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ABSTRACT

During the last decade, Trusted Execution Environment (TEE) provided by ARM
TrustZone had become one of the most popular techniques to build security on mo-
bile devices. On a TrustZone-enabled system, the software can execute in either
Secure World (trusted) and Normal World (untrusted). Meanwhile, along with the
expeditious development of TrustZone technology, the security of TEE is also chal-
lenged by dealing with more and more on-board hardware and in-TEE applications.
In this dissertation, we explicitly study the security of ARM TrustZone technology
with the latest ARM architecture in three aspects.

First, we study the security of the TrustZone-assisted asynchronous introspection.
Previously, asynchronous introspection mechanisms have been developed in the se-
cure world to detect security policy violations in the normal world. However, we
identify a new normal-world evasion attack that can defeat the asynchronous in-
trospection by removing the attacking traces in parallel from one core when the
secure-world checking is performing on another core. As the countermeasure, we
propose a trustworthy asynchronous introspection mechanism called SATIN, which
can effectively prevent evasion attacks with a minor system overhead by increasing
the attackers’ evasion time cost and decreasing the defender’s inspecting time.

Second, we design an ARM TrustZone-assisted connectivity mechanism, called TZNIC,
to enable the secure world’s access to network even at the presence of a malicious
OS. TZNIC deploys two NIC drivers, one secure-world driver, and one normal-
world driver, that multiplex one physical NIC. We utilize the ARM TrustZone high-
privilege to protect the secure-world driver, and further resolve several challenges
about sharing one set of hardware peripheral between two isolated software environ-
ments. The evaluation shows that TZNIC can provide a reliable network channel
for the secure world.

Third, we investigate the memory-safety of secure-world trusted applications. Though
the existing TrustZone hardware focuses on protecting the application’s confiden-
tiality and integrity from malicious accesses of the normal world, there is little the
secure world can do when the inside applications contain vulnerabilities and are
further exploited by the normal world. To enhance the security of the secure-world
application, we propose RusTEE, a TrustZone-based SDK that enables the devel-
opment of trusted applications in the memory-safe programming language Rust.
RusTEE can utilize the built-in security checks of Rust to mitigate all memory-
corruption vulnerabilities for trusted applications. Besides, we enhance the trusted
application’s security by enforcing the memory-safety on its invocations of system-
service APIs and cross-world communication channels.
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Chapter 1

Introduction

Over the last ten years, ARM TrustZone has been leveraged extensively to provide security

protection on the ARM platforms [16, 103, 24, 54, 123]. With the assistance of TrustZone

technology, ARM enables system-wide isolation by creating a Trusted Execution Envi-

ronment (TEE) for security-sensitive code and data, and this isolation is realized via the

hardware features that are built-in with the processor as well as the bus interconnect. A

typical TrustZone-based system divides all resources across the System-on-Chip, including

the hardware components and running software, into two different worlds with different

privilege-settings and protections. Among the two worlds, Normal World is responsible

for running rich OS and all the regular applications, named as Client Applications (CA).

In contrast, another isolated Secure World only executes a small and trusted secure OS

along with some high-level security management tasks that are developed as Trusted Ap-

plications (TA).

Previously, most TrustZone-related researches [16, 24, 109, 117] place trust on the

secure-world side and focus on exploiting the secure world to conduct different secure-

sensitive tasks. Meanwhile, in the pace of the advancement of TrustZone technology,

the security of the secure world now faces several newly rising challenges from the latest

hardware features and inside applications. First, as most advanced ARM architecture

are multi-core supported, the architecture allows each core to enter its secure world inde-
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pendently, which means the rich OS and the secure OS can run in parallel [18, 69, 58].

Even such simultaneously execution capability certainly increases the performance on the

normal-world side, it raises the new race conditions for the security components inside the

secure world. For example, when the secure world conducts an introspection on the rich

OS in one core, the inspected rich OS is still running in other cores, so it may infer the

introspection’s execution on other cores or even deceive the introspection by feeding the

false result.

Moreover, because the latest ARM TrustZone supports the secure world to obtain a

dynamic and ample memory space, the secure OS is no longer limited by the size of its

Trusted Computing Base (TCB). Therefore, the secure OS can be developed with more

and more functionalities, such as integrating the drivers of the necessary peripherals.

However, as most peripherals, such as the Network Interface Card (NIC), is also required

by the rich OS, both OSes have the same privilege to operate the same piece of hardware.

Moreover, a general-purpose peripheral cannot differentiate the security attributes of an

I/O operation, so it treats a secure-world operation as same as the normal-world one. In

this case, it is challenging to achieve a balance between two worlds for the peripheral’s

availabilities while also promising the security of secure-world operations.

Finally, every TA inside the secure world can be risky and even harm the TEE’s secu-

rity. As the recent TA is developed with a variety of functionalities, it is hard to validate

each TA’s semantic correctness. These TAs could be compiled with the memory-unsafe

vulnerabilities, and then get imported into the secure world. Moreover, as the TA collab-

orates with the corresponding CA that resides in the normal world, the communication

channels between the two worlds can be exploited to attack the TA and conquer the entire

secure world. Understanding how to assure the memory-safety of every TA and prevent

the cross-world attack on TA is a critical and challenging question.
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1.1 Problem Statement

In this dissertation, we thoroughly study the latest ARM TrustZone technology and three

particular security concerns regarding the ARM multi-core system.

(1) Conducting Secure Asynchronous Introspection on Multi-Core ARM

Processors. It is a well-known technology to utilize TEE to inspect the rich OS’s

kernel’s integrity. However, previous solutions are impractical on the ARM single-core

platform as the secure world execution freezes the rich OS entirely and lead to unafford-

able performance overhead. As the modern ARM architecture introduces the multi-core

features, a more acceptable introspection mechanism is utilizing one core for the secure-

world introspection while preserving other cores for the normal world tasks. Though such

a mechanism maintains both worlds’ performances, it also introduces the severe security

concern on the secure-world introspection because the malicious rich OS may conduct the

evasion attack during the introspection to hide its attacking trace. Such a new rising risk

requires a detailed investigation of its practicality, and the secure world may require an

enhanced introspection mechanism if such risk is a real threat to the latest ARM platform.

(2) Providing Reliable Network for TrustZone Secure World. Traditionally,

the mobile device’s network is maintained by the network driver, which is integrated as

part of the mobile rich OS (such as Android). However, in recent years, numerous attack-

ing methods have been reported to obtain the root privilege of the rich OS and therefore

gain the capability to manipulate the network. For example, 315 new CVEs have been re-

ported on Android in 2019 [36] as the privilege-escalation related vulnerabilities. Allowing

attackers to take over the network availability can cause severe consequences, especially for

the remote security management applications that are deployed in the secure world, such

as remote attestation [74, 66], remote deletion [118, 83], and remote patching [78, 28].

A compromised network channel can lead to loss of access to these services, while the

remote attacker can still connect to the phone for stealing user data or even hijacking

users’ banking transaction [87]. As TrustZone-based applications cannot trust the unre-
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liable normal-world network driver for communicating with the remote server, we should

provide a reliable mechanism for the secure world to interact with the network peripherals

and therefore maintain the secure-world network availability.

(3) Enhancing the memory-safety of Trusted Applications. Due to the protec-

tion of hardware-assisted isolation, it becomes common for TrustZone-based systems [16,

24, 109] to assume the trust of entire TEE, including the trusted applications (TAs) run-

ning in the TEE. Also, the functionalities of TEE systems are extended dramatically by

installing various TAs in the trusted isolated environment. Though TrustZone technol-

ogy can assure isolation between TEE and REE, dozens of software-based vulnerabilities

in TAs have been reported to compromise the entire TEE system [31, 122, 48]. The

term ”Trusted Application” only refers to an application that should be trusted to run in

TEE, but it does not mean the application is bug-free. The risk of TEE systems being

compromised will increase along with the number of TAs installed.

1.2 Contributions

This dissertation proposes three projects that contribute to enhancing the TrustZone

secure world’s security across the application to OS level. The detailed contributions are

listed.

Conducting Secure Asynchronous Introspection on Multi-Core ARM Proces-

sors. While performing a systematic study on the security of TrustZone-based asyn-

chronous introspection [109], we propose the idea that traditional introspection strategy

can be vulnerable to an evasion attack and then demonstrate our improved asynchronous

introspection mechanism. In summary, we make the following contributions.

• we discover a new evasion attack called TZ-Evader against asynchronous inspection

on multi-core ARM processors. The attack utilizes the side channel information to

infer if any core is running in the secure world and then begins to clean the attacking

5



traces simultaneously on other cores that run in the normal world.

• We develop a high-accurate probing technique called KProber for the normal world

to fast probe the running state of all cores. Based on KProber, we implement a proof-

of-concept TZ-Evader, which can defeat existing TrustZone-Based asynchronous in-

trospection mechanisms.

• We propose a secure and trustworthy asynchronous introspection mechanism called

SATIN to protect mobile devices against TZ-Evader. It wins the race condition

over the attacker by minimizing the running time of each introspection round and

maximizing the probing delay of TZ-Evader.

Providing Reliable Network for TrustZone Secure World. We design the mecha-

nism for the secure world to reliably conduct I/O tasks on the general-purpose peripherals,

which resolves the limitation on the peripheral that cannot tell the privilege differences

between the secure world and the normal world. Specifically, we make the following con-

tributions.

• We propose an ARM TrustZone network mechanism TZNIC for reliably sharing

one physical network peripheral between two network drivers, inside and outside

of the isolated execution environments. The secure-world driver can achieve secure

network I/O operations by reliably enforcing the sharing of the normal-world driver’s

software interfaces.

• By utilizing ARM TrustZone protection on multi-core processors, we design a secure

receiving module and a secure transmitting module to reliably receive packets and

send responses, respectively, even when the rich OS cannot be trusted. Our mech-

anism does not require any modification to the rich OS, does not put any trust on

the OS component, and is robust on the concurrent read/write challenges.

• We implement a prototype of TZNIC on a development board. The experimental
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results show that TZNIC can maintain the secure-world network channel with a small

system overhead on rich OS. Our system can be deployed on ARM-based processor

platforms with the support of a wide range of wired and wireless network devices.

Enhancing the memory-safety of Trusted Applications. We propose a TA-development

mechanism, which assists developers to compile TAs in the memory-safe language Rust.

By taking advantage of Rust’s built-in security, we remove all the memory-unsafe imple-

mentation bugs of TA and further enhance its security of sensitive APIs and cross-world

behaviors. Particularly, we make contributions in three aspects:

• We propose RusTEE, the first memory-safe trusted application development en-

vironment with comprehensive functionalities for TrustZone-assisted systems. By

utilizing the built-in security properties and benefits of the Rust programming lan-

guage, our trusted application environment removes most known memory-unsafe

implementation bugs in trusted applications and thus enhance the security of TEE.

• We address two security concerns of the TrustZone-assisted TEE systems, namely,

the widely exposed system-service APIs and cross-world communication channels,

to enhance the security of Rust-based trusted applications.

• We implement a prototype of RusTEE and evaluate its performance in both a sim-

ulation environment and a real development board. Our experimental results show

that our system can comply with strictly safe Rust, and it only incurs a minimal

overhead. We will open source the system prototype.

1.3 Dissertation Organization

The rest of this dissertation is organized as follows. In Chapter 2, we introduce the back-

ground knowledge of ARM TrustZone architecture. In Chapter 3, we present the details

of the new evasion attack on the TrustZone-based introspection, and the corresponding
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countermeasure. In Chapter 4, we propose the TrustZone-based network peripheral mech-

anism, which enables both the normal world and secure world to apply isolated network

drivers on the shared device simultaneously. In Chapter 5, we study the integration of

the Rust language and the existing development environment of trusted applications. In

Chapter 6, we summarize the related works of TEE-based architecture, introspection tech-

nology, TEE-based network management, and Rust-languages, respectively. Finally, we

conclude the dissertation’s highlight contributions and propose future research directions

in Chapter 7.
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Chapter 2

ARM TrustZone Background

This chapter presents the general background of ARM TrustZone technology. ARM de-

signs and applies the TrustZone technology for its most-advanced Cortex-A chipset family

(e.g., ARMv7-A, ARMv8-A) as an efficient and system-wide approach to creating the

hardware-level Trusted Execution Environment (TEE). In this chapter, we will focus on

the ARMv8-A architecture, which is the latest 64/32-bit ARM architecture and supports

execution instructions with 64-bit registers and remains backward compatible with the

32-bit ARMv7 architecture. In the following sections, we will present the TrustZone key

features about its security model, memory model, interrupt model, and features related

to the multi-core processors.

2.1 Security Model

With ARM architecture, the TrustZone security feature is defined for the system to operate

under two environments: the Normal World (non-secure) and the Secure World (secure),

as shown in Figure 2.1a. The normal world is accessible to the secure world, but not

vice versa. The security setting of each core is achieved via hardware logic in the ARM

AMBA bus, and it is independent from the settings of other cores. Each processor core can

execute instructions in one of six privileges, where EL0, EL1, EL2 are used in the normal

world, and S-EL0, S-EL1, EL3 are the secure world privileges. Among these privileges,
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Figure 2.1: ARMv8-A Architecture

EL3 is the highest privilege level that only contains a Secure Monitor for controlling the

context switch between the secure world and the normal world. In the normal world, the

user applications run at EL0, the guest OSes run at EL1, and the hypervisor runs at EL2.

In the secure world, the secure applications run in the S-EL0 level, and the secure OS

runs in the S-EL1 level. There is no S-EL2 level, so the secure world does not support a

hypervisor layer.

2.2 Memory Model

ARMv8-A uses a uniform memory address map to provide a consistent physical address

to all shared resources, as shown in Figure 2.1b. The memory can be classified into two

main types: normal memory and device memory [9]. ROM, SRAM, and DRAM belong

to the normal memory, which can be configured as either secure memory or non-secure

memory [6]. The device memory supports I/O devices, including Static I/O for on-chip

peripherals and Dynamic Mapped I/O for general-purpose peripherals (e.g., NIC, mouse,

and keyboard). Currently, most general-purpose peripherals treat all read/write access

with uniform non-secure privilege, so the normal world and the secure world have the

same view and operation privileges on the peripherals’ registers [113].
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2.3 Interrupt Model

Besides the running application and memory, ARMv8-A also provide the interrupt mech-

anism with two privileges, namely normal interrupt and secure interrupt. The secure

interrupts are always routed to the secure world no matter which world the CPU core is

in [5], while the normal interrupts can be routed to either the normal world or the secure

world, depending on specific configuration registers [5]. Since in most cases the device is

running normal world tasks and the secure world is asleep, the secure interrupt is a key

technique to guarantee the execution of the secure-world components, especially when the

normal world is compromised and may decline to invoke the secure world.

The ARM interrupt management framework is responsible for configuring the inter-

rupt routing behavior [11]. Normally, Interrupt Request (IRQ) is configured as a normal

world interrupt and Fast Interrupt Request (FIQ) is configured as a secure world inter-

rupt. There are two generic requirements. First, it should be guaranteed to route secure

interrupts to be handled by the secure world, even when the current execution is in the

normal world. Thus, it protects secure interrupts against potential intervention from non-

secure software. Second, it should be able to route the non-secure interrupts to the normal

world when current execution is in the secure world. When the non-secure interrupt is

configured to be routed to EL3, the secure monitor in EL3 can save the state of software

in secure world before handing the interrupt to non-secure software. In this case, the

secure world is preemptive. When the non-secure interrupt is configured to be routed to

the S-EL1 or S-EL0, the secure software can either hand the interrupt to the non-secure

software in a preemptive mode, or ignore the interrupt until its running task completes

in a non-preemptive secure mode. OP-TEE OS [69] is an open-source secure operating

system that supports preemptive secure world.
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2.4 ARM Multi-Core Processor

All latest ARMv8-A processors (e.g., Cortex-A53, 57, and 72) can be configured with

one to four cores within one processor. Furthermore, ARM presents the big.LITTLE

heterogeneous design to satisfy different application requirements on system performance

and power consumption. Since each core maintains an independent security status, a

multi-core platform may run the secure and non-secure software at the same time.
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Chapter 3

SATIN: A Secure and Trustworthy

Asynchronous Introspection on

Multi-Core ARM Processors

3.1 Introduction

Introspection mechanisms have been developed and deployed in a high privileged execution

environment to prevent or detect security policy violations in a low privileged execution

environment on the host machine [53]. In general, introspection mechanisms can be clas-

sified into two categories: synchronous introspection for attack prevention [38, 42, 91, 93,

16, 29, 25] and asynchronous introspection for attack detection [17, 120, 85, 37, 93, 102].

ARM TrustZone technology is a system-wide security mechanism to provide hardware-

level isolation between two execution worlds that share the CPU in a time-sliced fashion,

where the secure world has a higher privilege to access the system resources of the normal

world such as memory, CPU registers, and peripherals, but not vice versa. To enhance

the security of mobile devices, a number of TrustZone-assisted introspection mechanisms

have been developed and deployed on millions of mobile devices [93, 16, 29, 25, 102].

Synchronous introspection mechanisms focus on intercepting and mediating security
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sensitive operations inline by the high privileged execution environment to prevent security

policy violations in the low privileged execution environment. For instance, synchronous

mechanisms have been developed in the virtual machine manager to ensure memory page

protection in virtual machines [38, 42, 91]. Similarly, Samsung’s KNOX Real-time Kernel

Protection (RKP) mechanism [93, 16] relies on ARM TrustZone technique to intercept

certain privileged system functions in the normal world and screen them through the

secure world for inspection and approval before being executed.

However, synchronous introspection mechanisms face two main challenges. First, it

has to hook up to all security sensitive locations that are potentially exploitable to attack-

ers. Though it is possible to build up a near-complete list based on recently discovered

policy violations, it is hard to ensure the completeness of such list. Second, certain im-

plementation bugs, such as write-what-where, allows an attacker to launch data attacks

bypassing the function checkpoints setup for the synchronous introspection [62, 88]. Once

an attacker discovers any vulnerability of synchronous introspection, she can deploy a per-

sistent rootkit to maintain the root access to the normal world OS (rich OS), steal data

or mislead user behaviors without being detected by synchronous introspection.

