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Abstract 
 

The effect of drying on two brown seaweed (Cystoseira abies-marina, Cystoseira humilis) 

and two red seaweed species (Asparagopsis armata, Asparagopsis taxiformis), collected from 

the Azores Archipelago, was evaluated through the study of their proximate and mineral 

composition, relevant biological activities, such as antioxidant and anti-inflammatory properties, 

and significant bioactives, namely polyphenols and beta-glucans. Ash and protein content ranged 

from 25-56 g/100g dw and 3.5-13.1 g/100g dw, respectively. Sun-dried C. humilis had the highest 

moisture decrease. Concerning insoluble dietary fibre content, the genus Cystoseira presented 

superior concentrations (43.7-53.6 g/100g dw). Contrarily, the soluble dietary fibre content is 

superior in the Asparagopsis genus (8.0-13.2 g/100g dw). For the proximate composition, no 

significant differences were detected concerning the drying procedure. Seaweeds from the 

Cystoseira genus showed high polyphenol levels (176-678mg GAE/100 g dw), exceeding those 

determined in the Asparagopsis genus, regardless of drying process. This was partially reflected 

in the antioxidant activity, which showed that extracts from the Cystoseira species were often 

more antioxidant than those from Asparagopsis species. The influence of the drying technique 

upon the antioxidant activity was limited, since in many instances there was no effect. Concerning 

anti-inflammatory activity, in the case of shade-dried samples, C. humilis had a higher activity 

(>30% COX-2 inhibition) but was not rendered bioaccessible. Indeed, only A. taxiformis displayed 

anti-inflammatory activity in the bioaccessible fraction, leading to bioaccessibility factors in the 

90-100% range. Therefore, though bioactivities were higher in the Cystoseira species, 

Asparagopsis species also had a positive bioactive potential. Sun-drying produced more negative 

effects than shade-drying, despite not being very extensive. Regarding elemental composition, 

iodine was present in a considerable amount in the Asparagopsis genus. Iron had high 

concentrations in the four species. Regarding contaminants, Cystoseira abies-marina showed 

high arsenic concentrations. Iodine, bromine, magnesium, and cadmium showed the highest 

bioaccessibility percentages. 

 

Keywords: Asparagopsis, Cystoseira, Bioaccessibility, Antioxidant, Anti-inflammatory 
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Resumo 
 

O efeito da secagem de duas algas castanhas (Cystoseira abies-marina, Cystoseira 

humilis) e duas algas vermelhas (Asparagopsis armata, Asparagopsis taxiformis), coletadas no 

Arquipélago dos Açores, foi avaliado através do estudo da sua composição proximal e mineral, 

atividades biológicas relevantes, como propriedades antioxidantes e anti-inflamatórias, e 

compostos bioativos, nomeadamente polifenóis e beta-glucanos. Obteve-se uma variação de 25-

56 g/100g dw relativamente ao teor de cinza e de 3,5-13,1 g/100g dw, relativamente ao teor de 

proteína. C. humilis seca ao sol ficou mais seca. Quanto ao teor de fibra alimentar insolúvel, o 

género Cystoseira apresentou concentrações superiores (43.7-53.6 g/100g dw). Pelo contrário, 

o teor de fibra alimentar solúvel foi superior no género Asparagopsis (8.0-13.2 g/100g dw). O 

método de secagem não influiu significativamente na composição proximal. As macroalgas do 

género Cystoseira apresentaram um elevado teor de polifenóis (176-678mg GAE/100g dw), 

superando os valores obtidos para o género Asparagopsis, independentemente do processo de 

secagem. Isso refletiu-se parcialmente na atividade antioxidante, pois os extratos de Cystoseira 

eram frequentemente mais antioxidantes do que os de Asparagopsis. A influência da técnica de 

secagem sobre a atividade antioxidante foi limitada (em muitos casos sem efeito). Em relação à 

atividade anti-inflamatória, nas amostras secas à sombra, C. humilis apresentou maior atividade 

(>30% de inibição da COX-2), mas não se tornou bioacessível. Apenas A. taxiformis exibiu 

atividade anti-inflamatória na fração bioacessível, com resultados no intervalo de 90-100%. 

Portanto, embora as bioatividades fossem maiores nas espécies Cystoseira, as espécies 

Asparagopsis também apresentaram um alto potencial. A secagem ao sol produziu mais efeitos 

negativos do que a secagem à sombra, apesar de não serem muito significativos. Relativamente 

à composição elementar, observou-se um elevado teor de iodo nas Asparagopsis. O ferro 

apresentou elevadas concentrações nas quatro espécies. Em relação aos contaminantes, 

Cystoseira abies-marina apresentou altas concentrações de arsénio. Iodo, bromo, magnésio e 

cádmio apresentaram a maior bioacessibilidade. 

 

Palavras-chave: Asparagopsis, Cystoseira, Bioacessibilidade, Antioxidante, Anti-inflamatória 
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1. Introduction 
 

1.1. Marine Algae 
 

Algae are autotrophic organisms that live in water or in moist environments. These 

organisms have a wide geographical distribution, being mainly abundant in rivers, seas, and 

lakes. They occupy the euphotic region (i.e., the upper 200 meters of water, where the light is 

effective to perform photosynthesis). Some algae inhabit in adverse environments and may 

endure extreme conditions1. 

Algae, whose habitat is in water, may be planktonic (microalgae) – have a small 

dimension and be suspended in water (microscopic) - or benthic (macroalgae) – be connected to 

a surface (typically rock) -, and reach a larger size (macroscopic), having the capacity to reach 

up to 50 meters in length1,2. 

 

1.2. Marine Macroalgae (or Seaweeds) 
 
Seaweeds are autotrophic organisms that belong to the Eukaryota (or Eukarya) domain. 

They can be classified as Phaeophyta (brown algae), Chlorophyta (green algae) or Rhodophyta 

(red algae). Their classification is mainly based on their coloration, that can be explained by the 

expression of different pigments present in their cells, but also based in genomic analysis that 

justify the maintenance of the phylogenetic structure established, and their nutrient and chemical 

composition3,4. Brown seaweeds belong to the phylum Heterokontophyta (or Ochrophyta) and 

their pigments are chlorophylls a, c and carotenoids (fucoxanthin’s abundance accounts for their 

brown colour); green seaweeds belong to the phylum Chlorophyta, and their pigments are 

identical to the ones found in terrestrial plants (carotenoids and chlorophylls a, b); red seaweeds 

belong to the phylum Rhodophyta, and have photosynthetic pigments such as carotenoids 

(zeaxanthin, β-carotene, and lutein), chlorophyll a, and some phycobilins (R-phycoerythrin and 

R-phycocyanin)1,2. 

Similar to plants, seaweeds have in their composition numerous healthy compounds. The 

fact that they are able to produce secondary metabolites that are known for their biological 

activities, makes them a source of functional ingredients3,5. 

Marine algae are already used for the treatment of a range of health problems. For 

instance, brown algae may be used against arteriosclerosis, rheumatic processes, and 

hypertension; green algae may operate as anti-helmintics; and red algae are used as 

anticoagulants, anti-parasites, and against gastrointestinal problems. This is due to several 

substances in algae that influence human homeostasis6. 

There are many benefits in seaweed extracts - they yield substances such as agar-agar 

(E406), carrageenan (E407) and alginates (E400). Such phytochemical hydrocolloid substances 

find application mostly due to their rheological properties, in textile, food, paper and dairy sector. 

They may hold highly relevant bioactive substances1,7,8. 
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1.2.1. Brown Algae (Phaeophyta) 
 
Brown algae (or Phaeophyta) exhibit a golden-brownish colour9. The division Phaeophyta 

is deemed to encompass 13 orders (Bold & Wynne (1985))10, yet only three orders, Laminariales, 

Fucales, and Dictyotales, were previously studied for their phytochemicals11. 

The colouring of brown algae can be explained by the importance of fucoxanthin, which 

overshines other pigments (i.e., chlorophyll a and c and other xanthophylls), showing antioxidant, 

antidiabetic and anti-inflammatory activities11,12. Moreover, brown algae also have other important 

categories of secondary metabolites including polyphloroglucinol polyphenolic compounds13 and 

non-polyphenolic, non-polar secondary metabolites such as terpenes14, besides being rich in 

polysaccharides such as fucoidans and laminarins, and alginates. 

Sulfur-containing carbohydrates from seaweeds may also show anti-coagulant, anti-

tumour, anti-thrombotic, and anti-viral activities. These biomolecules act in the immune and 

inflammatory systems, shield cells from viral infection and have anti-proliferative effects on 

them11. 
 

1.2.2. Red Algae (Rhodophyta) 
 
Red algae (or Rhodophyta) encompasses 5000–6000 species of mostly multicellular 

organisms. Phylogenetically they are the oldest division of lower plants15,16. They inhabit mainly 

marine environments. 

A mixture of biochemical and ultrastructural features makes these algae distinct among 

other eukaryotic lineages. More precisely, the fact that the photosynthetic pigment is chlorophyll 

a, being light led to the reactive area by phycobiliproteins (phycoerythrin, allophycocyanin and 

phycocyanin). Pigments are involved in hemi-spherical protein complexes – phycobilisomes - 

attached to the surface of thylakoids4,15,17,18. 

Galactans are the major polysaccharides present in Rhodophyceae. While agar contain 

D- and L-galactose, carrageenan is composed only by D-galactose19. Agars and carrageenans 

are prepared industrially from algae in large quantities and are used as gelling and stabilizing 

agents20,21. Red algal galactans often show potent antiviral, antitumor and antioxidant 

activities16,22,23. 

Taxonomically, red algae are classified into two classes: Bangiophyceae and 

Florideophyceae24. Floridean starch isolated from the latter class, after which it is named, is a 

special type of starch that contains only amylopectin. Members of Bangiophyceae may, however, 

have both amylose and amylopectin in their starch granules24. 

Floridean starch hold several low-molecular glycosides, that act not only as primary 

photosynthetic reserve products, but also as osmoregulators. Floridoside (2-O-α-D-

galactopyranosylglycerol) (Figure 1.1) may be considered the most commonly distributed 

substance of this group16,25. 
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Figure 1.1. Structure of floridoside (2-O-α-D-galactopyranosylglycerol)16. 
 

As to neutral structural polysaccharides, red algae is composed by cellulose, a linear (4)-

linked-D-glucan, found in the cell walls in moderate amounts (usually less than 10%), mannans 

and xylans16,26. 

 

1.3. Studied Species 
 

1.3.1. Asparagopsis taxiformis 
 

Asparagopsis taxiformis (Delile) Trevisan de Saint-Léon, also known as Supreme Limu 

(Figure 1.2)27, is a red seaweed, from the phylum Rhodophyta, subphylum Eurhodophytina, class 

Florideophyceae, subclass Rhodymeniophycidae, order Bonnemaisoniales and family 

Bonnemaiosoniaceae28. The colour of this seaweed can vary from yellowish red to dark red. Its 

structure possesses a base with rigid erect branches covered in numerous soft and fuzzy 

branchlets that get shorter near the top. Asparagopsis is salted and may be eaten cooked or raw 

– displaying a spicy flavour and an intense odour29. 

Asparagopsis inhabits reefs at one metre (and more) depth. It has a wide distribution 

across temperate and tropical marine coastal ecosystems30 – they have populations spread in 

Atlantic, Mediterranean, and Indo-Pacific regions31. 

Asparagopsis species show strong antimicrobial features31-32. This genus produces a 

variety of biomolecules, such as acrylates and ketones, that may be bioactives31,32,33. Their 

production is linked to the capacity of algae to avoid autotoxicity by storing them in specialized 

storage structures31. 

 

 

Figure 1.2. Asparagopsis taxiformis attached to rocks. Azores Islands, Atlantic Ocean. SeaExpert, 2019. 
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1.3.2. Asparagopsis armata 
 

Asparagopsis armata Harvey (Figure 1.3)2, is a red seaweed from the 

phylum Rhodophyta, subphylum Eurhodophytina, class Florideophyceae, 

subclass Rhodymeniophycidae, order Bonnemaisoniales and family Bonnemaisoniaceae28. A. 

armata is native to the Southern Hemisphere (Australia and New Zealand) but is also present in 

Northern Hemisphere. Nowadays, it has expanded almost to all marine environments. It is 

described as a gametophyte plant that occurs in June-September, with a pale purplish-red colour 

that changes to orange when the seaweed is removed from water. 

A. armata extract shows antioxidant and antibacterial activities. It is used in many 

cosmeceuticals, presenting anti-cancer activity1,34,35, and it is collected from the wild or cultivated 

for the extraction of hydrocolloids1,36. Asparagopsis species are present in the Atlantic and the 

Pacific area, where they find dermo-cosmetical and pharmaceutical applications37. The extracts 

of this seaweed may contain anti-parasite38, antiviral39,40, antimycotic34, and antimicrobial34,41,42 

compounds. 
 

 

 

Figure 1.3. Asparagopsis armata attached to rocks, Azores islands, Atlantic Ocean. SeaExpert, 2019. 
 

1.3.3. Cystoseira abies-marina 
 

Cystoseira abies-marina (S.G. Gmelin) (Figure 1.4) is a brown seaweed from the 

phylum Ochrophyta, class Phaeophyceae, subclass Fucophycidae, order Fucales and 

family Sargassaceae28. 

This species has a characteristic cylindrical axle43. C. abies-marina is mostly present in 

Macaronesia in areas subjected to wave energy. Its extracts display antioxidant44,45,46, 

antimicrobial1, and cytotoxic44 activity. 

 

 

Figure 1.4. Cystoseira abies-marina attached to rocks, Azores islands, Atlantic Ocean. SeaExpert, 2019. 
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1.3.4. Cystoseira humilis 
 

Cystoseira humilis Schousboe ex Kutzing (Figure 1.5) is a brown seaweed from the 

phylum Ochrophyta, class Phaeophyceae, subclass Fucophycidae, order Fucales and 

family Sargassaceae28. C. humilis is distinguished by the existence of air-vesicles. 

Within the order Fucales, this seaweed is distinguished by its broad dispersion. It is found 

in the three main oceans. C. humilis extracts have antibacterial, antioxidant and cytotoxic 

activity47-48,149. C. humilis is considered rich in biomolecules for medical, cosmeceutical and food 

uses50. 

 

 

Figure 1.5. Cystoseira humilis, Azores islands, Atlantic Ocean. SeaExpert, 2019. 
 

1.4. Polysaccharides 
 

Polysaccharides are broadly distributed in nature, where they have a role in structure-

forming skeletal compounds (for instance, cellulose, hemicellulose and pectin in algae and 

plants); storage compounds (for example, starch and dextrins in plants) and water-binding 

compounds (such as agar, pectin and alginate in plants)51. 

Marine algae have in their constitution storage and cell wall polysaccharides. The cell 

wall polysaccharides mostly consist of cellulose, hemicelluloses and neutral polysaccharides7. 

Both cell wall and storage polysaccharides are species specific: brown algae contain alginic acid, 

laminarin (β-1,3 glucan), sargassan and fucoidan (sulphated fucose);  and red algae have xylans, 

agars, carrageenans, floridean starch (amylopectin-like glucan) and water-soluble sulphated 

galactan7,6,8. 

Polysaccharides may demonstrate anti-tumour, antiviral and antioxidant activities. 

Besides that, they also show anticoagulant properties, prevent obesity and diabetes, and 

hypocholesterolemic action6,52-53. These molecules are crucial in the food industry, regarding food 

texturing, and are responsible for characteristics such as viscosity and consistency, having 

commercial applications in food processing, both in natural and modified forms, as thickeners, 

stabilisers for emulsions and dispersions, emulsifiers and as coating substances to protect 

sensitive food from undesired change8,54. 

Among the great number of polysaccharides present in seaweeds, laminarin, fucoidan, 

alginic acid and carrageenan have stood out for their numerous applications. 
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Laminarin (or laminaran) (Figure 1.6) is defined as a linear water-soluble polysaccharide 

encompassing 20 to 25 glucose units, consisting of (1,3)-β-D-glucan with randomly intra-chain 

β(1,6) branching55. Two kinds of laminarin chains have been described: M or G. M chains 

terminate with a mannitol residue, while G chains terminate with a glucose residue11,56. Most 

laminarins are considered dietary fibres56. These polysaccharides show antibacterial, anti-tumour, 

anticoagulant, anticancer, and immunomodulatory activities57. 

 

 
Figure 1.6. Molecular structure of laminarin (or laminaran)58.  

 

 

Fucoidans (Figure 1.7), mostly found in brown seaweeds, are fucose-based sulfur-

containing polysaccharides, displaying different proportions of mannose, galactose, and glucose. 

Their constituents are linked by α(1→2)-bonds59. Fucoidans are mainly found in Laminariales and 

Fucales species and constitute 25–30% of seaweed dry weight (dw)60. 

Possibly, this sulfated polysaccharide is not found in the other two main seaweed 

groupings. They have shown antioxidant, anticoagulant, antiallergic, anticancer, antiviral, and 

other activities61. 

 

Figure 1.7. Molecular structure of fucoidan59. 
 

Alginic acid (or alginate) comprises a group of polysaccharides containing 1,4-linked β-

D-mannuronic (i.e. M block) and α-L-guluronic acid (i.e. G block) residues (Figure 1.8). These 

residues are grouped at variable proportions in G-G blocks and M-M blocks (homopolymeric 

blocks) (Figure 1.9) and M-G blocks (heteropolymeric blocks)62. Mannuronic acid forms β(1→4) 

linkages, while guluronic acid forms α(1→4) linkages. These linkages tend to create a sterical 

hindrance around the carboxylic acid groups63. As a result, M blocks create linear domains, 

whereas G blocks are responsible for a more inflexible structure (folded regions)64,65. 
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Alginate from brown seaweeds has the capacity to chelate metal ions, thereby generating 

viscous solutions, that are used in the food and pharmaceutical industries11. 

 

 
Figure 1.8. Monomeric compounds present in alginic acid66. 

 

 

Figure 1.9. G-G blocks and M-M blocks (homopolymeric blocks) present in alginic acid structure. R=H67.  
 

Carrageenan (Figure 1.10) comprises sulfur-containing linear galactans, present in some 

species of marine red algae21. These compounds consist of dimers of an α(1→4)-linked D-

galactopyranose residue (D) or 3,6-anhydro-D-galactopyranose residue (DA) and a β(1→3)-

linked D-galactopyranose residue (G)68. 

They are used in the pharmaceutical and food industries, as viscosity-building, texturizing, 

and gel-forming ingredients69. 

 

 

Figure 1.10. Chemical structure of carrageenan70. 
 

