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Abstract: The field of biometrics is a pattern recognition problem, where the individual traits are
coded, registered, and compared with other database records. Due to the difficulties in reproducing
Electrocardiograms (ECG), their usage has been emerging in the biometric field for more secure
applications. Inspired by the high performance shown by Deep Neural Networks (DNN) and to
mitigate the intra-variability challenges displayed by the ECG of each individual, this work proposes
two architectures to improve current results in both identification (finding the registered person
from a sample) and authentication (prove that the person is whom it claims) processes: Temporal
Convolutional Neural Network (TCNN) and Recurrent Neural Network (RNN). Each architecture
produces a similarity score, based on the prediction error of the former and the logits given by the
last, and fed to the same classifier, the Relative Score Threshold Classifier (RSTC).The robustness and
applicability of these architectures were trained and tested on public databases used by literature
in this context: Fantasia, MIT-BIH, and CYBHi databases. Results show that overall the TCINN
outperforms the RNN achieving almost 100%, 96%, and 90% accuracy, respectively, for identification
and 0.0%, 0.1%, and 2.2% equal error rate (EER) for authentication processes. When comparing
to previous work, both architectures reached results beyond the state-of-the-art. Nevertheless,
the improvement of these techniques, such as enriching training with extra varied data and transfer
learning, may provide more robust systems with a reduced time required for validation.

Keywords: deep learning; biometrics; electrocardiogram; convolutional neural network; recurrent
neural network; authentication; identification; artificial neural networks; biosignal; RLTC

1. Introduction

Some traditional methods of identification and authentication, such as key-possession or
username-password, may prove ineffective against terrorist and criminal acts. Key areas of society,
such as border control, criminal identification, and electronic transactions, demand more reliable
solutions provided by Biometric Systems (BS). Accordingly, both the public and private sectors have
been increasing the investment in these solutions in the last decade [1,2].

The field of biometrics is a pattern recognition problem, where the individual traits of a person
are coded, stored into a database, and compared with the recorded biometric data according to two
approaches: identification (finding the registered person from a sample) and verification, also known
as authentication (prove that the person is whom it claims) [1,3,4]. These systems BS may be evaluated
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in several dimensions, such as universality, uniqueness, permanence, measurability, performance,
acceptability, and circumvention [3,5].

Since the application of elementary fingerprint recognition in 1883, research has been searching
for different and more reliable types of biometric data [6]. Nowadays, fingerprints, faces, hands,
veins, voices, irises, and other biological and behavioral features are used to identify subjects [7,8].
An example of another potentially useful biometric signature is physiological signals. These are electric
signals generated from the electrochemical changes in nerve cells, muscles, or gland cells, which may be
acquired from surface electrodes in contact with the skin. Some examples of physiological signals used
in biometrics are: the Electrocardiogram (ECG), extracted from the heart; the Electromyogram (EMG),
from muscle activity; the Electrodermal Activity (EDA), which tracks changes in skin conductivity,
expressing the activity of the sympathetic nervous system; and the Electroencephalogram (EEG) [9],
extracted from brain activity [3,10].

1.1. ECG Biometrics

Given its morphological signature and advances in sensing devices, the ECG has emerged as a
biometric modality with the promise of robustness against circumvention attacks and the ability for
continuous pervasive acquisition scenarios. Notwithstanding this, using non-invasive ECG presents
its challenges, such as noise, artifacts, and intra-subject variability [10,11]. The computation of features
may prove even more arduous when the contamination is present in characteristic points of the
waveform [12].

The sources of noise and more abrupt changes of the signal (artifacts) include electrode
material, sensor location, power-line interference, movement artifacts, and instrumentation of the
devices [13]. The intra-subject variability may be due to changes in the health status of the patient,
heart-rate variability, physical exercise, affective end emotional states, and drug consumption [10,11].
Nevertheless, the ECG remains stable over the years, sufficiently to allow recognition with an error
rate of 3% [14].

The morphology of the ECG cycle is related to its electrophysiological activity and comprises
the P, PQ interval, QRS complex, ST interval, and T waves [11,14]. According to the used
features, ECG biometric systems can be categorized as fiducial-based, in which heartbeat templates
are composed of features related to the relevant points of each cycle, and non-fiducial-based,
which consider the ECG signal as a whole, computing its features accordingly [1]. The inclusion
of both types of elements, to achieve better results, defines these systems as partially-fiducial [10,15,16].