Asynchronous introspection mechanisms can effectively detect those persistent rootk-

its via analyzing attacking traces of security policy violations from a snapshot of memory

along with CPU state information that is periodically or randomly acquired from the

low privileged execution environment (e.g. the normal world). Besides simply checking

the integrity of the invariant kernel code, a number of proof of concept approaches have

been developed to provide a more fine-grained security checking on dynamic kernel data

structures after filling the semantic gaps [17, 120, 85, 37]. Unlike the synchronous intro-

spection that requires to intercept all read/write transactions on the target, asynchronous

introspection conduct the introspection based on the snapshot of the target, which makes

it more effective to introspect the target completely and therefore detect a persistent at-

tack. Meanwhile, as stated in Section 1.1, the TrustZone-based introspection is majorly

challenged by securely taking the rich OS’s snapshot, especially under the condition that
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rich OS is not frozen on the multi-core scenario.

One major limitation on applying asynchronous introspection mechanism in practice

is that the introspection process may introduce a large system overhead. Particularly, on

single core ARM processors, whenever the secure world is performing the security checking,

the entire rich OS will be suspended during the memory acquisition and online memory

analysis process. Due to this poor usage experience on mobile devices, TrustZone-based

asynchronous introspection has not been widely deployed or enabled.

Modern multi-core ARM processors creates new opportunities to deploy a practical

asynchronous introspection based on TrustZone without pausing the rich OS. Specifically,

the ARM multi-core architecture allows each core to enter its secure world independently,

so the rich OS and the secure OS can run in parallel [18, 69, 58]. It is now feasible to make

one core or all cores taking turns to perform the asynchronous introspection tasks while

leaving other cores to continue the normal world’s operations. For example, Samsung

KNOX includes a Periodic Kernel Measurement (PKM) mechanism in the secure world

to perform periodic asynchronous introspection on a specific core [93].

In this chapter, we reveal a new type of evasion attack that can defeat the asynchronous

introspection on multi-core systems by removing the attacking traces concurrently from

one core while the security checking is executing on another. Evasion attacks target at

defeating asynchronous introspection by predicting precisely the time of next security

check and thus removing all attacking evidence to avoid detection [120, 93]. However, on

multi-core mobile devices that can run both normal world and secure world concurrently,

besides removing the attacking traces before security check, an attacker can also hide its

attacking trace right after the start of introspection but before it has the opportunity to

examine any malicious bytes. We name this type of evasion attacks as TZ-Evader.

There are two main challenges to be solved when designing a TZ-Evader attack. First,

the malicious code running in the normal world needs to know if the asynchronous intro-

spection is running on any core’s secure world; however, the ARM TrustZone architecture

protects the secure world running information from being accessed by the normal world.
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To solve this challenge, we propose to utilize the CPU core’s availability as the side channel

information to decide if the introspection is running on any core. We develop a user-level

prober to stealthily probe the current state of each core. Second, when one core enters the

secure world and begins to run the inspection, the malicious normal world needs to detect

the core’s state changes at an earliest time in order to maximize its evasion capability.

To solve this challenge, we propose a kernel-level prober that can accurately monitor the

running state changes of all cores. There are two implementation options for deploying

the kernel-level prober, either by intercepting the timer interrupt to inject the prober in

the rich OS or by manipulating the real-time scheduler of the Linux kernel to add the

prober as a high priority process.

We implement a proof-of-concept TZ-Evader attack by integrating the kernel-level

prober with traditional persistent rootkit on the ARM Juno r1 development board [14].

We evaluate its effectiveness against the state-of-the-art asynchronous introspection mech-

anisms, and the experimental results show the new TZ-Evader attack can accurately detect

the running of asynchronous introspection and thus conduct a successful evasion attack.

With a deep understanding of the TZ-Evader attack, we propose a secure and trust-

worthy asynchronous introspection solution called SATIN in the secure world to defeat the

TZ-Evader attack. The basic idea is to minimize the running time of each introspection

and maximize the probing delay of TZ-Evader at the same time. We propose a num-

ber of techniques including random wake-up time, random introspection area, and random

CPU affinity to ensure that the asynchronous introspection is always completed before

TZ-Evader can hide any attacking traces. We implement a prototype of SATIN on the

ARM Juno r1 development board and the experimental results show that it can effectively

detect the TZ-Evader attacks with a minor system overhead.
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3.2 TZ-Evader: Evasion Attacks on Multi-core Processors

3.2.1 Assumptions and Threat Model

We assume the secure world can be trusted and all the introspection components in the

secure world are secure from attacks in the normal world. The asynchronous introspection

can run randomly on any core at any time, and it cannot be intercepted by the normal

world. We assume the asynchronous introspection does not suspend the rich OS on all

cores; otherwise, it will face the same poor user experience problem as that on single-core

processors. We assume the rich OS can be compromised and the attacker can bypass the

existing synchronous introspection mechanisms to gain root privilege [88, 62]. We assume

the attack is an Advanced Persistent Threat (APT), which aims to maintain its presence

on the target and makes various effort to remain undetected. For example, a key-logger

may collect all user inputs on the keyboard by intercepting a system interrupt, while the

hijacking is detectable to the introspection. In this case, whenever the introspection is

running, the key-logger should stop the attack and clean its attack trace to camouflage its

existence; Meanwhile, for all the other time, it remains in the attacking phase.

3.2.2 New Attack Surface

On multi-core ARM processors, attackers may defeat the existing asynchronous introspec-

tion by satisfying two requirements. First, the malicious code in the normal world can

detect if one core is entering the secure world. Second, before the core in the secure world

can access the attacking traces, the malicious code running on other cores can remove the

attacking traces.

3.2.2.1 Probing CPU Core’s Running State

Since the normal world cannot directly access any secure world information, we propose

to utilize the availability of the shared CPU cores as a side channel information to infer

the running state of each core. The main idea is that after the secure world holds one
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core to perform the introspection, the normal world cannot use that core to run any

process. A user-level prober process can be used to conduct this probing task. To trace

when the normal world loses the control on a CPU core, the prober process assigns each

core with a child-thread, which keeps reporting back the corresponding core’s availability.

Since the rich OS kernel may migrate one thread task to other cores, especially when one

core is paused, we fix the CPU affinity of each thread. Thus, when one core enters the

secure world, the attached thread will be paused and cannot be migrated to other cores

by the OS scheduler. When one thread is paused, the prober process can detect that the

corresponding core enters the secure world.

User-Level
Prober 

Any 
time_x 

< (time_i - 
Tns_threshold)

 

2. Thread
start

  ...

Thread_i
(Core_i)
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1. Create threads
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Time
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Figure 3.1: User-level Multi-thread Prober

Figure 3.1 shows the multi-thread design of the user-level prober. For a device with n

cores, we start a process with n threads, and each thread’s CPU affinity is fixed to its cor-

responding core. Each thread has two components: Time Reporter and Time Comparer.

On core i, the Time Reporter obtains the latest time time i from a shared timer among

all CPU cores and then reports the time into a buffer that is readable to all threads. After

that, the Time Comparer compares core i’s time i with all other cores’ latest reported

times.

Since each thread reports its latest time independently, even if we can start the Time
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Figure 3.2: Race Condition Between Two Worlds on Multi-Core System

Reporters on all cores simultaneously, there exists a time difference when reading those

reported time buffers and comparing their values. Meanwhile, since the kernel scheduler

manages to provide the “fairness” to all threads, even though we cannot control all threads

in a completely synchronized manner, each thread can be executed within a threshold, and

the time differences between any two threads have an upper limit. We define this upper

limit as Tns threshold.

If thread i finds any core x’s latest time x is earlier than its reporting time and

the latency is larger than the threshold, namely, time i > (time x + Tns threshold), then

this thread reports that core x switches to the secure world. To remain stealthy, we

can afford to have the threads sleep for a time interval. We assume the threads can be

scheduled with the average frequency fns sched, so between any two consecutive rounds of

Time Comparer, there is a delay Tns sched = 1/fns sched. Finally, the prober needs time

Tns delay = Tns sched + Tns threshold to detect that one core enters the secure world.

We implement and evaluate this user-level prober on the ARM Juno development

board (see Section 3.3.1). When running one round of probing every 8 seconds, we found

the Tns delay is smaller than 5.97× 10−3 s while the average time for one core to conduct

a kernel integrity check is 8.04× 10−2 s. We can see the prober is capable of detecting

the running of a typical TrustZone-based kernel integrity checking. Since each step of the

prober requires no modification with OS kernel privilege, it is stealthy and useful to check

if the secure world is ever entered.
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3.2.2.2 Race Condition on Multi-core Processors

One state-of-the-art defense mechanism against evasion attacks is to trigger the security

checking randomly. However, on multi-core systems, we observe that as long as the normal

world is not frozen on all cores, there exist a race condition between the normal world

to remove the attacking traces and the secure world to detect the attacking traces. We

assume the introspection will check N bytes of critical memory and the normal world

needs to clean M bytes of attacking traces.

We formalize the race condition between the evasion attacks and the asynchronous

introspection. We suppose the secure world requests to start the asynchronous introspec-

tion at the time moment t start. To switch one core to the secure world for conducting

introspection, the ARM processor needs to save the normal world context of this core

and then switch to the secure world. We define this context switching period as Ts switch.

Thus, the moment that the secure world starts the integrity checking can be as early as

t start+ Ts switch. We define the time for the secure world to inspect one byte as Ts 1byte.

Since the secure world assumes all N bytes may be vulnerable while it does not know

exactly what bytes are modified by the attacker, it may check S bytes before it touches

any malicious byte where 0 ≤ S ≤ N −M . Therefore, the introspection cannot find any

malicious bytes before the time moment t start+ Ts switch + S ∗ Ts 1byte.

From the attacker’s point of view, since she wants to attack the system with the

longest duration (e.g., to collect inputted password), she would only stop the attack and

hide the attacking trace if she believes there is an introspection. If it can predict the

t start, it can easily hide before the introspection starts. When the t start is unknown

or unpredictable, the attacker need to detect it by probing the secure world’s state. We

define the probing delay for the attacker to notice one core entering the secure world as

Tns delay. Assume the time for the attacker to recover one malicious byte is Tns 1byte. The

total recovering time for the attacker is Tns recover = M ∗Tns 1byte. Then after the moment

t start+Tns delay +Tns recover, the secure world cannot detect the malicious modification.
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The timing relationship between the two worlds is shown in Figure 3.2. Finally, for the

attacker that is able to escape from the introspection, the condition 3.1 should be satisfied

:

(Ts switch + S ∗ Ts 1byte) > (Tns delay + Tns recover) (3.1)

We can see that the key element for evasion attacks to win the race condition is to

minimize the probing delay Tns delay. Though the user-level prober shows the capability of

understanding the secure world state stealthily, its probing stability and accuracy cannot

be guaranteed. Particularly, when one core is scheduled with several threads that have

the same or higher schedule priority than the probing thread, the prober’s Tns sched is

increased. To improve the probing accuracy, we should minimize the detection delay. In

the next subsection, we present a new evasion attack called TZ-Evader based on a more

accurate kernel-level prober.

3.2.3 TZ-Evader Design

TZ-Evader includes two components: a kernel-level attack module that conducts the per-

sistent attack on the OS and removes the attacking trace accordingly; a fine-grained

kernel-level prober module that can accurately and reliably monitor the running state of

each core. The kernel-level prober also contains two components Time Reporter and Time

Comparer, the same as the user-level prober. After obtaining the root privilege in rich

OS, the prober module is loaded. If the prober can receive the time reported from all

CPU cores, TZ-Evader believes there is no introspection in the secure world and keeps

the attack active on the rich OS. Once the prober module reports that one core may be

switched to the secure world, TZ-Evader begins to remove its attacking trace. We pro-

vide two implementation options for the kernel-level prober. The first option KProber-I is

based on intercepting the timer interrupt to inject the prober in the rich OS,and the sec-

ond option KProber-II works by manipulating the real-time scheduler of the Linux kernel

to add the prober as a high priority process to be scheduled.
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3.2.3.1 KProber-I

On ARM processors, each core has its own timers to generate time interrupts. The Time

Reporter and Time Comparer are injected into the normal world timer interrupt handler,

so as to ensure the prober being executed with the same frequency as the timer interrupts.

After this hijacking, for any incoming timer interrupt to core i, the interrupt handler

updates the time i into its corresponding buffer i and compares it with other n − 1

cores’ time reports before resuming the normal timer interrupt handler. Linux kernel is

typically configured as the CONFIG NO HZ IDLE mode, which means when the core

is not in the IDLE state, the per-core timer raises the timer interrupt for scheduling-

clock ticks periodically with the frequency of HZ. For most versions of the Linux kernel,

100 ≤ HZ ≤ 1000 [34]. To avoid any core entering the idle mode, KProber-I keeps running

a user-level multi-threads program on each core. KProber-I can guarantee to work with

a frequency no less than HZ on any core, no matter how many tasks are running on that

CPU core. Though this implementation option can achieve the highest time accuracy

from the rich OS perspective, it requires to modify the timer interrupt handler, which may

introduce extra attacking trace for the defender to detect. In Section 3.2.3.2, we present

another implementation without modifying any kernel static area. Moreover, since there

are many potentially unknown mechanisms to manipulate the handler, the defender has to

scan the entire kernel for detecting all potential preparation traces, which gives KProber-I

a larger chance to be recovered as we evaluated in Section 3.3.3.

3.2.3.2 KProber-II

This prober utilizes the Linux’s real-time (RT) scheduler to ensure a reliable execution of

Time Reporter and Time Comparer. According to the Linux kernel design, RT scheduler

has higher scheduling priority than the default Linux CFS scheduler, which is responsible

for scheduling most of Linux application threads. Meanwhile, RT scheduler can be used

to schedule tasks with higher priority. Therefore, by setting the prober with the highest
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priority of RT scheduler, KProber-II can protect the reliable execution of Time Reporter

and Time Comparer from being affected by either CFS-scheduled threads or low priority

RT-scheduled threads.

Theoretically speaking, the timer-interrupt based prober is more stable than the RT

scheduler based prober, since the frequency of the RT scheduler relies on the timer inter-

rupt. However, injecting a prober into the interrupt handler demands more engineering

efforts than simply increasing the priority of the attacking threads using the real-time

scheduler. We present more implementation details in Section 3.3.1.1.

3.3 TZ-Evader Evaluation

3.3.1 TZ-Evader Implementation

We develop a prototype of TZ-Evader on ARM Juno r1 development board [12], which is

featured with the ARM big.LITTLE technology that consists of a 4-core Cortex-A53 “LIT-

TLE” processor for maximum power efficiency and a 2-core Cortex-A57 “big” processor to

achieve maximum computation performance. The secure monitor running in EL3 is pro-

vided by ARM trusted firmware (ARM-TF), and the secure world OS running in S-EL1 is

modified based on the Test Secure Payload (TSP) of ARM-TF [11]. We modify the secure

timer interrupt handler in the TSP to perform the integrity check over the normal world.

The normal world runs OpenEmbedded LAMP OS with kernel version lsk-4.4-armlt in

EL1, which is downloaded using the script from Juno Wiki of ARM Community [14].

3.3.1.1 Kernel-Level Prober Implementation

We deploy two types of KProber to probe a specific core or a randomly chosen core. To

probe a specific core’s running state, we fix one thread of Time Reporter on the targeted

core and fix another thread containing Time Reporter and Time Comparer on another

core. To probe a random CPU core, we assign each core with one thread that contains

Time Reporter and Time Comparer.
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To implement the timer interrupt based KProber-I, one key technical issue is to hijack

the time interrupt handler. In ARMv8-A architecture, the address of the original timer

interrupt address is saved in the IRQ Exception Vector, which can be located in the

AArch64 Exception Vector Table [10]. The table’s starting address is saved in the Vector

Based Address Registers V BAR ELi(1 ≤ i ≤ 3). After locating the timer interrupt, we

modify its corresponding table entry to redirect it to our hijacking code.

For the real-time scheduler based KProber-II, we use the function pthread setschedparam()

to schedule the targeted threads with the real-time scheduler. We use the rt-scheduler

SCHED FIFO with the priority parameter sched get priority max(SCHED FIFO)

for all KProber-II’s threads. After investigating the relationship between thread sleep-

ing and CPU utilization, we set the sleep time Tsleep = 2× 10−4 s and we assume the

Tns sched = Tsleep. In the following experiments, we implement Time Reporter with

KProber-I and Time Comparer with KProber-II to demonstrate that both techniques

can achieve reliable probing results.

3.3.1.2 Sample Kernel-Level Attack

To facilitate the evaluation of TZ-Evader, we implement a kernel-level attack that can

hijack the GETTID system call. Successful system hijacking requires modifying an entry of

the system call table, and this attack modifies one 8-bytes address of the system call table.

Since the system call table is defined as text kernel data, TrustZone-based introspection

can detect the GETTID system call is hijacked if the introspection scans and detects any

of these 8 bytes is modified. Note there are many other kernel level attacking vectors, we

just use GETTID hijacking attack as an example to study the evasion attacks.
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3.3.2 TZ-Evader Evaluation

3.3.2.1 Introspection Time Delay

We first evaluate the time delay of the introspection. As we mentioned in the Equation 3.1,

TrustZone-based asynchronous introspection suffers two major delays: Ts switch and s ∗

Ts 1byte. To evaluate Ts switch, we execute the context switching function of Test Secure

Payload Dispatcher 50 times on one A53 core and one A57 core. The result shows for a

secure timer interrupt raised at t start, the time for the dispatcher to pause the normal

world and jump to the related timer interrupt on the A53 core or A57 core are similar,

ranging from 2.38× 10−6 s to 3.60× 10−6 s.

Then we evaluate Ts 1byte regarding two different introspection techniques. Tradi-

tional hardware-assisted asynchronous kernel introspection takes a snapshot of the ker-

nel [120, 119] and then analyzes the memory copy. Since this copy remains inaccessible

by the attacker, the analysis steps after taking the snapshot are not vulnerable to the

TOCTTOU attack. Meanwhile, since the secure world and the normal world share the

system hardware, TrustZone-based introspection can directly read the normal world OS’

kernel from the secure world. After reading the kernel data, it can hash the data and

compare the hash value to a pre-calculated authorized value. In our experiment, we mea-

sure the time for the secure world to take the snapshot and hash the kernel data. We use

djb2 [82] as the hash function. Each measurement is repeated 50 times. Table 3.1 shows

that directly hashing the kernel’s memory is more efficient than capturing and hashing the

snapshot. In addition, it consumes less memory than the snapshot approach. Therefore,

directly hashing the memory is better than taking snapshot when the asynchronous intro-

spection targets at the static kernel area. We also find that it takes less time to conduct

the introspection on the A57 core than the A53 core, since A57 core is more powerful than

the A53 core.
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Table 3.1: Secure World Introspection Time

Core-Time Hash 1-Byte Snapshot 1-byte

A53-Average 1.07× 10−8 s 1.08× 10−8 s

A53-Max 1.14× 10−8 s 1.57× 10−8 s

A53-Min 9.23× 10−9 s 9.24× 10−9 s

A57-Average 6.71× 10−9 s 6.75× 10−9 s

A57-Max 7.50× 10−9 s 7.83× 10−9 s

A57-Min 6.67× 10−9 s 6.67× 10−9 s

3.3.2.2 Attack Time Delay

We evaluate normal world attack time delay in two aspects, where Tns recover is introduced

by the the kernel-level attack module, and Tns threshold is introduced by the prober module.