1.5. Dietary Fibre 
 

According to the European Union regulation (EU) No 1169/2011, “fibre” can be defined 

as carbohydrates with >3 monomeric units, that remain undigested or unabsorbed at the small 

intestine. Dietary fibres can have beneficial physiological effects71. 

Non-digestible polysaccharides are called dietary fibre, which represents an extremely 

heterogeneous group of compounds. Dietary fibres have diverse formula components and 

structures as well as properties and bioactivities. All the compounds that belong to the dietary 

fibre group, except for lignin, are polysaccharides that belong to the carbohydrate group, such as 
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pectins, hemicelluloses, mucilages, cellulose and, in some cases, also and resistant starch and 

oligosaccharides51. 

Usual seaweed carbohydrates remain undigested after passing through the various 

digestive compartment and, therefore, belong to the group of dietary fibres72. 

Seaweeds are richer in fibre than most terrestrial vegetable foods. Seaweed fibre 

consumption is advisable, since it: (1) contributes to the development of the beneficial intestinal 

microflora73-74; (2) acts as an anti-hyperglycemic agent75; and (3) decreases the risk of colon 

cancer76. Edible seaweeds contain 33–62% dietary fibre (dw), being largely soluble8,77. 

 

1.6. Elemental Composition 
 

Minerals can be defined as the constituents that remain as ash, after the combustion of 

plant and animal tissues. 

Macroalgae are capable of accumulating essential minerals such as sodium (Na), 

magnesium (Mg), selenium (Se), copper (Cu), cobalt (Co), phosphorous (P), molybdenum (Mo), 

iodine (I), manganese (Mn), potassium (K), iron (Fe), calcium (Ca) and zinc (Zn)78. All these 

minerals, that are essential for human nutrition, are available in dietary seaweeds – they can offer 

minerals frequently absent from freshwater and plants/vegetables that grow in soils with a low 

mineral content.  

As for human health maintenance, I as a role in growth and development, since it is 

involved in the production of thyroid hormones79. Fe and Mn are part of various metabolic 

processes80. Similarly, Cu is vital for skin strength, and for upkeep of blood vessels, epithelial and 

connective tissues, as it is a part of many enzymes. Besides that, it is involved in haemoglobin, 

myelin and melanin synthesis81,82. Br has important functions in the formation of collagen IV and 

in the activation of α-amylase in saliva. Zn is also vital for growth and development, besides 

regulating immune response80,81. 

As for plant and algal cells, Fe is important in plant metabolism as it is required in 

photosynthesis and chlorophyll synthesis83. Cu is required for photosynthetic electron transport, 

mitochondrial respiration and oxidative stress responses84,85. Zn is an enzyme cofactor and as an 

important role in proteins that control DNA expression86. 

The mineral uptake process of macroalgae is dependent upon the content and/or type of 

polysaccharides in the cell wall. Brown algae has a high capacity for mineral uptake87. This as to 

do with the fact that the polysaccharides in their cell wall are mostly composed of alginates and 

sulphated polysaccharides. Alginates gel if in presence of multivalent cations. The propensity of 

alginates to bind divalent cations - Cd2+, Co2+, Cu2+, Fe2+, Ni2+, Pb2+, Zn2+, Ca2+ - augments with 

the guluronic acid level (G content)88. The ‘‘zigzag’’ structure89 – “egg-box” structure (Figure 1.11) 

– explains the enhanced affinity of polyguluronic acid residues toward divalent ions. This structure 

has the capacity to accommodate Ca2+ (and other cations) more easily. 
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Figure 1.11. Schematic representation of the calcium-induced gelation of alginate in accordance with the 
“egg-box” structure90. 

 

It is considered that alginates create a well-organised solution network, in the presence 

of Ca2+, or other cations, through the dimerization of the polyguluronic sequences (GG blocks). 

This polyguluronic sections allow for the connection of chains, on coordination sites, that form 

cavities, where the cations can be accommodated91,92. Since different algae species have in their 

structure alginates with different M and G contents, the physico-chemical properties of alginates 

can vary significantly. Alginates with a higher GG concentration have the capacity to form stronger 

gels. The specific affinity for divalent metal ions and the respective gelling ability have been 

claimed to augment as follows: MM block<MG block<GG block59,63,90. 

Likewise, agar and carrageenan, found in the cell walls of red algae, can establish a 

connection with cations through their hydroxyl and sulfate anionic groups and therefore 

accumulate them, though not so effective as alginates and other polysaccharides93. 

Due to macroalgae strong bioadsorptive abilities, elemental concentrations can reach 

values 10-100 times higher than those of terrestrial plants. There is a wider range in elemental 

content, not observed in edible terrestrial plants, that may be linked to variables such as seaweed 

phylum, locations, time of harvest, and environmental variability94. 

Regarding Na and K, most algae present higher concentrations when compared to 

vegetables. Despite that, they usually show low Na/K ratios – this low ratios are of great 

importance regarding heart and cardiovascular system, because low Na/K ratios are recognized 

as reductors of blood pressure95. However, very substantial concentrations of Na are still 

considered a major shortcoming regarding macroalgae as food, since Na intake is already high 

in many developed and developing countries82,96. Ca and P, alongside Mg, are also present in 

high concentrations in seaweed, surpassing values obtained for fruits and vegetables. P is found 

at the same levels in the major seaweed groupings, presenting contents that are in the 0.5-7 g/kg 

dw range82. Seaweeds, especially brown algae, can also accumulate high levels of I. The 

introduction of macroalgae in diet may be a major route to guarantee the recommended I intake 

every day. An upper limit for I intake of 600 µg/day in the case of adults and of 200 µg/day for 

children of 1-3 years has been set97. The seaweed consumption must follow the limit 

recommendations, since the consumption of more than the upper limit of 600 µg/day (adults) and 

200 µg/day (small infants) may cause poisoning effects that have been related to the health 

complications such as thyroid cancer, hyperthyroidism or hypothyroidism80. 

In addition, macroalgae may also store hazardous elements in their tissues, namely, 

arsenic (As) and antimony (Sb), cadmium (Cd), mercury (Hg), lead (Pb), tin (Sn), aluminium (Al), 

and strontium (Sr). 
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In European countries, according to the European Commission Regulation (EC) No 

396/2005, for Hg, a maximum residue level (MRL) for seaweed is set at 0.01 mg/kg97. The 

Regulation EC No 629/2008 of the European Commission, which was established for food 

supplements whose formulation is only or mainly constituted by dried macroalgae or macroalgae-

derived products, set a maximum level of Cd allowed of less than 3 mg/kg dw97. This authority 

(EC No. 744/2012) has also set the maximum arsenic content in complementary feed and/or a 

feed meal at 40 and 10 mg/kg (presupposing 12% humidity), respectively, and the maximum Pb 

levels of 15 mg/kg (12% humidity) for phosphates and calcareous marine algae98. 

As and Sb constitute a major contamination problem in macroalgae. Even though 

antimony, when compared to arsenic, is less abundant in nature, their chemistry and toxicity are 

similar99. Arsenic can occur in four oxidation states - As(V), As(III), As(0), and As(-III) -, that are 

organic or inorganic. In seaweed, organic As is mainly found as arsenosugars, but also as methyl 

forms [monomethylarsonic acid (MMA), dimethylarsinic acid (DMA), and arsenobetaine (AsB)], 

whereas the inorganic As is mainly found as arsenate (As(V)) and arsenite (As(III))100. Organic 

As shows almost no toxicity, whereas inorganic As is hazardous. It is linked to various diseases, 

encompassing the cardiovascular system and cancer100,101. The toxicity of arsenic compounds is 

shown to be reliant on factors such as oxidation number, particle size physical state, and rate of 

absorption into cells102. Usually a high toxicity is associated with the low oxidation number while 

high methylation is associated with a low toxicity. The decreasing toxicity order can therefore be 

presented as: arsenite > arsenate > monomethylarsonic acid > dimethylarsinic acid100. Cd, Hg, 

and Pb are also metals known for their harmful effects upon human health. According to the 

World Health Organization (WHO), Cd exposure may disturb calcium metabolism and lead to 

cancer103. Hg exposure can disturb the neuronal function, leading to numerous diseases at the 

immune, gastrointestinal, and nervous level104. Pb exposure is not as harmful as Cd and Hg, 

despite binding easily to proteins and can consequently lead to enzymatic breakdown and also 

disturb neuronal function, mostly of small children82. 

 

1.7. Antioxidant Properties 
 

An antioxidant is a compound that is able to give an electron to a highly reactive radical 

and eliminate it, therefore limiting its ability to cause cellular harm. These antioxidants are capable 

of interacting with free radicals, thus terminating their chain reactions (free radicals scavenging 

property) and protecting vital molecules. Some antioxidants result from the organism’s metabolic 

activity, such as glutathione and ubiquinol, while other antioxidants, for instance, ascorbic acid 

and β-carotene, can be attained from the diet105,106. 

Antioxidant properties are determined by the capacity of a bioactive molecule to protect 

an organism from damage caused by free radicals. The fact that free radicals are able to operate 

as oxidants and reductants makes them very reactive and unstable105. Oxygen-based free 

radicals – Reactive Oxygen Species (ROS) – comprise the superoxide radical (O2
•), hydroxyl 

radical (•OH), peroxyl radical (ROO•), and nitric oxide radical (NO•)107,108. Consequently, too much 

ROS may trigger negative effects as their toxicity makes them capable of oxidizing biologically 
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relevant molecules (i.e., lipids, proteins, enzymes, DNA and RNA), causing an extensive oxidative 

damage on cells and tissues105,108. This oxidative damage is connected with a variety of chronic 

diseases in humans, related to aging, carcinogenesis and atherosclerosis, including myocardial 

infarction, cancer, diabetes, as well as Alzheimer’s and Parkinson’s diseases108,109. 

It should be noted that seaweeds hardly show serious photodynamic damage during 

metabolism despite growing in harsh environments, under sunlight and high oxygen levels that 

may generate ROS, this proves that defence systems and substances are available to seaweeds 

– they can produce bioactive compounds to defend themselves against external factors109-110. 

Phenolic compounds impart the most antioxidant properties to plants, including 

seaweeds, as their antioxidant activity is mainly manifested through a sub-class of this phenolic 

compounds, denominated phlorotannins111. The capacity of these compounds to inactivate free 

radicals is justified by its structure-activity relationship (SAR). Hence, there are differences 

between the antioxidant properties of different phenolic molecules that are ascribable to their 

specific SAR112. This group of compounds is central in plant and algae defence as they are 

involved in systems that fight bacteria and stresses, for instance, ultraviolet (UV) radiation3. 

Phenolic acids have high antioxidant capacity and are easily digested and absorbed by 

the human organism. Caffeic acid (Figure 1.12 (a)) and ferulic acid (Figure 1.12 (b)) – phenolic 

acids usually found in the diet – circulate as derived molecules, namely in sulfate and glucuronate 

forms, after their absorption from the gastrointestinal tract113. 

 

 

Figure 1.12. Molecules of (a) caffeic acid and (b) ferulic acid114. 
 

Phlorotannins exist mainly in seaweed, which usually have up to approximately 15% per 

algae dw115. Besides being produced by algae secondary metabolism, these molecules are 

structurally important for cell walls116. They result from the polymerization of phoroglucinol (Figure 

1.13 (1)) (1,3,5-trihydroxybenzene) molecules and are synthetized by the polyketide pathway in 

seaweed110. These compounds are very hydrophilic and their molecular size is variable117. Brown 

seaweeds contain a varied range of phloroglucinol-derived phenolic substances. According to the 

bonds formed, phlorotannins may be termed: fucols (containing a phenyl bond); fucophloroethols 

(ether and phenyl bonds); fuhalols and phlorethols (ether bond); and eckols (dibenzodioxin bond). 

Compounds such as eckol (Figure 1.13 (2)), fucodiphloroethol G (Figure 1.13 (3)), 

phlorofucofuroeckol A (Figure 1.13 (4)), 7-phloroeckol (Figure 1.12 (5)), dieckol (Figure 1.13 (6)), 

and 6,6’-bieckol (Figure 1.13 (7)) belong to the group identified phlorotannins in brown 

seaweed110,117. Phlorotannins from brown algae present higher antioxidant activity when 

compared to other polyphenols derived from terrestrial plants3. 
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Figure 1.13. Structural formulas of representative phlorotannins from marine seaweeds. (1) phoroglucinol; 
(2) eckol; (3) fucodiphloroethol G; (4) phlorofucofuroeckol A; (5) 7-phloroeckol; (6) dieckol; (7) 6,6’-bieckol110. 

 
 

1.8. Bioaccessibility and Bioavailability 
 

Bioaccessibility and bioavailability are concepts that correlate with food digestion and 

nutrient absorption118. After ingestion, food is exposed to different processes that can transform 

compounds then released into the systemic circulation82. When assessing if a certain compound 

is valuable for human health, its concentration is not enough, as its total amount does not mirror 

its bioaccessibility119. 

The term bioaccessibility refers to the appropriate release of nutrients and other 

components, including bioactives, from the food matrix, because of gastrointestinal tract 

conditions (oral cavity, gastric environment, and intestinal lumen)118,120. The bioaccessibility of a 

compound depends on the consumer physiological conditions (e.g., age and health) and the 

composition of food (matricial aspect)120. The compounds that are available in the human body 

may differ from the pre-digestion ones, as only the bioaccessible fraction (compounds freed after 

digestion) becomes accessible for function and/or accumulation. Therefore, the compounds that 

remain in the human body can be quite different from ingested amount119. 
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Bioaccessibility can be determined with an in vitro digestion system which simulates the 

human digestive function. Despite being less exact than in vivo methodologies, this model is rapid, 

easy to use and inexpensive120,121. 

Bioavailability correlates with bioaccessibility in the way that for a molecule to be 

bioavailable, it as to be bioaccessible, - it was to be freed from the food matrix in the digestion 

process, along with absorption by the intestinal cells and transport to target tissue(s) 122. Still, the 

fact that a molecule is bioaccessible does not guarantee its bioavailability, that is, its absorbance 

and transport in the systemic circulation82. 

The term bioavailability combines bioactivity and bioaccessibility, in which bioaccessibility 

relates to the food matrix release, digestion modifications, absorption trough intestinal wall and 

pre-systemic metabolism, while bioactivity involves transport, assimilation and metabolism to and 

by the target tissue, and processes related to biomolecular interactions123,124. Reported studies 

show that the food product, processing or preparation can change the oral bioaccessibility of 

compounds125. The bioaccessibility and bioavailability assessment of seaweeds is an important 

step to help define its nutritional values123. 

The determination of the bioaccessibility and bioavailability of macroalgae mineral 

content is of great importance, mainly due to the possible presence of toxic elements, but also 

because of the many advantages of nutritionally important minerals, trace elements and bioactive 

elements. 

The bioaccessibility of elements depends on its chemical form126, as well as particularities 

in the food matrix121. It represents the fraction of the element, which is freed from the food matrix 

and is considered as an index of maximal oral bioavailability121. The bioavailability, as above 

mentioned, represents the fraction of elements that is incorporated into systemic circulation and 

is distributed within the target sites125. The elements’ bioavailability may be compromised due to 

their interaction with dietary fibres, that are not absorbable. They interact with negatively charged 

polysaccharides, namely alginates and carrageenan, forming non-soluble adducts, consequently 

reducing bioavailability127. 

 

1.9. In vitro digestive model as a tool to assess bioaccessibility 
 

Digestion is a complex process that generates novel compounds that are absorbed by 

the human body. These nutrients are needed for energy, growth and cell repair123. 

Enzymes have a critical role in the breakdown of ingested nutrients. Main enzymes are 

α-amylase in the mouth, pepsin in the stomach, and trypsin, α-chymotrypsin, pancreatin (mixture 

of proteases, amylase, and lipase) and lipase, alongside bile (constituted by phospholipids, acids 

and salts, cholesterol, and electrolytic components that ensure a pH of 5-6), in the small 

intestine123,128,129. Various methodologies have been developed for this purpose - in vivo and in 

vitro techniques are the major groups of techniques for bioaccessibility determination130. 

In vivo digestion models can be performed using two approaches, either executing overall 

balance studies or quantifying the concentration of the focal substances130,131. Despite being the 

most accurate models, both strategies rely on human and animal tests with the goal of attaining 
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their bioaccessibility assessments, reason why ethical issues arise, as potentially harmful 

substances may be used in the model, besides being technically difficult and costly129. 

In vitro digestion models make it possible to closely simulate the biotransformation 

occurring in the gastrointestinal tract, using a laboratory controlled environment under 

reproducible and accurate conditions132. These models include numerous aspects, namely, 

enzyme levels, pH values, duration, and sodium chloride concentrations129. 

 

1.10. Anti-inflammatory Properties 
 

Inflammation happens when damaging stimuli, such as tissue damage, pathogens, or 

destructive chemicals occur. It can be included as a part of a non-specific and defensive 

response133. The inflammation purpose is to protect the tissues against the damaging stimuli 

previous mentioned by removing the trigger of inflammation and stimulating the cell restoration 

mechanisms134. Inflammation may be acute or chronic135,136. In the inflammatory mechanism, 

various defence cells release high quantities of nitric oxide (NO), cytokines, such as interleukin 

(IL)-1β, IL-6, prostaglandin E2 (PGE2) and tumour necrosis factor (TNF)-α. These compounds 

cause some harm to the tissues, while activating macrophages in auto-immune diseases, etc137-

138. PGE2 is a vital inflammatory mediator that is generated through the catalysis of 

cyclooxygenase-2 (COX-2)139. Macrophages are pivotal during inflammation controlling various 

immunopathological effects, for instance, the enhanced formation of inflammatory mediators, 

namely, IL-6, IL-1IS, COX-2 and TNF-α, and cytokines140. 

The inflammatory response is vital when opposing infection. However, the effects caused 

by inflammation, especially in the case of the chronic phase can cause health issues, such as 

rheumatoid arthritis and atherosclerosis141-142. Consequently, anti-inflammatory compounds have 

an important role for the mitigation of inflammatory disorders. Consumption of food containing 

anti-inflammatory substances has a long tradition143. Anti-inflammatory drugs, as most 

commercialized drugs, can have side effects – as an example: Aspirin can cause stomach 

bleeding; COX-2 inhibitor Vioxx® and Celebrex® can cause heart problems; and non-steroidal 

anti-inflammatory drugs (NSAID’s) were reported as a cause of many deaths yearly144-145. Hence, 

the discovery of new anti-inflammatory drugs from marine algae could bring developments to the 

sector of biomedical research and industry. 

