal of Computational Physics, 229(9):3316 – 3333, 2010.

BIBLIOGRAPHY 131

[101] M. Samadi, J. Lee, D. A. Jamshidi, A. Hormati, and S. Mahlke. SAGE:

Self-Tuning Approximation for Graphics Engines. In MICRO, 2013.

[102] Adrian Sampson, Werner Dietl, Emily Fortuna, Danushen Gnanapra-

gasam, Luis Ceze, and Dan Grossman. EnerJ: Approximate Data Types for

Safe and General Low-Power Computation. ACM SIGPLAN Notices, 46(6):164–174,

2011.

[103] Joshua San Miguel, Jorge Albericio, Natalie Enright Jerger, and

Aamer Jaleel. The Bunker Cache for Spatio-Value Approximation. In MICRO,

2016.

[104] Joshua San Miguel, Jorge Albericio, Andreas Moshovos, and Natalie

Enright Jerger. Doppelganger: A Cache for Approximate Computing. In MI-

CRO, 2015.

[105] Edans Flavius O. Sandes and Alba Cristina M.A. de Melo. Cudalign:

Using gpu to accelerate the comparison of megabase genomic sequences. In Proceed-

ings of the 15th ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming, PPoPP ’10, pages 137–146, New York, NY, USA, 2010. ACM.

[106] Yiannakis Sazeides and James E Smith. Implementations of Context Based

Value Predictors. Technical report, Technical Report ECE-97-8, University of

Wisconsin-Madison, 1997.

[107] Sazeides, Yiannakis and Smith, James E. The Predictability of Data Values.

In MICRO, 1997.

[108] Sazeides, Yiannakis and Smith, James E. Modeling Program Predictability.

In ISCA, 1998.

BIBLIOGRAPHY 132

[109] Bertil Schmidt and Andreas Hildebrandt. Next-generation sequencing: big

data meets high performance computing. Drug Discovery Today, 22(4):712 – 717,

2017.

[110] Hynix Semiconductor. Hynix GDDR5 SGRAM Part H5GQ1H24AFR Revision

1.0.

[111] A. Sethia, D. A. Jamshidi, and S. Mahlke. Mascar: Speeding up GPU Warps

by Reducing Memory Pitstops. In HPCA, 2015.

[112] Ankit Sethia and Scott Mahlke. Equalizer: Dynamic Tuning of GPU Re-

sources for Efficient Execution. In MICRO, 2014.

[113] Allan Snavely and Dean M. Tullsen. Symbiotic Jobscheduling for a Simulta-

neous Multithreaded Processor. In ASPLOS, 2000.

[114] D. Steinkraus, I. Buck, and P. Y. Simard. Using gpus for machine learning

algorithms. In Eighth International Conference on Document Analysis and Recog-

nition (ICDAR’05), pages 1115–1120 Vol. 2, Aug 2005.

[115] J. A. Stratton, C. Rodrigues, I. J. Sung, N. Obeid, L. W. Chang,

N. Anssari, G. D. Liu, and W. W. Hwu. Parboil: A Revised Benchmark Suite

for Scientific and Commercial Throughput Computing. Technical Report IMPACT-

12-01, University of Illinois, at Urbana-Champaign, March 2012.

[116] Kshitij Sudan, Niladrish Chatterjee, David Nellans, Manu Awasthi, Ra-

jeev Balasubramonian, and Al Davis. Micro-pages: Increasing DRAM Effi-

ciency with Locality-aware Data Placement. In ASPLOS, 2010.

[117] Narayanan Sundaram, Thomas Brox, and Kurt Keutzer. Dense point tra-

jectories by gpu-accelerated large displacement optical flow. In Computer Vision –

ECCV 2010, Kostas Daniilidis, Petros Maragos, and Nikos Paragios, editors, pages

438–451, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

BIBLIOGRAPHY 133

[118] Ivan Tanasic, Isaac Gelado, Javier Cabezas, Alex Ramirez, Nacho

Navarro, and Mateo Valero. Enabling Preemptive Multiprogramming on

GPUs. In ISCA, 2014.