We repeat the measurement of the recovery time Tns recover 50 times on one A53 core and

one A57 core. For the A53 core, the average recovering time is 5.80× 10−3 s. For the A57

core, the average recovering time is 4.96× 10−3 s.

Then we present the prober’s time delay Tns threshold when KProber is probing all

cores simultaneously. As the prober execution involves all available cores, we present

the prober’s time delay Tns threshold regardless of core types. To observe the variation of

the threshold, we execute the KProber with different probing periods. For each probing

period, we choose the largest difference calculated by the Time Comparer as the threshold,

and we repeat the measurement 50 times. We present the average threshold, maximum

threshold, and minimum threshold of the 50 rounds for each time period in Table 3.2.

Table 3.2: Probing Threshold on Multi-Core

Probing Period Average Max Min

8 s 2.61× 10−4 s 7.76× 10−4 s 1.07× 10−4 s

16 s 3.54× 10−4 s 1.38× 10−3 s 1.31× 10−4 s

30 s 4.21× 10−4 s 8.99× 10−4 s 2.59× 10−4 s

120 s 5.26× 10−4 s 9.49× 10−4 s 3.18× 10−4 s

300 s 6.61× 10−4 s 1.77× 10−3 s 4.18× 10−4 s

Based on the experiment results, we find that the average threshold becomes larger

along with a longer probing period and the maximum threshold is around 1.8× 10−3 s. To

26



further understand the variation of the threshold, we investigate the reported time of each

thread and identify that, in some rare cases, Time Comparer on core i may get the time x

of the core x with an abnormal large delay, which is up to 1.3× 10−3 s. This cross-core

reading delay leads to the large threshold. Meanwhile, a longer probing period increases

the occurrence of those rare cases, so the average threshold increases too.
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Figure 3.3: KProber Probing Threshold Stability

To present the stability of KProber, we show the variation of the thresholds with

different probing periods in Figure 3.3. We can see that even though the KProber’s

average probing threshold increases with the probing period, the upper whiskers of the

thresholds only go up slightly, and only few extreme large outliers are introduced for

probing period 300 s, which go over 1× 10−3 s.

Finally, we also observe that setting introspection with a fixed CPU affinity is easier

to be probed than using all cores randomly. As we mentioned in Section 3.3.1.1, we also
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evaluate the case to use KProber for figuring out one single core’s availability. We conduct

the experiment with the same setting as presented above. According to our experiment

result, the average thresholds to probe the single core only equal to ∼ 1/4 of the presented

threshold for probing all cores, for all five probing periods we evaluated. This means the

more cores KProber needs to probe, the larger probing threshold it suffers.

3.3.3 Race Condition Analysis

Based on the experiment results, we have following observations on the race condition

between the normal world and the secure world:

1. The switch delays Ts switch for the A53 core and A57 core are similar.

2. The secure world can use more powerful CPU core (i.e., A57 core) for introspection

to achieve a shorter Ts 1byte.

3. The secure world is easier to be probed if it’s CPU affinity is predictable to the

normal world.

4. The timing bottleneck of TZ-Evader is the time period for recovering its attacking

trace Tns recover.

According to Equation 3.1, we know the attack can finish its cleaning task after the

secure world inspects S memory bytes, where:

S >
Tns sched + Tns threshold + Tns recover − Ts switch

Ts 1byte
(3.2)

Now we consider the worst case for the TZ-Evader: the introspection starts on one A57 core

while the TZ-Evader uses on one A53 core to remove its attacking trace. In Section 3.3.2.1,

we have Ts switch ≤ 3.60× 10−6 s. Also, the secure world can inspect the kernel data

with the maximum speed Ts 1byte = 6.67× 10−9 s. The attacker recovers its attacking

trace as the lowest efficiency Tns recover = 6.13× 10−3 s, and Tns sched = 2× 10−4 s. In

Section 3.3.2.2, we have for the worst case of TZ-Evader, Tns threshold ≤ 1.80× 10−3 s. By
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applying the experimental data into the above Equation 3.2, we have S ≤ 1218351 bytes.

Supposing the attack bytes appears randomly in the kernel and the introspection checks

the entire OS kernel whose size is 11916240 bytes, nearly 1− 1218351
11916240 ≈ 90% of the kernel

space is not protected by existing TrustZone-based asynchronous introspection. Therefore,

as long as both kernel attack module and prober module do not locate in the 10% scanned

area, the system suffers TZ-Evader attack.

3.4 SATIN: Secure Asynchronous Introspection

We propose a secure and trustworthy TrustZone-based asynchronous introspection mecha-

nism named SATIN that can practically inspect rich OS and effectively defeat TZ-Evader

attacks. We first discuss two major challenges on developing the secure asynchronous

introspection and then present the detailed design of the proposed mechanism. Figure 3.4

shows the architecture of SATIN, which is implemented in the secure world. It consists

of two major components, where the integrity checking module performs the integrity

checking on rich OS using a divide-and-conquer method to control the checking time of

each round and the self activation module is responsible for waking up the secure world

with the help of a secure timer and ensuring that the entrance cannot be either predicted

or quickly probed by the normal world.

3.4.1 Asynchronous Introspection Challenges

We identify two main challenges on developing secure asynchronous introspection mecha-

nisms against TZ-Evader.

3.4.1.1 Challenge 1: Performance vs. Detection Accuracy

On single core processors, the TrustZone-based introspection introduces unacceptable

overhead as the introspection has to suspend the rich OS during the security checking

process. The pausing issue leads to poor user experience. For example, a music song
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played in the normal world becomes incoherent when the CPU enters the secure world.

Similarly, on the multi-core processors, we cannot frequently freeze all cores even for a

small period of time. For instance, Azab et al. [17] propose an introspection mechanism

that requires to freeze all CPU cores on the server every 8 or 16 seconds.It becomes one

of the biggest obstacles for asynchronous introspection mechanisms to be widely adopted

and deployed, though a better detection accuracy can be achieved by freezing all cores.

Meanwhile, even a multi-core platform can execute the introspection and other tasks si-

multaneously, the execution of the secure world still possesses some shared resources such

as the CPU core. It is not well studied how much overhead is introduced by running the

introspection in parallel to the rich OS.

3.4.1.2 Challenge 2: Evasion Attack

It is a challenge to defend against evasion attack when designing asynchronous introspec-

tion mechanisms [53]. If the attacker can escape ahead of the introspection by predicting
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or probing the execution of the asynchronous introspection, then the introspection result

cannot be trusted [111, 102]. On single core processors, random checking is an effective

scheme to defeat evasion attacks. However, on multi-core ARM processors, TZ-Evader

can even escape from the random checking on any random core. It is critical to develop a

secure asynchronous introspection mechanism to defeat the new evasion attacks.

3.4.2 Integrity Checking Module

To improve the detection rate, we propose to reduce the introspection time for each round

by dividing the entire OS kernel into smaller areas and taking turns to check one area in

each round. Therefore, it can guarantee to finish one round of security checking right before

the malicious normal world can probe it but have not chance to remove any attacking

traces. The integrity checking module prepares the hash value of each small area’s benign

status during booting stage. Then for each round of wake-up, it scans one small area

and compares the hash value with the pre-calculated benign one. If the integrity checking

module finds any abnormal small area, it can raise an alarm to the server side or the device

user. To ensure that the malware cannot remove its traces before we finish checking on

one small area, the size of each small area should be smaller than (Tns delay +Tns recover−

Ts switch)/Ts 1byte bytes. We develop a pseudo-random method to select the next small

area for introspection. Suppose the set setarea =
⋃m−1
i=0 area i contains all the areas of

the OS kernel, and each area i satisfies the above size condition. When the secure world

starts one round of the introspection, the module randomly picks one area area x from

setarea and then applies setarea = setarea − area x. If setarea == NULL, then SATIN

resets setarea = {area 0, ..., area (m− 1)}.

Also, the integrity checking module needs to guarantee its execution is not interrupted

by other non-secure parties. According to the latest ARM interrupt routing model [11],

the normal world interrupt signal is possible to interrupt the execution of secure world. To

prevent the normal world from using interrupts to interfere in the introspection process,

SATIN needs to block all interrupts during each round of the introspection. We propose
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to deploy the integrity checking module into the secure timer interrupt handler, and then

set EL3 to not trap the normal world interrupt by configuring SCR EL3.IRQ = 0. With

this setting, even if the normal world interrupt signal can arrives the secure world, their

priorities are lower than the integrity checking module.

3.4.3 Self Activation Module

The self activation module is designed to make sure the secure world can invoke the

integrity checking module anytime without the help of the normal world. It relies on a

secure timer that the normal world cannot access. Each TrustZone-enabled core has an

individual secure timer that can only be read or written with the secure world privilege.

During the booting time, the self activation module is invoked once on each core to write

the next awake time into the secure timer register.

After the trusted booting process, when the timer condition meets, the timer raises an

interrupt for the secure world and the secure monitor switches the core from the normal

world to the secure world to handle this interrupt. By configuring the secure timer, we

can activate the secure world without involving the normal world. Thus, we can prevent

the normal world from disturbing the invocation of introspection. When one core enters

the secure world via the secure timer interrupt, SATIN first performs the introspection on

one small area and then sets the awake time for the next round of introspection. The self

activation module decides the next awake time by time x, which is set to a base period

time tp (e.g., 8s, 16s, etc.) plus a random deviation td (e.g., a random time from −tp to

tp). By applying the random deviation with the next awake time, the interval between

two consecutive rounds of introspection is among [0, 2 ∗ tp], which means at any moment

the introspection could start to scan and the attacker has to keep probing all cores. In

addition, the random deviation can effectively minimize the exposure of any recognized

patterns on the invocation of the asynchronous introspection to the normal OS. We set

tp = Tgoal/m, where Tgoal is the time period to guarantee that all the target areas can be

scanned at least once.
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3.4.4 Multi-Core Collaboration

To increase the checking accuracy, we propose to choose a random core for conducting the

introspection task. This design choice is based on the observation that if only one core

is used for asynchronous introspection, the malicious normal world can achieve a better

probing accuracy than that when all cores are randomly chosen to conduct introspection,

as mentioned in Section 3.3.2.2.
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Figure 3.5 illustrates the collaborative introspection of SATIN on the multi-core ar-

chitecture. When any core i wakes up for the introspection, it randomly takes one kernel

area from the shared Kernel Area Set setarea and inspects this area. Later, other cores are

not going to inspect this area repeatedly since core i removes the area it chooses from the

set. If there is no more area available, the set is refilled with all areas again. Next, core i

obtains the next wake-up time from a wake-up time queue and configures it’s secure timer

accordingly, where the wake-up time queue is responsible to coordinate all cores that wake

up in a random sequence.
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Coordinating all cores to wake up in a random sequence is also a challenged task.

ARMv8-A architecture does not provide a solution for one core to directly read or write

the timer of another core. In this case, an intuitive design is to use the cross-core interrupt

to notify all cores on serving the introspection in turn. ARMv8-A allows one core to

generate a secure interrupt to forcibly switching another core into the secure world, so

after core i finishes one round of introspection, it can switch another core j into secure

world and then core j sets the secure timer for the next round introspection. However,

the switch of core j can also be probed by the normal world so this method may leak

the wake up sequence to the normal world, which can defeat the benefits from randomly

waking up cores.

To protect the wake-up pattern from the normal world, SATIN does not apply the

cross-core interrupt mechanism, and instead coordinates all cores via the secure memory.

SATIN stores the wake-up time of each core in the wake-up time queue and requires each

wake-up core to check the queue to get next wake up time. For the devices with n cores,

the wake-up time queue contains n wake-up time slots. Each time value is determined by

the rule discussed in 3.4.3. The initial wake-up sequence of all CPU cores is set during the

trusted booting process. Then when any core enters the self activation module, it picks

the next time based on a random assignment. Once all core extract their assigned slots

from the queue, the self activation module refreshes the queue with n newly generated

time values and newly generated random assignment. By flushing the wake-up time queue

and re-assigning the time slots to each core, we can use all cores for kernel introspection

while prevent the normal world from knowing the awake core or awake time for the next

round of introspection. Finally, all cores can coordinate to make sure each core inspects

a random memory area at a random wake-up time.
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3.5 SATIN Evaluation

3.5.1 SATIN Implementation

To verify the effectiveness of SATIN on defeating TZ-Evader, we develop a prototype of

SATIN on the ARM Juno r1 development board with the same configuration as mentioned

in Section 3.3.1. We modify the Test Secure Payload in S-EL1 to implement the major

modules of SATIN.

3.5.1.1 Self Activation Module

When the self activation module is called on one core, the module stops the secure timer by

updating the register CNTPS CTL EL1. Then it takes the assigned wake-up time from

the Wake-Up Time Queue and writes the value to comparer register CNTPS CV AL EL1.

After that, the module restarts the secure timer for that core. For any core in the processor,

when the shared physical timer counter register CNTPCT EL0 becomes equal to or

greater than the per-core register CNTPS CV AL EL1, the core raises a secure timer

interrupt.

3.5.1.2 Integrity Checking Module

As we calculated in Section 3.3.3, for each area of the checking module, its size must

be smaller than 1218351 bytes. Also, we implement the integrity checking module to

guarantee that each section of the normal world OS’s System.map only belongs to one

area for introspection. Thus, we divide the normal world’s kernel into 19 areas according

to the System.map. Among these areas, the largest one contains 876616 bytes and the

smallest one contains 431360 bytes. During the booting time, SATIN hashes these 19

areas and then saves these hash values into an authorized hash table stored in the secure

world.
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3.5.2 SATIN Evaluation

We evaluate the performance of SATIN in two aspects, namely, the effectiveness on de-

feating TZ-Evader and the triggered extra system overhead.

3.5.2.1 Defeating TZ-Evader

SATIN can effectively and securely defeat TZ-Evader attacks. First, the introspection

module is deployed in the secure world, so we can protect the introspection module from

being compromised by malware in the normal world. We assume the hardware-assisted

TrustZone technique can be trusted to protect the secure world. Second, it can prevent

malware from removing its traces before the invocation of each introspection, since the

normal world cannot accurately predict or intercept the invocation of introspection oper-

ations. Third, it can detect malware that uses race condition to remove its traces during

the introspection. Because we divide the entire large introspection area into smaller ar-

eas, we can finish the introspection of one small area even before the malware detects the

entrance of one core into the secure world and then begins to remove the attacking trace.

In addition, it is user-friendly. The introspection does not require to fully freeze the rich

OS in the normal world. On multi-core processors, since not all cores are forced to enter

the secure world at the same time, the rich OS can continue to run on the remaining cores

when one core conducts the introspection on one core.

In our introspection mechanism, every m rounds of the introspection can guarantee

scanning the entire OS kernel once and the average time between two rounds is tp. Within

the time period m∗ (tp)+
∑m−1

i=0 sizearea i ∗ Ts 1byte, it can successfully catch the malicious

memory bytes within the checked areas. In our experiment, the entire time is approxi-

mately 152 s.

To validate the detection results, we execute TZ-Evader in the normal world while

running SATIN simultaneously in the secure world. We set the probing thresholds of

KProber as 1.8× 10−3 s. TZ-Evader maliciously modifies one system call handler which
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resides in the area 14 of the integrity checking module. SATIN conducts 190 rounds of

introspection to examine the entire kernel 10 times. KProber can faithfully report all 190

rounds of introspection without any false negative or false positive. Among these rounds,

SATIN checks area 14 10 times and correctly detects the hijacked handler all the time.

The average time between two consecutive checks for area 14 is 141s. In the meanwhile,

TZ-Evader attempts to attack during these 10 checks but all the recovery efforts fail since

the memory cleaning occurs later than the introspection.

3.5.2.2 SATIN Overhead

We use UnixBench [98] to evaluate the performance overhead on normal world operations

when enabling our TrustZone-based asynchronous introspection. Figure 3.6 shows the

normalized performance degradation when we use the self activation module to wake up

the secure world across all cores of the device compared to the case where the self activation

module is not enabled.

Since our experiment platform consists of 6 cores (i.e., 4 A53 cores and 2 A57 cores), we

measure the overhead using two sets of experiments: executing each benchmark program

once (1-task) and invoking 6 copies of the same benchmark simultaneously (6-task). In

general, activating the introspection incurs 0.711% and 0.848% performance degradation in

the 1-task and 6-task cases, respectively. This is reasonable as there is an increasing chance

for SATIN to interrupt the normal world when more cores are utilized simultaneously. We

also notice that the two tasks file copy 256B and context switching experience the

largest overhead: 3.556% and 3.912%. The reason is that the test program happens to

stay right at the random-selected core for the secure world more times than other cases.

We believe this level of performance overhead is acceptable especially when the normal

world is not suspended for even one nanosecond on multi-core systems.
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Figure 3.6: SATIN Overhead

3.5.3 SATIN Security Analysis

3.5.3.1 SATIN’s Security

SATIN’s security is based on the feature that its control flow cannot be affected by the

attackers, which can be realized by utilizing TrustZone. Also, even considering recent

TrustZone-related side-channel attacks [124], since they are focused on attacking Trust-

Zone’s confidentiality instead of control flow, SATIN is secure.

3.5.3.2 SATIN Capability

SATIN is capable of detecting advanced persistent attacks that leave attacking traces

during an extended period, even if they apply TZ-Evader to hide their traces. Similarly,
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SATIN can detect evasion attacks utilizing other side channels. Finally, SATIN can reduce

attack efficiency and maximize the chances to detect APT attacks.