The fact that algae bioactive compounds have the capacity to counteract inflammatory 

harmful effects and, therefore, replace the synthetic drugs in use, makes them, nowadays, a major 

focal area of medicinal research. 

 

1.11. Global overview of the potential of bioactivities and 
applications of the studied macroalgae 

 

The macroalgae studied in this work - Asparagopsis taxiformis, Asparagopsis armata, 

Cystoseira abies-marina and Cystoseira humilis – have shown, since their first studies, a number 

of properties that are beneficial for human health and use/application. Nowadays, these algae are 
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used for their nutraceutical compounds that find various applications in the pharmaceutical, 

cosmetic, and food industries. 

When referring to Cystoseira abies-marina, this macroalgae is used directly for food and 

as a fertilizer1. Both C. abies-marina and C. humilis extracts show antibacterial, antifungal, 

antimicrobial and antioxidant properties, given the existence of bioactive molecules, such as 

phlorotannins44,50,146,147.  

Asparagopsis armata extract shows powerful antioxidant and antibacterial activities. Their 

bioactives have anti-cancer properties, besides holding antifungal, antimicrobial and antiviral 

activities1,50. Asparagopsis taxiformis is characterized by their anticoagulant, anticyanobacterial, 

antifouling, antifungal and antimicrobial activities1,148,149,150. This macroalgae distinguishes itself 

from other algae for their anti-methanogenic activity – the brominated compounds (in particular, 

the compound bromoform), present in the genus Asparagopsis display an effective ability to inhibit 

archaebacterial metabolism. According to Roque et al. (2019)151, methane production in the cattle 

rumen, and consequent emission, can be reduced by approximately 90% by incorporating 5% A. 

taxiformis in cattle feed. The inclusion of A. taxiformis in feed may help in solutions against climate 

change, as methane from cattle contributes significantly to the planetary methane emissions and 

this gas may be a more harmful greenhouse gas than CO2
152. 

The characteristics known and listed above make for the importance of studying and 

deepening the knowledge about these macroalgae. 
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2. Objectives 
 

Despite seaweeds still being undervalued marine resources, these organisms have been 

receiving a growing attention over the years by the scientific community due to reported studies 

that confirm their nutraceutical and biotechnological potential. Many seaweed species, however, 

are still lacking in-depth studies to obtain information about their bioactive compounds, as factors 

such as geographical origin, seaweed phylum, and environmental, seasonal, and physiological 

variations can affect their composition and properties. 

The objective of this work was to perform a bioprospection study on Asparagopsis 

taxiformis, Asparagopsis armata, Cystoseira abies-marina and Cystoseira humilis, four 

undervalued macroalgae, from the Azorean Archipelago. This involved their chemical 

characterization through the determination of their proximate composition. Besides that, an 

assessment of their biological activity (including bioaccessibility) was carried out, performing the 

determination of antioxidant and anti-inflammatory activities, but also involved analysis of total 

phenolic content and β-glucans (laminarin) levels. Lastly, the elemental composition was 

analysed, as well as the mineral bioaccessibility.   

This study was also designed to evaluate the effect of the drying process (sun-drying vs 

shade-drying) on the biological activities and bioactive contents of aqueous and ethanolic 

extracts. 
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3. Materials and Methods 
 

3.1. Sample collection and preparation  
 

The studied species were the red seaweeds Asparagopsis taxiformis and Asparagopsis 

armata, and the brown seaweeds Cystoseira abies-marina and Cystoseira humilis. All seaweeds 

were dried, both in the sun and in the shade (Figure 3.1). 

They were harvested from the Azores Archipelago (Portugal), located in the Atlantic 

Ocean, more specifically on the Faial island - Asparagopsis taxiformis was harvested from the 

wild in Pasteleiro (Faial), in which the sun- and shade-dried portions were collected on April 2019; 

Asparagopsis armata was collected in Castelo Branco (Faial), where the sun-dried portion was 

collected on May 2019 and the shade-dried portion was collected on June 2019; Cystoseira abies-

marina and Cystoseira humilis were collected in Lajinha (Faial), where the shade-dried and sun-

dried portions of both seaweeds where collected on June 2019. 

 

  
Figure 3.1. Sun-dried and shade-dried seaweed biomass of the studied species: (A) Shade-dried Cystoseira 
abies-marina; (B) Sun-dried Cystoseira abies-marina; (C) Shade-dried Asparagopsis armata; (D) Sun-dried 
Asparagopsis armata; (E) Shade-dried Cystoseira humilis; (F) Sun-dried Cystoseira humilis; (G) Shade-
dried Asparagopsis taxiformis; (H) Sun-dried Asparagopsis taxiformis. Diana Julião, October 2019. 
 

The sun-drying method is performed in a greenhouse (Figure 3.2), where the macroalgae 

are arranged in a horizontal position. The greenhouse daytime temperature ranges from 28ºC to 

35ºC and in the night the temperature ranges from 18ºC to 22ºC. Regarding the moisture content, 

it is of about 90% in the first drying day, while in the subsequent days, the content decreases to 

50-60%. The shade-drying method is performed in a solar dryer (Figure 3.3) with two ventilators 

that promote a horizontal ventilation, using only the heat generated from solar panels. A 

resistance is connected if there is little sun or to speed up the drying process. The macroalgae 

are arranged in a horizontal position. Concerning the moisture content, the initial content is of 

about 90%, decreasing progressively until 15%. The solar dryer temperature with the solar panels 

and the connected resistance usually ranges from 35ºC to 40ºC. Regarding the drying time, sun-
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drying had the duration of approximately of three days, while shade-drying had the  duration of 

approximately two days. 

 

 

Figure 3.2. Greenhouse used for the sun-drying method, where seaweeds are arranged in a horizontal 
position. SeaExpert, 2020. 

 

 

Figure 3.3. Solar dryer used in the shade-drying method. SeaExpert 2020. 
 

The seaweeds were ordered by the Portuguese Institute for the Sea and Atmosphere 

(IPMA) from the company SeaExpert based in Faial island, Azores, Portugal. Appropriate 

amounts of each seaweed were freeze-dried, homogenised, and stored at -80ºC until further 

analysis. 

 

3.2. Proximate composition  
 

3.2.1. Moisture and Ash content  
 

The determination of the content of moisture and ash was based on AOAC methods153. 

Ash is a reduced inorganic residue obtained from the incineration of biological material – it is 

composed by the minerals obtained from the destruction of organic matter. The parameters 

moisture and ash indicate the amount of water and inorganic material in the samples studied. 
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After heating the crucibles for 30 minutes and cooling them on a desiccator for another 

30 minutes, they were weighed, and the weight registered. The macroalgae were weighed from 

2g to 5g, depending on their morphology and volume. Each macroalgae sample was divided in 

four crucibles, two duplicates for the macroalgae dried in the sun and two crucibles for the 

macroalgae dried in the shade. Samples were then left in the oven (Memmert, Model ULE 500, 

Schwabach, Germany) overnight and weighted after cooling in a desiccator. The moisture content 

of each sample was calculated according to the formula 3.1: 
 

% 𝑀𝑜𝑖𝑠𝑡𝑢𝑟𝑒 (% 
𝑚

𝑚
) =  

𝑚1−𝑚2

𝑚1−𝑚3
 × 100 (3.1)  

Where: 

m1 = Crucible mass with moist sample (g) 

m2 = Crucible mass with dry sample (g) 

m3 = Crucible mass (g) 

 

The crucibles with the dried samples were placed in the muffle furnace (Heraeus, Model 

MR170-E, Hanau, Germany) at 550ºC overnight. The crucibles were then removed from the 

muffle and placed in the desiccator to cool for 40 minutes, weighed, and then placed again in the 

muffle furnace for 30 minutes at the same temperature. If the weight doesn’t change or increases, 

less than 0.001g, the ash determination is completed (Figure 3.4). On the other hand, if the weight 

decreases, the crucibles with the samples return to the muffle furnace for an additional weighing. 

The ash content in dry matter basis of each sample was calculated according to the formula 3.2. 

 

% 𝐴𝑠ℎ (% 
𝑚

𝑚
) =  

𝑚1−𝑚2

𝑚3−𝑚2
 × 100 (3.2)  

Where: 

m1 = Crucible mass with ash (g) 

m2 = Crucible mass (g) 

m3 = Crucible mass with dry sample (g) 

 

 

Figure 3.4. Crucibles with ash at the end of the procedure. Diana Julião, October 2019. 
. 

3.2.2. Protein content 
 

The protein level was quantified by the Dumas method154, using a conversion factor of 

nitrogen into protein of 5.0 in the macroalgae samples155. This method is based on the combustion 



22 

 

of a sample of known mass in the presence of oxygen, inside a high temperature chamber 

(900ºC). The nitrogen percentage of the samples was calculated based on thermal conductivity. 

The procedure consisted on weighting approximately 100mg of each seaweed in 

duplicate, and placing them in a LECO FP-528 analyser (LECO Corporation, St, Joseph, MI, 

USA), which performed the entire combustion process and calculated the nitrogen percentage 

and the corresponding protein percentage for each sample. Ethylenediaminetetraacetic acid 

(EDTA) was used to calibrate the standards. 
 

3.2.3. Dietary Fibre content 
 

The determination of total, soluble and insoluble dietary fibre was done with the 

application of an enzymatic procedure, using the K-TDFR-100A/K-TDFR-200A 04/17 assay kit by 

Megazime (Megazyme, Bray, Ireland).  

Firstly, 1,000 ± 0,005g of duplicated samples of each macroalgae (sun-dried and shade-

dried) were weighted (Figure 3.5), 40mL of MES-TRIS blend buffer (pH 8.2) was added to each 

sample, and the resulting mixtures were stirred. 
 

 

Figure 3.5. Crucibles with 1,000 ± 0,005g of duplicated samples of each macroalgae (sun-dried and shade-

dried). Diana Julião, October 2019. 
 

Each solution was then subjected to a sequential heat-stable enzymatic digestion, with 

the application of the Megazyme kit. In the first place, each solution was incubated with 50µL of 

thermostable α-amylase in a water bath (Büchi Laboratoriums-Technik AG, Model 461, Flawil, 

Switzerland), at 98-100°C, for 30 minutes, with continuous agitation. The solutions were then 

removed from the hot water bath and cooled to 60ºC. Following, for second incubation, 100µL of 

protease was added and attained mixture was left in a water bath at 60 ± 1°C, for 30 minutes, 

with continuous agitation. The solutions were again removed from the hot water bath and 5mL of 

0,561 N HCl was added to the mixture with constant agitation to obtain a final pH of 4.1-4.8, 

measured using a pH meter (Mettler Toledo, Model SevenCompact, Greifensee, Switzerland). 

Finally, in the third incubation, 200µL of amyloglucosidase was added to each solution, and those 

solutions were then left in a water bath at 60 ± 1°C, for 30 minutes, with continuous agitation.  
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3.2.3.1. Insoluble Dietary Fibre 

 The filtration setup was prepared by weighing Gooch fritted crucibles containing a thin 

layer of Celite®, and afterwards, wet and redistribute the bed of Celite® in the crucibles using 

distilled water. Suction was then applied to the crucibles to draw the Celite® onto the fritted glass. 

The enzyme mixtures previous prepared were filtered through the crucibles into a 

kitasato. The residues that remained in the crucibles were washed twice with 10mL of distilled 

water pre-heated to 70ºC, and the filtrates were transferred to a pre-tared beaker and saved for 

soluble dietary fibre determination (3.2.3.2). The residues in the crucibles were then washed twice 

with 10mL 96%, v/v, ethanol, and acetone. 

The crucibles containing the residues were dried overnight in an oven (Memmert, Model 

ULE 500, Schwabach, Germany) at 103ºC and cooled in a desiccator for approximately 1 hour. 

The crucibles containing Celite® and the dietary fibre residue were weighted. 

For the determination of the protein content, approximately 70mg of sample from each 

crucible were weighed. The remaining content was weighed and used for the ash determination. 

The methodologies used for the determination of the protein and ash content were the same as 

used for the total macroalgae biomass determinations.  
 

3.2.3.2. Soluble Dietary Fibre 
 

The filtrates obtained in the insoluble dietary fibre procedure, that were transferred and 

saved in a pre-tared beaker, were weighted. Distilled water was added to adjust the weight of the 

combined solution of filtrate and water washings to 80g, and 4 volumes (320mL) of 96%, v/v, 

ethanol, pre-heated to 60°C, was added. The precipitates were allowed to form at room 

temperature for 1 hour (Figure 3.6 and Figure 3.7). 

 

 

Figure 3.6. Precipitates formed after 1 hour at room temperature, for Asparagopsis taxiformis and 
Asparagopsis armata, sun-dried and shade-dried. Diana Julião, November 2019. 
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Figure 3.7. Precipitates formed after 1 hour at room temperature, for Cystoseira abies-marina and 
Cystoseira humilis, sun-dried and shade-dried. Diana Julião, November 2019. 

 

The filtration setup was prepared by weighing Gooch fritted crucibles, containing a thin 

layer of Celite®, and afterwards, wet and reorganise the Celite® in the crucibles using 78%, v/v, 

ethanol. Suction was then applied to the crucibles to attract the Celite® onto the fritted glass. 

The precipitated enzyme digest formed for 1 hour (room temperature) was filtered and 

the residues that remained in the crucibles were washed successively twice with 15mL of 78%, 

v/v, ethanol, 15mL of 96%, v/v, ethanol, and 15mL of acetone. 

The crucibles containing the residues were dried overnight in an oven (Memmert, Model 

ULE 500, Schwabach, Germany) at 103ºC and cooled in a desiccator for approximately 1 hour. 

The crucibles containing Celite® and the dietary fibre residue were weighed. 

 

3.2.3.3. Total Dietary Fibre 
 

 

The soluble and insoluble dietary fibre contents were corrected by the subtraction of 

protein and ash contents in the residues and the values of the total dietary fibre were obtained 

from the sum of the values obtained for the insoluble dietary fibre and soluble dietary fibre152. 

 

3.3. Total Polyphenol content 
 

3.3.1. Extract preparation 
 

The phenolic compounds extraction from the seaweed biomass was executed with two 

selected solvents - 96% ethanol, v/v, and water Milli-Q – as they belong to the group of safe and 

environmentally friendly solvents and are the most effective among them. Other solvents included 

in this group are: 2-propanol, 1-butanol, ethyl acetate and 2-propyl acetate156. 

For the preparation of the extracts, 1.25g of dried seaweed biomass was weighted in 

duplicates to centrifuge tubes, and 25mL of water Milli-Q was added to one of the duplicates and 

25mL of 96% ethanol, v/v, was added to the other. The solutions were homogenised in a Unidrive 

X1000 Homogenizer Drive (CAT Scientific Inc., California, USA), at a velocity of 30,000 rpm for 1 

minute, and agitated overnight in an IKA-VIBRAX-VXR (IKA-Labortechnik, Staufen, Germany) 

orbital shaker, at a velocity of 200 rpm. After centrifugation at 4ºC, for 10 minutes, at a velocity of 

5000xg, in a KUBOTA 6800 centrifuge (KUBOTA, Tokyo, Japan), the supernatant was collected 

with a Pasteur pipette and completed to a final volume of 25mL (Figure 3.8 and 3.9). 
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Figure 3.8. Supernatant collected from the aqueous extracts, to a final volume of 25mL. From left to right: 
Sun-dried Asparagopsis taxiformis; Shade-dried Asparagopsis taxiformis; Sun-dried Asparagopsis armata; 
Shade-dried Asparagopsis armata; Sun-dried Cystoseira humilis; Shade-dried Cystoseira humilis; Sun-dried 
Cystoseira abies-marina; Shade-dried Cystoseira abies-marina. Diana Julião, December 2019. 

 

Figure 3.9. Supernatant collected from the ethanolic extracts, to a final volume of 25mL. From left to right: 
Sun-dried Asparagopsis taxiformis; Shade-dried Asparagopsis taxiformis; Sun-dried Asparagopsis armata; 
Shade-dried Asparagopsis armata; Sun-dried Cystoseira humilis; Shade-dried Cystoseira humilis; Sun-dried 
Cystoseira abies-marina; Shade-dried Cystoseira abies-marina. Diana Julião, December 2019. 
 

3.3.2. Singleton and Rossi assay 
 

The polyphenol content was determined with an adapted version of the Singleton and 

Rossi method. The Folin-Ciocalteu reagent was used for this method157.  

The Folin-Ciocalteu reagent has a yellow coloration when in its non-reduced form and is 

formed by a combination of phosphomolybdic acid (H3PMo12O40) and phosphotungstic acid 

(H3PW12O40) that forms chromogens by reacting with phenols and non-phenolic reducing 

compounds. The chromogens oxotungstate and oxomolybdate can be detected 

spectrophotometrically because in alkaline conditions they exhibit a blue colouring proportional to 

the concentration of polyphenols158. 

A volume of 100µL of each macroalgae extract (aqueous and ethanolic) was pipetted into 

a vial, in triplicate. To each vial was added 600µL of water Milli-Q and 150µL of twice-diluted 

Folin-Ciocalteu reagent, and the samples were left in the dark for 5 minutes at room temperature. 

Subsequently, 750µL of a 2% w/v sodium carbonate solution were added. After being left to react 

for 1 hour and 30 minutes in the dark at room temperature, absorbance of the samples at 750nm 

was measured in a Helios Alpha model (Unicam, Leeds, UK) UV-Vis spectrophotometer. The 

standard used was Gallic acid (GA) (Sigma, Steinheim, Germany) and the phenolic content was 

expressed as gallic acid equivalents (mg GAE/100g dw) by using a calibration curve of gallic acid 

(Annex III and IV). 
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3.4. Antioxidant Activity 
 

3.4.1. DPPH method  
 

The DPPH method was developed by Blois (1958)159 to measure antioxidant activities, 

using a stable free radical α,α-diphenyl-β-picrylhydrazyl (DPPH•; C18H12N5O6, M=394.3 g/mol) 

(Figure 3.10). It is based on the measurement of antioxidant scavenging capacity against this 

stable free radical. The odd electron of the nitrogen atom in DPPH is reduced through the 

reception of a hydrogen atom from antioxidants by the hydrazine. DPPH is characterized as a 

stable free radical because of the delocalisation of the spare electron, which means that the 

molecules do not dimerise. 

The delocalisation is also responsible for the deep violet colour, with an absorption in 

ethanol solution at approximately 520nm. Mixing DPPH with a solution that contains a substance 

that can donate a hydrogen atom, leads to the formation of the reduced form of DPPH – α,α-

diphenyl-β-picrylhydrazine (DPPH; C18H13N5O6, M = 395.3 g/mol) - with a yellow coloration160-

161. 

