

Title	Note on Proizvolov's Example (空間族における未解決問題)
Author(s)	OKUYAMA, AKIHIRO
Citation	数理解析研究所講究録 (1973), 194: 57-60
Issue Date	1973-12
URL	http://hdl.handle.net/2433/107282
Right	
Туре	Departmental Bulletin Paper
Textversion	publisher

Note on Proizvolov's example

By Akihiro Okuyama

Dept. Math., Osaka Kyoiku University

Let f be a map (= continuous map) of a topological space X onto a topological space Y. We say that f is a compact-covering map if every compact subset of Y is the image of some compact subset of X under f. In the following cases, every open map is compact-covering:

- (1) (E. Michael [4]) X is a metric space and Y is a T_2 space and, for some metric on X, $f^{-1}(y)$ is complete for each $y \in Y$.
- (2) (A. Arhangel'skii [2]) X is a Čech-complete space and Y is a T₂ space.
- (5) (K. Alster [1]) X is a metric space and Y is a countable T₂ space.
- (4) (K. Nagami [5]) X is a p-space and Y is a T_3 space, and $f^{-1}(y)$ is compact for each $y \in Y$.

On the other hand, V.V.Proizvolov [6] constructed an

example such that there exists an open, at most two-to-one map from a Lindelöf, first countable T₃ space onto a compact metric space, which is not compact-covering.

In this note, we would like to give an adding explanation for his example, using the following lemma:

Lemma. Let (x, \mathcal{I}_1) and (x, \mathcal{I}_2) be compact \mathcal{I}_2 spaces with $\mathcal{I}_1 \subset \mathcal{I}_2$. Then $\mathcal{I}_1 = \mathcal{I}_2$ holds.

This is an immediate consequence from the fact that the identity map from (X,\mathcal{T}_2) to (X,\mathcal{T}_1) is homeomorphic.

Proizvolov's example. Let P be the set $[0,1]\times[0,1]$ and $P_0 = [0,1]\times\{\frac{1}{2}\}$, and define the topology of P as below: If $p\in P-P_0$, p has a neighborhood base in the usual sense of Euclidean plane. For any $p=(p_1,\frac{1}{2})\in P_0$ and for any natural numbers ℓ , m and n, let $U_{\ell mn}(p)$ be the subset of P which consists of p and of all points satisfying one of the following three conditions: (1) $p_2^* \leq \frac{1}{2}$, and $(p_1+\frac{1}{n}-p_1^*)^2+(\frac{1}{2}-p_2^*)^2 < \frac{1}{n^2}$ or $(p_1-\frac{1}{n}-p_1^*)^2+(\frac{1}{2}-p_2^*)^2<\frac{1}{n^2}$; (2) $p_1-\frac{2}{n}< p_1^*< p_1+\frac{2}{n}$, $\frac{1}{2}\leq p_2^*$ and $p_2^*-\frac{1}{2}<\frac{1}{m}|p_1^*-p_1|$; (5) $\frac{1}{2}\leq p_2^*<\frac{1}{2}+\frac{1}{\ell}$ and $p_2^*-\frac{1}{2}>m|p_1^*-p_1|$, and let $\{U_{\ell mn}(p)\}_{\ell,m,n=1}^\infty$ be the neighborhood base at p. Then it is easily seen that P is a Lindelöf, first countable T_3 space. Let $Y=[0,1]\times[0,\frac{1}{2}]$ be the subspace of

the Euclidean plane and f the map from r onto I such that it identifies the points which are symmetric with respect to F_0 . Then f is clearly an open, at most two-to-one map. It remains to show that f is not compact-covering. On the contrary, suppse f is compact-covering. Then there exists a compact subset K of P, whose image by f covers I. Let \mathcal{I}_1 be the topology of K as the subspace of the Euclidean plane, and let \mathcal{I}_2 be the topology of A as the subspace of P. Then $\mathcal{I}_1 \subset \mathcal{I}_2$ holds. Hence, by Lemma $\mathcal{I}_1 = \mathcal{I}_2$ holds. On the other hand, since K covers F_0 , by the definition of \mathcal{I}_2 it contains no countable base; however, \mathcal{I}_1 contains a countable base. This contradiction shows that f is not compact-covering.

Supplement. A space X is called a space of countable (resp. point-countable) type if every compact subset (resp. point) of X is contained in some compact subset of A with a countable neighborhood base (cf.[3]).

as for the research of K. Nagami [5], there was a question whether every open compact map defined on a T₃ space of countable type is compact-covering, and it was informed that V. V. Proizvolov [6] solved it in the negative. However, in his example mentioned above, P could not be of countable type.

Because, P_0 is a compact G_δ -subset of P which has no countable neighborhood base in P. Hence, it seems that such question remains still open.

Refernces

- 1. K. Alster, Remaks on compact-covering mappings, Bull. de l'Acad. Polonaise des Sci., XIX (1971), 141--148.
- 2. A. V. Arhangel'skii, Open and near open mappings. Connections between spaces, Trudy Moskov.Math. Obshch., 15

 (1966), 181--225.
- 3. A. V. Arhangel'skii, On a class of spaces containing all metric and all locally bicompact spaces, Dokl. Acad.

 Nauk SSSR, 151 (1963), 751--754; Soviet Math. Dokl.,

 4 (1963), 1051--1055.
- 4. E. A. Michael, A theorem on semi-continuous set-valued functions, Duke Math. J., 26 (1959), 647--652.
- 5. K. Nagami, Minimal class generated by open compact and perfect mappings, Fund. Math., LxXVIII (1973), 227--264.
- 6. V. V. Proizvolov, Solution answering a problem of Michael about k-covering mappings, Proc. 2nd Tiraspol Sympos on General Topology and its Applications, Kishinev 1969, 62 --64.