3.6 Work Conclusion

In this chapter, we propose a trustworthy and practical TrustZone-based asynchronous

introspection mechanism for ARM multi-core platform. We first show that on multi-core

systems, even if the secure world uses a random core to inspect the rich OS kernel at

random time point as previous asynchronous introspection solutions do, the malware in

the normal world can still escape from the security checking by utilizing the race condition

between the detector running on one core and the malicious evader running on other cores

at the same time. We identify this new type of evasion attack as TZ-Evader and conduct

a systematic study on it. We develop a proof-of-concept TZ-Evader attack that uses an

accurate kernel-level prober to defeat the existing asynchronous introspection. Finally, we

develop a secure TrustZone-based asynchronous introspection mechanism called SATIN

on multi-core ARM processors to defeat the TZ-Evader attacks. We implement a proto-

type of SATIN on ARM Juno r1 development board and the experimental results show

that SATIN can effectively prevent evasion attacks on multi-core systems with a minor

overhead.
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Chapter 4

TZNIC: Towards Providing

Reliable Network for ARM

TrustZone-Based Application

4.1 Introduction

Personal mobile devices have become one of the most important devices to meet people’s

daily needs on entertainment, productivity, information access, and financial asset man-

agement. According to a 2019 mobile usage report [115], people are spending almost 3

hours per day on average with their phones. Moreover, there has been a growing depen-

dence on network connectivity in almost all mobile device applications. From 2018 to

2019, the network usage of mobile devices increased 47% [30]. Also, Cisco [30] forecasts

that mobile data traffic can increase seven-fold between 2017 and 2022, which indicates

the rapidly growing users’ dependency on the mobile network.

As we stated in Section 1.1, the rich OS is not trusted to provide the reliable network

service for security-sensitive components. Meanwhile, on ARM-based mobile devices, uti-

lizing TrustZone technology is one of the most popular design options to fight against the

compromised rich OS [109, 26, 61, 117, 116, 66]. Previous works have already presented
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some TrustZone-based network peripheral management (cellular, Wi-Fi, etc.) under the

threat model that rich OS cannot be trusted. For example, to prevent the rich OS from

turning on the network stealthily, SeCloack [61] protects the corresponding peripherals

by moving them into the secure world and then blocks the rich OS access. Brasser et

al. [26] present a similar idea to use the secure world to validate the network peripheral

has been turned off. Though these existing works provide thorough investigations under

their corresponding threat models, they share two key assumptions that may not generally

apply to all the devices. First, the mobile device is equipped with an additional TrustZone

controller such as Central Security Unit (CSU) [81] to protect the network peripherals.

Second, the rich OS and the user are OK with complete loss of the peripheral access, and

thus the network access.

However, the above prerequisites can be too strict for many real-world scenarios. First

of all, the CSU is only a device-specific controller presented on a limited number of eval-

uation boards, such as the i.MX family development board, and is not equipped on the

majority of the commercial mobile devices or some other development board like ARM

Juno [7]. Furthermore, even if the CSU is not a concern, preventing the rich OS from ac-

cessing network peripheral completely is often not an acceptable solution for the general

public. In the case where the manufacturer places a remote patch service in the secure

world, this service needs to listen on the network channel all the time since the remote

network packet may arrive at any time. In this case, if we adopt the previous solutions to

only allow the secure world for accessing the network peripheral and handling the network

tasks, then the rich OS will suffer unaffordable network-related overhead. A straightfor-

ward solution for this problem is providing two network peripherals for the normal world

and the secure world separately, while it’s infeasible for some mobile devices, especially

considering the limited hardware space of the device. In this chapter, we are trying to

answer the following question:

On most mobile devices, there is only one network peripheral (e.g., NIC)
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for each connection type, what would be the best practical design to provide a

reliable network for ARM TrustZone secure world without impacting the rich

OS?

To answer the above question, we design and develop a mobile network framework

called TZNIC to provide a reliable network channel for the TrustZone secure world. We

propose to deploy two network drivers, a complete network driver in the normal world and

a customized slim driver in the secure world, for multiplexing the shared physical NIC to

serve two worlds separately. The normal-world network driver can promise the rich OS’s

network performance while the secure-world driver can deliver the goals of reliably receiv-

ing and sending network traffic for the TrustZone-based applications. To build a practical

solution with minimal impact to the normal world, TZNIC makes zero modification on

the rich OS, which means the rich OS’s network driver is unmodified and can conduct the

peripheral initialization, provide the software interface for input and output, and handle

the network traffic as normal. Meanwhile, since one physical NIC can only connect to one

driver’s software interface (i.e., descriptor ring buffers and SKB buffers) and TZNIC allows

the normal-world driver to provide the interface, the secure-world driver is responsible to

reuse all normal-world driver’s software interface and interact with the peripheral.

While the two-drivers design brings plenty of benefits for both the normal world and

secure world, such design faces a fundamental challenge that is there exists a semantic

gap between two isolated worlds. Specifically, we need a sophisticated mechanism in the

secure world to understand where does the normal-world driver saves all the network-

related packets, and the mechanism should not rely on any trust or assistance from the

rich OS. The key idea to solve this challenge is that the secure-world driver reconstructs all

the semantic information via directly reading the physical NIC’s registers, and then locates

the software interfaces of the normal-world driver in the memory. By taking advantage

of the higher privilege of the ARM TrustZone secure world, TZNIC can promise that

even rich OS privileged attacker cannot hide either NIC registers or memory data from
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the secure world. In this circumstance, TZNIC makes the secure-world driver fills the

semantic gap and forcing the shared software interface without making any change to the

normal-world driver or the rich OS.

When relying on the software interface of the normal-world driver to receive packets,

TZNIC can make both drivers read the incoming buffer at the same time while it faces

another challenge: the rich OS may deliberately delete the packets, whose arrival time is

unpredictable to the secure world. To solve this challenge without incurring large overhead

to the normal world, we use one core to frequently inspect the received packets from the

secure world and keep other cores running in the normal world. To further increase the

possibility for the secure-world driver to read the received network packets under the race

condition, we make efforts in two aspects. First, the remote server should send out packets

in a loss-tolerant format (such as UDP packet) multiple times to increase the chances for

the secure world to successfully receive the packet. Second, for any received packet, we

save the packet into the secure-only memory to further prevent normal world touch. As

we latterly evaluated, such enhancements provide TZNIC a positive opportunity to win

the race condition even facing the challenge from the powerful normal-world attacker.

TZNIC also provides a transmitting module to send secure-world network packets.

Dissimilar the receiving process that can grant the concurrent operation for both drivers,

if we allow both normal-world and secure-world drivers to write in parallel to the shared

buffers for sending packets, then it may cause concurrent-write issue and crash the rich

OS. We solve this problem by making the normal-world driver yield its packet sending

priority for a short time to the secure-world driver. We develop mechanisms to properly

save the transmission context (i.e., the shared descriptors and on-peripheral registers) for

the normal-world driver before the secure-world driver sends packets, and restore all the

saved context after secure transmission.

We implement a prototype of TZNIC on Juno r1 development board [7] and perform

an evaluation on system overhead and power consumption. The experimental results show

that TZNIC can provide reliable network I/O for the secure world even when the rich OS
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is compromised. Moreover, our solution is transparent to the rich OS and incurs a small

overhead.

4.2 Work Background: DMA-Based NICs

Modern NICs handle network packets via either programmed memory mapped input/out-

put (MMIO) or direct memory access (DMA). In MMIO, the NIC provides on-peripheral

device memory and then waits for the CPU to exchange packets via device memory.

When using DMA, the NIC directly reads and writes the network packet into the normal

RAM memory, without involving the CPU. Most modern NICs are DMA-capable since

DMA-based operations remove the burden of the CPU on handling the packets and thus

dramatically increase the system performance.
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Figure 4.1: DMA-Based NIC Workflow

A typical workflow for the packet transmission between the DMA-capable NIC and the

network driver is shown in Figure 4.1. It involves three main components: NIC (with the

assistance of DMA Controller), NIC driver, and DMA software interface (Descriptor Ring

Buffer and Socket Buffer). During the boot up period, the NIC driver allocates multiple

ring-buffer queues to store the descriptors. The descriptor mechanism is designed for

coordinating the driver and the NIC to handle packets asynchronously. Each descriptor

points to a socket buffer (SKB) that is allocated to store the packet data. When the NIC is
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about to save a latest received (RX) packet in memory, it checks the latest RX descriptor

ring buffer Desc n to get the available SKB n. Then it saves packet to the SKB (via

DMA Controller) and raises an interrupt to notify the CPU. To send out a transmitting

(TX) packet, the driver first notifies the NIC that there are available packets linked to

certain TX descriptors. Then, the NIC retrieves the packets accordingly and sends them

out.

4.3 TZNIC Overview

4.3.1 Threat Model and Assumptions

We assume TrustZone can be trusted to protect the software running in the secure world.

On multi-core platforms, secure and non-secure software may run at the same time on

different cores. Also, during the system boot-up, a trusted boot can ensure the integrity

of the kernel images being loaded in the secure world and the normal world. We assume

each mobile device has a unique asymmetric key pair and whoever communicates with the

secure-world applications can obtain the related public key to protect their communication.

We assume there is only one DMA-based network interface available on mobile devices.

An attacker can gain the OS kernel privilege in the normal world via remote attacks,

but she cannot physically access the device. We assume the attacker maintains a remote

communication channel (e.g., via a network interface) with the compromised mobile device

to achieve persistent attacks. In other words, one network interface is always enabled on

the mobile device. Meanwhile, the attacker is capable to conduct any OS-privilege attack

to make the network unavailable for the services protected within TrustZone secure world.

4.3.2 Key Idea and Challenges

As TrustZone-based applications cannot trust the unreliable normal-world network driver

for communicating with the remote server, we make several attempts to deliver dependable

network availability by the secure world itself.
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The first attempt is to only deploy a secure driver in the secure world to monitor all

network packets and identify the packets containing secure-world traffic. However, since

most mobile network traffics are targeted to the rich OS and its upon applications, the

secure driver needs to forward all those heavy network traffics to the normal world, and

this huge context switching overhead renders this solution impractical.

The second attempt is to deploy one complete non-secure driver in the normal world

and one complete secure driver in the secure world. The secure driver has a higher privilege

than the non-secure driver on the usage of the shared network interface. Therefore, when

the secure driver tries to receive any network packet, the other driver is suspended. Since

the secure world does not know the arriving time of the received packet, it has to frequently

suspend the non-secure driver to check the receiving packets in a timely manner and leads

to expensive overhead on the normal network services. Therefore, it is not a practical

solution to deploy two independently complete network drivers for controlling one shared

network interface simultaneously.

Based on the above two failed attempts, we propose a solution that deploys a com-

plete network driver in the normal world and multiplexes the normal-world driver’s soft-

ware interface to a slim network driver in the secure world. The normal-world driver

is fully unmodified and therefore is responsible for initializing the physical NIC device

and providing all software interfaces such as descriptor buffers and packet buffers in the

normal world. The secure-world driver runs simultaneously with the normal-world driver

on multi-core processors and utilize the software interface provided by the normal-world

driver to communicate with the remote server. To multiplex the software interface of the

normal-world driver, we have to solve three major challenges.

Challenge-1: Filling semantic gap. Since the rich OS in the normal world cannot be

trusted, the secure-world driver has to figure out how to use the normal world’s network

interface without getting assistance from the rich OS. In other words, the secure-world

driver needs to fill the semantic gap on locating the critical data structures such as the

normal driver’s descriptor queue and SKB buffers by itself.
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Challenge-2: Resisting interference from the normal world. On a multi-core system,

when two network drivers share the same buffer set, two drivers may read or write the

same buffer simultaneously. Therefore, when the normal-world driver reads out the packets

first from the RX interface, those packets cannot be read by the secure-world driver in

the secure world. More severely, a malicious rich OS may deliberately delete the security-

sensitive packets from the shared network software interfaces. Our mechanism should be

able to resist all those inferences from the normal world.

Challenge-3: Being transparent to rich OS. It contains two requirements. First, the

solution should not require any changes on the rich OS. Second, it should have a minimal

performance impact on the rich OS.

4.3.3 Our Solution

An overview of TZNIC architecture is shown in Figure 4.2. A normal-world NIC driver in

the rich OS initializes the NIC and provides software interfaces for receiving and sending

network packets in the normal world. Meanwhile, we deploy a secure-world driver with

three components: Sec-RX, Sec-TX, and Sec-Buffer. The secure-world driver extracts

the normal-world driver’s software interface information from NIC on-peripheral registers.

As normal-world attackers cannot disguise the registers from the secure world’s view,

TZNIC is guaranteed to acquire the correct value of registers. Moreover, we present the

mechanism to trusted understand the normal-world driver’s semantic information based

on these registers, which resolves Challenge-1.

After the system boots and the normal-world driver initializes the NIC, all cores run

in the normal world by default. Since the arriving time of a remote packet is usually

unpredictable to the secure world, TZNIC periodically wakes up the secure-world driver

via a secure timer, which raises secure interrupts to switch one CPU core into the secure

world. After that, the receiving module Sec-RX runs in parallel to the normal-world

NIC driver on reading the received packets that are saved into the normal-world driver’s

receiving interface (RX buffers). As the RX part of Challenge-2, the normal world may
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discard the secure-world packets benignly or maliciously before Sec-RX reads the packet.

Sec-RX requires the packet sender to send the loss-tolerant packets multiple times for

increasing the chance to identify the packets. After identifying a secure-world packet,

Sec-RX makes a copy to a secure world DRAM region called Sec-Buffer so the normal

world cannot touch the packet anymore.

When the secure world needs to send a response to the remote server, the secure

transmitting module Sec-TX utilizes the normal-world TX descriptors, which is part of

the normal-world transmitting interface, to send out secure world packets. Unlike Sec-RX

that only involves concurrent-read with the normal-world driver, Sec-TX needs to write on

the same descriptor of the normal-world driver, which may incur concurrent-write issues

on the same descriptor. To tackle this challenge as the TX part of Challenge-2, Sec-TX

pauses the normal world on all cores for a very short period before sending its secure

packet. Our solution makes the sending of secure packets transparent to the rich OS. As

we presented, the entire processes of Sec-RX and Sec-TX are working without modifying

or requiring the collaboration of the normal world side, and therefore resolves Challenge-3.
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4.4 TZNIC Design

TZNIC is a TrustZone-based reliable network mechanism that utilizes the shared physical

network device to receive and transmit the network traffic for the secure-world services.

In the following section, we will introduce the detail design of its modules for receiving

packets, sending packets, switching two worlds’ status, and the entire workflow.

4.4.1 Secure Receiving Module

The secure receiving module Sec-RX is designed to extract the NIC RX packets received

in the normal world and filtering out remote server’s packets into Sec-Buffer without any

support from the normal world. One design goal of Sec-RX is to have a minimal impact on

the normal-world driver and the rich OS. On single-core ARM processors, when the system

enters the secure world, the rich OS is frozen until the system switches back. Fortunately,

modern multi-core ARM processors allow the execution of Sec-RX on one core and the

normal-world driver on other cores at the same time.

Since the normal OS cannot be trusted, the secure receiving module has to extract

the packets from normal-world software interface by itself. Sec-RX uses the high-privilege

provided by the secure world to first access the registers of the shared NIC and then

deduce the descriptors’ information based on the registers. Due to the NIC requires a

fixed structure to understand the descriptor of different rich OS or their drivers, for any

given NIC, the descriptor stores the socket buffer information in the required format and

such format cannot be dynamically updated. Based on this feature, once Sec-RX locates

the normal-world drivers’ descriptors, the module can find out the socket buffer address by

reading every descriptor. Finally, it uses the high-privilege again to read the packet saved

in the corresponding memory address. The details of extracting such semantic information

are presented in Section 4.5.1.2. To split out the secure-world receiving packets from all

received packets, Sec-RX allows the secure-world applications to register their servers’ IP

addresses as the white list and then it keeps reading each packet’s sender IP and checking
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if any packet’s IP address matches any specific server. If there is a match, Sec-RX copies

the packet to a pre-allocated secure memory region Sec-Buffer. Since Sec-Buffer is not

accessible to the normal world, the rich OS cannot delete or modify a packet once Sec-RX

has retrieved the packet into Sec-Buffer.

As both worlds have the same level of privilege to read from the receiving buffers

in the normal world, the normal-world driver may discard packets from its buffers after

the packets are readout. Besides, the rich OS may have chances to delete secure-world

packets from the memory before Sec-RX reads them out. Due to these race conditions,

secure-world packets may be dropped by the normal-world driver or the malicious OS

before the secure world wakes up and copy those packets into the secure memory. As

the countermeasure of the race condition, the remote server of a secure-world application

should send multiple copies of its packets until it receives a response. Also, the server’s

packets should be loss-tolerant for the secure world, which means any packet received by

Sec-RX should be independent and good enough to inform the secure world about the

following tasks. When the secure-world application receives the first packet and if the

service requires to receive a large amount of data (e.g., security patch) from the server,

TZNIC can suspend the normal world on all cores to stop the race condition from the rich

OS. The suspension technique is presented in Section 4.4.2.

Sec-RX keeps reading packets from the receiving buffers in the normal world until it ex-

tracts a valid remote request or the one-time polling time reaches an upper limit RX max.

The upper bound RX max is configurable to determine how many newly arriving packets

Sec-RX can monitor in each round of polling. Generally speaking, the maximum threshold

should be long enough for Sec-RX to successfully capture at least one received packet (we

presented the theoretical analysis for deciding this time in Section 4.5.2.3).

A malicious rich OS may manipulate the receiving packets in the normal world to

pass illegitimate packets into the secure world. To protect against fake packets, the re-

mote server and each mobile device share a public/private key pair to authenticate each

command packets.
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4.4.2 Secure Transmitting Module

The secure packet transmitting module Sec-TX is responsible for sending data back from

the secure world to the remote server. Sec-TX extracts the normal-world driver’s TX

interface information as Sec-RX does. To avoid both drivers write on the same descriptor

for sending packets and further triggers concurrency problem, the secure world directly

takes full control of the NIC for a short time by suspending the rich OS on all cores.

Without the cooperation of the normal-world driver in the normal world, the secure world

needs to pause the rich OS, save the normal world driver TX data, send the secure-world

related packets, and finally recover the normal world driver TX data.

To pause the normal world OS on all cores, Sec-TX issues a Software Generated In-

terrupt (SGI) to each core, which is then trapped into the secure world for executing its

corresponding interrupt handler. The handler makes each core keep waiting in the secure

world until the packet sending finishes. In other words, the Sec-TX initially running on

one core is responsible for switching all other cores into the secure world and then back

to the normal world. When Sec-TX is interacting with the shared NIC, since there is no

core available for the normal world, the rich OS cannot disturb the execution of Sec-TX.