 

 

 

 

  

 

 

Figure 3.10. DPPH and its stable form. In the left, 2,2-diphenyl-1-picrylhydrazyl (free radical) and in the right, 
2,2-diphenyl-1-picrylhydrazine (nonradical)160. 

 

To start the analysis, 1mL of each extract, aqueous and ethanolic, – as prepared in 3.3.1. 

- was pipetted in triplicate to a tube, and 2mL of DPPH (Sigma, Steinheim, Germany) 0.15mM 

methanolic solution was added and the sample was stirred in a vortex. After being left to react for 

30 minutes in the dark at room temperature (Figure 3.11), absorbance of the samples at 517nm 

was measured in a Helios Alpha model (Unicam, Leeds, UK) UV-Vis spectrophotometer. For the 

blank, water and ethanol 96%, v/v, were used. 

Radical scavenging activity was determined by the following formula 3.3161: 

 

% Inhibition =  
A0 − Asample

A0
 × 100 (3.3)  

Where: 

A0 = Absorption of the blank  

Asample = Absorption of the sample 
 

Results were expressed in mg of ascorbic acid equivalents (AA Eq) per g of seaweed 

(dw) using a calibration curve of ascorbic acid (Annex V and VI). 
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Figure 3.11. Colour variation during the DPPH reaction. DPPH has a characterized violet colour (A) but 
when mixed with an antioxidant substance (capable of donating a hydrogen atom) gradually becomes yellow 
(B). Diana Julião, December 2019. 

3.4.2. FRAP method  
 

The Ferric Ion Reducing Antioxidant Power (FRAP, also Ferric Reducing Ability of 

Plasma) is a method developed by Benzie & Strain (1996)162. As described by the authors, this 

method is based on a redox-linked colorimetric reaction where the oxidizing species reacts with 

the antioxidant instead of the “substrate”, that is, the antioxidant (reductant) reduces the oxidant, 

inactivating it. In this case, one reactive species is reduced at the expense of the oxidation of 

another. 

This method is based on antioxidants reduction, at low pH, of the ferric-tripyridyltriazine 

(FeIII-TPTZ) complex to the ferrous (FeII) form (Figure 3.12), creating a very intense navy-blue 

colour with an absorption maximum at 593nm, that confirms the presence of a reductant 

(antioxidant). The absorbance measured tests the amount of iron reduced and can be correlated 

with the reducing ability of the antioxidants present in the sample. 

To perform this method, the solutions prepared were a 300 mM trihydrate sodium acetate 

buffer (pH 3.6), a 10 mM 2,4,6-Tripyridyl-s-triazine (TPTZ) solution in 40 mM HCl, and a 20 mM 

FeCl3.6H2O solution. The FRAP regent was then prepared by adding 300 mM trihydrate sodium 

acetate buffer (pH 3.6), 10 mM 2,4,6-Tripyridyl-s-triazine (TPTZ) solution, and 20 mM FeCl3.6H2O 

solution in a 10:1:1 (v/v/v) proportion, respectively. Firstly, the FRAP reagent was prepared in a 

230:23:23 proportion, and in the second time, with a 150:15:15 proportion.  
 

 

Figure 3.12. Reduction of the ferric-tripyridyltriazine (FeIII-TPTZ) complex to the ferrous (FeII) form by an 
antioxidant163. 
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To start the analysis, 100µL of each extract, aqueous and ethanolic, – as prepared in 

3.3.1. - was pipetted in triplicate to a tube, and 3mL of FRAP reagent was added. The mixture 

was vortexed and incubated for 30 minutes in the dark on a 37ºC bath (Büchi Laboratoriums-

Technik AG, Model 461, Flawil, Switzerland). Absorbance of the coloured product (ferrous-

tripyridyltriazine complex) (Figure 3.13) was then measured at 595nm in a Helios Alpha model 

(Unicam, Leeds, UK) UV-Vis spectrophotometer. For the blank, water and ethanol 96%, v/v, were 

used. Iron Sulphate (FeSO4.7H2O) was used as standard and the antioxidant content was 

expressed in µmol of iron(II) sulphate equivalents per g of seaweed (dw) (µmol iron sulphate/g 

dw) through the calibration curve of iron(II) sulphate (Annex VII). 

 

Figure 3.13. Colour variation in the FRAP reaction. The intense blue colour means that the FeIII-TPTZ 
complex was reduced, indicating the presence of antioxidant activity. Diana Julião, January 2020. 
 

3.4.3. ABTS method 
 

The ABTS method is applied for the measurement of antioxidant activity and is based on 

the generation of the ABTS [2,2’-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid)] radical cation. 

The method used was described by Re et al. (1999)164, where the generation of ABTS•+ by 

oxidation of ABTS (Figure 3.14) with potassium persulfate, involves the direct production of the 

blue/green ABTS•+ chromophore, that as an absorption maximum at wavelengths 645nm, 734nm 

and 815nm. 

Depending on the reaction time, antioxidant activity and antioxidant concentration, the 

pre-formed radical cation ABTS•+ is reduced by the presence of hydrogen-donating antioxidants 

to a certain extent. The extent of decolorization observed, that can be translated as the inhibition 

percentage of the ABTS•+ radical cation (Figure 3.15), is determined as a function of concentration 

versus time and calculated according to the Trolox reactivity (standard), under identical 

conditions164,165.  
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Figure 3.14. One-electron oxidation of ABTS and the formation of cation radicals (ABTS•+)165. 
 

To perform this method was prepared a 2.45 mM potassium persulfate solution, a 5 mM 

sodium phosphate buffer (pH 7.4) and a 7 mM ABTS+ solution - a specific solution required for 

this procedure - that was put together by weighing 10mg of ABTS and dissolving it in 2,6mL of 

the 2.45 mM potassium persulfate solution, then incubated in the dark at room temperature 

overnight and finally diluting it with 5 mM sodium phosphate buffer (pH 7.4) to obtain a final 

absorbance value of 0.7 ± 0.02 at 734nm.  

To start the analysis, 20µL of each extract, aqueous and ethanolic, – as prepared in 3.3.1. 

- was pipetted in triplicate to a tube, and 2mL of 7 mM ABTS+ solution was added. The mixture 

was vortexed and incubated for 6 minutes in a 30ºC bath (Büchi Laboratoriums-Technik AG, 

Model 461, Flawil, Switzerland) in the dark. Absorbance of the coloured product was then 

measured at 734nm in a Helios Alpha model (Unicam, Leeds, UK) UV-Vis spectrophotometer. 

For the blank, water and ethanol 96% w/w were used. Trolox was used as standard and the 

antioxidant content was expressed in µmol of Trolox equivalents (Trolox Eq) per 100g of seaweed 

(dw) (µmol eq Trolox/100g dw) using a calibration curve of Trolox (Annex VIII). 

 

 

Figure 3.15. Colour variation in the ABTS reaction. The ABTS+ solution exhibits a blue colour (A) and the 
loss of this colour indicates the presence of antioxidant agents (B). Diana Julião, January 2019. 
 

3.5. Beta-glucans (laminarin) content 
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The quantification of laminarin in seaweed samples was carried out through the 

measurement of glucose concentration released after enzymatic hydrolysis of laminarin. The 

method was achieved by using a mixed-linkage beta-glucan assay kit and procedure K-BGLU 

08/18 supplied by Megazyme (Bray, Ireland). 

To perform the procedure, 80-120mg of each sample was weighed in triplicate and mixed 

with 0.2mL of ethanol 50%, v/v, and 4mL of 20 mM sodium phosphate buffer (pH 6.5). The mixture 

was vortex and, on mixing, immediately incubated in a boiling water bath (Büchi Laboratoriums-

Technik AG, Model 461, Flawil, Switzerland) for 60 seconds. The mixture was vortexed, incubated 

for 2 minutes at a 100ºC bath, vortexed again and incubated in a 50ºC bath for 5 minutes. A 

volume of 0.2mL of lichenase enzyme was added to each tube and the mixture was vortexed and 

incubated in a stirring water bath for 1 hour at 50ºC with regular vigorous stirring on a vortex. A 

volume of 0.1mL of 200 mM sodium acetate buffer (pH 4) was added and the mixture was 

vortexed. The tubes were allowed to equilibrate at room temperature for 5 minutes and 

centrifuged at 1000×g for 10 minutes on a KUBOTA 6800 centrifuge (KUBOTA, Tokyo, Japan). 

From each sample tube, 0.1mL aliquots were dispensed into the bottom of 3 test tubes, and 0.1mL 

of β-glucosidase enzyme in 50 mM sodium acetate buffer (pH 4) was added to two of the three 

test tubes. To the third test tube was added 0.1mL of 50 mM acetate buffer (pH 4) – this tube act 

as a blank as β-glucosidase is not present to catalyse the hydrolysis of the glycosidic blonds. All 

test tubes were incubated in a 50ºC water bath (Büchi Laboratoriums-Technik AG, Model 461, 

Flawil, Switzerland) for 10 minutes. A volume of 3mL of GOPOD (glucose oxidase/peroxidase) 

reagent was added, and the test tubes were again incubated in a 50ºC water bath for 20 minutes 

(Figure 3.16). Finally, the absorbance was measured at 510nm in a Helios Alpha model (Unicam, 

Leeds, UK) UV-Vis spectrophotometer. β-glucan from oats, supplied in the assay kit was used as 

a standard. Results were expressed in %, w/w, according to the formula 3.4 supplied by the kit: 

 

β − glucans (%
w

w
) =  ∆Abs ×  

F

W
 × FV × 0.9 (3.4) 

 

Where: 

∆Abs = Absorbance after β-glucosidase treatment (reaction) minus reaction blank 

absorbance; 

F = Factor for the conversion of absorbance values to µg of glucose = 

100 (µg of D−glucose)

absorbance of 100 µg od D−glucose
; 

FV = Final volume (i.e., 9.4mL); 

W = Weight in mg of the analysed sample; 

0.9 = Factor to convert from free D-glucose, as determined, to anhydro-D-glucose, as 

occurs in β-glucan.  
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Figure 3.16. (A) Coloration of the D-glucose standard after GOPOD treatment - the pink colour in the mixture 
indicated the presence of D-glucose, and therefore the presence of β-glucans. (B) Coloration of the samples 
after GOPOD treatment. Diana Julião, January 2020. 

 

3.6. In vitro Digestion Model 
 

An in vitro digestion model that includes three steps, which simulate the digestive human 

processes in the mouth, stomach, and small intestine, was applied to determine the bioaccessible 

antioxidant and anti-inflammatory activity, and essential elements/mineral content. This model 

was developed by Versantvoort et al. (2004)166 and consequently modified by Afonso et al. 

(2015)124. The composition of digestive juices – saliva, gastric, duodenal and bile – was prepared 

according to Afonso et al. (2015)124.  

The chemicals Na2SO4, KCl, NaCl, NaH2PO4, CaCl2, NaHCO3, HCl, KH2PO4 and MgCl2•6H2O, 

utilized in the preparation of the digestive fluids, were purchased from Merck (Darmstadt, 

Germany), while NH4Cl was purchased from Fluka (Buchs, Switzerland). The remaining reagents 

were purchased from Sigma (St. Louis, MO, USA). Trypsin, and α-chymotrypsin from Sigma (St. 

Louis, MO, USA) were also added to the duodenal juice. The quantities of these two enzymes 

were estimated according to the work reported by Gatellier and Santé-Lhoutellier (2009)167.  

Initially, it was weighed 0.5g of each macroalgae (sun-dried and shade-dried) in duplicate 

and added 4mL of the artificial saliva at a pH 6.8 ± 0.2 for 5 minutes. Afterwards, 8mL of artificial 

gastric juice (pH 1.3 ± 0.02 at 37 ± 2ºC) was added, and subsequently the pH was adjusted to a 

final pH of 2.0 ± 0.1 with a pH meter (Mettler Toledo, Model SevenCompact, Greifensee, 

Switzerland). Then, the samples were placed in a head-over-heels movement in a model Roto-

Shake Genie (Scientific Industries Inc., Bohemia, NY, USA) (37 rpm at 37 ± 2ºC) for 2 hours to 

simulate digestion conditions. After cooling down, a mixture of 8mL of duodenal juice (pH 8.1 ± 

0.2 at 37 ± 2ºC), 4mL of bile (pH 8.2 ± 0.2 at 37 ± 2ºC), and 1.3mL of HCO3
- solution (1 M) was 

added simultaneously. The final pH of the mixture was set at pH 6.5 ± 0.5 and then agitated for a 

further 2 hours period in a head-over-heels movement (37 rpm at 37 ± 2ºC). The obtained solution 

was centrifuged in a Sigma 3K30 centrifuge (Sigma Laborzentrifugen GmbH, Osterode am Harz, 

Germany) at about 2750×g during 5 minutes in order to separate the non-digested from the 

bioaccessible fraction. The various bioactives and elemental contents were then analysed in the 

bioaccessible fraction. 

To estimate the constituent (C) percentage in the bioaccessible fraction the following 

formula 3.5 was used: 
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% C bioacessible =  
mC bioacessible

mC initial 
 × 100 (3.5) 

 

Where: 

mC = mass of the constituent in the initial or bioaccessible fraction of the macroalgae. 

 

3.7. Anti-inflammatory activity 
 

3.7.1. Extract preparation for in vitro anti-inflammatory 
activity 
 

The anti-inflammatory activity of sun-dried and shade-dried Asparagopsis taxiformis, 

Asparagopsis armata, Cystoseira humilis and Cystoseira abies-marina was determined in 

aqueous extracts and in the bioaccessible fractions obtained from the in vitro digestion model 

described in 3.6. 

Approximately 200mg of each seaweed was weighed and homogenized with 2mL of Milli-

Q water, using a Unidrive X1000 Homogenizer Drive (CAT Scientific Inc., California, USA) at a 

velocity of 30,000 rpm for 1 minute. The macroalgae Asparagopsis armata sun-dried and shade-

dried, Asparagopsis taxiformis shade-dried, Cystoseira humilis sun-dried and shade-dried and 

Cystoseira abies-marina shade-dried formed a gelatinised solution with 2mL of Milli-Q water, 

therefore, another 2mL was added and they were then subjected to another homogenisation at a 

velocity of 30,000 rpm for 1 minute. The mixtures were exposed to a heat treatment (80ºC for 1 

hour) and centrifuged in a KUBOTA 6800 centrifuge (KUBOTA, Tokyo, Japan) for 10 minutes 

(4ºC, 3000xg). The supernatant was collected, and the solvent was evaporated using a nitrogen 

stream at room temperature using a model Reacti-Therm III nº18940 nitrogen evaporation unit 

(Pierce, East Lyme, CT, USA). Besides the supernatant, 5mL of each bioaccessible extract was 

also evaporated using a nitrogen evaporator. The residue was directly dissolved in 100% dimethyl 

sulfoxide (DMSO) to prepare a stock solution with a concentration of 10 mg/mL. To totally dissolve 

the residues, the solutions were homogenised using a Unidrive X1000 Homogenizer Drive (CAT 

Scientific Inc., Paso Robles, CA, USA) at a velocity of 30,000 rpm for 1 minute. From the stock 

solutions, final solutions of 1 mg/mL were prepared (Figure 3.17 and 3.18). 

 

 

Figure 3.17. Final solutions of 1 mg/mL prepared from the supernatant collected from the aqueous extracts. 
From left to right: Shade-dried Asparagopsis taxiformis; Sun-dried Asparagopsis taxiformis; Shade-dried 
Asparagopsis armata; Sun-dried Asparagopsis armata; Shade-dried Cystoseira humilis; Sun-dried 
Cystoseira humilis; Shade-dried Cystoseira abies-marina; Sun-dried Cystoseira abies-marina. Diana Julião, 
June 2020. 
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Figure 3.18. Final solutions of 1 mg/mL prepared from the bioaccessible extract. From left to right: Shade-
dried Asparagopsis taxiformis; Sun-dried Asparagopsis taxiformis; Shade-dried Asparagopsis armata; Sun-
dried Asparagopsis armata; Shade-dried Cystoseira humilis; Sun-dried Cystoseira humilis; Shade-dried 
Cystoseira abies-marina; Sun-dried Cystoseira abies-marina. Diana Julião, June 2020. 

 

3.7.2. Cyclooxygenase (COX-2) inhibition method 
 

Cyclooxygenase (COX, also called Prostaglandin H Synthase or PGHS) is a bifunctional 

enzyme that has COX and peroxidase activities. The COX part of the enzyme converts 

arachidonic acid to a hydroperoxyl endoperoxide (PGG2), while peroxidase activity part reduces 

the endoperoxide to the corresponding alcohol (PGH2), the precursor of prostaglandins (PGs), 

thromboxanes, and prostacyclins. 

COX-2 is an isoform of COX, responsible for, under acute inflammatory conditions, the 

biosynthesis of PGs. 

The COX inhibitor screening assay directly measures the amount of Prostaglandin F2α 

(PGF2α) generated from arachidonic acid (ARA, 20:4 ω6) in the cyclooxygenase reaction. 

This assay is based in a competitive ELISA, where PG-acetylcholinesterase (AChE) 

conjugate (PG tracer) and PGs compete for a restricted quantity of PG antiserum. The amount of 

PG tracer that is capable of binding to the PG antiserum is inversely proportional to the 

concentration of PG, as the concentration of the PG tracer is constant while the concentration of 

PG varies. The rabbit antiserum-PG (either free or tracer) complex formed binds to a mouse 

monoclonal anti-rabbit antibody that is attached to the well. The addition of the Ellman’s reagent 

– that consists of acetylthiocholine and 5,5’-dithio-bis-(2-nitrobenzoic acid) – causes the 

enzymatic reaction between AChE and acetylthiocholine, that produces thiocholine, while the 

following reaction between thiocholine and 5,5’-dithio-bis-(2-nitrobenzoic acid) produces 5-thio-2-

nitrobenzoic acid, which has a strong absorbance at 412nm (Figure 3.19).  
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Figure 3.19. Reaction catalysed by acetylcholinesterase. Cayman test kit-560131 (Cayman Chemical 
Company, Ann Arbor, MI, USA). 

 

The seaweed extracts were tested at 1 mg/mL using a commercial cyclooxygenase 

(COX) inhibitory screening assay kit, Cayman test kit-560131 (Cayman Chemical Company, Ann 

Arbor, MI, USA). A volume of 10µl of each extract or DMSO was used. The reaction tubes were 

then incubated for 10 minutes in a 37ºC bath (Büchi Laboratoriums-Technik AG, Model 461, 

Flawil, Switzerland). The reaction was initiated by addition of 10µl of arachidonic acid 10 mM and 

each reaction tube was incubated at 37ºC for 2 minutes. It was terminated by the addition of 30µl 

of saturated stannous chloride. 

