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Abstract: To this day, the recognition and high affinity binding of biomolecules in water by synthetic
receptors remains challenging, while the necessity for systems for their sensing, transport and modu-
lation persists. This problematic is prevalent for the recognition of peptides, which not only have
key roles in many biochemical pathways, as well as having pharmacological and biotechnological
applications, but also frequently serve as models for the study of proteins. Taking inspiration in
nature and on the interactions that occur between several receptors and peptide sequences, many
researchers have developed and applied a variety of different synthetic receptors, as is the case of
macrocyclic compounds, molecular imprinted polymers, organometallic cages, among others, to
bind amino acids, small peptides and proteins. In this critical review, we present and discuss selected
examples of synthetic receptors for amino acids and peptides, with a greater focus on supramolecular
receptors, which show great promise for the selective recognition of these biomolecules in physio-
logical conditions. We decided to focus preferentially on small synthetic receptors (leaving out of
this review high molecular weight polymeric systems) for which more detailed and accurate molec-
ular level information regarding the main structural and thermodynamic features of the receptor
biomolecule assemblies is available.

Keywords: amino acids; peptides; host-guest systems; molecular recognition; supramolecu-
lar receptors

1. Introduction

Peptides are fundamental molecules with several biological functions, acting as neu-
rotransmitters, neuromodulators and hormones in numerous biochemical processes, such
as quorum sensing, immune response, pain and metabolism, to name a few [1,2]. Given
their utmost importance in different biochemical contexts, the discovery of high affinity
and selective synthetic receptors for peptide recognition holds a strong potential for en-
abling new therapeutic agents, such as inhibitors/activity modulators or vehicles for drug
delivery, and important molecular components for advanced biological and diagnostic
tools [3–7]. Furthermore, the discovery of the fundamental binding interactions controlling
the recognition of small peptide sequences is expected to pave the way towards the rational
design of synthetic receptors for surface protein recognition. [3,6,8–10].

However, selective and high-affinity receptors for peptides are recognized to be
very difficult to design and synthesize in a rational, bottom-up manner. Being biological
molecules, these targets present a difficulty just by the fact that their recognition should
be made in water, imposing practical difficulties related to the solubility of synthetic
organic receptors, which may require further functionalization to improve their solubility
in aqueous solution. Moreover, the solvation of these biomolecules by water and the need to
remove the solvent molecules and destabilize the solvation sphere also imposes an energetic
penalty that must be overcome upon binding. Directional and strong interactions based on
hydrogen bonding, which are frequently and successfully employed in organic solvents,
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are completely or partially neutralized in aqueous solutions. Therefore, it is necessary to
explore other mechanisms, such as the hydrophobic effect and multiple interactions acting
cooperatively to achieve the high affinity required to bind the peptide targets at relevant
µM concentration or below [11]. In addition, the flexible, rather ill-defined structure of
peptide sequences also increases the difficulties associated with the rational design of small
receptors [6,12–14]. While the challenges associated to the factors enumerated above may
be common to other biological targets, peptide recognition, in its completeness, requires
receptors that are sequence-selective, discriminating not only the type of amino acids
residues composing the peptide but also the order by which the they are arranged.

Although general methods for high affinity peptide recognition by synthetic receptors
are still missing, several research groups have reported encouraging results that show that
it is possible to bind specific peptide sequences with simple receptors, such as macrocyclic
cavitands, molecular clips, and tweezers or self-assembled coordination cages. Other strate-
gies based on templating methods, such as molecular imprinted polymers and micelles,
also showed very promising results. In this review we will cover selected examples of
cavitand-based receptors that have been shown to recognize amino acids and peptides in
aqueous solution and use these examples to emphasize the noncovalent interactions and
geometric factors that control binding stability and selectivity of the different complexes.
For this reason, we focus on small molecule receptors for which this type of information
can be extrapolated in a more straightforward way and potentially used for the rational
optimization of current receptors and design of new ones. Then we will also provide
some selected examples of biological and technological applications based on the binding
properties of the receptors discussed here to illustrate the potential of these molecules
and approaches.

2. The Biological Targets: Amino Acids

Amino acids are the basic building blocks of small peptides and proteins. Even though
they are important targets by themselves, the development of supramolecular receptors
that can bind specific amino acids with high affinity and selectivity constitutes a first step
towards the development of multivalent, sequence specific receptors for peptides. However,
the selective binding of free amino acids already presents a difficult task since some side
chains of amino acids are very similar to each other. In this section we have divided
the 20 common amino acids into four categories: basic, aromatic, acid, and neutral non-
aromatic amino acids and discussed their properties. In the next section, their recognition
by selected supramolecular receptors will be further discussed.

2.1. Basic Amino Acids

L-Lysine (Lys) and L-Arginine (Arg) are amino acids that play very important roles
in biological systems—these are sites of recognition by the enzyme trypsin [15] and also
for methylation in several proteins, as is the case of histones, the proteins involved in the
structure of chromatin in the nucleus [16]; both take part in protein–protein binding [17],
among other functions [18,19]. Arginine has a very important role in the membrane
penetrating properties of antimicrobial peptides, as well [20].