After all cores enter the secure world, Sec-TX saves all the content in the original

TX descriptor ring buffers of the NIC driver. Then it sets the preserved memory region

Sec-Buffer as the normal-world memory to save the pending transmitting packets. This

step is necessary. Without this security change, Sec-Buffer cannot be accessed by the

NIC that is a normal-world peripheral. To send a packet, Sec-TX generates the packets

as normal network packets and encrypts the content with the private key of the mobile

device. Then it uses the NIC registers to notice the peripheral for sending packets saved

in TZNIC buffers.

When the packet transmission is done, Sec-TX removes all the packet data in Sec-

Buffer and sets Sec-Buffer back as secure memory. Meanwhile, Sec-TX needs to recover

both TX ring buffers and NIC registers back to the states before the normal world is
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paused; otherwise, any mismatch may incur errors or even crash the NIC. Finally, Sec-TX

releases all cores to the rich OS and normal-world driver resumes working as normal. This

mechanism guarantees that a normal-world driver does not need to conduct any extra

operation to interact with the NIC while the secure world can send the packets at any

time.
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4.4.3 Secure Switching

A secure boot ensures that the software modules in the secure world and the rich OS in the

normal world can be booted up after verifying the integrity of their image files. Besides,

two interrupt handlers are registered to ensure one core entering the secure world after a

timeout and force all other cores entering the secure world, respectively. First, each core

has a separate secure timer to trigger Private Peripheral Interrupt (PPI) for itself [5].

Thus, a secure timer PPI raised by one core is delivered to this core only, so the secure

timer interrupt handler can guarantee to switch this core into the secure world. Before

TZNIC falls asleep, one core’s secure timer is configured with a fixed time gap RX sleep

to make sure the TZNIC will wake up in the future to receive and respond to the network

traffic. During the boot-up, the secure timer is initialized for raising the first interrupt.

Second, the latest ARM processors provide the SGI mechanism for the software to raise

interrupts and thus achieving inter-core communication across the multi-core architecture.
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The interrupt controller pre-defines the interrupt IDs for the CPU to generate both normal

world SGIs and secure world SGIs. After registering the SGI handler with a specific secure

SGI ID, a single CPU core within the secure world can generate the SGI to interrupt any

other core or multiple other cores at the same time. Therefore, we configure the SGI

handler to switch all CPU cores into the secure world and pause the normal world until

the initiating core finishes its packet sending tasks.

4.4.4 TZNIC Workflow

We present a complete workflow of TZNIC in Figure 4.3. As the first step, TZNIC uses

a secure timer to raise an interrupt after it expires every RX sleep seconds. Then, the

Interrupt Controller sends the secure timer interrupt to the corresponding core. After

the secure monitor switches the core’s security state from non-secure to secure, TZNIC

invokes Sec-RX to read the received packets from DRAM memory in the normal world

in step 3. If Sec-RX does not receive any command from the remote server, the core sets

its secure timer for the next wake-up time and then switches back to the normal world.

Otherwise, it decrypts the received packed and pass to the upon application in the secure

world. In case that a response needs to be sent back, Sec-RX invokes the Sec-TX to send

out the response packets. Sec-TX raises a secure SGI to trap all other cores into the secure

world and thus pauses the normal world in step 4 and step 5. After all cores enter the

secure world, Sec-TX generates the packets and directly leverages the NIC registers and

descriptors to send the response packets in steps 6 and 7. Finally, after configuring the

secure timer for the next round of wake up, Sec-TX exits the secure world and restores

the normal OS on all cores. The entire workflow does not need any cooperation from the

normal world.
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4.5 TZNIC Evaluation

4.5.1 System Implementation

We implement a prototype of TZNIC on an ARM Juno r1 development board [7], which

uses Marvell 88e8057-a0-nnb2c000 PCI-E Gigabit Ethernet Controller (Yukon-II NIC) as

it’s network controller. The ARM CoreLink TZC-400 TrustZone Address Space Con-

troller [6] is used to manage the address space as either normal or secure. The TZC-400

supports up to eight separate memory regions with different security settings. A Core-

Link GIC-400 Generic Interrupt Controller [3] manages the normal and secure interrupts

following the ARM generic interrupt practice [5].

The normal world runs OpenEmbedded LAMP OS with Linux kernel version lsk-4.4-

armlt in EL1. The OS is deployed with the network driver sky2 (version 1.30) [49] to work

with the Yukon-II NIC. The secure monitor running in EL3 is based on ARM trusted

firmware (ARM-TF) [11]. The secure OS running in S-EL1 is modified based on the Test

Secure Payload (TSP) of ARM-TF.

4.5.1.1 Secure World Initialization

We modify the secure timer interrupt handler of the secure OS to wake up the secure

world and invoke the Sec-RX. The timer is configured by operating the per-core register

CNTPS CV AL EL1. To pause the normal world, we register a secure-SGI handler at

the booting process. GIC-400 supports up to 16 types (ID0 - ID15) of SGI, where ID8 -

ID15 are designed for generating secure interrupts [5]. We choose the secure-SGI ID10 for

the Sec-TX to pause the normal world. The interrupt handler holds the core within the

secure world and waits until the calling core releasing the core back to the normal world.

Besides the interrupt handler registration, TZNIC reconfigures the memory space for

receiving and transmitting packets. We generate the page table entries for all normal world

DRAM physical addresses so Sec-RX can read any descriptor or packet that saved in the

normal world memory. Meanwhile, TZNIC reserves 0x00200000 bytes of the DRAM as the
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secure memory at the booting stage and sets it as an isolated memory region to serve as

Sec-Buffer. The reserved memory is configured as readable, writable, and non-executable

for secure world access only.

4.5.1.2 Sec-RX Implementation

An overview of the DMA-based NIC RX workflow is shown in Figure 4.4. To recover

the runtime semantics of the normal world, the secure world would retrieves various RX

descriptor ring buffer information from the NIC registers, including the starting address

RX Start Addr, the ring size RX Size, the current offset of the descriptor that the driver

is handling RX Tail, and the latest buffer NIC just updated RX Head. When a packet

arrives, the NIC gets the latest available descriptor offset saved in RX Head, extracts the

SKB address and then saves the packet into corresponding memory. Finally, NIC moves

the offset RX Head forward. The driver always handles the packet at RX Tail and

forwards this register to tell NIC which buffers have been read and are free to use in the

future. NIC achieves the transmitting tasks with similar logic, while the only difference is

that the network driver is responsible to update TX Head and NIC will make TX Tail

catches the head register. The registers RX Head and TX Tail are read-only to the

software and can only be written by the NIC.

To locate and monitor all normal-world driver’s software interfaces such as the de-

scriptors and RX packets in the normal world, we extract the RX descriptor ring buffer

information from the NIC registers. The registers can be accessed by applying the off-

set, which is the sum of three parts: register base address Y 2 B8 PREF REGS, the

number of the queue, and the register offset. The ring buffer’s starting address is set

in two registers, where PREF UNIT ADDR LO saves the lower 32 bits of the address

and PREF UNIT ADDR HI saves the higher 32 bits. By getting the complete address

and corresponding offset, we can map each descriptor unit to the normal-world driver’s

descriptor structure sky2 rx le. For each located descriptor, we identify the structure’s

attribute le32 addr, which refers to the SKB address of the real packets. Note the at-
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tribute addr saves the DMA address (physical address), so the Sec-RX needs to translate

the address into the secure world virtual address. Finally, we can read the packet content

at the virtual address of addr. We implement the remote server to send commands to

mobile devices as UDP packets and their entire payloads are encrypted with the RSA

algorithm.

4.5.1.3 Sec-TX Implementation

When Sec-TX is called, it first generates the secure-SGI interrupts to suspend the normal

world on all cores. Sec-TX then writes the register GICD SGIR with value 0x100000a,

to generate the SGI-10 and distribute the interrupt to all other cores.

After the rich OS is paused, Sec-TX reuses the normal-world driver’s TX descriptor

ring buffers for sending out the packet, and points the descriptor to the packets saved

in Sec-Buffer. Sec-TX sets the memory region Sec-Buffer as normal world memory by

configuring TZC-400 so the NIC can read packets out normally. After the NIC sends out
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the packet, Sec-TX needs to recover both TX descriptor buffers and NIC registers back

to the states. It is easy to recover the normal world ring buffers since Sec-TX can write

normal memory spaces.

However, it is not trivial to restore the TX registers to their original values. When the

rich OS is paused, it has a local copy of the ring buffer registers, for example, both registers

TX Head and TX Tail have the value x. Later, if Sec-TX sends out n packets then both

registers will be forwarded at the position x+ n. To recover the values, Sec-TX needs to

recover both registers as n. Nonetheless, only register TX Head is writable to the software

while Sec-TX cannot directly write to the on-peripheral read-only register TX Tail. To

properly recover TX Tail’s value, TX exploits the feature of the ring buffer and always

keeps the number of the sending packets n equals to the size of the TX queue. With this

transmitting setting, Sec-TX can make the register value rolls back to the original position

x because according to the ring buffer design, x + n == x. As such, both NIC registers

and TX ring buffer are set back to their original states before the normal world NIC driver

is resumed.

4.5.2 System Evaluation

Our evaluation aims to answer three key questions for TZNIC, namely, the overhead

on the TCB size, the communication stability of TZNIC, and the performance overhead

introduced on the rich OS.

4.5.2.1 Size of TCB

The original NIC driver (sky2-1.3) contains 5707 LOC. The slim TZNIC secure-world

driver includes 722 LOC for both Sec-RX and Sec-TX and other 341 LOC for supporting

the secure interrupt handlers, so its total size is 1063 LOC, which is only 18.63% of the

original driver. From the memory perspective, the original driver uses one RX and one

TX queue with 1024 buffers, and each buffer requires 8 bytes for the descriptor. Since

TZNIC shares those descriptor buffers with the original driver, it can save 16 KB in total.
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Moreover, since one SKB size varies from 64 to 65535 bytes, when deploying a complete

NIC driver in the secure world, it may consume up to 128 MB. As the comparison,

TZNIC only needs to allocate 2 MB static buffers in total for saving RX/TX packets and

normal-world driver’s TX context information.

4.5.2.2 Communication Connectivity

To study the connectivity of the receiving module Sec-RX, we deploy the python tool

Scapy [23] on the remote server to send UDP packets to the device. We consider 100 sent

packets as a test round and we evaluated 100 rounds for each scenario to calculate the

packet received ratio. Sec-RX tries to intercept these UDP packets before they are read

out and removed by the normal world. Meanwhile, we use the benchmark iPerf [39] as the

normal-world application to receive the UDP packets from the same sender with sending

configuration in comparison. We first evaluate the reliability of Sec-RX under the scenario

without race condition, which means the rich OS is benign and the software interface

provides enough buffers for saving the received UDP packets. In this circumstance, iPerf

can receive 100% packets without any loss, and Sec-RX can also receive 100% of the

packets when the module is wake up.

To evaluate the scenario that normal world raises the race condition on the received

packets, we test the extreme case that the malicious rich OS attempts to utilize all the

normal-world computation power to delete the incoming packets and therefore interfere

with the secure world network availability. We deploy a kernel-level attacking program for

such interruption-purpose. As the baseline of the attacking performance, the attacking

program can promise to fully block the benchmark iPerf from receiving any packet, which

means the attack is strong enough to make any normal world application unavailable

from the network perspective. Under such disturbance, Sec-RX still can receive 67% of

the packets from the remote server on average, with the minimum rate as 22% and the

maximum receiving rate as 92%. As the packets are repeatedly sent and loss-tolerant,

receives any copy is enough for the secure-world applications.
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When Sec-TX pauses the rich OS for sending out its packets, the availability of Sec-TX

can be assured all the time no matter if the rich OS is malicious or busy.

4.5.2.3 Sec-RX Overhead

In this subsection, we measure the performance impact of Sec-RX on the rich OS. Since

Sec-RX’s system overhead varies with its awake time and awake period, we first present

a theoretical analysis of their impacts. We then show the specific overhead introduced

by Sec-RX when it’s awake. Moreover, we study the extra power energy consumed by

Sec-RX.

Theoretical Analysis. Assuming a real-world device has been turned on for the total

period T and Sec-RX has been executed with the time period T RX. If we define the

device performance without our mechanism to be 100% and the degraded performance

with Sec-RX as Perf down, we have the overall performance Perf over as follows.

Perf over =
T RX ∗ Perf down+ (T − T RX) ∗ 100%

T
(4.1)

Since Sec-RX sleeps with a fixed periodRX sleep, we have T RX = T∗ RX awake
RX awake+RX sleep .

When we set the maximal wake up time RX max to RX awake, the worst performance

case happens as follows.

Perf over =
RX max ∗ Perf down+RX sleep ∗ 100%

RX max+RX sleep
(4.2)

Next, we present how to adjust the time conditions RX max and RX sleep to sat-

isfy the performance requirement. When TZNIC is set to achieve a target performance

Perf target, we have the relationship between RX max and RX sleep as follows.

RX max

RX sleep
=

100%− Perf target
Perf target− Perf down

(4.3)

As the Equation 4.3 indicates, TZNIC can maintain the rich OS with a stable overall

performance Perf target by properly tuning the time conditions RX sleep and RX max.
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As a numberic example, assume we set the target performance Perf target = 95%, and

we choose the worst degradation performance Perf down ≈ 65% as we evaluated in

Section 4.5.2.3, then we know by setting RX sleep = 7 ∗ RX max, the rich OS’s overall

performance is promised to be equal or higher than 95%.

Rich OS Overhead. We first use the tool iPerf to evaluate the communication

overhead on the normal world. Our experiment shows that Sec-RX only introduces negli-

gible overhead no matter the NIC is reading or sending packets in the normal world. This

result is reasonable since Sec-RX only reads data from the memory using one core for a

short period of time, while all other cores are still running the normal network operations

in the normal world.

Next, we use the benchmark UnixBench [99] to evaluate the overall computation over-

head in the normal world. We run the benchmark in two scenarios, with and without

Sec-RX running on one core, using two sets of tests including 1-task to conduct each per-

formance test with one copy and 6-task to conduct six copies simultaneously on all 6 cores

in our mobile device. Figure 4.5 illustrates the experimental results on the performance

overhead caused by Sec-RX.

In general, Sec-RX introduces 16.67% performance degradation on the 1-task tests and

23.54% on the 6-task tests. All the 6-task tests suffer more degradation than the 1-task

tests since the 6-task tests are supposed to utilize 6 cores simultaneously while the test

loses one core when Sec-RX is running. We observe that Sec-RX affects most benchmark

tests with a stable overhead from 11.113% to 18.124% while the execl and file copy

tests suffer the degradation from 29.517% to 38.610%. The reason is that most test sets

cannot utilize all CPU resources even for the 6-task cases, but since both the execl

and file copy performance results rely more on the CPU resources, these two sets are

affected more by losing even one core. Noted that the presented performance degradation

represents the Perf down in Equation 4.2, which is only incurred when Sec-RX is awake,

while most time Sec-RX is asleep so the performance is not affected.

Power Consumption Overhead. Sec-RX may incur extra power consumption since
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Figure 4.5: Performance Overhead on Normal World

it’s running on an isolated core from the normal world. We hook up a Uniwood Energy

Usage Monitor [108] to monitor the power consumption with the precision of 0.001W . We

measure the power under five scenarios and record the readings twice per second. Each

scenario runs for a period of 2 minutes for 100 times.

The power consumption measured in each scenario is presented in Table 4.1. Idle

means that the device runs only an idle normal world OS. RX represent the cases that

the device runs the normal world only while the normal world OS is executing the iPerf

receiving tasks with the maximum bandwidth (94 Mbps). This scenario reflect the extra

power consumption introduced by the NIC. 1-task and 6-task show the power consump-

tion when the normal world runs the Dhrystone test set of UnixBench. 6-task tends to

use all CPU resources, so it consumes the maximum power in all scenarios. Finally, Sec-RX
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means that the device runs an idle normal world while executing Sec-RX at the same time.

It shows that the extra power consumption introduced by the module is similar to 1-task,

since both cases use one CPU core consistently. In summary, Sec-RX introduces less than

0.3W power overhead to the device when Sec-RX is awake.

Table 4.1: Power Consumption of Sec-RX

Device Status Average (W) Min (W) Max (W)

Idle 19.499 19.497 19.520

RX 19.602 19.586 19.613

1-task 19.601 19.585 19.606

6-task 20.356 20.350 20.360

Sec-RX 19.713 19.702 19.724

Similar to the performance overhead, the power consumption overhead is only intro-

duced when Sec-RX is running. By setting RX sleep = 7 ∗RX max, the maximum extra

power consumption overhead in one hour can be calculated as 1 hr ∗ RX max
RX max+RX sleep ∗

0.3 W = 0.0375 Wh. As the baseline data, Samsung S9+ is equipped with a battery of

13.475 Wh [92].

4.5.3 Sec-TX Overhead

Table 4.2: Sec-TX Execution Time

Stages Average (s) Max (s) Min (s)

Switching Time 5.38× 10−3 5.54× 10−3 5.12× 10−3

One Ring Buffer 2.66× 10−3 2.84× 10−3 2.5× 10−3

Since Sec-TX suspends the rich OS when sending packets, we present the suspension

time as the TX overhead. The time used by Sec-TX depends on the amount of data that

needs to be sent to the remote server, which can be divided into two parts as we listed

in Table 4.2. The first part is switching time, which contains all the context switching

operations Sec-TX needs to handle at each round. This part includes the time for saving

and restoring the normal world TX ring buffers, updating the TZC-400 to prepare the

normal world memory for storing packet data, and raising the SGI to pause all other CPU
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cores. The second part One Ring buffer reflects the time Sec-TX used for sending data

for an entire ring buffer, whose size is 128 packets with our configuration. Recall that

in Section 4.5.1.3 we explained that to correctly recover the NIC registers, Sec-TX must

send packets with the total number in size of one or multiple ring buffers, depending on

the size of packets, for the buffer to wrap around. This part can be affected by multiple

factors such as network bandwidth, packet size, and ring buffer size, etc. In this case, we

only present an empirical experiment result based on our experiment environment that

sets packet size as 64 bytes and the network bandwidth as 100 Mbps. The average time

on sending one ring with these conditions is 2.66× 10−3 s. The total time for switching

and sending is 8.04× 10−3 s.