1.2. Objective

ECG biometric systems struggle to find their way outside controlled settings due to the
intra-variability existent in real-life scenarios. Therefore, this work aims to provide one step further in
the abstraction of the individualized ECG signal to be used in real-life scenarios using state-of-the-art
technologies such as Deep Neural Networks (DNN).

In order to achieve this goal, two systems with distinct architectures are proposed (Figure 1)
as an effort to improve performance in both identification and authentication processes without
extracting human-crafted features: (1) a non-fiducial system which uses a Recurrent Neural Networks
(RNN) capable synthesizing ECG signals, outputting a score based on the error of prediction; (2) a
partial-fiducial system which uses a Temporal Convolutional Neural Network (TCNN), giving a score
based on the output of the last layer. Both scores computed and fed to the Relative Score Threshold
Classifier (RSTC), which classifies a single sample window or a chunk of windows. Both systems
will be benchmarked in three public databases used in BS literature: Fantasia [17], MIT-BIH [18],
and CYBHi [13,19].
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Figure 1. Proposed biometric systems. In (a) the trained model extracts features and has an output
which is used to calculate the probabilities—p—for each class, as for (b) the error of prediction—e—of
each model is used. RSTC is the classifier that validates or identifies which person does the input
sample belong.

2. Related Work

The literature that refers to the application of DNN architectures in ECG biometry is mainly
comprised of feed-forward or Convolutional Neural Networks (CNN) architectures. The practice
of using human-extracted features may be seen in [20] where a temporal frequency spectrograms
are produced with discrete wavelet transform. The extracted features from these time-frequency
matrices are fed into a feed-forward network for classification. As for the authors of [21], the feature
extraction module is bypassed, using the template of the ECG cycle as input to a feed-forward network,
for both feature extraction and classification. CNN architecture is also used in this context, in the
works of [22,23], this architecture is explored in both authentication and authentication biometric
processes. These fiducial systems feed their networks with the average cycle of the signal, based on
the neighborhood of the R peak of the ECG signal. The systems developed by [24-26] also use DNN



Sensors 2020, 20, 4078 4 of 21

technologies, but since they are trained and tested with the benchmarked datasets, they will be
discussed later in the “Fantasia”, "MIT-BIH”, and "CYBHi” subsections.

The improvements of these methods cover the generalization of the abstract notion of
an individualized ECG by employing one-dimensional time-series, as opposed to images or
human-extracted features and limiting the need to extract the QRS complexes, by developing
non-fiducial and semi-fiducial systems. This claim is empowered by including an off-person database
which has high intra-variability in most of the subjects. For benchmarking purposes, the rest of this
section will address related work using the referenced databases: Fantasia, MIT-BIH, and CYBHi.

2.1. Fantasia

PhysioNet was created under the auspices of the National Center for Research Resources of
the National Institutes of Health [27] and comprises several public physiological databases, such as
MIT-BIH and Fantasia. The Fantasia dataset contains 20 subjects aged between 21 and 34 years old
and 20 aged between 68 and 81, during 120 min of continuous supine resting ECG recording while
watching its homonym Disney movie [17].

This database was adopted by [28], which created a model that uses a reduced version of a set
of fiducial features by applying Principal Component Analysis (PCA), Linear Discriminant Analysis
(LDA), information-gain ratio, and rough sets (RS) achieving an accuracy of 90 + 8% for PCA, False
Rejection Rate (FRR) 5% for LDA, and False Negative Rate (FINR) of 4% for RS [28]. The same team
published a method that extracts and decomposes R-R intervals using Discrete Wavelet Transform
(DWT) and achieved 95.89% accuracy, FRR 0%, and FNR 5% [29]. The work of [15] includes the analyses
of the influence of the heart rate variability in the QT intervals and suggests their correction to improve
performance, leading to the identification rates with MultiLayer Perceptron (MLP) and Support Vector
Machine (SVM) of 97% and 99%, respectively. The study made by [24] feeds spectrograms’ extracted
features into a feed-forward network, such as [20], achieving an accuracy of 97.2% for the Fantasia
dataset; this work also has a reference to the MIT-BIH database.

2.2. MIT-BIH

The MIT-BIH Database has been available since 1999 in PhysioNet. The basic subset of this
database, MIT-BIH Arrhythmia, contains ECG records from 47 subjects with 360 Hz of sample
frequency and 11-bit resolution, from Boston’s Beth Israel Hospital. More subjects, with no significant
arrhythmic episodes, were added to this dataset, 18 subjects in MIT-BIH Normal Sinus and seven
individuals in MIT-BIH Long-Term [18].