The positive charges on these two amino acids make them easier targets for the
development of receptors in water, many of them relying on the formation of several ionic
interactions to obtain the receptor-analyte complexes. This is the case of p-sulfonatocalix[n]
arene [21–23], some examples of molecular tweezers [24,25], carboxylatopillar [5]arene [26],
all of which have negative charges, to form ionic bonds with the charged amines of Lys
and Arg.

L-Histidine (His), despite the presence of two nitrogen atoms, is near equilibrium
between its deprotonated and protonated form, at physiological pH, due to its pKa of
6.5 [27]. Due to this, it can act as a proton donor or acceptor, depending on the environment
near the residue [27]. Despite this property, histidine is usually paired with the other two
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basic amino acids. Regardless, it presents a lower charge density than the other two and
thus His is difficult to target selectively by ionic interactions, in favor of Lys and Arg [26,28].

2.2. Aromatic Amino Acids

Aromatic amino acids—L-tryptophan (Trp), L-tyrosine (Tyr) and L-phenylalanine
(Phe)—are essential for protein function having important roles in protein–protein interac-
tion [29] and electron transport in peptides [30] and proteins [31]. Moreover, these amino
acids are precursors of several neurotransmitters—dopamine, serotonin, epinephrine,
etc. [32]. Besides these functions, tryptophan also has a role in the ability of antimicrobial
peptides to form pores on membranes, through the formation of cation–π bonds with
arginine [33].

In terms of protein detection and analytical studies, aromatic amino acids are im-
portant because they give proteins the characteristic 280 nm absorption band and are the
only amino acids that present fluorescence, specially tryptophan, with a higher quantum
yield than the other aromatic amino acids [34]. Many strategies for the recognition of these
amino acids are based on hydrophobic, π–π and ion dipole interactions, making use not
only of the aromatic group’s characteristic properties but also of the bigger size of these
amino acids’ side chain [35–45].

2.3. Acidic Amino Acids

The two anionic amino acids L-aspartate (Asp) and L-glutamate (Glu) exert several
roles beyond their function as protein monomers. Glutamate is well known for its role as
excitatory neurotransmitter in vertebrates, as well as precursor for gamma-Aminobutyric
acid, GABA, an inhibitory neurotransmitter [46]. This amino acid is also the precursor
to several other biomolecules and takes part in the process of elimination of ammonium,
in the urea cycle [47]. Like glutamate, aspartate is also an important precursor in several
biosynthetic pathways and takes part in the urea cycle [48]. However, this anionic amino
acid is also essential in energetical processes in eukaryotic cells, being part of the malate-
aspartate shuttle [49] and also having a role in the gluconeogenesis pathway [50].

Unlike cationic and aromatic amino acids, none of the most used macrocycles or
supramolecular systems show particular affinity towards these two amino acids, without
the need for further functionalization. Nevertheless, the functionalization of macrocyclic
compounds with cationic groups has been demonstrated to yield potential receptors for
these amino acids [51–53].

2.4. Neutral Non-Aromatic Amino Acids

Neutral non-aromatic amino acids are difficult to target selectively in aqueous solution
due to their high solvation, similar structures, reduced hydrophobic surface and the lack
overall positive or negative charge [3,54]. However, these amino acids still have key roles in
proteins and peptides, providing sites for glycosylation [55,56] and other post translational
modifications [7]. They are also fundamental in ammonia regulation [57], anabolic and
catabolic processes in eukaryotic cells (acting as precursors to other macronutrients or
sources of energy) [50] and redox homeostasis [58].

Despite the difficulty of targeting these molecules, some receptors were developed
for several of these amino acids. Many of these, however, only reach mM affinities and
many were not tested in physiological conditions due to low solubilities in water [54].
Furthermore, many receptors that bind to these biomolecules with higher affinity present
very low selectivity and are frequently able to bind to other amino acids with similar or
even higher affinities [35,41,43,59].

Thiols are particularly reactive and so, the recognition and detection of L-Cysteine is
more commonly based on the creation of sensors that react with this redox biomolecule by
nucleophilic substitution [60]. In terms of supramolecular recognition most of the existing
systems are based on metal complexes [3].
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3. Receptors for Amino Acids

Supramolecular chemistry has had a fruitful contribution to the development of new,
multifunctional organic molecules. In terms of molecular recognition, a variety of different
types of receptors have been developed, from polymeric complex structures to both acyclic
and cyclic small molecules [61]. Macrocyclic and semi-rigid receptors have been gaining
importance due to their simplicity and, at the same time, high affinity and selectivity
towards a myriad of guests, given not only by the complementary noncovalent interactions
that can be formed, but also by the size complementarity between host and guest [61,62].

3.1. Macrocycles

Macrocyclic receptors are a class of molecules that have a well-defined structure for
the binding of a target guest. The cavity in these is often more hydrophobic, while the
portals usually present relatively polar or charged moieties [62]. In this section, a select
group of examples of macrocyclic receptors, which have shown to bind to amino acids,
will be presented.