[119] Xulong Tang, Ashutosh Pattnaik, Huaipan Jiang, Onur Kayiran, Ad-

wait Jog, Sreepathi Pai, Mohamed Ibrahim, Mahmut T Kandemir, and

Chita R Das. Controlled Kernel Launch for Dynamic Parallelism in GPUs. In

HPCA, 2017.

[120] Renju Thomas and Manoj Franklin. Using Dataflow Based Context for Accu-

rate Value Prediction. In PACT, 2001.

[121] Devesh Tiwari, Saurabh Gupta, James Rogers, Don Maxwell, Paolo

Rech, Sudharshan Vazhkudai, Daniel Oliveira, Dave Londo, Nathan De-

Bardeleben, Philippe Navaux, et al. Understanding GPU Errors on Large-

scale HPC Systems and the Implications for System Design and Operation. In

HPCA, 2015.

[122] Jelena Trajkovic, Alexander V Veidenbaum, and Arun Kejariwal. Im-

proving SDRAM Access Energy Efficiency for Low-power Embedded Systems. ACM

Transactions on Embedded Computing Systems (TECS), 7(3):24, 2008.

[123] Cole Trapnell and Michael C. Schatz. Optimizing data intensive gpgpu

computations for dna sequence alignment. Parallel Computing, 35(8):429 – 440,

2009.

[124] A. Tumeo and O. Villa. Accelerating dna analysis applications on gpu clusters.

In 2010 IEEE 8th Symposium on Application Specific Processors (SASP), pages

71–76, June 2010.

[125] Yash Ukidave, Xiangyu Li, and David R. Kaeli. Mystic: Predictive Scheduling

for GPU Based Cloud Servers Using Machine Learning. In IPDPS, 2016.

BIBLIOGRAPHY 134

[126] Giorgos Vasiliadis, Elias Athanasopoulos, Michalis Polychronakis, and

Sotiris Ioannidis. Pixelvault: Using gpus for securing cryptographic operations.

In Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communi-

cations Security, CCS ’14, pages 1131–1142, New York, NY, USA, 2014. ACM.

[127] Radha Venkatagiri, Abdulrahman Mahmoud, Siva Kumar Sastry Hari,

and Sarita V Adve. Approxilyzer: Towards a Systematic Framework for

Instruction-Level Approximate Computing and Its Application to Hardware Re-

siliency. In MICRO, 2016.

[128] Thiruvengadam Vijayaraghavany, Yasuko Eckert, Gabriel H Loh,

Michael J Schulte, Mike Ignatowski, Bradford M Beckmann, William C

Brantley, Joseph L Greathouse, Wei Huang, Arun Karunanithi, et al.

Design and Analysis of an APU for Exascale Computing. In HPCA, 2017.

[129] Nandita Vijaykumar, Gennady Pekhimenko, Adwait Jog, Abhishek

Bhowmick, Onur Mutlu, Chita Das, Mahmut T. Kandemir, Todd Mowry,

and Rachata Ausavarungnirun. Enabling Efficient Data Compression in GPUs.

In ISCA, 2015.

[130] Haonan Wang, Fan Luo, Mohamed Ibrahim, Onur Kayiran, and Adwait

Jog. Efficient and Fair Multi-programming in GPUs via Effective Bandwidth Man-

agement. In HPCA, 2018.

[131] Jin Wang, Norm Rubin, Albert Sidelnik, and Sudhakar Yalamanchili.

Dynamic Thread Block Launch: A Lightweight Execution Mechanism to Support

Irregular Applications on GPUs. In ISCA, 2015.

[132] Lingyuan Wang, Miaoqing Huang, and T. El-Ghazawi. Exploiting Concur-

rent Kernel Execution on Graphic Processing Units. In HPCS, 2011.