This database has been used not only for validating arrhythmia detectors and other cardiac
dynamics analysis but also in the biometrics field. The MIT-BIH Normal Sinus Rhythm subset was
adopted by [30-32] to validate their models. The feature extraction method proposed by [30] is
comprised of Piecewise Linear Representation and Dynamic Time Warping (DTW) methods, and the
computation of similarity measurements is used for classification. Overall, the identification results
were close to 100% with the minimum of the half total error (HTER) of 0.2%. As for [31], the accuracy
has reached 99.07% by using a combination of ten features from heartbeat and sixty from coefficients of
the Hermite Polynomials Expansion fed into a Hidden Markov Model (HMM). In another case, several
classification methods were applied with characteristics of the QRS complex by [32] achieving the
accuracy of 98.3% for the Bayes Network, 99.07% for Naive Bayes, 99.07% for Multilayer Perceptron,
and 99.07% for k-Nearest Neighbor [32].

Combined subsets of the MIT-BIH were used by [24,33]. The first uses a semi-fiducial approach
in which a Wavelet Transform was applied together with an Independent Component Analysis
(ICA) analysis to detect each heartbeat. This information concatenated with the R-R intervals
information and fed into a SVM classifier. For the selected 23 records, which include the Normal
Sinus Rhythm and the Arrhythmia subsets, this work reached 86.4% accuracy for subject evaluation,
even though the focus was to classify heartbeat classes. The mentioned work from [24] achieved
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90.3% of accuracy for 47 individuals of MIT-BIH. The work developed by [25] claims to achieve a
98.55 % of accuracy in identification paradigm using a bi-directional Gated Recurrent Units (GRU)
network model incorporating for 47 records of the MIT-BIH Arrhythmia Database. In this article, they
compare several architectures, including CNN and Long Short-Term Memory (LSTM) models with a
fiducial approach.

2.3. CYBHi

The Check Your Biosignals Here initiative (CYBHi) dataset was acquired with an off-person procedure
without the use of skin electrodes. This database has been considered by [13] as one of the two best
public databases in terms of acquisition protocol and hardware for biometric studies, in comparison
with fifteen databases. The setup of the acquisition system consists of a pair of synchronized
sensors that were hand-shaped, in which the electrodes were placed on the fingers. The data
consists of two 2-minute acquisitions three months apart of 63 participants, 14 males, and 49 females
(18-24 years old) [19]. For this paper, the sessions will be named M1 and M2.

In literature, the outcome for authentication of [19] was an Equal Error rate (EER) of 9.1%
using an SVM classifier against the correlation between features extracted from ECG cycle templates.
Concerning [5], the extracted features from the ECG morphology are joined with the features extracted
from the R-R intervals with Nearest Neighbor Algorithm (NNA) and used for classification using a
Euclidean distance classifier. The identification rate of this study is 95.2% for the first test and 90.2%
for the second test. The work of [26] uses two CNN networks are fused together, one fed with the raw
ECG cycle, while the other uses the cycle’s spectrogram, described before, achieved EER values of M1
vs. M1 of 1.33%; M1 vs. M2 12.78%; M2 vs. M1 13.93%.

3. Materials and Methods

As stated before, two architectures were explored and compared using the same classification
method, the RSTC. The setup comprises RNN and TCNN approaches without the use of
human-extracted features. Even though both procedures are trained to create an internal representation
of the ECG waves, they have different outputs for calculating the same similarity score. While, for the
RNN approach, the score is based on the prediction error, the TCNN score is given by the output given
by the last layer, the logits layer. Before training and testing models, heavily corrupted windows were
removed by using the algorithm developed by [11] using the standard deviation feature.

Cross-validation was used for training and testing. For Fantasia and MIT-BIH, the training was
made within the first 33% of the ECG records, while the rest was reserved for the testing set. As for the
CYBHi database, the training and testing sets were divided for 50% of the dataset when each session
was tested, while, when crossing both sessions, 100% of the respective session was used. More details
will be given in the Results section. All of the inter-sectioned windows were removed to ensure that
both datasets did not share information between them.

3.1. Recurrent Neural Network Approach

The synthesizing of ECG signals in the previous work [34] provided a hypothesis that, if the
model is trained with the signal from subject A and fed with the signal from subject B, the prediction
error will be higher than if fed with the signal from the original subject A. Subsequent to the
observation of the results while testing this premiss, it was confirmed that it could be further explored.
The hyper-parameter tuning was made through careful observation and continuous try-and-error
procedures in search of better results using a subset of the Fantasia dataset.