3.1.1. p-Sulfonatocalix[n]arenes

p-Sulfonatocalix[n]arene (SCn) macrocycles (Figure 1) were initially synthesized by
Shinkai and co-workers to improve the solubility of calixarenes in water and allow for the
binding and detection of not only organic compounds, but also inorganic ions in aqueous
conditions [21,63–67]. Owing to their high water solubility (>0.1 M) and low toxicity,
SCn macrocycles have been widely investigated for their pharmaceutical and biological
applications [21,68–74].
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interact with these amino acids at pH 13 due to the deprotonation of the amino and guan-
idino groups, this last one being only partially deprotonated under these conditions (pKa 
= 13.2) [75]. At more acidic pH conditions (pH 5 and pH 1), the authors also pointed out 
the weaker interactions between these amino acids and the larger SC6 and SC8 hosts, at-
tributing the low affinity to the more flexible structure of these hosts. It must be noted, 
however, that the larger SC8 can form 1:1 and 1:2 host:guest complexes with Arg and Lys. 
SC4 was investigated in more detail at pH 1 and 5, showing that the receptor displays 
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In early studies by Douteau-Guével et al. and Selkti et al. the complexation of p-
sulfonatocalix[n]arene (n = 4, 6 and 8) with Lys and Arg was explored by NMR spectroscopy
and microcalorimetry in solution and by X-ray diffraction in the solid state [21,75,76]. The
1H NMR studies carried out at different pH values showed that the calixarenes do not
interact with these amino acids at pH 13 due to the deprotonation of the amino and
guanidino groups, this last one being only partially deprotonated under these conditions
(pKa = 13.2) [75]. At more acidic pH conditions (pH 5 and pH 1), the authors also pointed
out the weaker interactions between these amino acids and the larger SC6 and SC8 hosts,
attributing the low affinity to the more flexible structure of these hosts. It must be noted,
however, that the larger SC8 can form 1:1 and 1:2 host:guest complexes with Arg and Lys.
SC4 was investigated in more detail at pH 1 and 5, showing that the receptor displays
higher affinity for both amino acids at pH 5 and that, independently of the pH, Arg
(K = 1.7 × 103 M−1 at pH 5, K = 2.0 × 102 M−1 at pH 1) binds more strongly than Lys
(K = 6.0 × 102 M−1 at pH 5, K = 1.0 × 102 M−1 at pH 1). It was also noted that the
presence of high concentrations of metal cations inhibits the formation of the complexes,
a phenomenon which was generalized to other guest molecules in later studies and assigned
to the competitive binding of the cations (including hydronium) with SCn [77–85]. The
complexation induced chemical shifts suggests that the terminal amino/guanidino groups
in the side chain are included in the cavity of SC4 while the α-amino group remains outside
of the cavity, most probably due to repulsion arising from the carboxylate group.
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The microcalorimetry studies showed that the binding of both amino acids with SC4
is enthalpy driven (∆HLys = −14.4 kJ/mol and ∆HArg = −20.3 kJ/mol), with only slight
differences in entropy (T∆SLys = 2.0 kJ/mol and T∆SArg = −2.1 kJ/mol), yet with two
times higher affinity of the receptor towards Arg than Lys (Table 1), being in line with the
previous NMR data [21,75]. This study also confirmed that SC6 and SC8 are in fact weaker
binders for these two targets but, contrary to what was reported based on NMR titrations,
also suggests that the binding affinity of SC4 increases in more acidic conditions.

The thermodynamic information given by the microcalorimetry studies indicates that
the more favorable enthalpy of the Arg complex is probably due to the formation of cation–
π and π–π interactions between its guanidinium group and the aromatic rings in the cavity
of the calixarene (Figure 2). Moreover, this further stabilization can justify the negative
value of entropy, seeing as arginine binds deeper in the cavity of the receptor [71] and so,
with reduced degrees of freedom [21]. The affinity of this receptor towards L-Histidine
(His) was also tested, however, the affinity obtained was two times lower than towards
Lysine and near the affinity towards neutral amino acids [28]. In addition to the studies
made in solution, the crystallographic structures of the Lys (Figure 3) [76] and Arg [71]
complexes further support the recognition of these amino acids through the inclusion of
their side chains in the cavity of the SC4 receptor.
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and a schematization of the cation–π interactions that are established in the former, between the
aromatic rings of the receptor and the guanidinium moiety of the analyte.
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Figure 3. Crystallographic structure of the SC4-L-Lysine: the analyte (in bold) complexes in a
parallel position to the calixarenes, as it can be observed by the two top complexes; another possible
conformation is perpendicular to the disposition of the calixarenes, interacting not only with the
calixarene at the bottom but having its ε-amino group, NZ1, interacting externally with the sulfonate
groups of the top layer receptors. Reprinted with permission from [76]. Copyright (2000) The Royal
Society of Chemistry.

Several more recent studies also measured the affinity of these complexes, using
indicator displacement assays, in different conditions, which are summarized in Table 1.
Many of these yielded higher affinities of the cationic amino acids towards the receptor
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SC4, due to this smaller macrocycle having a more rigid structure in comparison to SC6
and SC8. These studies also indicate that, near physiological conditions, the binding may
vary, considering that the presence of other cationic molecules, such as buffer counterions,
can interfere extensively with the binding [21,75,86–88].