The microplate was completed by pipetting the wells correspondent to the blank (Ellman’s 

reagent), non-specific binding (non-immunological binding of the tracer to the well), maximum 

binding (maximum amount of tracer that the antibody on the absence of the free analyte), total 

activity (total enzymatic activity of the AChE-linked tracer), prostaglandin screening standards, 

background COX-2, COX-2 100% initial activity and COX-2 inhibitor macroalgae samples. The 

prostanoid produced was quantified spectrophotometrically (415nm) in a Model 680 Microplate 

Reader (BIO-RAD Laboratories, Hercules, CA, USA) via enzyme immunoassay (ELISA) after an 

18-hour incubation, washing, addition of Ellman’s reagent, and further 90-minute incubation 

(Figure 3.20). Results were expressed as a percentage of inhibition of COX-2. 
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Figure 3.20. Anti-inflammatory activity test plate ready for prostaglandin reading. Diana Julião, June 2020. 
 

3.8. Mineral Composition 
 

The mineral composition of the initial and bioaccessible samples was analysed at the 

Faculty of Pharmacy of the University of Porto. 

 

3.8.1. Microwave-assisted acid digestion 
 

Samples mineralization was performed using an MLS 1200 Mega Milestone (Sorisole, 

Italy) microwave digestion system equipped with an HPR-1000/10 S rotor. Approximately 300mg 

of homogenized dried sample were directly weighed into a microwave oven PTFE vessel and 

4mL of nitric acid (HNO3 69% w/v, TraceSELECT®, Fluka, France) and 1mL of hydrogen peroxide 

(H2O2, 30–32% w/w, Primar™, for Trace Metal Analysis, Fisher Chemical, Loughborough, UK) 

were added. The vessels were closed, and a microwave oven program was performed as follows: 

1 minute at 250W, 2 minutes at 0W, 5 minutes at 250W, 5 minutes at 400W and 5 minutes at 

650W. After cooling, the sample solutions were diluted to 50mL with ultrapure water (>18.2 

MΩ.cm at 25°C), obtained with an arium® pro system (Sartorius, Goettingen, Germany), in 

decontaminated plastic volumetric flasks. Samples blanks were prepared in the same way. Each 

sample was digested in triplicate.  

For analytical quality control purposes, the same procedure of acid digestion was applied 

to the certified reference material (CRM) ERM-CD200 seaweed to check the accuracy of the 

procedure. The results obtained were in good agreement with the certified values (ranged from 

96.0% to 107.8%). 

 

3.8.2. Elemental analysis 
 

Elemental analysis was carried out by flame atomic absorption spectroscopy (FAAS) 

using an AAnalyst 200 instrument (Perkin-Elmer, Uberlingen, Germany) and by inductively 

coupled plasma mass spectrometry (ICP-MS) using an iCAPTM Q instrument (Thermo Fisher 

Scientific, Bremen, Germany). The elements Na and K were determined by FAAS. The remaining 

elements were analyzed by ICP-MS using the following elemental isotopes (m/z ratios): 26Mg, 31P, 

34S, 43Ca, 52Cr, 55Mn, 56Fe, 65Cu, 66Zn, 75As, 111Cd and 208Pb. The elemental isotopes 45Sc, 89Y, 

141Pr, 159Tb and 175Lu were used as internal standards (IS). 
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Calibration standards for FAAS analysis were prepared from QC Std 3 (100 mg/L) multi-

element standard solution (SCP Science, Baie-d’Urfé, Quebec, Canada). Calibration standards 

for ICP-MS analysis were prepared from a 10 mg/L multi-element standard solution (Periodic 

table mix 1, Sigma-Aldrich, Buchs, Switzerland). The IS solution was prepared by diluting the 

multi-element standard solution Periodic table mix 3 (10 mg/L, Sigma-Aldrich, Buchs, 

Switzerland) to obtain a final concentration of 100 µg/L in 2% HNO3. This solution was added to 

both samples and calibration standard solutions to obtain a final IS concentration of 10 µg/L. 

 

3.8.3. Bromine and iodine analysis 
 

Dried samples (approximately 100mg) were weighed directly in borosilicate glass tubes 

(16×125 mm) previously washed with 0.5% (v/v) TMAH and rinsed with ultrapure water. Bromine 

and iodine extraction were performed according to the European Standard EN 15111:2007168. 

Bromine and iodine were analyzed by ICP-MS169 using an iCAPTM Q instrument (Thermo 

Fisher Scientific, Bremen, Germany) and the elemental isotopes 79Br and 127I were monitored. 

The ICP-MS instrument was equipped with a Meinhard™ TQ + quartz nebulizer (Golden, CO), a 

Peltier-cooled baffled cyclonic spray chamber, a standard quartz torch and standard twocone 

interface design (nickel sample and skimmer cones). High-purity argon (99.9997 %; Gasin, 

Portugal) was used as the nebulizer and plasma gas. The ICP-MS instrument operational 

parameters were as follow: RF power 1550 W; plasma gas flow (14 L/min); auxiliary gas flow (0.8 

L/min); nebulizer flow rate (1.02 L/min). The internal standard (IS) used was the elemental isotope 

125Te and the standard solutions tellurium (TraceCERT®, 1000 mg/L, Sigma-Aldrich, St. Louis, 

MA, USA), iodide and bromide (both TraceCERT®, 1000 mg/L, Supelco, Bellefonte, PA) were 

used for the preparation of the internal standard and calibration standard solutions, respectively. 

 

3.9. Statistical analysis 
 

The statistical analysis was achieved using STATISTICA 7 (Stat-sof, Inc., USA, 2004) 

and the results were expressed as average ± standard deviation. 

To test the normality and homogeneity of variance of data, the Kolmogorov-Smirnov’s 

test, and Cochran’s C-test (Cochran C., Hartley, Bartlett) were used, respectively. Data that 

validated these assumptions were analysed by factorial ANOVA distribution using the Tukey HSD 

to determine the difference in the constituent’s contents between species, drying procedure, and 

extracts (ethanolic and aqueous). For all statistical tests the significance level (α) was 0.05. 
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4. Results  
 

4.1. Proximate composition 
 

The results obtained regarding the proximate crude composition of the seaweed species 

A. armata, A. taxiformis, C. abies-marina, and C. humilis, either sun-dried or shade-dried, are 

exhibited in Table 4.1.  

 

Table 4.1. Proximate crude composition (g/100g dry weight for ash, protein, moisture before and after 
homogenization and lyophilization, and insoluble, soluble and total dietary fibre) of the studied seaweed 
species (Asparagopsis armata, Asparagopsis taxiformis, Cystoseira abies-marina, and Cystoseira humilis) 
either sun-dried or dried in the shade.  

Crude 
composition 

Drying 
Procedure 

Asparagopsis 
armata 

 
Asparagopsis 

taxiformis 
 

Cystoseira 
abies-
marina 

Cystoseira 
humilis 

(g/100g dw) (g/100g dw) (g/100g dw) (g/100g 
dw) 

Ash 

Sun-dried 49.8 ± 1.0aA 56.2 ± 1.0bA 28.1 ± 2.5cA 26.3 ± 
1.2cA 

Shade-
dried 

42.1 ± 0.3aB 52.6 ± 1.3bA 27.7 ± 1.9cA 25.4 ± 
1.5cA 

Protein 

Sun-dried 10.7 ± 0.1aA 13.1 ± 0.4bA 3.5 ± 0.2cA 3. 7 ± 0.1cA 

Shade-
dried 

12.1 ± 0.5aB 11.1 ± 0.3aB 3.8 ± 0.2bA 3.8 ± 0.5bA 

Moisture 
(before 

homogenization 
and 

lyophilization) 

Sun-dried 10.4 ± 0.1aA 8.4 ± 1.0aA 9.7 ± 0.4aA 
14.4 ± 
0.6bA 

Shade-
dried 

12.1 ± 0.7aA 7.7 ± 0.4bA 6.4 ± 0.5bB 
11.2 ± 
0.0aB 

Moisture 
(after 

homogenization 
and 

lyophilization) 

Sun-dried 3.3 ± 0.0aA 5.3 ± 0.0bA 6.2 ± 0.0cA 4.5 ± 0.0dA 

Shade-
dried 

6.2 ± 0.3aB 4.4 ± 0.0bB 5.0 ± 0.0cB 4.8 ± 0.1bcA 

Insoluble 
Dietary 
Fibre 

Sun-dried 23.8 ± 4.3aA 20.4 ± 0.0aA 53.6 ± 3.6bA 
47.2 ± 
3.0bA 

Shade-
dried 

18.7 ± 5.2aA 18.7 ± 9.7aA 47.6 ± 3.1bA 
43.7 ± 
3.0bA 

Soluble 
Dietary 
Fibre 

Sun-dried 10.3 ± 5.9aA 13.1 ± 0.0aA 6.1 ± 3.4aA 5.5 ± 3.4aA 

Shade-
dried 

13.2 ± 4.6aA 8.0 ± 4.3aA 4.8 ± 3.9aA 5.2 ± 5.5aA 

Total 
Dietary 
Fibre 

Sun-dried 34.1 ± 10.2aA 33.5 ± 0.0aA 59.7 ± 7.0aA 
52.7 ± 
6.4aA 

Shade-
dried 

31.9 ± 9.7aA 26.7 ± 14.0aA 52.4 ± 7.0aA 
49.0 ± 
8.5aA 

Data: average ± standard deviation. Different lowercase letters in the same row represent statistical 
differences (p<0.05) between seaweed species. Different uppercase letters in the same column represent 
statistical differences (p<0.05) between drying procedures. 
. 

 
According to the ash content, the Asparagopsis genus has an overall higher 

concentration, since the results obtained for this genus were 50-120% higher than the results 

acquired for the Cystoseira genus, despite the drying method. Sun-dried A. taxiformis presented 
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the highest ash concentration, of 56.2 ± 1.0 g/100g dw, with the shade-dried version being the 

second highest, with a concentration of 52.6 ± 1.3 g/100g dw. As to the drying procedure, no 

significant differences were detected, despite the slightly superior concentrations in the sun-dried 

process. 

As to the protein content, one can continue to observe that the concentration values are, 

once more, higher in the Asparagopsis genus, despite the drying method, and the highest protein 

concentration is 13.1 ± 0.4 g/100g dw, observed in sun-dried A. taxiformis. No effect of the drying 

procedure was detected either generally or for each seaweed species. 

The moisture content decreased in a general way from before to after homogenization 

and lyophilization, as expected, as lyophilization is a process based on the removal of water 

through the sublimation process. It can be observed that, before homogenization and 

lyophilization, both A. taxiformis and C. abies-marina have a lower moisture content, when 

compared with C. humilis and A. armata, as well as the lowest moisture decrease, when observing 

the moisture content after homogenization and lyophilization. Sun-dried C. humilis has the highest 

moisture decrease, of approximately 69%. The macroalgae sun-dried A. armata presented the 

lowest moisture value, after homogenization and lyophilization.  

Concerning the insoluble dietary fibre content, the genus Cystoseira as an overall 

superior concentration of 98-187%, when compared with the Asparagopsis genus. When 

observing the drying procedure variable, it is noticeable that all the four sun-dried macroalgae 

have a slightly higher insoluble dietary fibre concentration, despite the difference not being 

significative. Contrarily, in the soluble dietary fibre content, the genus Asparagopsis has a 

concentration 30-175% higher. When comparing the results for insoluble and soluble dietary fibre, 

it can be observed that the four species, either sun-dried or shade-dried, have a higher 

concentration of insoluble dietary fibre. As to the total dietary fibre, the Cystoseira genus as a 

general higher concentration. No significant differences were detected as to the drying procedure 

or regarding the genus and species.  
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4.2. Total polyphenol content  
 

The results obtained regarding the total phenolic content of the seaweed species A. 

armata, A. taxiformis, C. abies-marina, and C. humilis, either sun-dried or shade-dried is exhibited 

in Table 4.2.  

 

Table 4.2. Total polyphenol content (in mg GAE/100g dw) measured in aqueous (Aq.) and ethanolic (Eth.) 
extracts of the studied seaweed species (Asparagopsis armata, Asparagopsis taxiformis, Cystoseira abies-
marina, and Cystoseira humilis) either sun-dried or dried in shade.  

Extract 
Drying 

Procedure 

Asparagopsis 
armata 

 
Asparagopsis 

taxiformis 
 

Cystoseira 
abies-marina 

Cystoseira 
humilis 

(mg GAE/100g 
dw) 

(mg GAE/100g 
dw) 

(mg GAE/100g 
dw) 

(mg GAE/100g 
dw) 

Aqueous 

Sun-dried 87 ± 8aA 85 ± 4aA 463 ± 13bA 454 ± 74bA 

Shade-
dried 

115 ± 16aA 85 ± 7aA 639 ± 113cA 386 ± 123bA 

Ethanolic 

Sun-dried 134 ± 22aA 123 ± 15aA 176 ± 46aA 471 ± 21bA 

Shade-
dried 

169 ± 32aA 141 ± 19aA 598 ± 116bB 678 ± 51bB 

Data: average ± standard deviation. Different lowercase letters in the same row represent statistical 
differences (p<0.05) between seaweed species. For each extract, different uppercase letters in the same 
column represent statistical differences (p<0.05) between drying procedures. 

 

Concerning the aqueous extracts, seaweeds from the Cystoseira genus showed higher 

polyphenol levels than those from the Asparagopsis genus despite the drying method. When 

observing the results from the shade-dried procedure, C. abies-marina showed the highest 

polyphenol level, exceeding 600mg GAE/100g dw, when shade-dried. Results achieved with 

Asparagopsis did not surpassed 115mg GAE/100g dw. No effect of the drying procedure was 

detected either generally or for each seaweed species.  

As to the ethanolic extracts, phenolic contents were higher than determined in the 

aqueous extracts in the case of Asparagopsis seaweeds. Despite this remark, one can continue 

to observe that there is still a visible difference between the phenolic contents obtained for the 

two genera, with exception of sun-dried C. abies-marina. Shade-drying enabled higher total 

polyphenol levels in the Cystoseira genus, reaching 598-678mg GAE/100g dw. 

 

4.3. Antioxidant activity  
 

The antioxidant activity of the studied seaweed species (A. armata, A.taxiformis, C. abies-

marina, and C. humilis) either sun-dried or shade-dried, measured by the DPPH, FRAP, and 

ABTS methodologies is presented in Tables 4.3, 4.4, and 4.5, respectively. 

Concerning the DPPH method, the drying procedure produced differences in the 

antioxidant activity of the aqueous extracts, concerning C. abies-marina and A. taxiformis (lower 

values in the shade-dried seaweed).  In the sun-dried samples from the aqueous extracts, both 

Cystoseira species exhibited a very similar value, with higher DPPH values than A. armata, being 
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A. taxiformis intermediate. Concerning the shade-dried samples, the C. humilis corresponding 

extracts had a higher antioxidant capacity than the others, followed by A. armata.   

Regarding the ethanolic extracts, it is observed a similar tendency of Cystoseira species 

to display higher antioxidant DPPH values, when compared with the Asparagopsis species. The 

highest values were measured for the sun-dried C. humilis and shade-dried C. abies-marina, 

whose DPPH inhibition corresponded to 0.19 ± 0.00mg AA Eq/g dw and 0.20 ± 0.00mg AA Eq/g 

dw, respectively. On the contrary, the ethanolic extracts of A. taxiformis showed the lowest DPPH 

values.  

 

Table 4.3. Antioxidant activity as measured by DPPH (mg Ascorbic Acid Equivalent/100g dw) method in 
aqueous (Aq.) and ethanolic (Eth.) extracts of the studied seaweed species (Asparagopsis armata, 
Asparagopsis taxiformis, Cystoseira abies-marina, and Cystoseira humilis) either sun-dried or dried in 
shade.  

Extract 
Drying 

Procedure 

Asparagopsis 
armata 

 
Asparagopsis 

taxiformis 
 

Cystoseira 
abies-marina  

Cystoseira 
humilis 

(mg AA 
Eq/100g dw) 

(mg AA 
Eq/100g dw) 

(mg AA 
Eq/100g dw) 

(mg AA 
Eq/100g dw) 

Aqueous 

Sun-dried 0.09 ± 0.08aA 0.21 ± 0.03abA 0.33 ± 0.02bA 0.32 ± 0.02bA 

Shade-
dried 

0.16 ± 0.06abA 0.06 ± 0.10aA 0.11 ± 0.01aB 0.28 ± 0.06bA 

Ethanolic 

Sun-dried 0.07 ± 0.01bA <LOD 0.16 ± 0.00cA 0.19 ± 0.00dA 

Shade-
dried 

<LOD <LOD 0.20 ± 0.00dB 0.07 ± 0.01cB 

Data: average ± standard deviation. Different lowercase letters in the same row represent statistical 
differences (p<0.05) between seaweed species. For each extract, different uppercase letters in the same 
column represent statistical differences (p<0.05) between drying procedures. LOD stands for Limit Of 
Detection. 
 

The contrast between the two seaweed genera is largely replicated by the FRAP method 

results of both types of extract. There is a stronger pre-eminence of C. humilis in the case of 

FRAP, since it yield the highest antioxidant activities in the aqueous extract of shade-dried 

samples (151.0 ± 18.4μmol Fe2+ Eq/g dw) and sun-dried samples (62.8 ± 4.4μmol Fe2+ Eq/g dw), 

as well as in the ethanolic extracts of sun- and shade-dried extracts, 75.3 ± 3.14μmol Fe2+ Eq/g 

dw and 248.9 ± 4.4μmol Fe2+ Eq/g dw, respectively. According to the results obtained, C. abies-

marina extracts generated second best activities, as measured by the FRAP method. The values 

for the Asparagopsis seaweed species were typically lower, with the highest value being 8.1 ± 

1.7μmol Fe2+ Eq/g dw for A. armata in an ethanolic extract, shade-dried. The drying procedure 

only affected Cystoseira samples, but in a very consistent and clear way. Sun drying more than 

halved FRAP antioxidant activity.  
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Table 4.4. Antioxidant activity as measured by FRAP (μmol Fe2+ eq./g dw) method in aqueous (Aq.) and 
ethanolic (Eth.) extracts of the studied seaweed species (Asparagopsis armata, Asparagopsis taxiformis, 
Cystoseira abies-marina, and Cystoseira humilis) either sun-dried or dried in shade.  