In the RNN approach, data are firstly pre-processed (Figure 2), and later transformed by an
embedded matrix—E, three sequential GRUs—G, a dense layer with linear activation and a softmax
node [34].
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Figure 2. Pre-processing phase for the RNN procedure.

3.2. Pre-Processing

The pre-processing step starts with removing the moving average, followed by a convolution
with a Hanning window and normalized by a moving absolute maximum window. The benefit of this
approach is to mitigate the unwanted low and high frequencies resultant from the signal acquisition.
Following this procedure, the edges of the signal’s amplitude histogram were clipped, according to
a value of confidence, to reduce the influence of artifacts. This value was typically 0.5% but could
increase depending on the level of corruption of the signal. Due to the nature of the GRU networks,
the quantization of the signal (s) must be performed. This step consists of reducing the dimension of
the possible amplitude values. After the transformation, the signal will be comprised of Sp (signal
dimension) number of possible values, which was set to 512. The higher the value of the signal
dimension (Sp), the higher the detail is retained from the signal. In summary, the resultant signal (x) is
obtained with the following equation:

xn, = round < { Sn — min(s) ] -[Sp — 1]) , (1)

max(s — min(s))

where x;, is the n-th sample of the input vector and s, is the raw n-th sample of the raw signal (s).
The variable k € {0,1,...Sp — 1} represents the number of possible integer values x, may take.

Finally, the signal was segmented into windows of size W with overlap between them. The overlap
percentage was 67% for the “Fantasia” and “MIT-BIH” datasets and 89.1% for the “CYBHi” datasets,
to increase the amount of data.

3.3. Architecture

The architecture depicted in Figure 3a comprises one embedding matrix (E), commonly used for
text processing. It functions as a translation mechanism between the input and the three GRU layers
(G). The input is an integer that maps to the corresponding x;,-th column of the matrix E. This matrix
initialized randomly, but it is optimized during the training process, adjusting itself to the possible
input values along with the other parameters.
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Figure 3. Proposed architectures. (a) depicts the whereRNN approach, where each input (x;) is fed
into an embedded matrix (E) and, consequently, into a sequence of three GRU (G) cells. The output of
this sequence is transformed through a fully connected network and a softmax function resulting in 0.
(b) depicts the TCNN approach, where a time window (TW) and the first complete cycle are input to
two different sequences of CNN blocks (CN) each comprised of a one-dimensional convolutional layer
with an N dilation factor, batch normalization, and a ReLU activation function. One of the networks
has an N number of blocks while, for the other N — 2, they both end in a fully connected network.
Finally, both of the resultant vectors are summed producing the logit vector for classification.

As stated before, in [34], this architecture is shown to synthesize biosignals, validated by the
prediction error. As the signal which trained the model is fed into itself, the prediction error is lower
in contrast to the signals with other origins. In the case of biometry, this notion is expanded to the
specific source of the signal, i.e., this network should be able to learn the ECG individual intricacies
of each subject. Following this reasoning, the produced similarity score (S(p, i, w)) is given by the
following equation:

e(p,i,w) 2

Spiw) = G w)

where e is the prediction error made by each predictor—p—for the time-window w of the signal which
belongs to the subject i. The expression max(e(:, i, w)) represents the maximum for the same window
w for all predictors. Each model is trained for each subject while predicting the next sample amplitude.
These models were trained using mean-squared error using the RMSProp [35] optimization algorithm.
The prediction error is provided by the loss function given by the following equation:
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LY - g2 o
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where the W is the window size (number of samples in the time-window), ,; the predicted n-th sample
and y, the real sample value. Note that the s, is the raw signal, x, is the quantized signal, while v, is
equal to x,, dephased by one sample since the RNN architecture predicts the next sample [34].

In summary, the parameters required for this architecture are the time-window size (W),
the overlap ratio, the edges cropping ratio, the quantization dimension of the signal (Sp), and the
number of hidden nodes in each GRU (Hp).

3.4. Temporal Convolutional Neural Network

The second proposed approach is a two-stream TCNN [36], which uses one-dimensional
convolutional layers with dilated convolutions to learn temporal patterns. It combines predictions
from two different inputs: ECG non-fiducial window segment and a sub-segment of the same window
containing only one full cycle centered in R peak of the QRS complex. Earlier configurations of this
CNN were assembled and experimented, such as including spectrograms as input [37], and others
including a one-dimensional CNN without the use of dilated convolutions. After testing using Fantasia
and CYBHi datasets with try-and-error parameter hyper-tuning, the resultant architecture provided
the best results in relation to the previous versions.