The higher affinity of SC4 towards methylated lysine is also worth noting, an impor-
tant post-translational modification. Hof and co-workers observed that the affinity of the
1:1 complexes formed by SC4 with lysine and its methylated derivatives increases with the
degree of methylation reaching ca. 70-fold selectivity to trimethyllysine over lysine [89].
Based on NMR titration experiments, the authors observed that while the lysine side chain
is accommodated to the SC4 pocket in a “side-on” binding mode, in trimethyllysine the
NMe3

+ group is deeply included in the cavity suggesting an optimal charge and shape
complementary between this group and the calixarene receptor. In a following example,
the same research group explored the monofunctionalization of trisulfonated calix[4]arenes
(Figure 4) to tune their affinity and selectivity towards trimethyllysine. Although most of
the different receptors showed lower binding affinities, SC4-Ar, the one with the unsubsti-
tuted aromatic panel (Z = H) directly connected to the calixarene rim, was found to display
the higher binding affinity towards trimethyllysine, almost 2-fold larger than the one
previously observed for SC4 and an improved selectivity of 150-fold over unmethylated
lysine (Table 1). This is presumably due to its higher hydrophobic character and additional
CH-π interactions between the lysine side chain and the extra aromatic wall [90].
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3.1.2. Pillar[n]arenes

Pillararenes are a relatively new class of macrocycles, that only recently have begun to
be applied for the binding of analytes in water [91–93]. Carboxylatopillar [5]arene (CP5)
was one of the first water-soluble pillararenes to be synthesized [91] and recently it has
been applied as a receptor for cationic organic molecules. Similar to SCn, these molecules
present a rigid electron rich cavity lined with anionic groups on both sides of the cavity
(Figure 5) [26,94].

In line with its ability to bind positively charged guest molecules, CP5 was demon-
strated to selectively bind basic amino acids, i.e., L-lysine, L-arginine and L-histidine, with
mM affinity (Table 1). In contrast with SC4, the biomolecules penetrate completely into the
cavity, with the amine group of the chiral center being stabilized by ionic interactions at
one of the entrances, and the amine in the side group of the amino acid being stabilized
by the opposite side. Although these interactions have a bigger role in stabilizing these
complexes—as suggested by the selectivity towards cationic amino acids observed in the
study—the hydrophobic effect also takes an important role, namely between the CP5
cavity and the aliphatic chains of the amino acids. Furthermore, CP5 has an even higher
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affinity towards arginine over the other two cationic amino acids, due to the presence of
the guanidinium moiety. This group allows for cation–π interactions with the π orbitals of
the cavity of the pillararene, as well as the possibility to form several H-bonds with the
receptor due to the conjugation between the two nitrogen atoms [26,94].
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Figure 5. Structure of the Pillar[5]arene receptors, P5-Bodipy [95], carboxylatopillar[5]arene, C-P5 [26], and dodecaamine
pillar [6]arene, PDA6 [51].

Another example of a pillararene receptor, is dodecaamine pillar [6]arene, PDA6,
which has 6 amine groups at each of its entrances (Figure 5) and has been shown to bind to
acidic amino acids [51]. The principles behind the affinity of PDA6 towards these two amino
acids is the same as for CP5—the amine groups are positively charged at physiological
pH and they can establish ionic interactions with the two carboxylic groups of both Glu
and Asp. Although this is the main driving force of the binding (with affinity in the µM
range) the complex can be further stabilized by cation–π interactions between the cavity
of the pillararene and the amine group of the amino acids. This not only adds attractive
interaction between the molecules, but also counterbalance the electrostatic repulsion that
could be stablished between the cationic regions of both receptor and analyte [51].

Pillararenes can be applied for the recognition of neutral amino acids as well. This has
been explored by Guler and co-workers [95], who developed a pillar[5]arene-based sensor,
P5-Bodipy, which presented high selectivity towards L-Asparagine. L-Asn is an analogue
of L-Aspartate, with an amide group in its side chain instead of a carboxylate group. Due to
its zwitterionic character and neutral side chain, the influence of electrostatic interactions
between receptor and analyte on the receptor’s selectivity is negligible, being mostly
defined by the hydrogen bonds, hydrophobic and Van der Waals interactions [54,95]. P5-
Bodipy is composed by a pillar[5]arene macrocycle, decorated with BODIPY moieties
(Figure 5). This receptor detected L-Asn selectively by fluorescence spectroscopy, showing
an increase in the Bodipy fluorescence. 1H-NMR elucidated the types of interactions
present, showing that L-Asn is inserted in the pillararene cavity, being stabilized by several
types of electrostatic interactions, but with Van der Waals interactions and hydrogen bonds
being the most relevant for the selectivity of the receptor.