Table 4.3: Porting TZNIC to Other NIC Models

Type Brand Model Chipset Driver DMA-Based Other Chipsets

Wired NIC Intel EXPI9301CTBLK Intel 82574L intel / e1000e Yes
82571, ich9lan, pch lpt,

and other 10 chipsets, total 13

Wired NIC StarTech ST1000BT32 RTL8110SC realtek / r8169.c Yes
RTL8100e, RTL8168cp, RTL8402,

and other 32 chipsets, total 35

Wired NIC Syba SD-PEX24041 RTL8111F realtek / r8169.c Yes driver has been covered above

Wired NIC Realtek RT8111C-PCIE-NIC RTL8111C realtek / r8169.c Yes driver has been covered above

Wired NIC D-Link DGE-530T DGE-530T marvell / skge.c Yes
3Com 3C940, D-Link DGE-530T,

and other 11 chipsets, total 13

Wireless NIC Intel 7260.HMWG.R Intel 7260
intel / iwlwifi /

cfg / 7000.c
Yes

Intel 7260, Intel 3160, Intel 3168,
Intel 7265, Intel 7265D, total 5

Wireless NIC TP-Link Archer T6E BCM4352 broadcom / b43 Yes
BCM4306, BCM4311, BCM4318,

and other 8 chipsets, total 11

Wireless NIC Asus PCE-AC56 BCM4352 broadcom / b43 Yes driver has been covered above

Wireless NIC StartTech 300 Mbps N PCI-E Ralink-RT5392
ralink / rt2x00 /

rt2800lib.c
No. Only TX data is sent via DMA

Wireless NIC FebSmart N600 Atheros 802.11n ath / ath9k No. Only TX data is sent via DMA

4.5.4 Portability of TZNIC

TZNIC architecture has three particular requirements, namely, multi-core processors, a

high-privileged operating mode, and a DMA-based network peripheral. We show that all

three requirements can be satisfied in a wide range of mobile devices. First, most ARM-

based processors modern processors (e.g., A53, A57, etc.) are designed with the capability

to be integrated with multiple cores. Any device equipped with more than one core is

qualified to execute the secure-world and normal-world drivers simultaneously. Second,

on ARM processors, the TrustZone technique has been widely integrated to provide an
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isolated execution environment for protecting the integrity and providing the high-privilege

vision for TZNIC to inspect the on-peripheral registers and normal-world driver’s software

interfaces.

Third, we conduct a study to confirm that most modern network peripherals work

as DMA-based NICs and the result is presented in Table 4.3. We first identify the top

5 popular wired and top 5 wireless network interface cards according to a list of best

sellers in computer networking cards provide by Amazon [2]. For the top 5 most popular

wired and wireless network NIC model, we find the related Driver information based on

their Chipset. The column DMA Packets shows if the driver and corresponding hardware

chipset are worked as DMA-based NIC or not. If yes, then TZNIC can be designed to

cooperate with the corresponding NIC. Finally, since one driver may support more than

one chipset so as long as the driver works as DMA logic, the chipsets in Other Chipset

also can be extended with TZNIC. Since we cannot afford to buy all listed network devices,

we only check the NIC models whose drivers are open-sourced and supported in the latest

Linux kernel downloaded from Github [105] with the git-tag v4.18-rc7. Fortunately, all the

drivers of wired NIC can be found in the directory of drivers/net/ethernet while the

drivers of wireless NIC can be found in the directory of drivers/net/wireless. When a

NIC brand has more than one model as the top 5 popular models, we only choose the most

popular model for the brand. We skip the NICs that do not provide official documentation

on their Linux driver support. We find that 8 of the 10 network devices support to work

as DMA-based peripherals, and their drivers can cover more than 70 chipsets in total

to work as the DMA-based NIC. Furthermore, for those two networking cards that are

not working as DMA-based NIC, we find that their manufactures provide other products

in DMA fashion, which means these branches also have alternative chipsets that can be

integrated with TZNIC. For example, even though the driver ath9k of Atheros is not a

DMA-based driver, another Atheros’s driver ath5k that is working for Atheros 802.11a/bg

Chipset can cooperate with the hardware as DMA-based operation [80]. Also, even the

driver rt2800lib.c is not a DMA-related driver, another Ralink driver rt73usb.c that
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resides on the folder <ralink/rt2x00/> can provide DMA operation for both RX and TX

data.

4.6 Work Conclusion

In this chapter, we develop TZNIC, a TrustZone-based network mechanism that utilizes

a single physical network interface controller (NIC) shared between the normal world and

the secure world on multi-core ARM processors. By properly exploiting the TrustZone

architecture and features of DMA-enabled modern NIC, TZNIC can ensure filling the

semantic gaps and then conduct receiving/transmitting network tasks simultaneously with

the rich OS, while still being self-sufficient and transparent to the rich OS. TZNIC has

a small trusted computing base (TCB) in the secure world. It requires no changes to

the existing mobile operating systems, so it is promising to port our system to different

brands of mobile devices. The experimental results show that TZNIC can achieve reliable

side-band management on multi-core ARM processors with minimal system overhead.
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Chapter 5

RusTEE: Developing Memory-Safe

ARM TrustZone Applications

5.1 Introduction

Among the reported TrustZone-related vulnerabilities, most of them are caused by mem-

ory corruption of the memory-unsafe TAs [27]. Due to two architectural features of TAs,

namely, conducting the cross-world communication with the REE and invoking kernel-

privileged system-service APIs, TAs could be manipulated by REE-side attackers to com-

promise the entire TEE system. Researchers propose to move the execution of TAs from

the TEE to the REE and thus prevent one vulnerable TA from corrupting other TAs or

the Trusted OS [103, 24, 29]. Though these solutions can effectively mitigate the risk of

vulnerable TAs, they will inevitably introduce non-negligible overhead over the system.

Recently, many programming languages focus effort on enhancing their memory-safety,

and several new languages are proposed with memory-safety as one of the goals, such as

Rust and Go. Meanwhile, researchers have applied the memory-safe languages from upper

application layer (e.g., Intel SGX Enclave programs [110]) to lower system layer (e.g.,

embedded system OSes [64, 65]). One precondition to the engineering effort to rewrite

the code base in these memory-safe languages is relatively small, so that developers can
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afford to convert the existing software into the memory-safe style. Meanwhile, since ARM

TrustZone is proposed to protect a limited number of small security tasks, TAs become

another ideal target to be rewritten in the memory-safe language.

In this work, we propose a mechanism called RusTEE to build TrustZone-assisted

applications in the memory-safe style, using Rust [75] as the programming language. The

basic idea is to leverage newly emerging memory-safe languages and provide a Rust-

based Software Development Kit (SDK) on compiling memory-safe TAs to prevent against

memory-corruption vulnerabilities. Specifically, we resolve several challenges to develop

a TA with Rust. The first challenge is that none of TrustZone-assisted TEE system and

associated ARM platform has been recognized as the official support target to the Rust.

Therefore, we need to integrate all the Rust fundamental support such as the standard

library into the TA development. Second, TAs are required to invoke the APIs of different

system services, which are typically implemented as the kernel-privileged libraries. Since

some low-level libraries require specific ARM assembly instructions that are not supported

in Rust, it is impractical to rewrite all the libraries in Rust. Inspired by a recent work

Rust-SGX [110], we solve this challenge by providing a binding layer between the Rust

application and C system. The binding provides all the necessary interfaces for the TA

dependent libraries while also enforcing the Rust’s memory-safe standard on the bounded

interfaces. Third, we resolve a TA-specific challenge, i.e., providing a secure cross-world

communication channel for the TA in the TEE world to communicate with the software in

the REE world. The security of the cross-world communication is ensured by regulating

the TA’s usage on any shared parameters between the two worlds.

After systematically studying the architectural specification of TrustZone-assisted sys-

tems, we successfully import Rust into TA development environment, and further apply

multiple security enhancements to reliably invoke system-service APIs and securely con-

duct the cross-world communication. We develop a prototype of RusTEE based on an

open-source project OP-TEE OS [69] and provide a variety of examples to demonstrate the

functionalities and efficiency of RusTEE. We have open sourced the RusTEE prototype
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along with the memory-safe TA examples. The system evaluation has been conducted on

multiple ARM platforms, including the AArch64 simulation and a real-world development

board Juno r1 [12]. According to our experimental results, RusTEE only introduces 1%

performance overhead on average on the evaluated examples. Moreover, RusTEE enables

the TAs to be integrated with millions of existing Rust libraries, noticeably extending the

functionalities of the TAs in the TEE.

5.2 Work Background

5.2.1 GlobalPlatform TEE Specification

ARM website [13] recognizes GlobalPlatform TEE Specification (aka, GPD specification) [46]

as a widely used TEE architecture on the latest ARM processors. The GPD specifica-

tion defines a clear security boundary for TrustZone-assisted TEE systems by providing

a completed set of software definitions between REE and TEE. Currently, multiple real-

world TEE systems, such as Linaro OP-TEE [69] and Trustonic Application Protection

Solution [106], apply the design of GPD specification into their implementations.

According to the GPD specification, an REE hosts the rich OS (e.g., Android, Linux)

in association with the user-privileged applications. While most applications are deployed

and used entirely in REE as normal applications, some security-sensitive applications can

enable the TrustZone protection on their sensitive operations. A security-sensitive applica-

tion divides itself into two components, an REE-side component called Client Application

(CA) and a TEE-side component called Trusted Application (TA). The CA supports most

non-sensitive functionalities like user interactions; however, neither the counterpart TA

nor the TEE trusts the CA. Meanwhile, all sensitive operations are isolated as the TA,

which usually runs on a Trusted OS inside the TEE. By leveraging TrustZone hardware-

assisted isolation, the confidentiality and integrity of TAs are protected from the untrusted

REE. The entire GlobalPlatform Architecture for a TrustZone-assisted device is shown in

Figure 5.1.
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Figure 5.1: GlobalPlatform TEE Architecture

Since the CA and the TA run in two isolated environments, they perform cross-world

communication in reliance upon an REE Agent and a TEE Agent for passing a command

or exchanging the data. To request the trusted execution of a TA, the CA calls the

TEE Client APIs [44] to ask the REE agent to send out the Message and build up the

cross-world communication channel with a specific TA. Once the TEE Agent receives the

Message, it initializes the corresponding TA to respond to incoming REE-side commands.

The related responding APIs are defined as Cross-world Communication Channel APIs

that belong to TEE Internal APIs [45]. To exchange data between two environments, the

CA first allocates the communication memory called Shared Memory in the REE and then

shares the memory with the corresponding TA. Since the TEE has a higher privilege on

accessing the REE’s memory, the TA can also operate on the shared memory in parallel

with the CA.

Besides the communication functions, GlobalPlatform also defines its TEE Internal

69



APIs to provide essential System Services, such as cryptography-related operation, secure

storage, and big-number calculation. Since all TEE Internal APIs are provided to all TAs

for calling directly, TAs are not required further to implement their own functionalities

for these security services. Moreover, many of the GPD TEE Internal APIs are involved

with dedicated memory-related operations, which should be thoroughly inspected before

running them inside TEE.

5.2.2 Rust

Rust [75] is a programming language designed to achieve both reliability and efficiency. To

achieve reliability in two distinct aspects, namely, memory-safety and thread-safety, Rust

provides the following mechanisms: (1) claiming the ownership of each data object; (2) au-

tomatically checking the read/write permissions (mutability) of each object; (3) enforcing

the lifetime managements on all objects; (4) forbidding unsafe typecasting (type-safety);

(5) disabling dangerous raw pointer operations like pointer aliasing or dangling pointers.

During the program compilation, if the code violates any Rust’s security criteria, the Rust

compiler raises errors and generates error messages to help developers correct their code

accordingly. Besides improving the code security, Rust brings other benefits such as the

highly efficient parallelization, the developer-friendly compiling messages, and thousands

of crates (similar to the libraries in C language) for supporting different development

requirements.

Rust-safe vs. Rust-unsafe. Though Rust is designed to achieve strict security

criteria by default, to guarantee any program can indeed be written in Rust, it also

provides the keyword unsafe [104] for developers to inject memory-unsafe code segments.

Rust provides this unsafe option for two primary reasons: 1) allowing developers to develop

some “special” functions the cannot pass the compiler’s default inspection; and 2) allowing

the code to interact with system/hardware components directly. A segment marked as

unsafe can bypass the Rust built-in check and therefore may conduct vulnerable behaviors,

such as writing on an immutable variable, conducting a non-standard typecasting, or using
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raw pointers directly. A typical scenario of using unsafe code segment in Rust happens

when the Rust code has to invoke the C-based functions, which is defined as Foreign

Function Interface (FFI) in Rust. Coming with the advantages of extended capabilities,

unsafe Rust also introduces security risks. Several related works [104, 21, 22, 107] have

revealed that unsafe Rust can introduce potential security risks.

5.3 Motivation and Challenges

5.3.1 Motivation

Over the past decades, more than one hundred vulnerabilities have been reported for

TrustZone-assisted TEE systems [32, 33, 31]. Among these reported vulnerabilities, most

of them are software-related, which means the vulnerabilities can get exploited even if the

device enables and configures TrustZone hardware components appropriately. Recently,

Cerdeira et al. [27] provide a systematized summary about the vulnerabilities of existing

TEE systems, and they summarize the software-related vulnerabilities in two categories,

namely implementation issues and architectural issues. The implementation issues refer to

the bugs triggered by specific implementation details of one TEE system, such as lacking

proper security checks on the sensitive variables. Meanwhile, architectural issues include

shared deficiencies or design flaws among different TEE systems, regardless of systems’

implementation details.

In order to mitigate software-related vulnerabilities on TrustZone-assisted TEE sys-

tems, one critical and challenging task is enhancing the security of TAs. Nowadays, com-

mercial TEE systems integrate more and more TA functionalities into the TEE, excessively

increasing the total size and semantic complexity of the TEE. With such a large number

of complicated TAs, it is impractical for the TEE system’s administrator to conduct either

artificial or automatic validation on each TA’s correctness. Consequently, TAs may get

imported into the TEE with potential implementation issues, such as conducting sensi-

tive operations without appropriate validations. Moreover, when TAs are developed in
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memory-unsafe languages like C language, these implementation issues are difficult to be

fully reviewed since a memory-unsafe language can perform dangerous memory operations

and cause implementation issues with many possibilities.

Besides introducing implementation issues, TA is also the critical component of two

TrustZone-specific architectural issues. First, the TA’s capability of invoking kernel-

privileged system services can be abused to attack the TrustZone-assisted TEE system

and even lead to a compromised TEE. To support the incremental functionalities of TAs,

Trusted OSes deploy many system services and expose wide interfaces to TAs; however,

there is no security regulation on the interactions between TAs and the Trusted OSes.

Therefore, if the vulnerable TAs can be manipulated to invoke system interfaces mali-

ciously, the entire mobile system may be compromised as well. How to govern the interface

between the Trusted OS and TAs is an essential architectural challenge when deploying

TEE systems. Second, most TEE systems allow TAs to accept input from the REE via

the cross-world communication channel. However, since the REE is untrusted and may be

fully controlled by attackers, the cross-world communication channel expands the attack

surface of the TEE system.

In real-world scenarios, when both the implementation and architectural issues exist

in a single TA, they may be exploited together and lead to severe consequences. For

instance, a recently reported vulnerability CVE-2018-14491 [48] utilizes a vulnerable One-

Time-Password TA for executing arbitrary code on Samsung S5 smart phones. Similar

security issues have been reported in other CVEs such as CVE-2015-6639 [32] and CVE-

2016-2431 [33]. Motivated by resolving both implementation and architectural issues, we

propose to implement TAs in a strict memory-safe style and further mitigate the identified

issues of TAs. In the following section, we present three particular challenges and our basic

ideas for solving them.
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5.3.2 Challenges

The primary object of RusTEE is to provide a secure mechanism that assists developers in

building TAs with a memory-safe regulation. Specifically, there are three main challenges

we need to resolve to build the required secure TAs.

Challenge-1: Tackling memory corruptions in TA. One fundamental attribute of a

secure TA is that the TA does not contain any memory-unsafe implementation issues. In

other words, our method should ensure to remove memory corruptions from TAs, such as

Use-After-Free or Data Race. To address this problem, we propose to write TAs in the

memory-safe programming language Rust.

Challenge-2: Providing secure system-service APIs. Unlike some TEE architecture

(e.g., SGX) that can provide multiple hardware-enforced-isolated enclaves, the TrustZone-

assisted TEE system only deploys one shared Trusted OS for executing all TAs. Therefore,

any compromised TA may utilize the widely provided system-service APIs to attack the

shared Trusted OS and compromise all other TAs. In order to eliminate the side-effect

of exposing wide APIs to TAs, we provide a binding solution that enforces the Rust’s

memory-safety on the existing unsafe APIs to prevent TAs form misusing any kernel-

privileged TEE system services.

Challenge-3: Building protection on cross-world communication. As an architectural

feature of TEE systems, the cross-world communication channel is a must to support the

collaboration between TEE and REE. However, this channel also provides another vehicle

for the REE-side attackers to manipulate TAs’ behavior, especially considering that the

communication channel is connected via the untrusted REE’s memory. To enhance the

security of the cross-world communication channel, we redesign the cross-communication

interfaces of TA, which conduct security checks on the passed-in parameters and limit the

use cases of untrusted parameters.
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5.4 RusTEE Design

In this section, we first present the threat model and overview architecture of RusTEE.

Then we elaborate on the detailed security enhancements of RusTEE for resolving TA’s

security challenges.

5.4.1 Assumptions and Threat Model

We assume the device is equipped with ARM TrustZone technology, and the technology is

can provide the hardware-enforced isolation. We assume all TEE system’s software com-

ponents, including the secure monitor, Trusted OS, and all TEE kernel-privileged libraries,

are implemented in compliance with the GlobalPlatform TEE specification. In this case,

TAs use the GlobalPlatform-defined (GPD-defined) APIs to interact with system services

and the cross-world communication channel. We also assume these system components

are well written, so there is no insecure flaw in Trusted OS or lower level software. As

such, we focus on protecting the memory-safety of TAs that run above Trusted OS. Fi-

nally, we assume the TA developers are benign while he or she may still program a TA in

a vulnerable way, which is a common scenario recognized in the recent CVEs [32, 33, 31].