Before data are fed into the networks, the signals are pre-processed by removing the moving
average, convolution with the Hanning window, normalized with the absolute maximum, and finally
segmented, analogous with the RNN procedure.

Within this architecture, depicted in Figure 3b, each network is composed of several convolutional
layers with 24 kernels of size 4, followed by batch normalization and a ReLU activation function.
At the end of each network, two fully connected layers, the first with 256 units while the second with
the number of individuals are applied to the end of each network. The number of convolutional layers
for the Fantasia and MIT-BIH databases is 6 of sizes 256, 128, 64, 16, 8, and 4 for the non-fiducial
network and 4 of 64, 16, 8, and 4 for the fiducial network. The input window had 256 samples for
these databases. For the CYBHi database, due to the increase of the sampling frequency, each network
had an increase of two initial layers, 1024 and 512 added to the previous layers of the non-fiducial
network, and 256 and 128 added to the previous layers of the fiducial network. The input window of
this dataset had 1028 samples.

Each CNN was trained using the Adam optimizer [38] with the cross-entropy loss function (L),
given by:

~\>—\

1Y fitog () + (1- ) log (1= 7)] @

where the I is the number of subjects, 7 is the predicted subject index, while i the real subject index.
Subsequently, after each network is trained independently, the logit vectors from both networks are
fused with the sum rule. The score, in this case, is given by subtracting one to the normalized output
vector (0), according to this equation:

o(p,i,w) 5)

Stpivw) = 1= oG )

The parameters specific for this architecture are the time-window size (W), the overlap ratio,
the size, and the number of filters in each of the convolutional layers, and the size of the fully connected
layer before the logit layer. The number of layers depends on the size of the input window.
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3.5. Relative Score Threshold Classification

The RSTC is a simple method that classifies by choosing the lowest normalized similarity score
(S(p,i,b)) for each batch of windows (b); consequently, S is a three-dimensional tensor with dimensions
(I x I x B), where B is the size of the batch. This measurement is calculated after normalizing in
relation to each predictor. When B is higher than one, then only the minimum of that batch of windows
is considered, according to the following function:

Sp,ip = min [{Sp,i,B-h/Sp,i,B-b+1/- : ~,5p,i,B-h+B}} ’ (6)

where the notation B - b represents the multiplication of the batch number by the batch size, for index
purposes. The following normalization for each b in relation to the p is determined by:

S,,ip —min(S. ;)

’ @)

Spiv= = =
PP max [S,;, — min(5, )]
where minimum and maximum values are calculated in respect to all predictors for each batch of
windows. Considering that S(p,i,b) € [0, 1], the value 0 encodes to the most probable class, while
1 codes to the lower probable one. The predicted class for the identification paradigm (C’) for each
individual (i) and batch of windows (b) is given by:

Ci{b = arg min {S:,,’,b} (8)
r

3.6. Evaluation

The identification evaluation made by the multimodal classifier (C!) is given by the accuracy,
specificity, and sensibility. The authentication evaluation is made by the EER that is obtained on the
Receiver Operating Characteristic (ROC) curve, when FNR = False Positive Rate (FPR) for each binary
classifier (C*). The authentication paradigm is evaluated with this measurement because these systems
prioritize the compromise between the minimization of the possible imposters to breach the system,
with the maximization of the number of rightful individuals who can access the system. Each binary
classifier is made by comparing the score of all predictors p for each individual i and all windows w
with a changing threshold (6). This system is fine-tuned for each individual and the output gives if
that specific b of windows belongs to the claimed individual:

A _ 1, if S(p,ib)<é )
P00, i S(pib) > 6

When C;" ; p has the value 1, the classification for class A is positive, while 0 when negative. The ROC is
calculated with an array of changing thresholds and the EER may be extracted for all the intersections
with the diagonal where FNR = FPR. Since each individual has its own fine-tuned ROC, the mean and
standard deviation must be calculated and used for evaluation. An example of how these thresholds
are obtained is depicted in Figure 4
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Figure 4. Distribution of the score of the RNN network for the predictor ECG 8 for each of the ECG
signals of the Fantasia Dataset. While (a) refers to a single window of 512 samples, (b) is using the
evaluation for a batch size of 20 windows. J1, d, and J3 are three examples of increasing threshold
values.