3.1.3. Cucurbit[n]urils

Cucurbit[n]urils (CB[n]) are macrocycles composed of n glycoluril units, that, owing
to their outstanding binding properties, are largely applied for the recognition of several or-
ganic molecules and biological analytes (Figure 6) [44,96–100]. Thanks to their hydrophobic
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cavity and highly electronegative carbonyl portals, these macrocyclic containers are partic-
ularly suitable to bind positively charged and hydrophobic guests. Buschmann et al. [35]
performed earlier studies on the complexation of amino acids with CB6 which showed
mM affinity towards the Phe, Gly, Ala, and Val, in aqueous formic acid 50%(v/v). Nau
and co-workers reported the complexation of lysine, arginine and histidine by CB7 with all
three amino acids showing moderate affinity in the mM range [45]. Later on, Macartney
et al. investigated the recognition of lysine, arginine and their methylated derivatives by
CB6 and CB7 [101]. Noteworthy, the affinity increases significantly upon lysine methy-
lation, reaching a 3500-fold selectivity for trimethyllysine over lysine as a result of the
good complementarity of CB7 and trimethylalkylammonium motifs. On the other hand, at
neutral pH, lysine seems to bind only in the CB6 portal, forming an exclusion complex that,
nevertheless, is more stable than the one formed with the larger CB7 (1.1 × 104 M−1 vs.
5.2 × 102 M−1). A subsequent systematic study on the formation of host–guest complexes
between CB7 and different amino acids revealed that their stability increases under acidic
conditions [102]. The differences in association constants obtained at different pH values
are particularly relevant for lysine and arginine which show ca. 3 order of magnitude
increases from ≈102 M−1 at neutral pH to ≈105 M−1 at pH 2. This observation puts in
evidence the repulsive interactions established between the carbonyl portals of the receptor
and carboxylate group of the amino acid. This destabilizing factor is more relevant in these
two cases, most probably due to the fact that their side-chain must penetrate deeply into
the CB7 cavity for optimal binding interactions, which are counteracted by the negatively
charged carboxylate groups at neutral or slightly acid conditions [102].
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Despite being investigated for their affinity towards basic amino acids, CB7, CB8 and
other CB[n] derivatives were found to be more successful at targeting aromatic amino
acids in biologically relevant conditions [44,102]. Among the different CB[n] homologues,
CB6 was shown to display weak affinity towards aromatic amino acids probably due to the
small size of its cavity (Figure 7e), while the ones with more than 6 glycoluril units have a
large enough cavity to accommodate the aromatic side chain in its interior [36–39,44,45].
This is the case of both CB7 and CB8 that were reported to, respectively, form 1:1 complexes
and 1:1/1:2 complexes with aromatic amino acids (Figure 7a,c,d) [36–39,45].

CB7, for example, was shown to be selective for aromatic amino acids at pH 7 (see
Table 1) displaying higher affinity for L-phenylalanine with binding constants in the order
of 105 M−1–106 M−1 depending on the medium conditions, in particular on the presence
of salts [102–104]. Amongst the different aromatic amino acids, CB7 is selective for Phe by
a factor of approximately 10 over Tyr and by a factor of 100 over Trp [102]. Most thermody-
namic studies show that the complexation process is enthalpy driven in great part due to
the displacement of high energy water molecules from the cavity of the host [102,105–108].
This hydrophobic effect can be complemented by attractive ion-dipole interactions between
the protonated amino group of the biomolecules and the carbonyl group of the cucurbituril
(Figure 7) [35,44,109]. In the case of the binding of aromatic amino acids by CB7, the process
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is also enthalpy driven with unfavorable negative entropy contributions. The enthalpic
gain is only slightly higher for phenylalanine with respect to tyrosine and tryptophan, but
the entropic loss is very low in first case (T∆S = −0.6 kJ.mol−1) becoming more important
for tyrosine (T∆S = −3.7 kJ.mol−1) and tryptophan (T∆S = −11.3 kJ.mol−1) [102]. On the
basis of these thermodynamic parameters, the observed selectivity trend for recognition of
aromatic amino acids by CB7 was explained by taking into account the higher hydrophobic
character of phenylalanine comparatively with tyrosine and the restricted motion of the
indole side chain of tryptophan inside the CB7 cavity [102].
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CB8, on the other hand, binds aromatic amino acids with 1:1 (Figure 7a) and 1:2
(Figure 7c) stoichiometry, as mentioned above [110]. The ITC binding studies performed on
these systems did not allow the determination of the stepwise binding constants and ther-
modynamic parameters for the 1:1 and 1:2 complexes in separate which precludes a more
in depth thermodynamic analysis. Nevertheless, based on the obtained overall binding
constants (i.e., K1:1K1:2) one can conclude that CB8 is also more selective for phenylalanine,
but in contrast with CB7, tryptophan is complexed with only slight lower affinity than
phenylalanine while the affinity of tyrosine seems to be too low to be measured [110].

The larger cavity of CB8 allows the binding of amino acids in the presence of auxiliary
guests based on electron deficient organic molecules, such as methyl viologen (MV) [37],
2,7-dimethyl- diazaphenanthrenium (DPT) [38] and tetramethyl benzobis(imidazolium)
(MBBI) [39]. The preformed 1:1 CB8:auxiliary guest complex can be viewed as a new
receptor capable of forming 1:1:1 heteroternary complexes with electron rich molecules that,
in some cases, does not bind significantly to CB8 alone (Figure 7b) [37–39]. Interestingly,
the CB8:MV complex was shown to form 1:1:1 complexes only with the aromatic amino
acids (except histidine). In the 1:2 complex, phenylalanine establishes strong contacts with
the second Phe residue inside the cavity, as well as with CB8 itself [110]. Differently from
what is observed for CB8 in the absence of auxiliary guest, the CB8:MV supramolecular
receptor shows higher affinity for tryptophan (4.3 × 104 M−1) than for phenylalanine and
tyrosine [110]. This selectivity was attributed to the charge transfer interactions between
MV and the indole side chain of this amino acid inside the CB8 cavity. The nature of
the auxiliary guest may also influence the recognition of the second guest. CB8:MBBI
displays binding affinities for tryptophan (3.4 × 104 M−1) [39] similar to the one observed
for CB8:MV, while CB8:DPT forms 1:1:1 complexes with this amino acid that are one order
of magnitude more stable (4.2 × 105 M−1) [38].