5.4.2 Overview

We present the overview architecture of RusTEE in Figure 5.2. The main idea of Rus-

TEE is serving as a Rust-based TA SDK in the TEE. The SDK supports most general

development requirements, such as operating primitive data-types, in the strict Rust-safe

style by providing Rust standard library and associated essential components to TA de-

velopers. With the assistance of the Rust compiler’s built-in security checks, RusTEE

ensures the TA’s source code is free of known memory-corruption bugs and therefore miti-

gates Challenge-1. Since the major challenges for porting Rust standard library into ARM

platforms are implementation-related, we will introduce them later in the Implementation

Section 5.5.1.
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Figure 5.2: RusTEE Architecture

Besides performing general-purpose operations, a TA also needs to invoke functions

of particular TEE’s system services, which are out of the scope of Rust standard library.

Therefore, RusTEE integrates the extra libraries into SDK to support these requirements.

There are two design options for shipping a Rust-based SDK with additional libraries. The

first option is rewriting all the requested libraries in Rust. The other option is building

up the Rust-based SDK based on full-fledged C-based libraries, and further providing a

trustworthy binding between Rust and C components. Though the first option offers better

independence and memory-safety, it faces two non-trivial challenges when implemented

on the ARM TrustZone-assisted platforms. The first challenge is that some TEE’s system

services involve the TrustZone-specific operations (e.g., reading a secure timer), while these

operations can only be implemented with the explicit essential ARM instructions that are

unavailable in the Rust’s standard supports. Another challenge is that for some TEE’s

system services (e.g., cryptography), the C-based libraries have better performance than
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the Rust ones. In consideration of these challenges, we propose to provide the SDK as

the binding solution. After systematized studying all critical data structure and function

definitions of these additionally involved libraries, RusTEE converts all the interfaces into

Rust-safe style to resolve the Challenge-2.

Meanwhile, TAs used to face the challenge of handling the commands and parame-

ters that are passed-in via the cross-world communication channel, since these data are

generated by the untrusted REE. By carefully reviewing the calling convention of exist-

ing cross-world communications, we redesign the connection interface between the TEE’s

system communication component (TEE Agent) and TAs. The redesigned communica-

tion interfaces promise that all parameters are used under secure standards and therefore

handle Challenge-3.

Finally, RusTEE provides the REE-side SDK, which follows a similar scheme of the

TEE-side SDK, as a complementary component to regulate the behaviors of CAs. Note

that the security of TA does not depend on whether the REE utilizes the REE-side SDK or

not, and the REE-side SDK is provided only in the case that benign CA developers want

to improve a CA’s memory-safety. In the following section, we focus on presenting our

methodology for mitigating the architectural issues for the Rust-based TAs, particularly,

securing the widely exposed system-service APIs (hereinafter referred to as ”service APIs”)

and cross-world communication channel.

5.4.3 Secure System-service APIs

In the design of RusTEE, the Trusted OS implements TEE’s system services as the C-

based libraries for the best practicality, and the OS provides C-based service APIs to

the upper-layer applications. To make these APIs available for Rust-based TAs, RusTEE

should reliably convert these C-based interfaces into the Rust-based interfaces. We call

this conversion as the binding solution. To bridge the semantic gap between Rust and

C language, Rust officially provides a standard crate std::libc, which matches all data

types and structures that are shared by two languages, such as c int and c char. Also,
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Rust provides the Foreign Function Interface (FFI) mechanism to allow Rust-based pro-

grams for invoking C-based functions in the Rust-unsafe way. By utilizing these two Rust’s

components, we can straightforwardly convert the C-based interfaces as the Rust-unsafe

interfaces via FFI mechanism, and allow the upper-level TAs to interact with the low-level

APIs via the parameters that are matched by std::libc.

However, the FFI-based bindings are not memory-safe for TAs to invoke. As we ex-

plained in the Background Section 5.2.2, since Rust’s built-in security checks ignore any

code segment marked as FFI, the bonded APIs can still contain memory-unsafe vulner-

abilities. To ensure the security of these bindings, RusTEE applies multiple security-

enhancements on the service APIs. In this subsection, we first introduce four general

principles that are adapted as the enhancements for all bonded C-based service APIs.

Then we present two particular binding principles that we propose for protecting GPD-

defined service APIs.

Secure C-based APIs. As one close-related work of RusTEE, Rust-SGX [110] pro-

vides a secure binding for Intel SGX between Rust enclave applications and C-based SDK.

More importantly, the authors conclude two common challenges for providing binding be-

tween Rust and C worlds, which are providing safe memory access of C/C++ objects and

raw-bytes. The first challenge is introduced for achieving the type-safety in Rust. Ideally,

every type in the Rust program has a precise definition for providing clear semantics about

types’ use cases. Moreover, an explicit type definition can describe all the legitimate sce-

narios for casting one type to another. However, in C-based libraries, many complicated

data types can only refer to a pointer type void, and the pointers can be dangerously

accessed with the wrong interfaces when the developer uses them carelessly or confused.

The second challenge happens when C-based libraries access the memory chunks directly

based on their pointer and length, which is considering as unsafe and not-allowed in Rust.

Such pointer/length combinations frequently appear in C-based libraries.

To resolve these two challenges, Rust-SGX defines four principles, which notated as

Bytes, ContiguousMemory, Sanitizable[T], and Handleτ . These four notations can
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regulate how to convert the challenging C-style APIs into Rust-safe style. Specifically,

Handleτ maps each C-based unsafe pointer into specific secure type in Rust. Bytes

constructs the concrete memory in the format of arrays for securing memory accesses. The

rest two notations ContiguousMemory and Sanitizable[T ] are provided for handling the

conversion between other unsafe C-based types T and the proposedBytes. Moreover, Rust-

SGX provides solid formalization to prove the four notations’ security with the system

defined in CCured [79].

Since RusTEE shares a similar binding solution as Rust-SGX, we adopt all four prin-

ciples proposed in Rust-SGX. For example, we provide a specific handler for each critical

data type. We further realize the other three security principles to bind the service APIs

securely. Similar to the solution of Rust-SGX, the realizations of these principles require

manual effort to review all libraries’ critical data structures and understand the associated

memory utilization. To the best of our knowledge, there is no automatic mechanism that

can promise a perfect conversion from C-based APIs to Rust-based ones. Hence, we claim

such a manual process is acceptable and has the most reliable security-promise for the

bonded APIs.

Secure GPD-defined APIs. After thoroughly reviewing all APIs defined in the GPD

specification, we identified two additional issues besides the four principles proposed by

Rust-SGX. The first issue is that some TEE Internal APIs have complicated dependency-

checks. For example, an API-a may only be allowed to be invoked when the API-b returns

a specific value-c as the running result. To avoid the case that the developer misses any

dependency-check, we enforce every depending API (e.g., API-a) to conduct such check

automatically, and therefore promise the function of API-a is only executed when the

required condition is met. For any case that the dependency-check fails, GPD specification

defines the invocation on API should be interrupted, and we relay the unexpected status

to the Rust error-handling process.

The second issue is that some GPD-defined services require multiple APIs to work in

a specific sequence, especially for memory allocation and release. However, TAs can be

78



programmed to invoke these APIs in the wrong order, or even missing some critical steps.

To avoid the TA misuses any memory object, we enforce the Resource-Acquisition-Is-

Initialization (RAII) [101] standard on such APIs. According to the RAII standard, any

data structure, named as struct in Rust, should be promised with a correct initialization.

Moreover, when the developer finished the task on the struct, the data structure should

provide the correct function to free the resource as well. By enforcing the RAII standard

on critical data structures, the memory-related APIs are promised to get execution in the

correct sequence.

1 /* Implement the details of the structure to enforce security principles */

2 impl OperationHandle {

3 fn allocate(algo:AlgorithmId,

4 mode: OperationMode,

5 max_key_size: usize) -> Result<Self> {

6 match unsafe { raw::TEE_AllocateOperation(...) }

7 {

8 /* Check the allocation result automatically */

9 raw::TEE_SUCCESS => Ok(Self::from_raw(raw_handle)),

10 code => Err(Error::from_raw_error(code)),

11 }

12 }

13 ...

14 }

15

16 /* Enforce the resource release with the assistance of the language's type security */

17 impl Drop for OperationHandle {

18 fn drop(&mut self) {

19 ...

20 unsafe { raw::TEE_FreeOperation(self.handle()); }

21 ...

22 }

23 }

Listing 1: A Redesigned Encryption-related Data Structure

We present an example for applying our GPD-specific principles in List 1, which is a

redesigned Rust-based data structure OperationHandle used in TEE’s encryption-related

operations. As shown in line #9 and line #10, when the structure is allocated, the TA can

only move forward if the allocation’s return value is raw::TEE SUCCESS, while all the other

return values are forwarded to Err handler. In this case, as long as developers utilize the
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redesigned API OperationHandle::allocate to acquire the data, the API is promised

to check any “potential dangerous return value” and avoid the first issue. Furthermore,

when the TA finishes using the allocated data structure, the data is freed automatically

because the Rust compiler would execute the function Drop (from line #17 to line #23)

by default. Therefore, the redesigned struct OperationHandle is protected from the

second issue.

5.4.4 Secure Cross-world Communication

As an architectural feature of TrustZone-assisted TEE systems, the cross-world communi-

cation channel supports the TEE-side TAs to work coordinately with the REE-side CAs.

According to the GPD specification, four key data structures are defined and used across

the entire CA/TA cooperation process, namely Context, Session, Command and Param-

eter. Starting from the beginning, the CA is required to register its Context in the TEE,

without requesting any specific TA to collaborate. Next, the same CA needs to set up

a connected Session between it and a specific TA, and this Session is only valid under a

registered Context. Once the Session has been correctly set up, the CA can make the

following requests to the TA via passing different Commands. If any Command requires

the usage of cross-world shared memory (e.g., sharing the plaintext/ciphertext across REE

and TEE worlds), the Command can be passed with at most four pairs of Parameters.

Each Parameter can represent either a numeric value or a memory chunk. For the entire

process of a cross-world communication, we identify three security issues of these four data

structures and propose the corresponding security enhancements.

Secure Context’s and Session’s Lifetime. One premise of successful communica-

tion is that the two fundamental data structures, namely the Context and the Session, are

correctly initialized. However, this prerequisite can get challenged in several ways with the

GPD specification. According to the GPD specification, these two structures are referred

to as unsafe raw pointers, and the caller function has no way to tell whether the callee

structure is correctly initialized or not. Moreover, a wrongly used structure may lead to a
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compromised communication scenario. For example, a C-based CA can get manipulated

to connect its Session with another malicious CA’s Context without getting any error. In

such a case, any further operation may get exposed or even manipulated by the malicious

CA. To protect the usages on these two structures, we redesign the Context and Session

structure as Rust type-safe structures, which can promise the structures are always ade-

quately initialized before use. Furthermore, We take advantage of Rust’s Drop function

to promise these two structures’ resources are released as the GPD-defined serialization

and, hence, promise the corresponding data is erased after use.

Secure Parameter’s Type-safety. We discovered two security issues of the com-

munication data Parameter. First, the Parameter is defined as type-unsafe in the GPD

specification, because TAs access Parameters without a clearly defined type. In this case,

a TA can use a numerical Parameter as a memory pointer, or vice versa. To provide

Parameter as type-safe, we convert all existing Parameter use cases into two specific Rust-

safe data types, namely int and slice, to pass the numerical value and memory chunks,

respectively. With the enforced type definition, any misusing will get detected during the

compilation stage. The use of slice can also regulate CA’s behavior to share the memory

chunks. Previously, REE allocates all memory buffers for a Parameter. Then REE shares

the memory region with the TEE by providing the corresponding memory’s raw pointer

and size. This memory-sharing process is unsafe since the attacker can manipulate the

pointer and size to mislead the TA to access the memory out-of-scope. By converting the

Parameter as Rust slice, the memory pointer and associated size are guaranteed to get

a securely typecasting, which can prevent TAs from further being manipulated to access

the wrong memory region.

Secure Parameter’s Mutability. Another security concern of Parameter is that

a TA may access the TA with incorrect read/write permissions. The GPD specification

defines three permissions of Parameters as input, output, and inout, and the Parameters

are supposed to get accessed as read-only, write-only, and read/write, respectively. How-

ever, a GPD-defined communication channel provides these permissions as independent
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flags from the corresponding variables, which makes these permissions easily violated. For

example, even a memory chunk is designed as a read-only input Parameter, a TA can

still write on this Parameter as long as the developer does not manually check the Pa-

rameter’s permission. In Rust, all the read and write permissions are managed via the

mutability feature by default. By taking advantage of the mutability, RusTEE enforces

the permission-check for every Parameter and therefore prevents future violations.

5.5 RusTEE Evaluation

5.5.1 System Implementation

We develop the prototype of RusTEE based on the project OP-TEE [69], which is one

of the most well-known open-sourced TEE projects for ARM platforms. OP-TEE im-

plements its Trusted OS and associated software interfaces in compliance with the GPD

specification. Currently, the OP-TEE project is available for many ARM TrustZone-

assisted devices [71], including the simulation environment QEMU [89], and experimental

development boards such as HiKey family [1], Raspberry Pi 3 [90], and Juno [12]. In the

following section, we present our modifications to the OP-TEE project for two aspects,

namely porting Rust into OP-TEE and binding OP-TEE’s Internal APIs (including ser-

vice APIs and cross-world communication APIs). Meanwhile, we implement the REE-side

SDK and rewrite all OP-TEE official C-based examples in Rust. Our rewritten examples

demonstrate RusTEE’s practicality. Note that we already release RusTEE as an open-

source project on GitHub1, and the latest version supports building both TA and CA in

the Rust-safe style. Moreover, RusTEE is configurable to build applications for two most

popular ARM architectures: AArch32 and AArch64.

1For the anonymous-review purpose, the project’s link will be placed here after the review.
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5.5.1.1 Porting Rust into OP-TEE

Though Rust officially provides the compilation-support on multiple platforms, none of

the OP-TEE-supported platforms is recognized by Rust yet. Moreover, in order to bal-

ance the functionalities and Trusted Computing Base (TCB) size of TEE, OP-TEE re-

designs its basic library libutil, which makes it unmatched to the Rust official crate

std::libc. To resolve these challenges, we first modify the Rust fundamental compo-

nents compiler-builtins and rust/libstd to add OP-TEE as the supported targets,

which can be further configured based on the architectural features of arm (AArch32)

or aarch64 (AArch64). Furthermore, we manually inspect the OP-TEE’s basic library

libutil and match it with the libc crate. As the libutil does not fully implement

all featured functions presented in libc, the matching process is realized as a best-effort

solution by acceptably sacrificing some functionalities. For example, due to the imple-

mentation limitation, a TA runs in OP-TEE OS is implemented as a single-thread task,

and the kernel does not provide any multi-threading management. In this case, whenever

a Rust program invokes the thread-related operations, we raise panic messages for these

operations to remind the developers.

Trusted
Application

optee-utee

compiler-
builtins libc rust/libstd optee-utee-

sys

libutil libutee

C library Rust foundation layer Rust crates

third-party
crates

Figure 5.3: Porting Rust into OP-TEE
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Besides the three discussed components of Rust’s foundation layer, we also provide one

extra component optee-utee-sys to bind OP-TEE’s specific library libutee for provid-

ing functionalities of all Internal APIs. We further wrap the raw component optee-utee-sys

as a safe Rust crate optee-utee. The details of this binding can be found in Section

5.5.1.2. By integrating all the foundation components along with optee-utee, RusTEE

provides the comprehensive functions for the TA developers to program a TA in Rust-safe

style. Finally, RusTEE also supports developers to import trusted third-party Rust crates

into the TA development. The entire implementation structure is presented in Figure 5.3.

5.5.1.2 Binding OP-TEE’S TEE Internal APIs

GlobalPlatform TEE Internal Core API Specification [45] defines six types of the necessary

APIs for TA development. The first type Trusted Core Framework API defines the APIs

that provide basic OS functionalities for all kinds of TAs, such as memory management,

system-information retrieving, and cross-world communications. For example, each TA

should call the same set of APIs to construct and maintain the communication channel with

the REE. Moreover, in the current implementation of cross-world communication, we label

two operations, Parameter::as value and Parameter::as memref, as unsafe operations

because OP-TEE’s Parameter are implemented as unsafe from Rust’s ownership and

thread-safety perspective. Specifically, whenever a TA receives the data in the shared

memory, the CA and REE still have the privilege to modify the Parameter, so there

exists a potential concurrent issue for using shared Parameters. Currently, these two

operations are the only two exceptions that can appear in the TA source code as unsafe

segment. Note that the unsafe labels here do not mean any memory vulnerability is

actually introduced, while they are more to syntactical definitions to alert the developers.

For example, whenever the TA is supposed to use any passed-in data array exclusively, it

should copy the data from the unsafe Parameters into a safe array, and then conduct rest

operations reliably.

The second type is Trusted Storage API for Data and Keys, which provides reli-
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Table 5.1: RusTEE Component’s LOC

Component Lines of Code

TEE
Trusted Core Framework API 2076
Trusted Storage API 544
Cryptographic Operation API 672
Time API 52
TEE Arithmetical API 258

REE
Client API 687

Examples
Rewritten OP-TEE Examples 1964
Newly Added Examples 2105

Total 8358

able storing for security-sensitive structures, and mostly applied on the cryptography

keys’ materials. Thirdly, Cryptographic Operation API defines the APIs for extensive

cryptographic-related tasks such as generating the key, conducting synchronous/asyn-

chronous encryption, and hashing calculations. Next, Time API can return the trusted

time for TAs, where the time can be selected from different perspectives such as per-TA

time, Trusted OS’s unified time, or even REE’s Rich OS’s time. Moreover, TEE Arith-

metical API are the essential functions that majorly serve for calculating big numbers

and primes. Lastly, Peripheral and Event API is designed to allow TAs to interact with

the hardware peripherals. Most of the peripheral-APIs are platform-specific as different

platforms can equip a variety of peripherals. Since OP-TEE OS only implements the

first five types of APIs, our prototype binds all of the implemented APIs, and we list the

Lines-of-Code (LOC) of each type in Table 5.1.

5.5.1.3 REE and Examples

Besides the TEE-side SDK, we also implement the crate optee-teec as the REE-side SDK,

which integrates the Rust standard library and other GPD-defined Client API-related li-

braries to support building secure CAs. Presently, OP-TEE provides six examples to
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demonstrate the CA/TA workflow in several aspects, such as basic communication func-

tionalities, secure storage, and cryptography-related tasks. To prove the practicality of

RusTEE, we completely migrate these six examples by rewriting them in Rust. Moreover,

we provide six more examples to present RusTEE’s capabilities of interacting with all

types of TEE Internal APIs. Finally, we provide one additional example for exhibiting

the case that integrates third-party Rust crate Serde into TA development. The detailed

examples and corresponding performance evaluation are presented in the Evaluation Sec-

tion 5.5.2. The latest project’s LOC2, which includes both worlds’ SDK and examples,

are summarized in Table 5.1.