4. Results

This section will present the results according to each database, ordered in increasing average
intra-variability across subjects. Apart from the validation for identification and authentication
processes, the Fantasia dataset will be the benchmark to test the used methods and robustness of the
proposed algorithms.

4.1. Fantasia

All data were segmented in windows of 512 samples (approximately 2s) with an overlap of
67%. After the rejection algorithm, the selected windows were on average 1464 windows of a total of
3787 per subject.

The score distribution per subject when the test set is fed into the RNN model trained with
ECG, 8 is depicted in Figure 4. The scores distribution, which is presented in Figure 4a, considers all
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batches of windows with B = 1 and B = 20 in Figure 4b. When analyzing this example, it can be
observed that, with the increase in the number of windows contained in each batch, both average
and standard deviation are reduced. The three thresholds presented in Figure 4 will have a different
binary classification for the predicted ECG, 8 when fed to different values of B. In the case of (a), the J;
threshold will give a positive value for most of the ECG 23 batches, which is false. When both 4, and
03 thresholds are considered, most of the ECG, 8 batches will increase, at the cost of increasing also the
number of imposters.

When the B increases to 20, the variance and average value of ECG 8 will decrease significantly.
In this case, 6; will now classify correctly most, or even all, of the ECG 8 batches, while reducing the
number of ECG 23 classified incorrectly, ensuring lower values for the FNR and FPR. Both d, and J3
thresholds will produce more imposters while maintaining the same number of correct classifications.
The ROC curve is generated for each predictor and each batch size, producing different values for EER
that can be interpreted for authentication systems.

The identification rate, i.e., accuracy for the identification paradigm, for both algorithms is
depicted in Figure 5. Close inspection reveals that both algorithms increase accuracy with time
per batch, but the TCNN algorithm starts with higher accuracy, being outperformed by RNN after
approximately one minute of signal per batch. While the RNN algorithm increases until reaching close
to 100% at approximately 112 s, the TCNN algorithm reaches 99.1% after approximately 90 s, but its
curve displays a steady behavior. The best results are presented in the confusion matrices of Figure 5b
for RNN and Figure 5c TCNN approaches.

The results for the authentication mode are depicted in Figure 6a,b which show the evolution
of the EER per time contained each batch. Both RNN and TCNN achieve values very close to 0%
at 80 s, but the TCNN reaches those values with a lower standard deviation and sooner than the
RNN counterpart.
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Figure 6. Results for the authentication paradigm related to the Fantasia dataset. (a,b) depict the
evolution of the EER values over time for both approaches.

4.2. MIT-BIH

All the MIT-BIH signals were resampled to a frequency of 250 Hz to ensure that the same
sampling frequency is maintained in all datasets for a rigorous comparison. The rejection rate of the
noise removal algorithm was on average 42% for each subject.

The conducted identification test utilizing the MIT-BIH database can be observed in Figure 7,
showing that the accuracy curves have similar behavior as the ones in the Fantasia dataset. For the
sake of comparison with the bibliography, an analysis of the Normal Sinus Rhythm dataset was also
made in detail (Figure 7). The RNN approach does not go above 93% for all the MIT-BIH but reached
almost 100% accuracy for Normal Sinus Rhythm. When analyzing Figure 7b, it is possible to see the
diagonal clearly, but some trained models generalize the ECG signals instead of the individual traits
and, consequently, classifying incorrectly. Some possible limitations include the loss of information
during resampling, sensibility to noise, and symptomatic behavior of the arrhythmia events. The last
option is supported with the results close to 100% accuracy for the Normal Sinus Rhythm subset.

Concerning the TCNN approach, even though the 96.4% is reached after more than 2 min for the
full MIT-BIH database, one can observe that values close to 96% are reached after 10 s, reaffirming
its stability and robustness to noise. The confusion matrix depicted in Figure 7c shows that only
two predictors display a faulty behavior, probably due to the presence of arrhythmia events. When
examining the individuals from the Normal Sinus Rhythm, the accuracy reached almost 100% after
approximately 10 s (Figure 7a).

The authentication evaluation of all the MIT-BIH individuals is displayed in Figure 8a,b. These
figures show that the TCNN approach reaches EER values close to 0% with 72 s in each batch and
approximately 1.5% for RNN. Even though the best result for TCNN is after 1 min, the values are quite
low from the start.
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Figure 7. Results for the identification paradigm related to the Fantasia dataset. (a) displays the
evolution of accuracy for Fantasia Dataset with increasing batch size. (a,b) depict the confusion
matrices for the best identification performance for both architecture approaches (ac is accuracy, sc is

specificity, and st is sensitivity).
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Figure 8. Results for the authentication paradigm related to the MIT-BIH dataset. (a,b) depict the
evolution of the EER values over time for both approaches.