Extract 
Drying 

Procedure 

Asparagopsis 
armata 

 
Asparagopsis 

taxiformis 
 

Cystoseira 
abies-marina 

Cystoseira 
humilis 

(µmol Fe2+ 
Eq/g dw) 

(µmol Fe2+ 
Eq/g dw) 

(µmol Fe2+ 
Eq/g dw) 

(µmol Fe2+ 
Eq/g dw) 

Aqueous 
Sun-dried 4.6 ± 0.4aA 4.0 ± 0.2aA 50.4 ± 2.8bA 62.8 ± 4.4bA 

Shade-
dried 

5.4 ± 0.3aA 3.9 ± 0.5aA 114.2 ± 10.6bB 151.0 ± 18.4cB 

Ethanolic 

Sun-dried 6.1 ± 4.3aA 3.2 ± 3.8aA 12.8 ± 0.2aA 75.3 ± 3.1bA 

Shade-
dried 

8.1 ± 1.7aA 5.6 ± 0.7aA 47.9 ± 7.8bB 248.9 ± 4.4cB 

Data: average ± standard deviation. Different lowercase letters in the same row represent statistical 
differences (p<0.05) between seaweed species. For each extract, different uppercase letters in the same 
column represent statistical differences (p<0.05) between drying procedures. 

 

In the case of the ethanolic extracts, antioxidant activity measured by the ABTS method 

show trends similar to the DPPH and FRAP ones. In the aqueous extracts, the situation is almost 

opposite.  

Indeed, the results obtained for the Cystoseira species in the ethanolic extracts are 

higher, expressing a greater antioxidant activity (as measured by the ABTS method) than those 

of the Asparagopsis species, regardless of the type of drying procedure. The antioxidant activity 

of the Asparagopsis species varies from 6.9 ± 0.5μmol Trolox Eq/g dw to 14.1 ± 0.9μmol Trolox 

Eq/g dw, while Cystoseira species varies from 28.2 ± 4.3μmol Trolox Eq/g dw to 60.6 ± 2.9μmol 

Trolox Eq/g dw. Hence, there is a sharp divide between both genera.  

The discrepancy between genera is also verified in the aqueous extracts from the ABTS 

method. However, while no antioxidant activity was determined in the two Cystoseira species, 

ABTS values in the aqueous extracts of A. armata and A. taxiformis exceeded the corresponding 

values in the ethanolic extracts. Furthermore, whenever drying affected ABTS levels, sun-dried 

samples’ values were 20-50% lower than the results of the shade-dried seaweed. 
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Table 4.5. Antioxidant activity as measured by ABTS (μmol Trolox Equivalent/g dw) method in aqueous 
(Aq.) and ethanolic (Eth.) extracts of the studied seaweed species (Asparagopsis armata, Asparagopsis 
taxiformis, Cystoseira abies-marina, Cystoseira humilis) either sun-dried or dried in shade.  

Extract 
Drying 

Procedure 

Asparagopsis 
armata 

 
Asparagopsis 

taxiformis 
 

Cystoseira 
abies-marina  

Cystoseira 
humilis 

(µmol Trolox 
Eq/g dw) 

(µmol Trolox 
Eq/g dw) 

(µmol Trolox 
Eq/g dw) 

(µmol Trolox 
Eq/g dw) 

Aqueous 
Sun-dried 18.8 ± 0.3cA 14.3 ± 0.2bA <LOD <LOD 

Shade-
dried 

18.8 ± 1.3bA 17.6 ± 2.3bB <LOD <LOD 

Ethanolic 

Sun-dried 6.9 ± 0.5aA 8.7 ± 2.9aA 28.2 ± 4.3bA 59.2 ± 0.7cA 

Shade-
dried 

14.1 ± 0.9aB 9.7 ± 0.5aA 57.3 ± 0.7bB 60.6 ± 2.9bA 

Data: average ± standard deviation. Different lowercase letters in the same row represent statistical 
differences (p<0.05) between seaweed species. For each extract, different uppercase letters in the same 
column represent statistical differences (p<0.05) between drying procedures. LOD stands for Limit Of 
Detection. 
 

4.4. Beta-glucan (laminarin) content  

 

Beta-glucan (or laminarin) is a water-soluble polysaccharide55. It was first found in 

Laminaria species and is considered to be the food reserve of all brown algae11. Their content 

can reach up to 32–35 %, w/dw170. 

The results obtained for Cystoseira, presented in Table 4.6, are justified by the fact that 

the genus Cystoseira does not belong to the group of brown seaweed genera that typically contain 

beta-glucan in their constitution. Therefore, the results are within expectations. On the contrary, 

the significant values in the two Asparagopsis species require further analysis. Floridean starch, 

a storage polysaccharide in red seaweeds, does not seem to be an interferent, since it is an α-

1,4-glucosidic linked glucose homopolymer with α-1,6-branches24, while beta-glucan is composed 

of β-(1→3)-linked glucose, containing randomly β-(1→6) intra-chain branching, with a ratio of 

approximately 3:1170. 

 

Table 4.6. Beta-glucan content (in %, dw) of the studied seaweed species (Asparagopsis armata, 
Asparagopsis taxiformis, Cystoseira abies-marina, and Cystoseira humilis) either sun-dried or dried in 
shade.  

Drying 
Procedure 

Asparagopsis 
armata 

 
Asparagopsis 

taxiformis 
 

Cystoseira 
abies-marina  

Cystoseira 
humilis 

[Beta-glucan] 
(%, dw) 

[Beta-glucan] 
(%, dw) 

[Beta-glucan] 
(%, dw) 

[Beta-glucan] 
(%, dw) 

Sun-dried 0.72 ± 0.05cA 0.39 ± 0.03bA <LOD <LOD 

Shade-
dried 

0.25 ± 0.02bB 0.32 ± 0.05cB <LOD <LOD 

Data: average ± standard deviation. Different lowercase letters in the same row represent statistical 
differences (p<0.05) between seaweed species. Different uppercase letters in the same column represent 
statistical differences (p<0.05) between drying procedures. LOD stands for Limit Of Detection. 
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4.5. Anti-inflammatory content  
 

The chosen seaweed species (A. armata, A. taxiformis, C. abies-marina, and C. humilis) 

either sun-dried or shade-dried were also studied with respect to the anti-inflammatory activity of 

their aqueous extracts, as shown in Table 4.7. 

The aqueous extracts of A. armata, sun-dried and shade-dried, and sun-dried C. abies-

marina does not have inhibitory capacity of COX-2. Within sun-dried samples, Cystoseira humilis 

has a 26 ± 12% of inhibition of COX-2, with Asparagopsis taxiformis possessing approximately 

half of C. humilis inhibitory capacity. In the case of shade-dried samples, C. humilis had a higher 

anti-inflammatory activity — exceeding 30% of inhibition— than A. armata, being the other two 

species at an intermediate level. An effect of the drying procedure on this bioactivity was only 

observed in the case of C. abies-marina, suggesting a detrimental impact of sun-drying. 

 

Table 4.7. Anti-inflammatory activity (% inhibition of COX-2) in aqueous extracts of the studied seaweed 
species (Asparagopsis armata, Asparagopsis taxiformis, Cystoseira abies-marina, and Cystoseira humilis) 
either sun-dried or dried in shade. 

Extract 
Drying 

Procedure 

Asparagopsis 
armata 

 
Asparagopsis 

taxiformis 
 

Cystoseira 
abies-marina  

Cystoseira 
humilis 

(% inhibition) (% inhibition) (% inhibition) (% inhibition) 

Aqueous 

Sun-dried <LOD 15 ± 5aA <LOD 26 ± 12aA 

Shade-
dried 

<LOD 16 ± 9abA 13 ± 2abB 37 ± 14bA 

Data: average ± standard deviation. Different lowercase letters in the same row represent statistical 
differences (p<0.05) between seaweed species. Different uppercase letters in the same column represent 
statistical differences (p<0.05) between drying procedures. LOD stands for Limit Of Detection. 
 

4.6. Elemental Composition  
 

The chosen seaweed species (A. armata, A. taxiformis, C. abies-marina, and C. humilis) 

either sun-dried or shade-dried were also studied regarding their elemental composition of the 

aqueous extracts, as shown in Table 4.8. 

Concerning essential elements, in the Asparagopsis genus, iodine was the most 

abundant microelement and sodium the most abundant macro element. In the Cystoseira genus, 

iron presented the highest concentration regarding microelements, while potassium was the most 

abundant macro element. Besides that, it is the most abundant mineral found in Cystoseira 

humilis and Cystoseira abies-marina. In Asparagopsis taxiformis and Asparagopsis armata, 

iodine was the most abundant mineral, with concentrations ranging from 4645.3 ± 119.6 mg/kg 

dw to 5735 ± 49.2 mg/kg dw. Potassium shows a higher concentration in the Cystoseira genus, 

37-42% more when compared to the Asparagopsis genus. However, the Asparagopsis genus are 

shown to be significantly richer in sodium, manganese, zinc, and bromine. Copper concentrations 

were similar in the four studied species, being equally found in a low quantity. Regarding 

contaminant elements, it is noted the high amount of arsenic found in Cystoseira abies-marina 
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(332.2 ± 11.1 mg/kg dw in C. abies-marina sun-dried and 367.8 ± 14.0 mg/kg dw in C. abies-

marina shade-dried. The lead and cadmium concentrations were similar in the four studied 

species, being equally found in a low quantity. In respect to the drying methods, there is no 

significant differences that suggest its effect on the results obtained. 

 

Table 4.8. Mineral composition obtained for aqueous extracts of the studied seaweed species (Asparagopsis 
armata, Asparagopsis taxiformis, Cystoseira abies-marina, and Cystoseira humilis) either sun-dried or dried 
in shade. Concentration of sodium (Na), magnesium (Mg), phosphorus (P), sulphur (S), potassium (K), 
calcium (Ca), chromium (Cr), manganese (Mn), iron (Fe), copper (Cu), zinc (Zn), arsenic (As), bromine (Br), 
cadmium (Cd), iodine (I) and lead (Pb) are displayed. 

Minerals 
Drying 

Procedure 
Asparagopsis 

armata 

 
Asparagopsis 

taxiformis 
 

Cystoseira 
abies-
marina 

Cystoseira 
humilis 

Na  
(g/kg dw) 

Sun-dried 105.0 ± 4.1bA 115.3 ± 3.0aA 28.5 ± 0.6cA 31.4 ± 0.2cA 

Shade-dried 85.6 ± 0.7bB 97.8 ± 0.7aB 30.0 ± 0.7cA 29.5 ± 0.1cA 

Mg  
(g/kg dw) 

Sun-dried 9.8 ± 0.6bA 9.2 ± 0.1bA 7.0 ± 0.2aA 12.6 ± 0.3cA 

Shade-dried 9.5 ± 0.3bA 9.2 ± 0.3bA 7.2 ± 0.2aA 11.7 ± 0.5cA 

P  
(g/kg dw) 

Sun-dried 2.1 ± 0.1aA 1.7 ± 0.1bA 0.5 ± 0.0dA 0.6 ± 0.0cA 

Shade-dried 2.0 ± 0.0aA 1.7 ± 0.1bA 0.3 ± 0.1dA 0.6 ± 0.0cA 

S  
(g/kg dw) 

Sun-dried 36.0 ± 1.5aA 25.3 ± 0.7bA 14.3 ± 0.4cA 16.1 ± 0.6cA 

Shade-dried 31.9 ± 0.8aB 25.9 ± 0.9bA 14.8 ± 0.3cA 15.2 ± 0.4cA 

K  
(g/kg dw) 

Sun-dried 14.2 ± 0.4aA 14.7 ± 0.2aA 71.0 ± 1.5cA 64.1 ± 1.0bA 

Shade-dried 13.5 ± 0.4aA 14.0 ± 0.1aA 65.8 ± 1.0bB 65.1 ± 1.5bA 

Ca  
(g/kg dw) 

Sun-dried 14.6 ± 0.6aA 14.9 ± 0.9aA 15.2 ± 0.6aA 18.1 ± 0.7bA 

Shade-dried 22.3 ± 0.5aB 17.7 ± 1.2bcB 16.2 ± 0.4cA 18.7 ± 0.8bA 

Cr  
(mg/kg dw) 

Sun-dried 2.0 ± 0.3bA 13.4 ± 0.6aA 0.8 ± 0.0cA 0.7 ± 0.0cA 

Shade-dried 5.8 ± 0.4aB 5.0 ± 0.2aB 0.8 ± 0.0bA 0.8 ± 0.0bA 

Mn  
(mg/kg dw) 

Sun-dried 21.3 ± 1.5bA 51.3 ± 4.8aA 2.0 ± 0.1cA 5.2 ± 0.6cA 

Shade-dried 36.9 ± 1.5aB 27.4 ± 2.1bB 2.2 ± 0.1cA 4.8 ± 0.3cA 

Fe  
(mg/kg dw) 

Sun-dried 557.9 ± 54.1bA 1705.8 ± 74.5aA 168.8 ± 3.0dA 294.8 ± 10.2cA 

Shade-dried 1073.0 ± 81.1aB 917.7 ± 15.2bB 188.0 ± 2.5cA 280.1 ± 7.0cA 

Cu  
(mg/kg dw) 

Sun-dried 2.6 ± 0.1aA 2.6 ± 0.1aA 0.6 ± 0.0bA 0.7 ± 0.1bA 

Shade-dried 3.5 ± 0.1aB 2.1 ± 0.1bB 0.7 ± 0.7cA 0.8 ± 0.0cA 

Zn  
(mg/kg dw) 

Sun-dried 96.6 ± 2.8aA 17.4 ± 0.3bA 4.4 ± 0.1cA 6.3 ± 0.3cA 

Shade-dried 36.3 ± 0.9aB 11.2 ± 0.4bB 4.7 ± 0.1cA 6.3 ± 0.2cA 

As  
(mg/kg dw) 

Sun-dried 16.4 ± 0.8aA 12.9 ± 0.1aA 332.2 ± 11.1cA 48.1 ± 1.2bA 

Shade-dried 18.5 ± 0.8aB 11.3 ± 0.1aA 367.8 ± 14.0cB 58.9 ± 1.2bB 

Br  
(g/kg dw) 

Sun-dried 32.6 ± 0.8bA 52.2 ± 0.7aA 0.6 ± 0.0cA 0.8 ± 0.0cA 

Shade-dried 59.2 ± 0.7aB 45.5 ± 0.4bB 0.4 ± 0.0cA 0.9 ± 0.0cA 

Cd  
(mg/kg dw) 

Sun-dried 0.6 ± 0.0aA 0.3 ± 0.0cA 0.3 ± 0.0cA 0.4 ± 0.0bA 

Shade-dried 0.5 ± 0.0aB 0.3 ± 0.0bB 0.2 ± 0.0bB 0.4 ± 0.0aA 

I  
(mg/kg dw) 

Sun-dried 
4645.3 ± 
119.6bA 

5735.7 ± 49.2aA 88.4 ± 1.6cA 103. 5 ± 3.3cA 

Shade-dried 5734.1 ± 54.4aB 5122.4 ± 25.4bB 47.0 ± 0.7cA 99.6 ± 0.5cA 

Pb  
(mg/kg dw) 

Sun-dried 0.7 ± 0.0bA 1.3 ± 0.0aA <LOD <LOD 

Shade-dried 1.8 ± 0.1aB 1.7 ± 0.1aB <LOD <LOD 

Data: average ± standard deviation. Different lowercase letters in the same row represent statistical 
differences (p<0.05) between seaweed species. For each element and species, different uppercase letters 
in the same column represent statistical differences (p<0.05) between drying procedures. LOD stands for 
Limit Of Detection. 
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4.7. Bioaccessibility 
 

4.7.1. Anti-inflammatory activity 
 

The bioaccessibility of studied bioactives/bioactivities was determined. However, only 

anti-inflammatory activity was detected in the bioaccessible fractions of the seaweeds digested 

in vitro. Accordingly, anti-inflammatory activity bioaccessibility was calculated for the four 

seaweed species (A. armata, A. taxiformis, C. abies-marina, and C. humilis) either sun-dried or 

shade-dried (Figure 4.1). Both sun- and shade-dried A. armata as well as sun-dried C. abies-

marina did not show any anti-inflammatory activity in their biomass (Table 4.7), thus this bioactivity 

was also not found in the respective bioaccessible fractions. Moreover, bioaccessibility factor was 

also zero for other samples (shade-dried C. abies-marina and both samples of C. humilis). Only 

A. taxiformis samples displayed anti-inflammatory activity in the bioaccessible fraction. This 

activity was similar in sun- and shade-dried samples and only slightly lower than the values prior 

to digestion, thus rendering bioaccessibility factors in the 90-100% interval. 

 
Figure 4.1. Bioaccessibility of the anti-inflammatory activity in the studied seaweed species (Asparagopsis 
armata, Asparagopsis taxiformis, Cystoseira abies-marina and Cystoseira humilis) either sun-dried or dried 
in the shade. 

 

4.7.2. Elemental Composition  
 

The chosen seaweed species (A. armata, A. taxiformis, C. abies-marina, and C. humilis) 

either sun-dried or shade-dried were also studied with respect to bioaccessible elemental 

composition of their aqueous extracts, as shown in Table 4.9. 
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Concerning essential elements, bromine was the element found to have the highest 

bioaccessibility percentage on all four studied species, sun-dried and shade-dried, ranging from 

84.0 ± 2.8% in sun-dried C. abies-marina to 101.5 ± 0.7% in C. shade-dried abies-marina. Besides 

that, high percentages were also obtained for magnesium and iodine. The Asparagopsis genus 

presented high values concerning calcium (28.5 ± 4.9-40.0 ± 9.9%). In contrast, the Cystoseira 

genus presented low results for calcium. Zinc and iron also presented low bioaccessibility 

percentages for the four seaweed species. The value obtained for zinc bioaccessibility with 

respect to sun-dried A. armata – 38.5 ± 2.1% – is in disagreement with the remaining values 

obtained for this element – 0.0 ± 0.0%.  The values attained for copper were significant in the 

Asparagopsis genus (37.5 ± 7.8-40.0 ± 5.7%), but low in the Cystoseira genus. Regarding 

contaminant elements, arsenic displays high results in all four seaweed species, ranging from 

55.0 ± 2.8% in shade-dried C. humilis to 86.5 ± 0.7% in shade-dried A. taxiformis. Cadmium also 

shows high percentages in the four seaweeds, from 33.5 ± 0.7% in shade-dried C. humilis to 67.5 

± 2.1% in sun-dried A. taxiformis. Lead presented low concentrations in the four seaweeds 

studied. With respect to the drying methods, there are few significant differences that suggest its 

influence in the results obtained. 
 