Cucurbiturils can also be modified covalently to enhance their affinity towards amino
acids. One example of this is the work done by Isaacs and co-workers, which incorporate
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two aromatic rings within the CB6 macrocycle. This study yielded a water-soluble receptor
with an elongated cavity, CB6Ar (Figure 8), which is able to form π–π interactions with
included analytes, while maintaining CB[n]’s capacity to form ion-dipole interactions at
the macrocycle entrances. The addition of the π–π interaction renders a receptor with
micromolar affinity towards tryptophan (Ka = 3.2 × 106 M−1) and ca. 100-fold selectivity
for this amino acid over phenylalanine and tyrosine [40].
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3.1.4. Cyclodextrins

Cyclodextrins (CD) are macrocycles formed by glucose units that can bind a variety
of different small molecules. The most common ones are those composed of 6, 7, and 8
glucose units, corresponding respectively to α-CD, β- CD, and γ-CD (Figure 9) [111]. Their
host–guest complexes with biomolecules are usually low in specificity, but are slightly
more stable with aromatic or small, less polar molecules
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studied ones those based on resorcinarenes macrocycles [62,112]. The Dalcanale group has 
reported several cavitand derivatives (Figure 11) that were found to recognize amino ac-
ids and amino acid metabolites [113,114], and were able to obtain the crystallographic 
structure of the complexes between some of these cavitand receptors and all basic amino 
acids, Arg, Lys, and His. The 1:2 complexes were shown to be mainly stabilized by direct 
and water-mediated hydrogen bonds between a guest molecule and two host molecules 
[114]. These receptors were also shown to be particularly adequate to selectively recognize 
sarcosine, a potential prostate cancer biomarker, over glycine in water and in biological 
fluids [113]. The crystal structures of the complexes showed that while glycine methyl 
ether is localized at the receptor’s portal, sarcosine forms an inclusion complex with the 
N-methyl group deeply included in the cavity. This structural arrangement allows the 
stabilization of the complex by a combination of non-covalent interactions that include 
CH-π contacts between the N-methyl residue and the aromatic pocket, along with cation-

Figure 9. Structure of the receptors α-Cyclodextrin (α-CD) and β-Cyclodextrin (β-CD) and correscheme 41. recently synthe-
sized a single substituted analogue of this macrocycle, β-CDU, with high affinity towards L-tryptophan (K = 5.2 × 104 M−1),
thanks to the added “arm” with hydrogen bonding groups as well as a hydrophobic region (Figure 10). Despite the larger
cavity of β-cyclodextrin, structural studies showed that there was no inclusion complex, contrary to what is usual for these
systems, but instead the complex was formed at the entrance of the receptor. This binding was shown to happen in 2:1
host:guest stoichiometry with the receptor forming a dimer, with the analyte in the created pocket, being stabilized by
hydrophobic interactions and hydrogen bonds [41].
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α-cyclodextrin was shown to bind L-Phe in a 2003 study by Buschmann et al., but the
binding is rather unspecific, only driven by hydrophobic interactions, yielding the same
affinities for this amino acid and for a series of other less polar amino acids, as well as other
non-polar analytes tested [35].

3.1.5. Cavitands

Cavitands is a term that encompasses several types of rigid macrocycles and it was
first coined by Cram and co-workers in 1982 [112]. These constitute a class of receptors that
present a “enforced cavity” where a small guest can bind, being the most widely studied
ones those based on resorcinarenes macrocycles [62,112]. The Dalcanale group has reported
several cavitand derivatives (Figure 11) that were found to recognize amino acids and
amino acid metabolites [113,114], and were able to obtain the crystallographic structure of
the complexes between some of these cavitand receptors and all basic amino acids, Arg,
Lys, and His. The 1:2 complexes were shown to be mainly stabilized by direct and water-
mediated hydrogen bonds between a guest molecule and two host molecules [114]. These
receptors were also shown to be particularly adequate to selectively recognize sarcosine, a
potential prostate cancer biomarker, over glycine in water and in biological fluids [113].
The crystal structures of the complexes showed that while glycine methyl ether is localized
at the receptor’s portal, sarcosine forms an inclusion complex with the N-methyl group
deeply included in the cavity. This structural arrangement allows the stabilization of
the complex by a combination of non-covalent interactions that include CH-π contacts
between the N-methyl residue and the aromatic pocket, along with cation-dipole and
hydrogen bonding between the ammonium and the phosphonate groups. The selective
complexation of sarcosine in solution was confirmed by ITC experiments in methanol,
by water:chloroform extraction and solubilization assays. The recognition of sarcosine in
water and in urine was achieved by grafting the cavitands to a silicon surface. The authors
showed that the receptor held its recognition properties at these interfaces and devised
a sensor based on a luminescence indicator displacement assay using (9-anthrylmethyl)
methyl ammonium chloride as probe.