CYBHi

As mentioned before, the CYBHi database comprises two sessions with a time distance of three
months. Therefore, both algorithms are evaluated with all the combinations of both sessions (M1
and M2) for cross-validation, simulating the enrolment and verification environments of a biometric
system. This means that each model was trained using the first element and tested with the second of
the following sets: “M1 vs. M1”, “M2 vs. M2”, “M1 vs. M2” and “M2 vs. M1”.
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The segmentation of the signal was made with an 89% of overlap to increase the number of
available time-windows. The clustering method rejected 8.93 & 22.2% of the total signal length on the
first session and 9.97 & 24.2% on the second. As stated before, when the training and testing session
was the same (“M1 vs. M1”, “M2 vs. M2"”), the data were separated by 50% and 100% of each session
across sessions (“M1 vs. M2” and “M2 vs. M1”).
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M2 vs M2 - RNN - 63.5%
100 —— M1 vs M2 - RNN - 28.0%
M2 vs M1 - RNN - 23.4%
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Figure 9. Results for the CYBHi dataset for each approach. M1 represents the first session while M2
represents the second session. (a) depicts the results for the identification paradigm, displaying the
evolution of accuracy with increasing batch size. (b) displays the evolution of EER with increasing
batch size for the authentication paradigm.
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Since this dataset displays a high variability within subjects due to the low Signal-to-Noise Ratio
(SNR), the robustness of the method is imperative for good results. Figure 9a shows that the TCNN
algorithm achieves results above 90% for “M1 vs. M1” and 100 % for “M2 vs. M2”, even if the
amount of information was significantly lower than the previous datasets. The decrease of crossing
both sessions was significant as expected, revealing accuracies only above 75 % for both “M1 vs.
M2” and “M2 vs. M1”. The low accuracy presented by the RNN approach reflects the sensitivity
to noise. Figure 9b shows that the EER achieved 4.3% and 6.1% for “M1 vs. M1” and “M2 vs. M2”,
respectively, using the RNN models, while TCNN displays results close to 0%, probably due to the
temporal proximity of the training and testing sets. As for the evaluation across different sessions, the
EER for the RNN approach is 18.3% and 18.8% for “M1 vs. M2” and “M2 vs. M1”, respectively, and
2.2% and 4.1% for the TCNN in the same order. These results outperform the current state-of-the-art
for off-person measurements.

5. Discussion

Table 1 summarizes the results per database concerning the consulted literature. This report
suggests that the TCNN approach outperforms most of the other studies in both identification and
authentication paradigms. The robustness of this architecture is mainly due to the combination of
bringing together both fiducial and non-fiducial machine-learned characteristics of the signal through
the fusion layer. The only exception was for the "CYBHi M1 vs. M2” results for the identification
modality, as Lourenco et al. (2012) [5] has better results, which can be explained mainly due to
two reasons: (1) only 32, as opposed to 68, people were used and (2) the procedure was completely
fiducially-based. The high accuracy that both approaches obtained comes with a cost of training
time. For example, the RNN training time, using the CYBHi database and a computer with an Nvidia
GTX 1080Ti GPU, had an average of 36 hours per subject, totaling approximately 2300 hours for
this database, but only takes a few seconds to print the testing results. For the implementation of
this system at an industrial level, this limitation should be mitigated as retraining should be faster,
especially when the number of individuals increases.

It is possible to observe that the results for the CYBHi dataset regarding inter-sessions are lower
due not only to the increase of the noise and artifacts displayed in the signal but also to the changes
in the mental and emotional states of each user. This statement emphasizes the challenge that the
biometrics systems face due to the intra-variability of the subjects. Hence, more acquisition setups
should be made, such as expanding the number of people, extending the acquisition time, and
increasing the number of acquisition sessions. Added to this, the amount of cleaner data would impact
significantly the training of the models and, consequently, these measures would not only provide
higher accuracy and EER but also more confidence in the results shown to claim that the systems were
capable of a successful generalization.