Table 4.9. Elemental bioaccessibility obtained for aqueous extracts after in vitro digestion. Of the studied 
seaweed species (Asparagopsis armata, Asparagopsis taxiformis, Cystoseira abies-marina, and Cystoseira 
humilis) either sun-dried or dried in the shade.  

Minerals 
Drying 

Procedure 

Asparagopsis 
armata 

 
Asparagopsis 

taxiformis 
 

Cystoseira 
abies-
marina 

Cystoseira 
humilis 

(%) (%) (%) (%) 

Mg 
Sun-dried 63.5 ± 3.5aA  67.5 ± 7.8aA  58.5 ± 0.7aA  63.5 ± 0.7aA 

Shade-dried 62.5 ± 2.1abA 70.5 ±0.7aA 55.5 ± 0.7bA 63.5 ± 0.7abA 

S 
Sun-dried 33.0 ± 1.4aA 48.0 ±8.5aA 34.0 ± 4.2aA 40.0 ± 1.4aA 

Shade-dried 45.0 ± 0.0aA 44.0 ±2.8aA 26.5 ± 2.1bA 35.5 ± 3.5abA 

Ca 
Sun-dried 28.5 ± 4.9abA 40.0 ±9.9aA  1.0 ± 1.4cA 13.0 ± 0.0bcA 

Shade-dried 30.0 ± 5.7abA 38.0 ±1.4aA <LOD 13.5 ± 2.1bcA 

Cr 
Sun-dried 7.0 ± 4.2abA 2.0 ±1.4abA 4.0 ± 5.7bA 6.0 ± 2.8bA 

Shade-dried 21.0 ± 0.0aB 4.5 ±0.7bA <LOD 1.0 ± 1.4bA 

Fe 
Sun-dried 4.5 ± 0.7abA 2.0 ±0.0bA 3.5 ± 2.1abA 6.0 ± 0.0aA 

Shade-dried 3.5 ± 0.7abA 4.0 ±0.0abA 1.0 ± 0.0aA 7.0 ± 1.4bA 

Cu 
Sun-dried 40.0 ± 5.7aA 37.5 ±7.8aA <LOD <LOD 

Shade-dried 38.0 ± 5.7aA 38.5 ±12.0aA <LOD <LOD 

Zn 
Sun-dried 38.5 ± 2.1aA <LOD <LOD <LOD 

Shade-dried <LOD <LOD <LOD <LOD 

As 
Sun-dried 76.5 ± 3.5aA  82.5 ±10.6aA  66.0 ± 8.5aA 65.5 ± 2.1aA 

Shade-dried 77.5 ± 2.1aA 86.5 ±0.7aA 67.5 ± 0.7abA 55.0 ± 2.8bA 

Br 
Sun-dried 89.0 ± 2.8aA 94.0 ±5.7aA 84.0 ± 2.8aA 90.0 ± 1.4aA 

Shade-dried 100.0 ± 0.0aB 98.5 ±2.1aA 101.5 ± 0.7aB 91.0 ± 1.4aA 

Cd 
Sun-dried 44.5 ± 2.1aA 67.5 ±2.1bA 50.0 ± 4.2aA 43.5 ± 2.1aA 

Shade-dried 46.5 ± 2.1bA 65.5 ±2.1aA 42.5 ± 0.7bcA 33.5 ± 0.7cB 

I 
Sun-dried 73.0 ± 2.8aA 74.5 ±3.5aA 35.5 ± 0.7cA  49.0 ± 0.0bA  

Shade-dried 76.0 ± 4.2aA 64.5 ±0.7bB 57.0 ± 0.0bB 40.5 ± 2.1cA 

Pb 
Sun-dried <LOD 5.5 ±0.7bA <LOD <LOD  

Shade-dried 3.5 ± 0.7bB 8.5 ±0.7aA <LOD <LOD 

Data: average ± standard deviation. Different lowercase letters in the same row represent statistical differences 
(p<0.05) between seaweed species. For each element and species, different uppercase letters in the same column 
represent statistical differences (p<0.05) between drying procedures. LOD stands for Limit Of Detection. 



47 

 

5. Discussion 
 

 

5.1. Proximate Composition 
 

According to Kumar et al. (2011)171, the ash content in macroalgae can reach up to 55%, 

and the values obtained in the present work are in concordance with this observation. A study 

with Asparagopsis taxiformis collected in the Hawaiian islands report an ash content value of 

36.0%172. Another study presents for A. taxiformis an ash value of 44.4% when collected in the 

Azores islands152. The values presented in literature are lower than the values obtained in this 

study (56.2 ± 1.0 g/100g dw for sun-dried A. taxiformis and 52.6 ± 1.3 g/100g dw for shade-dried 

A. taxiformis). Literature for Asparagopsis armata is very scarce, however, the values obtained 

for this macroalgae (49.8 ± 1.0 g/100g dw for sun-dried A. armata and 42.1 ± 0.3 g/100g dw for 

shade-dried A. armata) are in agreement with the literature presented for A. taxiformis. As for the 

Cystoseira genus, studies report an ash value of 23.9 g/100g dw for C. tamariscifolia and 20.4 

g/100g dw for C. humilis, both collected in Portugal173, while Fonseca et al. (2020)174 reported a 

value of 25.2 ± 0.4 g/100g dw for sun-dried C. abies-marina. The results obtained in the present 

study for C. humilis and C. abies-marina agree with the literature presented. Other macroalgae 

from the order Fucales also present similar ash content - Fucus vesiculosus and Sargassum 

obtusifolium, with reported values of 30.10 ± 0.20 g/100g dw94 and 28.9 ± 0.4 g/100g dw, 

respectively172. 

The protein content, one of the major biochemical components of macroalgae, is variable, 

and the highest contents are generally found in green (Chlorophyta) and red (Rhodophyta) 

seaweeds (10-30% dw) in comparison to brown (Phaeophyceae) seaweeds (5-15% dw)175. 

Previous studies with Asparagopsis taxiformis show slightly higher protein levels -  18.7 

± 0.1 g/100g dw, from macroalgae also collected in the Azores islands152 and 17.55 ± 0.11 g/100g 

dw from macroalgae collected in the Madeira Archipelago176 – when compared with the results 

obtained in this study (13.1 ± 0.4 g/100g dw for sun-dried A. taxiformis and 11.1 ± 0.3 g/100g dw 

for shade-dried A. taxiformis). A study with Asparagopsis armata reports a protein content of 18.3 

g/100g dw151, a value also slightly higher than the results obtained (10.7 ± 0.1 g/100g dw for sun-

dried A. armata and 12.1 ± 0.5 g/100g dw for shade-dried A. armata). Vizetto-Duarte et al. 

(2016)173 presented a value of 10.34 g/100g dw, for Cystoseira humilis protein content and 

Fonseca et al (2020)174 reported a protein content of 7.4 ± 0.2 g/100g dw for sun-dried Cystoseira 

abies-marina. Both values are higher when compared with the values obtained for C. humilis and 

C. abies-marina, in the present work (Table 4.1). However, Catarino et al. (2018)79 reported for 

the brown algae Fucus vesiculosus a range of 1-11 g/100g dw for protein content, meaning that, 

the values obtained were lower than expected but, nevertheless, similar values have been 

reported for brown algae. 

The moisture content of fresh marine algae is very high and can account for up to 94% of 

the biomass8. Fresh Cystoseira humilis has a moisture content that reaches up to 57.06% ww173 

and Asparagopsis taxiformis, 90.4% ww172. When the macroalgae goes through a drying process, 

its moisture content decreases significantly. Literature presents a value of 4.50 ± 0.20 g/100g dw 
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for Asparagopsis taxiformis moisture content, after lyophilization176. This value agrees with the 

results obtained (5.3 ± 0.0 g/100g dw for sun-dried A. taxiformis and 4.4 ± 0.0 g/100g dw for 

shade-dried A. taxiformis). The values attained for Asparagopsis armata (3.3 ± 0.0 g/100g dw for 

sun-dried A. armata and 6.2 ± 0.3 g/100g dw for shade-dried A. armata) also agree with the value 

present in literature for A. taxiformis. The higher values obtained for A. armata and A. taxiformis 

before lyophilization and homogenization, when compared with the results from after 

lyophilization and homogenization, are expected, as lyophilization is a process in which water is 

frozen, followed by its removal from the sample, initially by sublimation (primary drying) and then 

by desorption (secondary drying)177. Fonseca et al. (2020)174 presented a value for sun-dried C. 

abies-marina moisture content of 6.2 ± 0.0 g/100g dw and Sargassum muticum, from the order 

Fucales, was reported to have a moisture content of 9.6 ± 0.1 g/100g dw175, values similar to 

those obtained for Cystoseira humilis and Cystoseira abies-marina, before lyophilization and 

homogenization (6.4-11.4 g/100g dw). 

The content of total dietary fibre in macroalgae may range from 33–50 g/100g dw72. 

Literature for Asparagopsis taxiformis shows a value for: insoluble dietary fibre of 15.7 ± 0.7% 

dw; soluble dietary fibre of 4.6 ± 0.1% dw; and total dietary fibre of 20.1 ± 0.9% dw152. Results 

obtained for A. taxiformis and A. armata are similar (Table 4.1), but slightly higher when compared 

with the values reported in literature. One can remove the possibility that the results are dissimilar 

due to variations in the determination method since the determination of dietary fibre in both cases 

was accomplished using the same enzymatic procedure (based on the kit from Megazyme). 

Fucus vesiculosus, from the order Fucales, is presented in literature with an insoluble dietary fibre 

content of 40.3 ± 1.0% dw, a soluble dietary fibre content of 9.8 ± 0.8% dw and a total dietary 

fibre content of 50.1 ± 1.8% dw72. Moreover, Fonseca et al. (2020)174 reported for sun-dried C. 

abies-marina a total dietary fibre of 46.2 g/100g dw, a soluble dietary fibre of 1.8 g/100g dw and 

an insoluble dietary fibre of 44.4 g/100g dw. These values are similar to the values obtained for 

both Cystoseira humilis and Cystoseira abies-marina (Table 4.1), as no significant differences 

with respect to the drying method or in between Cystoseira species were observed.  
 

5.2. Total polyphenol content  
 

The phenolic content in macroalgae is not consistent since factors like habitat, maturity 

and time of the year are known to affect their bioactive compounds. This is shown by 

Chkhikvishvili & Ramazanov (2000)178, that reported a range of 30-3,000mg GAE/100 g dw for 

phenolic contents in seaweed.  

Values reported by Nunes et al. (2018)179 for Asparagopsis taxiformis phenolic content – 

470-620mg GAE/100g dw, when in aqueous extracts, and 1430-1710mg GAE/100g dw, in 

ethanolic extracts – are higher when compared with the results obtained in this study. However, 

the concentration of phenolic content attained for A. taxiformis in the ethanolic extracts is higher 

when compared with the aqueous extracts, as in the results presented in the current study. 

Moreover, results reported by Regal et al. (2020)152 are in the range of values obtained in this 

study, presenting a phenolic concentration of 119 ± 8mg GAE/100g dw for aqueous extracts and 
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a concentration of  49 ± 1mg GAE/100g dw for ethanolic extracts, despite the results for the 

aqueous extracts being superior in this case. 

In the case of Asparagopsis armata, literature presents results, using methanol and 

dichloromethane as solvents, with a phenolic content of 207 ± 0.6 mg GAE/100g dw and 1421 ± 

1.4 mg GAE/100g dw, respectively180. The discrepancy observed supports the importance of the 

solvent choice. 

Brown seaweeds are sometimes reported to have low phenolic content in the range of 

25-218 mg GAE/100g dw, determined in aqueous extracts and using phosphate buffer (pH 7.0), 

as disclosed by Demirel et al. (2012)181. In the case of the Cystoseira genus, Fariman et al. 

(2016)182 reported for C. indica a range of 80-130g GAE/100g dw for aqueous extracts. Despite 

this results, Pinteus et al. (2017)180 show that the Cystoseira genus may present very high 

phenolic contents (>1,000mg GAE/100 g dw in aqueous extracts), even surpassing the current 

study’s results. 

Furthermore, while for the red seaweed Kappaphycus alvarezii values were quite low, not 

exceeding 60mg GAE/100g dw183, the comparison of K. alvarezii dried by different methods 

revealed higher phenolic content in shade-dried samples than in sun-dried ones. Such effect was 

only observed in the ethanolic extracts of the Azorean Cystoseira seaweeds. 

The divergence of the phenolic content within the same species is presented in literature, 

through the comparison of different values obtained for the phenolic content of macroalgae. This 

variability may be related to UV radiation level variability (depending on geographic location and 

season), since higher UV exposure may lead to higher phenolic contents184. 

Concerning the drying process, it is stated that an intense and/or prolonged exposure to 

high temperatures may be responsible for a significant loss of natural antioxidants in raw materials 

from plants, as most of the compounds are relatively unstable185. The decrease in phenolic 

content, after the drying process, can be ascribed to the binding of polyphenols with other 

compounds (e.g. proteins) or to alterations in their chemical structure. These findings are in 

concordance with results reported by other researchers, who suggested that polyphenols are 

thermolabile and irreversible chemical changes can occur in their content due to extended heat 

treatments186. The sun-drying process may have further reduced the level of ethanol soluble 

phenolic substances in Cystoseira seaweeds. Sun-drying is strongly dependent on the weather 

and the length of the day. The phytochemical content might suffer a stronger reduction because 

of the long drying time (3 to 4 days under direct sunlight). Its slower drying rate also likely 

increased the leaching effect and prolonged exposure time to air. In literature, it is claimed that 

ascorbate, tocopherols and carotenoids are affected by dehydration, whether by sun or artificial 

heat sources, as a result of exposure to UV light, heat, and air187. Nevertheless, Rajauria et al. 

(2010)188 and Norra et al. (2017)189 reported a substantial increase in the phenolic content and 

antioxidant activity when exposed to higher temperatures. The difference caused by the drying 

and its particular process, translated into the different values present in the literature related to 

the phenolic content, either leading to lower or unchanged levels, as in the current study, or to 

higher levels. As a result, further research is needed. 
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5.3. Antioxidant Activity 
 

The combination of three different methods for the assessment of the antioxidant activity 

allows a broader knowledge of the antioxidant capacity of each macroalgae studied. 

Concerning the DPPH method, there was a not inconsiderable antioxidant activity in the 

macroalgal extracts. Regal et al. (2020)152 disclosed for the aqueous extracts of Asparagopsis 

taxiformis values in the range of 14-46mg AA Eq/100g dw. The results obtained in this study for 

sun-dried A. taxiformis and shade-dried A. armata are in agreement with the presented results. 

Both types of extract of Cystoseira abies-marina are also in agreement with literature174. 

Regarding Cystoseira humilis and Asparagopsis armata, there are no published results and, 

therefore, comparison is not possible. Literature concerning the FRAP method is more scarce, 

and if available, the few results are in agreement with the values obtained in the present study, 

as observed for C. abies-marina174. Lastly, taking into account the ABTS method, Campos et al. 

(2019)190 reported results analogous to the ones obtained in the present work. These authors 

reported higher ABTS values in the aqueous extracts than in the ethanolic extracts. Likewise, 

Regal et al. (2020)152 presented, for A. taxiformis, an aqueous extract with higher antioxidant 

activity (8.4 ± 1.4µmol Trolox Eq/ g dw), as measured by ABTS, when compared with the ethanolic 

extract (2.6 ± 0.4µmol Trolox Eq/ g dw). These values were lower for A. taxiformis, in comparison 

with the current study. In relation to C. abies-marina, the results presented by Fonseca et al. 

(2020)174 for aqueous extracts – 43 ± 1µmol Trolox Eq/g dw – show a starker divergence when 

compared with the current ABTS results. These disagree with the phenolic content, DPPH, and 

FRAP results, which point to a strong antioxidant activity of the aqueous extracts of C. abies-

marina. Hence, further research is required.  

In the present study, the drying method did not affect most results in these three methods, 

having a scarce influence. Despite, in most cases, the sun-drying method affected negatively the 

antioxidant activity (as it is measured by ABTS and FRAP), in the case of the DPPH method, 

there was an increase in the antioxidant activity when the macroalgae were exposed to sun-

drying, with respect to shade-dried samples. As previously mentioned in 5.2., Norra et al. 

(2017)189 and Rajauria et al. (2010)188 reported an enhancement of the antioxidant activity when 

the sun drying method was applied, contradicting the proposition that sun-drying lowers the 

antioxidant potential. According to Ling et al. (2015)183, DPPH also yielded an higher antioxidant 

activity for K. alvarezii when sun-dried, thus opposing the variation measured by FRAP and ABTS. 

These two last methods largely agree with the phenolic content, just as in the current study183. 

Therefore, it is possible that sun-drying may induce a steep reduction of the levels of some 

bioactive components in the seaweed biomass that affect antioxidant potential assessed by FRAP 

and ABTS, but may trigger the formation of other compounds that may enhance antioxidant 

activity measured by the DPPH methods. The results presented in the current study, on Azorean 

macroalgae, show substantial agreement in the antioxidant activity determined by different 

methods, especially if the aqueous extracts measured by ABTS are not considered in the 

comparison.  
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While FRAP only reflects antioxidants acting through single electron transfer, ABTS 

enables the evaluation of antioxidant activity by single electron transfer (direct reduction of 

ABTS+•) or radical quenching by hydrogen atom transfer191. In addition, ABTS has been deemed 

more sensitive than DPPH, being divergent results between these two methods a common 

finding192. Taking into account that the used methods – DDPH, FRAP and ABTS –, are not 

equivalent and reflect different antioxidant properties, the observed convergence in their results 

is significant. Furthermore, there was some degree of convergence of the antioxidant activity with 

the total phenolic content. Namely, higher values for the two Cystoseira species. Since phenolic 

compounds act as antioxidants through single electron transfer, FRAP may correlate with the 

concentration of phenolic substances in the seaweed biomass, which seems to be empirically 

supported by the current study’s results. Likewise, Alcalde et al. (2019)193 have observed a 

correlation between phenolic content and FRAP (R=0.92), thus suggesting that the two 

parameters provide similar information. For other antioxidant assays, poorer correlations were 

obtained, meaning that there were divergences. The differences in the sensitivities to compounds 

in the assays seem to underlie these observations193. 