BIBLIOGRAPHY 135

[133] Zhenning Wang, Jun Yang, Rami Melhem, Bruce Childers, Youtao

Zhang, and Minyi Guo. Simultaneous Multikernel GPU: Multi-tasking Through-

put Processors via Fine-grained Sharing. In HPCA, 2016.

[134] Daniel Wong, Nam Sung Kim, and Murali Annavaram. Approximating

Warps with Intra-Warp Operand Value Similarity. In HPCA, 2016.

[135] Qiumin Xu, Hyeran Jeon, Keunsoo Kim, Won Woo Ro, and Murali An-

navaram. Warped-Slicer: Efficient Intra-SM Slicing through Dynamic Resource

Partitioning for GPU Multiprogramming. In ISCA, 2016.

[136] Juekuan Yang, Yujuan Wang, and Yunfei Chen. Gpu accelerated molecular

dynamics simulation of thermal conductivities. Journal of Computational Physics,

221(2):799 – 804, 2007.

[137] Amir Yazdanbakhsh, Divya Mahajan, Hadi Esmaeilzadeh, and Pejman

Lotfi-Kamran. Axbench: A Multiplatform Benchmark Suite for Approximate

Computing. IEEE Design & Test, 34(2):60–68, 2017.

[138] Amir Yazdanbakhsh, Divya Mahajan, Bradley Thwaites, Jongse Park,

Anandhavel Nagendrakumar, Sindhuja Sethuraman, Kartik Ramkrish-

nan, Nishanthi Ravindran, Rudra Jariwala, Abbas Rahimi, et al. Axilog:

Language support for approximate hardware design. In Proceedings of the 2015 De-

sign, Automation & Test in Europe Conference & Exhibition, pages 812–817. EDA

Consortium, 2015.

[139] Amir Yazdanbakhsh, Gennady Pekhimenko, Bradley Thwaites, Hadi Es-

maeilzadeh, Onur Mutlu, and Todd C Mowry. RFVP: Rollback-free Value

Prediction with Safe-to-Approximate Loads. ACM Transactions on Architecture and

Code Optimization (TACO), 12(4):62, 2016.

BIBLIOGRAPHY 136

[140] Hangin Yoon, Justin Meza, Rachata Ausavarungnirun, Rachael Hard-

ing, and Onur Mutlu. Row Buffer Locality-aware Data Placement in Hybrid

Memories. In ICCD, 2011.

[141] Seyed Majid Zahedi and Benjamin C Lee. REF: Resource Elasticity Fairness

with Sharing Incentives for Multiprocessors. In ASPLOS, 2014.

[142] Tao Zhang, Ke Chen, Cong Xu, Guangyu Sun, Tao Wang, and Yuan

Xie. Half-DRAM: A High-bandwidth and Low-power DRAM Architecture from the

Rethinking of Fine-grained Activation. In ISCA, 2014.

[143] Zhao Zhang, Zhichun Zhu, and Xiaodong Zhang. A Permutation-based Page

Interleaving Scheme to Reduce Row-buffer Conflicts and Exploit Data Locality. In

MICRO, 2000.

[144] Zhao Zhang, Zhichun Zhu, and Xiaodong Zhang. Breaking Address Map-

ping Symmetry at Multi-levels of Memory Hierarchy to Reduce DRAM Row-buffer

Conflicts. The Journal of Instruction-Level Parallelism, 3:29–63, 2001.

[145] Z. Zheng, Z. Wang, and M. Lipasti. Adaptive Cache and Concurrency Alloca-

tion on GPGPUs. CAL, 14(2):90–93, 2015.

[146] William K. Zuravleff and Timothy Robinson. Controller for a Synchronous

DRAM that Maximizes Throughput by Allowing Memory Requests and Commands

to be Issued Out of Order. (U.S. Patent Number 5,630,096), September 1997.

	Design And Analysis Of Memory Management Techniques For Next-Generation Gpus
	Recommended Citation

	Dissertation_Haonan_Wang
	Dissertation_Haonan_Wang
	Haonan_copyright
	thesis

	vita_page

	approval_page_Haonan_Wang