The implementation of a biometric system including the TCNN approach in a real-life scenario
recognizes several challenges: (1) the high computational time, which increases significantly with the
number of samples per window and the number of individuals; (2) when a new person is added to the
model, all training must be repeated; (3) this approach is viable for a suitable number of individuals,
but to use on a scale of millions, the training and testing process will be costly or even impossible with
state-of-the-art computational power and memory; and (4) the need to extract the peak information,
which sometimes is not feasible, especially when the slow waves (such as T or U) reach higher values
than the R wave.

For tackling these concerns, the use of transfer learning could prove useful. If the training of a
network introduced a first learning stage with a different database for recognition of the basic structures
and inner mechanisms of the ECG morphology, the second stage of learning, it would fine-tune the
appropriate filters for source recognition and optimize faster. Data augmentation would also be a
solution to improve the training procedure, but with the intent to avoid over-fitting of the training
data, novel solutions should be addressed. The current ECG synthesis methods need to encompass the
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variability of the data, but to keep certain aspects of the frequency due to the non-fiducial aspects of
these algorithms. The study conducted by Belo et al. (2017) [34] shows great promise for this endeavor,
but experiments have shown that the frequency of the synthetic ECG was very machine-like in terms
of frequency, as it did not embed the semi-randomness of the cyclic behavior of the signal.

Even though the RNN achieves state-of-the-art results for the Fantasia and Sinus Normal Rhythm
of the MIT-BIH, the sensibility to changes in the signal is higher than the aforementioned architecture.
The main advantages of the RNN architecture are that all the models are independent, so there is no
need to train them all again when adding a new person to the biometric system, the fact that it is
non-fiducial, this system is viable for good quality acquisitions, and it is possible to generate the signal,
in order to track if the model is well trained.

Table 1. Fantasia Dataset.

Study Database Acc EER
Tantawi et al. (2013) [28] 90.0% -
Tantawi et al. (2013) [29] 95.9% -
Gargiulo et al. (2015) [15] Fantasia 99.0% -
RNN 100%  0.02%
TCNN 99.1%  0.02%
Wang et al. (2008) [39] 98.1% -
Fatemian and Hatzinakos (2009) [40] 99.6% -
Wang et al. (2008) [39] 94.5% -
Rabhi and Lachiri (2013) [31] MIT-BIH Sinus 99.0% -
Sidek et al. (2014) [32] 99.1% -
RNN 100%  0.6%
TCNN 100% 0.0%
Lynn et al. (2019) [25] MIT-BIH Arr 98.6% -
RNN MIT-BIH 92.7%  1.5%
TCNN Arr, Sin, Long 96.3% 0.1%
da Silva et al. (2014) [19] 94.4% -
Lourenco et al. (2012) [5] 95.2% —
da Silva Luz et al. (2018) [26] CYBHi M1 vs. M1 =~ - 1.3%
RNN 46.7%  6.1%
TCNN 100% 0.2%
Lourengo et al. (2012) [5] 90.2% -
da Silva Luz et al. (2018) [26] CYBHi = - 12.8%
RNN M1 vs. M2 28.0% 18.3%
TCNN 60.3%  2.2%
daSilva Luzetal. (2018)[26) - 14.0%
RNN CYBHiM2vs. M1 235% 18.8%
TCNN 61.0% 4.1%
RNN CYBHi 63.5%  4.3%
TCNN M2 vs. M2 100%  0.0%

6. Conclusions

This study has shown the usefulness of DNN in enhancing current biometric systems.
These technologies allied with the massive collection and storage of biological data will provide
powerful and robust systems, increasing the level of security, reducing the concerns of counterfeiting
actions. Even though the challenges presented by the intra-variability issue impacted the results of
these architectures, it is possible to state that they improved comparing with the literature increasing
one step towards the true abstraction of each subject’s ECG signal.

Even though the RNN and TCNN systems provided good results, their limitations could be
surpassed if both architectures were combined. Other state-of-the-art downsampling methods could
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also be applied to mitigate the loss of information while increasing the training speed. The next steps to
implement in a real-life scenario would be the introduction of transfer learning in the training process,
the acquisition of extra time windows per person, the addition of more individuals, and the extension
of the number of sessions through time. The study of the impact of the noise and the scalability
of these systems would also give an added value. Finally, the training/retraining/inference time
of these systems should be analyzed and enhanced for real-life applications for delivering close to
real-time solutions.

One factor that could give a higher generalization and detection capabilities would be the inclusion
of different electrode configurations for the clinical-grade ECG so that the DNN model learns the
different angles of the signal gaining robustness over the different placements. The analysis of different
emotional and mental states could also be very important, as the ECG signal can change under
different conditions.
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