 

5.4 Beta-glucan (laminarin) content  
 

Beta-glucans are storage polysaccharides present in brown seaweed (e.g., Laminaria or 

Saccharina spp.) and their content can represent up to 32–35%, w/dw. They are linear 

polysaccharides composed of β-(1→3)-linked glucose, containing randomly β-(1→6) intra-chain 

branching, with a ratio around 3:1131,170. The Cystoseira results obtained in this study are expected 

as this brown seaweed genus typically does not contain beta-glucan compounds. However, the 

significant values in the two Asparagopsis species require further study. Floridean starch, a 

storage polysaccharide in red seaweeds, does not seem to be an interferent, since it is an α-1,4-

glucosidic linked glucose homopolymer with α-1,6-branches24. 

 

5.5. Anti-inflammatory activity 
 

Studies that focus on the anti-inflammatory activity of macroalgae are relatively scarce 

and the methodologies used vary, including in vitro and in vivo assessments190,194-195. The 

comparison of results, obtained from different studies, is, thus, difficult. Despite the complications, 

there are studies reporting anti-inflammatory activity in brown seaweeds 196,197.  

For instance, Yang et al. (2010)197 reported anti-inflammatory activity in ethyl acetate 

extracts of Petalonia binghamiae. This macroalgae inhibited lipopolysaccharide-induced nitric 

oxide (NO) and prostaglandin E2 (PGE2) production, and reduced lipopolysaccharide-induced 

expressions of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) at the 

protein level in a concentration-dependent manner. In another case, Kang et al. (2012) suggested 

that sargaquinoic acid, a compound isolated from Sargassum siliquastrum, a brown algae from 

the Sargassacea family, specifically prevents nitric oxide (NO) production in lipopolysaccharide-

stimulated macrophages, via modulation of different signalling pathways. 
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Moreover, Oh et al. (2016)198, reported that ethanolic extracts of Sargassum serratifolium, 

at low concentrations, efficiently inhibited the secretion of proinflammatory cytokines and 

inflammatory mediators. This inhibitory effect on the expression of inflammatory mediators 

suggested its potential as a therapeutic agent for treating neuroinflammatory diseases. 

For the seaweed species selected to the current study, almost no literature is available. 

A study by Oumaskour et al. (2013)199 measured anti-inflammatory activity through the inhibition 

rate of the phospholipase A2 enzyme. A dichloromethane/ methanol (50:50) Asparagopsis armata 

extract presented a 100% inhibition of phospholipase A2 activity. These results contrast with the 

results obtained in the present study, where A. armata shows an absence of inhibition of COX-2. 

The difference in the results obtained for the same macroalga species demonstrates that, just as 

with the antioxidant properties, a compound that as the capacity to hinder a specific enzyme, may 

be harmless to another enzyme.   

As said before, there are a varied group of methodologies used for the determination of 

anti-inflammatory activity, and the ones presented above are different from the one used in the 

current study, where the activity of the enzyme COX-2 was reduced by inhibition.  

The anti-inflammatory activity of green seaweeds was tested using the same method as 

in the present work, based on the inhibition of COX-2. The seaweed aqueous extracts (10% w/v) 

were dissolved in DMSO (1 mg/mL) and the COX-2 activity inhibition ranged between 31 and 

45%195. A COX-2 inhibition of 40 ± 7% by aqueous extracts of Petalonia binghamiae was also 

reported190. These values are similar to those attained with the aqueous extracts of the Azorean 

C. humilis.  

Once again, as observed in antioxidant activity, the sun-drying method did not induce 

much more damage when compared to the shade-drying method. It is possible to assume that 

the sun-drying method is not a determining factor in the anti-inflammatory bioactivity of the 

compounds present in the studied seaweeds, that is, they may be less susceptible to heat and 

UV light. Actually, there are many groups of compounds that display anti-inflammatory activity, 

such as phenolic compounds, carotenoids and quinones200. However, no correlation is observed 

between phenolic concentration in the aqueous extracts (Table 4.2) and their anti-inflammatory 

activity, so it is possible that other compounds, such as quinones, are responsible for the anti-

inflammatory activity of C. humilis and other seaweed species200,201. 

 

5.6. Elemental Composition  
 

Macroalgae are capable of accumulating minerals essential for human nutrition that are 

usually absent from freshwater and crops grown in soils deprived from minerals78. However, it is 

important to analyse the mineral composition of seaweeds, since, when in excess, minerals can 

have toxic/poisoning effects. 

Concerning the elemental composition, results found for the Cystoseira genus agree with 

the available literature, especially regarding the high potassium concentrations. More specifically, 

Vizetto-Duarte et al. (2016)173 reported values between 16 g/kg dw and 60 g/kg dw for five 

Cystoseira species and Rupérez (2002)94 reported a value of 85.5 g/kg dw for Cystoseira trinodis. 
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Values for calcium (9.43-26.5 g/kg dw), magnesium (5.7-18.5 g/kg dw) and sodium (7.6-16.4 g/kg 

dw) are also reported by Vizetto-Duarte et al. (2016)173. The values obtained in the present work 

for the Cystoseira genus are within the ranges presented in literature for calcium and magnesium, 

but the results attained for sodium are higher, when compared with the literature presented. 

However, Fucus vesiculosus, a macroalga species from the order Fucales, is presented in 

literature with a sodium concentration of 54.6 g/kg dw94, a value higher than those obtained for 

the Cystoseira genus. As for the Asparagopsis genus, values for calcium (6.1 g/kg dw)202, 

potassium (14.7 g/kg dw) 202, magnesium (8 g/kg dw)203 and sodium (66 g/kg dw)203, were also 

reported. The results presented for potassium and magnesium are in concordance with the results 

obtained in this study for A. taxiformis and A. armata, however, the results obtained for calcium 

and sodium are higher than the values in literature. The Asparagopsis genus shows high levels 

of sodium in their constitution, varying from 85.6 ± 0.7 g/kg dw to 115.3 ± 3.0 g/kg dw. Even taking 

into account the issue of seaweed washing with either fresh or salt water, high sodium levels may 

be assumed as a weakness of seaweed consumption82,96.  

Moreover, values for iron, manganese, and zinc were reported by Vizetto-Duarte et al. 

(2016)173. The iron results attained in this study for the Cystoseira genus are similar to the values 

presented in literature (109.6-508.1 mg/kg dw). However, the results obtained for manganese and 

zinc are lower than the results presented in literature (14.3-398.5 mg/kg dw for manganese and 

9.4-720.5 mg/kg dw for zinc). Machado et al. (2014)202 reported a sulphur value of 13.1 g/kg dw 

for Cystoseira trinodis and Rupérez (2002)94 presented a value for copper concentration in Fucus 

vesiculosus (<5 mg/kg dw). These values agree with the results presented in this work for the 

Cystoseira genus. Roque et al. (2019)203 reported, for A. taxiformis, concentration values 

concerning zinc (23.7 mg/kg dw), iron (6241 mg/kg dw), manganese (112.7 mg/kg dw) and copper 

(8.7 mg/kg dw). The zinc concentration reported is in agreement with the values obtained in the 

present work, regarding A. taxiformis and A. armata; as for iron, manganese, and copper, the 

results obtained in the present study for A. taxiformis and A. armata are lower. Regarding 

phosphorus, this mineral is present in similar ranges in brown and red seaweeds, with different 

concentrations ranging from 0.5 to 7 g/kg dw82. The results obtained in the present work agree 

with the range presented.  

Concerning the Asparagopsis genus, the iodine concentration values obtained in the 

present work are high, ranging from 4645.3 ± 119.6 mg/kg dw to 5735 ± 49.2 mg/kg dw. Nunes et 

al. (2018)179 also reported an extremely high value for iodine concentration in Asparagopsis 

taxiformis (11600 ± 300 mg/kg dw). The Scientific Committee on Food established an upper limit 

for iodine intake of 0.6 mg a day for adults97, which means that with the high levels obtained for 

the Asparagopsis genus in the present work, an adult can only consume 0.11-0.13g a day of 

these seaweeds.  

The high arsenic level found in C. abies-marina deserves a special attention. Fonseca et 

al. (2020)174 also reported high values for sun-dried C. abies-marina (340 ± 0 mg/kg dw), also 

harvested in the Faial island (Azores Archipelago). Nevertheless, the results found in literature 

for arsenic concentration in seaweeds are generally much lower. For instance, Cystoseira barbata 
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harvested from different regions of the Black Sea, showed arsenic concentrations between 3.85 

mg/kg dw and 5.55 mg/kg dw204. High arsenic levels were found, however, in C. barbata collected 

from the Venice lagoon (242 ± 104 mg/kg dw, with a maximum of 360 mg/kg dw), but those high 

levels are justified by the high pollution present in that area205. It has been claimed that C. barbata 

is an arsenic hyperaccumulating species (As contents exceeding 100 mg/kg dw). This may also 

apply to C. abies-marina. Considering this species was harvested in the Azores islands, a region 

that is not heavily polluted, further research, including arsenic speciation, is needed174. 

A higher content of sodium and potassium is usually found in algae, when compared with 

vegetables, but Na/K ratios found are lower. A. armata and A. taxiformis show a Na/K ratio 

between 2.3 and 7.4, while C. humilis and C. abies-marina show a 0.5 ratio. This is interesting 

from a nutritional point of view as it can be observed that the Na/K ratio found in the Cystoseira 

genus is below 1.0 and low ratios are shown to promote the decrement of blood pressure. 

However, the intake of diets with a high Na/K ratio have been related to hypertension95,206. The 

values obtained for the Cystoseira genus are in agreement with the literature presented for five 

Cystoseira species (0.15-0.97)173. 

The Ca/Mg ratio is also important concerning calcium absorption as a deficient 

magnesium intake can lead to an excessive accumulation of calcium in soft tissues, consequently 

resulting in arthritis and appearance of kidney stones207-208. The Ca/Mg ratio in the Asparagopsis 

genus ranged from 1.5 to 2.3, while in the Cystoseira genus it ranged from 1.4 to 2.3. The low 

ratios found in all four seaweeds suggest that calcium and magnesium are present in similar 

concentrations.  

Regarding contaminant elements, the European Commission Regulation set the 

maximum allowed levels of cadmium to be less than 3 mg/kg dw in food supplements that are 

exclusively or mainly composed of dried seaweed or seaweed-derived products97 and established 

the maximum arsenic levels in complementary feed and/or a complete feed meal at 40 mg/kg and 

10 mg/kg, respectively98. Regarding cadmium, the four studied seaweeds show levels below the 

maximum allowed. However, concerning arsenic, only the Asparagopsis genus shows values 

below the maximum allowed for complementary feed. These results stand out because, as 

already mentioned, A. taxiformis shows anti-methanogenic activity and, according to Roque et al. 

(2019)151, the production of methane in cattle rumen can decrease up to 90% by incorporating 

5% A. taxiformis organic matter in dairy cattle feed.  

 

5.7. Bioaccessibility 
 

5.7.1. Anti-inflammatory activity 
 

Regarding the bioaccessibility of the anti-inflammatory activity, there are no published 

results that allow for a comparison with the results obtained in the present work, especially with 

the methodology used - inhibition of COX-2. A study with green seaweeds, using the same 

methodology, reported values not significantly different from zero for anti-inflammatory 

bioaccessibility, as Chaetomorpha linum presented the highest bioaccessibility, of approximately 
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30%195. Low values were also observed in the present study regarding Cystoseira species. Thus, 

it is important to further analyse the high bioaccessibility results obtained for A. taxiformis. 

Regarding Cystoseira species, preparation of more refined extracts for nutraceutical and 

pharmacological applications or seaweed processing through decoction to produce a tisane —

especially in the case of C. humilis, which exhibited a substantial anti-inflammatory activity before 

digestion — may represent a solution to the poor bioaccessibility, thereby making the anti-

inflammatory compounds available for absorption at the gastrointestinal tract. 

 

5.7.2. Elemental Composition  
 

The determination of elemental bioaccessibility in macroalgae is of great importance, mainly 

due to the possible presence of toxic elements, but also because of the many advantages of 

nutritionally important minerals and trace elements. Low bioaccessibility percentages were 

expected as the human digestive enzymes have an inability in breaking down the polysaccharides 

in algal cell walls. 

Iodine, bromine, magnesium, and cadmium showed the highest bioaccessibility 

percentages. The results for iodine concerning A. taxiformis are of interest since, as before 

mentioned, this macroalgae has a high concentration regarding this element and the upper limit 

established for iodine intake is only of 0.6mg a day for adults97. In contrast, copper, zinc, and lead, 

regarding the Cystoseira genus, showed to be not bioaccessible. The discrepancy observed in 

the result presented for zinc regarding sun-dried A. armata (38.5 ± 2.1% dw) may be due to a 

methodological error when analysing the sample. Arsenic showed a significant bioaccessibility 

percentage. 

Desideri et al. (2018)121 also reported high bioaccessibility values for cadmium and arsenic 

in two brown seaweeds – a cadmium bioaccessibility percentage of 91.0 ± 24.9% dw and an 

arsenic percentage of 45.9 ± 0.72% dw, were presented for Aschophyllum nodosum, while for 

Fucus vesiculosus, was reported a cadmium bioaccessibility percentage of 86.5 ± 16.6% dw and 

an arsenic percentage of 48.5 ± 2.9 %. 

As for the low iron bioaccessibility, Boato et al. (2002)209 observed that fruit juices high in 

polyphenols content displayed limited bioavailability of iron by forming iron–polyphenol 

complexes, preventing absorption by the cells. Knowing that C. abies-marina and C. humilis have 

a high polyphenolic content, the low bioaccessibility of iron observed may be due to the formation 

of such complexes. To explain the low bioaccessibility of other minerals, Taboada et al. (2010)206 

suggested that binding of certain minerals to the polysaccharides present in seaweeds may limit 

its absorption.  
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6. Conclusions and Future Perspectives 
 

The analysis of bioactive contents and bioactivity levels in the samples of the four studied 

seaweed species - Asparagopsis taxiformis, Asparagopsis armata, Cystoseira abies-marina and 

Cystoseira humilis - subjected to alternative drying processes offered valuable insights regarding 

the nutraceutical and biotechnological potential of these undervalued marine resources.   

The seaweeds from the Cystoseira genus showed high polyphenol levels (176-678mg 

GAE/100 g dw), which clearly surpassed those measured in the Asparagopsis genus regardless 

of the used drying process. This was partially reflected in the antioxidant activity, as determined 

by DPPH and FRAP methods, which pointed to a tendency for Cystoseira species to generate 

more antioxidant extracts. The influence of the drying technique upon the antioxidant activity was 

relatively limited, since in many instances there was no effect. In any case, there was substantial 

agreement in the antioxidant activity as determined by different methods, especially if the aqueous 

extracts measured by ABTS are excluded from the comparison. Concerning anti-inflammatory 

activity, sun-dried and shade-dried A. armata as well as sun-dried C. abies-marina did not show 

any inhibitory capacity of COX-2. In the case of shade-dried samples, C. humilis had a higher 

anti-inflammatory activity (>30 % COX-2 inhibition) than A. armata, being the other two species 

at an intermediate level. However, this activity in C. humilis was not rendered bioaccessible. 

Indeed, only A. taxiformis displayed anti-inflammatory activity in the bioaccessible fraction, 

leading to bioaccessibility factors in the 90-100% interval. Therefore, though bioactivities were 

higher in the studied species of the Cystoseira genus, Asparagopsis species and, in particular, A. 

taxiformis, also had a valuable bioactive potential. Sun-drying produced more negative effects 

than shade-drying, but these effects were not very extensive.  

Minerals like bromine, magnesium, and iodine, showed high bioaccessibility in all four 

macroalgae. From the contaminant analyses, it can be stated that Cystoseira abies-marina 

displayed high levels of arsenic. Moreover, it is to note its high bioaccessibility values, which may 

be an additional concern. 

Future work should aim at the preparation of more refined extracts or seaweed processing 

through decoction to produce a tisane as ways to improve bioaccessibility and ensure 

nutraceutical applications. Therefore, it would also be of interest to develop potential 

nutraceutical/functional products, as well as proceed with their bioaccessibility studies. Besides 

that, it would be relevant to specify arsenic in C. abies-marina, for a improved assessment of the 

risk related to this seaweed consumption, and proceed with a more in-depth analysis regarding 

A. taxiformis brominated compounds, such as bromoform, due to their anti-methanogenic activity. 

This specific research should include the identification and detailed quantification of these 

brominated compounds and the assessment of their bioaccessibility. 
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8. Annexes 
 

Annex I – Reference to submitted paper (Phycological 

Research) 
 

 

Figure 8.1. First page of the document submitted to the journal of Phycological Research for publication. 
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Annex II 

 

 

Figure 8.2. Gallic acid calibration curve for polyphenol quantification, for the aqueous extract, obtained 
through solutions with concentrations of 0.01 mg/mL, 0.025 mg/mL, 0.05 mg/mL, 0.1 mg/mL, 0.2 mg/mL and 
0.3 mg/mL. 
 

Annex III 

 

 

Figure 8.3. Gallic acid calibration curve for polyphenol quantification, for the ethanolic extract, obtained 
through solutions with concentrations of 0.01 mg/mL, 0.025 mg/mL, 0.05 mg/mL, 0.1 mg/mL, 0.2 mg/mL and 
0.3 mg/mL. 
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Annex IV 

 

 

Figure 8.4. Ascorbic Acid calibration curve for the DPPH assay, for the aqueous extracts, obtained through 
solutions with concentrations of 5 mg/L, 10 mg/L, 15 mg/L, 20 mg/L and 25 mg/L. 
 

 

Annex V 

 

 
Figure 8.5. Ascorbic Acid calibration curve for the DPPH assay, for the ethanolic extracts, obtained through 
solutions with concentrations of 5 mg/L, 10 mg/L, 15 mg/L, 20 mg/L and 25 mg/L. 
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Annex VI 

 

 

Figure 8.6. Iron(II) sulphate calibration curve for the FRAP assay, for the ethanolic and aqueous extracts, 
obtained through solutions with concentrations of 250 µM, 500 µM, 1000 µM, 1500 µM and 2000 µM. 

 

Annex VII 

 

 

Figure 8.7. Trolox calibration curve for the ABTS assay, for the ethanolic and aqueous extract, obtained 
through solutions with concentrations of 100 µM, 250 µM, 500 µM, 1000 µM, and 2000 µM. 
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9. Additional Information  
 

During the elaboration of this project, I was given the possibility of co-authoring an article 

(Figure 8.2) that, despite having no direct contribution to the present work, helped me with the 

better understanding and execution of techniques also performed in this work. 

 
 

 
Figure 9.1. First page of the article of my co-authoring collaboration, published in Sciforum. 

 

 