More recently, a comprehensive study on recognition of amino acids by tetraphos-
phonate cavitands was performed to dissect the thermodynamic factors responsible for
the observed selectivity of these receptors towards N-methyl amino acids [115]. The com-
plexation was investigated both in methanol and in aqueous solutions, showing that the
stability of the resulting complexes significantly decreases (almost 2 order of magnitude) in
water. The ITC results demonstrated that while the association process is both enthalpy
and entropy-driven in methanol, it becomes entropically unfavorable in water. The authors
attributed this observation to the non-classical enthalpy driven hydrophobic effect and
to the enhanced solvation of the complex in aqueous solution. Despite of the decreased
affinity, the selectivity of these receptors toward N-methylated amino acids improves in
aqueous solution resulting in their exclusive complexation.
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Figure 11. General structure of the Dalcanale cavitand receptors, Cav[R1,R2,R3] [113–115].

3.1.6. Other Macrocyclic Receptors

A variety of different macrocycles have been used for the binding of a myriad of
molecules. Some less known examples that are only now being applied in biomolecule
recognition or that present more complex molecular structures are described below, show-
casing the versatility and diverse design that macrocycles can present.

Early work by Kaifer et al. showed that the tetracationic cyclophane cyclobis(paraquat-
p-phenylene), CPQ, commonly known as the blue-box, forms charge transfer complexes
with aromatic amino acids in aqueous solution (Figure 12). This receptor is selective for
tryptophan (K = 1.0 × 103 M−1) showing ca. 2 and >10 fold lower affinity for tyrosine
and phenylalanine, respectively [116]. Cao and co-workers more recently explored the
affinity of two distinct tetracationic cyclophane derivatives towards anionic and aromatic
biomolecules. The TeCPh, the cyclophane analogue with a narrower electron-deficient
cavity described in this study (Figure 12), showed a high specificity towards tryptophan
(K = 1.2 × 103 M−1) in relation to the other amino acids, forming π–π bonds with the
electron-rich aromatic side chain of the analytes, and possibly being further stabilized by
ionic interactions with the carboxylate group of Trp [42].
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Figure 12. Structure of the cyclophane receptors CPQ [116] and TeCPh [42].

Alfonso et al. synthesized two novel oxaazamacrocycles, which presented enantiose-
lective binding with both aspartate and glutamate—OA (R,R) e OA (S,S,S,S) [53]. Only the
latter showed considerable selectivity towards the L isomers of these anionic biomolecules,
but with relatively low affinities. The former showed higher affinity towards the D-isomer
of aspartate. This specificity is given by the positioning of the positive groups and oxygen
on the receptor in relation to the analyte that it has affinity towards (Figure 13). This
distinct approach in receptor design allowed for the positioning of its charged and polar
moieties in proximity to guests’, in a complementary manner. The positive ammonium
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groups turned towards the cavity of the receptor and the two oxygens, free to form two
hydrogen bonds each, facing in the same general direction, is the ideal conformation for
the binding of D-Ac-Asp to OA (R,R), allowing the establishment of ionic interactions and
one hydrogen bond without the need for many spatial rearrangements of the receptor [53].
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Figure 13. Structure of the oxaazamacrocycle receptors OA (R,R) and OA (S,S,S,S) [53].

Much like the previous examples, calixpyridinium, C4Pyr is a supramolecular system
that has not been target of much attention in biomolecule binding applications (Figure 14).
However, this macrocycle presents many similarities to calixarenes, with high solubility
and with added cationic groups allowing for the creation of a binding site for small anionic
biomolecules. Ren and co-workers tested this receptor for its affinity towards anionic
amino acids—it showed to be highly selective for these, when compared to the rest of the
proteinogenic amino acids, binding aspartate and glutamate (K ≈ 103 M−1) solely by ionic
interactions [52].

Molecules 2021, 26, 106 14 of 44 
 

 

 
Figure 14. Structure of the receptor calixpyridinium, C4Pyr. 

3.2. Open-Chain Receptors 
Despite the great variety of macrocycles here presented with affinities reaching the 

μM range, some open-chain receptors can present rigid binding sites with affinities rival-
ling those of macrocycles [24]. On the other hand, less rigid structures can bring other 
advantages, e.g., the flexibility to bind larger guests [117]. 

Molecular tweezers are open-chain receptors comprising semi-rigid structures that 
can bind complementary analytes [24,25,118]. Two studies reported rigid molecular twee-
zers with the ability to bind Arg and Lys, which were designed with nine adjoining six-
membered rings and a hydroquinone group at the center. The two hydroxyl groups in the 
hydroquinone were modified to incorporate different anionic moieties—phosphonate, 
phosphate, sulfate and carboxylate—creating four differently-substituted receptors, phos-
phonate (MPnT), phosphate (MPT), sulfate (MST) and carboxylate (MCT), respectively 
(Figure 15) [24,25]. These receptors showed different affinities towards Arg and Lys, as 
well as the acylated and O-methylated modified residues, as shown in Table 1. 

 
Figure 15. Structure of the Molecular Tweezers reported in Schradder et al. functionalized with 
phosphonate (MPnT), phosphate (MPT), sulfate (MST), and carboxylate (MCT). 

The first of these receptors to be tested was the phosphonate tweezer, which showed se-
lectivity towards Lys, with even higher affinity towards its α-N/C-Protected form. NMR and 
ITC studies elucidated the interactions formed in these complexes where all the analytes tested 
showed a full incorporation of their side chain near the hydroquinone group (Figure 16). The 
binding process is aided by cation–π interactions between the positively charged groups of 
the amino acids and the electron-rich interior region of the tweezer, as well as by hydrophobic 
interactions between the alkyl chains of the analytes and the aromatic groups. However, the 

R

R

MPnT: R = OP(CH3)O2

MPT: R = OPO3
2

MST: R = OSO3

MCT: R = OCH2CO2

Figure 14. Structure of the receptor calixpyridinium, C4Pyr.