5.5.2 System Evaluation

In this sub-section, we present the performance evaluation of RusTEE. Compared to the

previous TA-development mechanisms, our mechanism introduces performance overhead

in two aspects: the general overhead of changing programming language and specific

overhead of API-related enhancements. First, since RusTEE replaces the previous pro-

gramming language C with Rust, RusTEE may introduce the overhead because of using

the new language. Though some existing benchmarks already presented the difference

between these two languages on the x86 platform, we notice their performances vary a lot

on ARM devices. Therefore, we present the language-wise difference between C and Rust

for ARM devices specifically. We implement four benchmark programs in both languages

and evaluate the programs’ performances on the ARM-based Juno r1 [12] development

board. Furthermore, we re-run the benchmark on the emulator environment QEMU [89]

with the same ARM architecture to validate the observation.

Besides the differences in programming languages, RusTEE may introduce extra over-

head because it performs multiple security enhancements on the TEE Internal APIs. Since

the overhead of invoking APIs is tightly coupled with the real-world use cases, we evaluate

2The LOC are counted at the time of this dissertation is written and may change in the future version
of the open-source project.
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this overhead based on five real-world TAs provided by OP-TEE [70]. We rewrite each TA

in Rust and then compare our rewritten TA with OP-TEE’s C-based TA. The difference

between the two TAs’ execution time can indicate the overhead of corresponding APIs.

5.5.2.1 Language-wise Overhead

To present the fundamental difference between languages C and Rust on ARM devices,

we evaluate them with four benchmark cases of the open-source programming language

benchmark-set [47]. The benchmark-set provides dozens of cases in different languages

for evaluating their computation efficiencies on x86 devices. However, it is non-trivial

to migrate all benchmark programs on ARM devices because many programs rely on

the libraries that are not supported by either C or Rust compiler on ARM platforms.

Moreover, as OP-TEE OS only provides limited functionalities in the TEE, TAs are not

capable of integrating any benchmark’s program completely. After manually reviewing

the benchmark-set, we select four cases that can get compiled and executed on ARM

platforms stably for both languages. We implement the benchmark programs in the REE

to get the support of the Rich OS, which equips the Linux kernel in our implementation.

Among the evaluated cases, case n-body models the orbits of Jovian planets as a

double-precision simulation; case fasta generates and rewrites DNA sequences; case

fannkuch-redux performs the indexed-access to tiny integer-sequence with the approx-

imated time complexity n ∗ log n; case spectral-norm resolves the mathematical chal-

lenge [114] that requires to calculate the spectral norm of an infinite matrix. Currently,

the benchmark-set already provides detailed performance of C and Rust about each case

on x86 platforms, including their execution time, memory space, and CPU utilization.

Also, every case can get accomplished with different algorithms.

Since previous coders and researchers already evaluated the thorough performances of

two languages on x86 platforms, our experiment focuses on presenting the performances’

variations after benchmark programs are migrated from x86 platforms to ARM platforms.

We assume an algorithm of one case is executed as 100% time on x86 platforms, and
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we normalize the execution time of this algorithm on the Juno board accordingly. For

each benchmark case, we evaluate all algorithms that can get compiled with both lan-

guages’ ARM compiler. After collecting all algorithms’ results for one case, we calculate

the average value of the normalized execution time, and we present the final result in

Figure 5.4.
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Figure 5.4: C vs. Rust Performance on Juno

According to our experiment, all the benchmark programs run slower on the Juno

board than the x86 platform. The numerical difference can be introduced because of the

different hardware configuration (i.e., CPU cores and total memory space). Specifically,

for the first two cases n-body and spectral-norm, C language performs relatively better

than Rust after normalization, while the other two cases present the contrast observation.

Meanwhile, for all evaluated cases, the normalized differences between the two languages
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are less than 40%.
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Figure 5.5: QEMU vs. Juno Performance

Different Platforms Evaluation. To validate the performance we evaluated on

Juno is representative across different ARM devices, we provide an extra evaluation of the

emulation environment QEMU. We re-implement the benchmark n-body in two languages

on QEMU, and then evaluate the performances as presented in Figure 5.5. We assume

the execution time of Juno board’s programs are 100%, and then normalize the time of

QEMU’s programs accordingly. As the experiment shows, comparing to the Juno board,

the emulator introduces around 3.5 times extra overhead for both C and Rust languages.

Meanwhile, the extra overhead is introduced with a similar ratio for two languages, which

means the relative difference between C and Rust stays at the same level on both Juno and

QEMU. In conclusion, we claim that the language-wise difference we evaluate in Figure 5.4
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is representative of the ARM architecture. Also, the evaluations on either development

board or emulation environment present the same pattern of the difference.

5.5.2.2 Enhanced APIs’ Overhead

To present the overall overhead of enhancing APIs, we evaluate TAs’ performance in five

real-world cases to invoke different types of APIs. For each case, we use the same CA

to invoke two TAs compiled in C and Rust, respectively. Meanwhile, both C-based and

Rust-based TAs are programmed to execute the same task with the same algorithm, while

the major difference is that all Rust-based TEE Internal APIs are enhanced by Rus-

TEE. Among the five cases, case Secure Storage provides the functionalities for reading,

creating, and deleting the secure-storage objects. We use the time of creating an empty

secure-storage object to represent related tasks efficiency; case Random generates a 16-bytes

random number; case Hotp generates ten HMAC-based one-time passwords according to

the RFC4226 algorithm [77]; case Aes conducts the AES-128 encryption with CTR mode

on a 4096-bytes plaintext; case Acipher conducts RSA Public-Key Cryptography Stan-

dards (PKCS) encryption with the 1024-bits key and the 100-bytes plaintext.

We evaluate each case 10,000 times in total, and we calculate the cases’ average execu-

tion time with the data set that excludes 10% data outliers (5% largest and 5% smallest

data). The comparison of C-based TA and Rust-based TA is presented in Figure 5.6.

For each case, we labeled the average execution time above the corresponding TA’s bar.

As the baseline data, the average context switch time (without conducting any task in

TEE) is 676 µs for both C and Rust case, with a negligible variation. We consider the

C-based TA’s execution time as 100% and then normalizing the Rust-based TA’s data

accordingly. As the figure presents, for the five evaluated cases, RusTEE only introduces

the performance degradation from 0.27% to 3.08%, and four of the five cases are affected

with less than 1% overhead.

90



Random

Secu
re_Storage

Hotp Aes

Acip
her

85

90

95

100

105

110

N
or

m
al

iz
ed

 E
xe

cu
tio

n 
Ti

m
e 

(%
)

1740
µs

62931
µs

1979
µs

3310
µs

3978
µs

1749
µs

63300
µs

1985
µs

3413
µs

4010
µs

C TA performance
Rust TA performance

Figure 5.6: Performances of C-based TAs vs. Rust-based TAs

5.6 Work Conclusion

In this work, we presented RusTEE, a Rust-based TrustZone application SDK, which

assists developers to compile the TA with the enforced memory-safety features. The TA

relies on the language-wise benefit of Rust to mitigate the previously reported implemen-

tation issues. Furthermore. RusTEE redesigns the system-services APIs and cross-world

communication channel of TA to resolve two architectural issues of TrustZone-assisted

TEE systems. We implement RusTEE based on the existing C-based SDK OP-TEE,

and evaluate the mechanism on multiple platforms that include both emulators and de-

velopment boards. According to our evaluation, RusTEE introduces slight performance

overhead while significantly increases the application’s memory-safety in multiple aspects.

Finally, we open-source the entire RusTEE with various examples.
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Chapter 6

Related Work

This chapter summarizes the related works of the dissertation. Specifically, we first present

the related works of other high-privileged architectures such as TrustZone, SGX, and

SMM. Then we present the related works for the three proposed works, which include the

related introspection mechanisms, related TrustZone-based network managements, and

related memory-safe systems that are developed in Rust.

6.1 High-Privileged Operating Modes

Recently, high privileged operating modes than ring 0 have been widely supported in both

x86 and ARM processors to isolate secure sensitive code from rich OS. Moreover, many

hardware manufactures provide the hardware-level solutions for creating the hardware-

assisted trusted execution environment (TEE) [121]. Based on the ARM TrustZone tech-

nology, several works [123, 54, 122, 124] are proposed to investigate and enhance the

security of the TrustZone secure world. Meanwhile, TrustZone has been utilized to en-

hance the security of applications running in the normal world against a malicious rich

OS [95, 103, 29]. Santos et al. [95] propose to run the security-sensitive piece of the normal

world .NET apps within the secure world. TrustICE [103] provides the solution to allocate

the isolated environment for any normal world application, and Cho et al. [29] extend this

idea for isolating both normal world application and the hypervisor.
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Besides the ARM hardware architecture, Both Intel and AMD support System Man-

agement Mode (SMM) in their x86 processors to execute the code with a higher privilege

than that running in the Protected mode [52]. SICE [18] introduced the SMM-based iso-

lated environment for x86 multi-core platforms. SICE can provide the remote attestation

for the user to verify the integrity of the kernel within its isolated environment. Based

on SMM, it is plausible to port our secure asynchronous introspection on X86 multi-core

processors. In recent research works, Intel’s Software Guard Extensions (SGX) technique

has been used for secure communication in x86-based systems [57, 96, 15, 20]; however, the

SGX enclave runs as a user-level process instead of a high-privileged mode like TrustZone.

6.2 Introspection Mechanisms

6.2.1 Asynchronous Introspection

Asynchronous introspection mechanisms [91, 85, 50, 38, 37, 68, 86, 55, 120, 59] have

been popularly deployed to protect OS kernel integrity. OSck [50] executes a verifier

process alongside the target kernel and periodically scans the memory to identify any

policy violation. SigGraph [68] proposes to use the graph-based signature to scan the

kernel data structure instance and detect the rootkits that are capable of manipulating

the data structures. Specialized security tools have been constructed for running on a

trusted virtual machine (VM) to detect any security violation on a target VM [38, 42, 91].

Zhang et al. [125] first propose the concept of using an isolated device as the integrity

monitor. Then, Copilot [85] utilizes a PCI add-in card to periodically verify the hash

checksum of the kernel static data. Later, several system management mode (SMM) based

introspection mechanisms have been proposed [120, 17, 119, 59], where HyperCheck [120]

and SPECTRE [119] employ the SMM to outsource the snapshot of the kernel to a re-

mote server and conduct the introspection on the server side. HyperSentry [17] performs

the kernel measurement locally by periodically triggering the host’s SMM via an out-of-

band channel. Among SMM-based security mechanisms, multi-core platforms are only
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briefly mentioned in [17] on freezing all cores during the SMM-based measurement task.

The authors of HyperCheck [120] mention that it could be extended on multi-core pro-

cessors; however, there is no detailed design about it. Several introspection mechanisms

are proposed based on other hardware components which can check the kernel transpar-

ently [37, 100]. Ether [37] proposed an Intel-VT [51] based kernel analyzer to analyze

the software within the virtual machine. LO-PHI [100] transparently examines the ker-

nel memory snapshots without exposing any software-based artifacts by using additional

hardware sensors and actuators.

6.2.2 Synchronous Introspection

A number of synchronous introspection mechanisms [84, 97, 112, 43, 16, 60, 76] have been

proposed to work on different architectures too. On ARM processors, SPROBES [43] and

TZ-RKP [16] are two TrustZone-based synchronous introspection mechanisms proposed

recently. SPROBES [43] injects special code into the security-sensitive kernel handlers

so it can dynamically check these handlers in the secure world and provide the real-time

protection for the normal world. TZ-RKP [16] achieves a similar security goal but focuses

on monitoring the data integrity and optimizing the rich OS’s performance. Besides

utilizing existing hardware-features of the ARM processor, customized hardware has been

developed to snoop the memory bus and monitor the security-related writes to the kernel

area [60, 73, 76].

6.3 TrustZone-Based Network Connection

ARM TrustZone has been adopted to protect the network services on mobile devices. For

instance, TrustZone-based remote attestation enables secure message exchanges between

the secure world and the server [74, 66]. A challenge on mobile phones is that there is

usually a single NIC that is shared between the normal world and the secure world. One

solution is to use the network NIC drive in the normal world to send the encrypted packets
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created by the secure world, and use the TrustZone to verify and harden the network

driver in the normal world. TZ-RKP [16] protects the normal world kernel including the

normal world network driver. Li et al. [67] propose building up a trusted path from the

normal world network driver to the secure world. A complete secure network driver can be

implemented in the secure world [72, 103]. In single-core ARM systems, it must suspend

the normal world including its network driver to transmit secure packets. Even on the

multi-core platform, such a complete secure-world driver solution requires sophisticated

collaboration from the normal world to yield the NIC to the secure world. In TZNIC,

both the normal world and the secure world can share the same physical NIC by running

two network drivers on different CPU cores with the same driver interface.

Another line of research focuses on the management of the network peripherals instead

of utilization. Santos. et al. [94, 35] proposes the idea about utilizing the TrustZone to

restrict the peripheral usage via Trust Leases. Brasser. et al. [26] presents the idea to

control the normal-world network driver with the secure privilege in the restrict area, for

example, a classroom when students are taking tests. SeCloak [61] controls the periph-

eral’s availability by configuring it’s security attributes to make sure the peripheral is

successfully turned on or off. Unlike these works with the focus on peripherals’ ON/OFF

regulation, TZNIC’s scope include not only the management but also the utilization of

these peripherals.

6.3.1 Rust-assisted Systems

In past years, Rust language has become an attractive programming language for devel-

opers who have an interest in enhancing application security. As a memory-safe language,

Rust’s safety has been formally proved in RustBelt [56] in 2017. Meanwhile, lines of

works [64, 65, 63, 19, 110] have been proposed to adapt Rust into the development of

traditional C/C++ based systems. For example, TockOS [64] presents the idea to write

a complete embedded system OS in Rust. Moreover, Rust has been integrated with TEE

development [110, 41, 40]. For Intel SGX, Wang et al. [110] propose the open-source
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project Rust-SGX to deliver the Rust-based SDK for SGX enclave developers, and Fort-

anix Rust EDP [41] has implemented a similar idea. Regarding the TrustZone technology,

RustZone [40] first demonstrates the possibilities to migrate Rust into TrustZone TA de-

velopment, while lacking a thorough analysis of the security for each component insides

TAs. To the best of our knowledge, RusTEE is the first work that presents the complete

development kit set for TrustZone TA developers and provides the default features to

compile TAs in Rust-safe style.
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Chapter 7

Conclusion and Future Research

Directions

In this dissertation, we systematically study the security of the latest ARM architecture

and associated TrustZone technology. Specifically, we conduct the research on the follow-

ing three topics.

First, we propose the idea that when the secure and normal worlds are run simultane-

ously on the multi-core platform, the normal world can present a new-form evasion attack

named as TZ-Evader on the secure-world asynchronous introspection. The idea is evalu-

ated with detailed timing data on the ARM development board that equipped with the

latest ARMv8 multi-core architecture. Furthermore, we present the corresponding coun-

termeasure SATIN for securely inspecting the rich OS kernel while being strong enough

to defend the proposed attack.

Second, we present TZNIC, a TrustZone-assisted network mechanism that allows both

the normal and secure world OS to share one physical network peripheral. We propose the

design that the secure world can reliably retrieve the on-peripheral registers’ values and

deduce the normal-world driver’s information with these values. TZNIC further extends

this idea to fill the semantic gap between two worlds, and allow the secure world to reuse

the normal-world network driver without relying upon any cooperation from the rich OS.
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Moreover, since TZNIC requires zero modification on the normal-world side, it presents

excellent compatibility with the existing TrustZone-based systems.

Finally, we propose RusTEE, a Rust-based TrustZone application SDK, which assists

developers to compile the TA with the enforced memory-safety features. The TA relies

on the language-wise benefit of Rust to mitigate the previously reported implementa-

tion issues. Furthermore. RusTEE redesigns the system-services APIs and cross-world

communication channel of TA to resolve two architectural issues of TrustZone-assisted

TEE systems. With the enhanced security on both implementation details and architec-

tural features, RusTEE notably enhances the memory-safety of TAs and mitigates many

memory-unsafe vulnerabilities reported for the previous TAs.

While the dissertation has explored and evaluated the works on the three specific

TrustZone-based security issues, many related topics can be further exploited as listed.

• TZ-Evader presents the capability of a normal world OS to defeat the asynchronous

introspection of the secure world with the limitation that the attacker needs to

study the context-switch threshold before performing the evasion attack. However,

this threshold can vary case-by-case with different hardware configurations. In fu-

ture work, we plan to investigate more methods for the normal-world OS to probe

the secure world execution and raise the race condition accordingly. Meanwhile,

a systematic study can be performed for the secure world to analyze if any other

service besides the asynchronous introspection is affected by the proposed evasion

attack.

• Currently, TZNIC provides the best-effort solution to preserve the full functionali-

ties of the normal-world peripheral’s driver and only implement the smallest size of

the driver inside the secure world. In this case, the presented TZNIC mechanism

suffers the Denial-of-Service attack under the circumstances that the normal world

can sacrifice its peripheral availabilities. We consider it is an interesting topic to in-

vestigate another design philosophy, which is moving parts of the driver, such as the
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peripheral initialization and I/O buffer recycling, into the secure world. Such design

can provide the secure world with better availability-control on the peripherals since

the software interfaces are claimed and managed by the secure world directly. Mean-

while, the normal world will face network-based performance degradation by losing

these functions. By evaluating both strategies, we may achieve an ideal balance

between the secure world’s security and the normal world’s performance.

• We believe that RusTEE can bring extra benefits for the mobile manufacturers to

quickly review the security of third-party TAs. Before RusTEE, the manufacture

can only verify a TA’s security via manual inspection, which requires the verifier to

understand the complicated logic inside TA. In this case, if the SDK is opened to

third-party developers, many human efforts will be introduced to verify the third-

party TAs. Moreover, such manual verification only provides the security promise

based on personal experience, without any formal proof.After adapting RusTEE

into the manufacturer’s SDK, the manufacturer will have a straightforward and

reliable verification method, which is checking if the TA’s source code contains any

unsafe segment or calls any untrusted crate. We consider providing the automatic

verification script for checking third-party TAs in future work.
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