3.2. Open-Chain Receptors

Despite the great variety of macrocycles here presented with affinities reaching the
µM range, some open-chain receptors can present rigid binding sites with affinities ri-
valling those of macrocycles [24]. On the other hand, less rigid structures can bring other
advantages, e.g., the flexibility to bind larger guests [117].

Molecular tweezers are open-chain receptors comprising semi-rigid structures that
can bind complementary analytes [24,25,118]. Two studies reported rigid molecular tweez-
ers with the ability to bind Arg and Lys, which were designed with nine adjoining six-
membered rings and a hydroquinone group at the center. The two hydroxyl groups in
the hydroquinone were modified to incorporate different anionic moieties—phosphonate,
phosphate, sulfate and carboxylate—creating four differently-substituted receptors, phos-
phonate (MPnT), phosphate (MPT), sulfate (MST) and carboxylate (MCT), respectively
(Figure 15) [24,25]. These receptors showed different affinities towards Arg and Lys, as well
as the acylated and O-methylated modified residues, as shown in Table 1.
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Table 1. Binding constants (Ka) for the formation of host-guest complexes between amino acids and synthetic supramolecu-
lar receptors.

Host Guest Ka (M−1) Conditions Method Ref.

SC4

L-Arginine

1.52 × 103 Phosphate Buffer 10 mM pH 8, 20 ◦C ITC [21]

1.7 × 103 95% water/5% deuterium oxide pH 5

1H-NMR

[75]
2.0 × 102 95% water/5% deuterium oxide pH 1

1.55 × 103 95% water/5% deuterium oxide pH 8, 20 ◦C [22]

6.40 × 103 Deuterium oxide unbuffered, 25 ◦C [88]

1.30 × 104 Deuterium oxide unbuffered, 25 ◦C
[86]

2.8 × 104 Acetate buffer 5 mM pD 4.5

3.30 × 102 Deuterium oxide 40 mM phosphate buffer
pD 7, 25 ◦C [89]

L-Lysine

7.4 × 102 Phosphate Buffer 10 mM pH 8, 20 ◦C ITC [21]

6.0 × 102 95% water/5% Deuterium oxide pH 5
1H-NMR

[75]
1.0 × 102 95% water/5% Deuterium oxide pH 1

1.36 × 103 95% water/5% Deuterium oxide pH 8, 20 ◦C [22]

<1 × 103 Ammonium acetate buffer 10 mM, pH 6, 25 ◦C Fluorescence
Spectroscopy [87]

4.60 × 103 Deuterium oxide unbuffered 1H-NMR [86]
3.90 × 103 Acetate buffer 5 mM pD 4.5

5.20 × 102

Phosphate buffer 40 mM, pH 7.4, 30 ◦C ITC [89]
L-LysMe 4.00 × 103

L-LysMe2 1.60 × 104

L-LysMe3 3.70 × 104
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Table 1. Cont.

Host Guest Ka (M−1) Conditions Method Ref.

L-Histidine 5.00 × 102 95% water/5% Deuterium oxide pH 8, 20 ◦C

1H-NMR

[22]

L-Arginine 1.90 × 102

Phosphate buffer pH 8, 20 ◦C [21]L-Lysine 90

L-Arginine 3.50 × 102

SC4-Ar
L-Lysine 4.2 × 102

Phosphate buffer 40 mM pD 7.0, 25 ◦C [90]
L-LysMe3 6.4 × 104

C4Pyr

L-Lysine 1.40 × 102 Phosphate Buffer pH 8, 20 ◦C

L-Glutamate 1.76 × 103

Water pH 6
Fluorescence
Spectroscopy

[52]
L-Aspartate 1.16 × 103

P5 Bodipy L-Asparagine 2.5 × 105 Dimethyl formamide/water 1:1, 25 ◦C [95]

CP5

L-Arginine
5.24 × 103 HEPES buffer pH 7.4, 25 ◦C [94]

5.90 × 103 Deuterium oxide pD 7.2, 25 ◦C 1H-NMR [26]

L-Lysine
1.12 × 103 HEPES buffer pH 7.4, 25 ◦C Fluorescence

Spectroscopy [94]

1.80 × 103

Deuterium oxide pD 7.2, 25 ◦C 1H-NMR [26]
L-Histidine 1.50 × 103

TriMe-Lys 1.30 × 103

Ac-Lys 1.90 × 102

PDA6
L-Glutamate 1.00 × 106

Water pH 6, 25 ◦C
Fluorescence
Spectroscopy

[51]
L-Aspartate 9.80 × 105

MPnT

L-Lysine 1.40 × 103 Deuterium oxide, Sodium
Dihydrogenophosphate 25 mM pH 4.4

1H-NMR [24]
Ac-His-OMe 7.00 × 102

Ac-Lys-OMe 4.40 × 103
Deuterium oxide unbuffered

2.30 × 104

L-Lysine 1.14 × 103

Phosphate buffer 200 mM pH 7.6

Fluorescence
Spectroscopy

[25]

MPT

L-Lysine 4.76 × 104

Ac-Arg-OMe 1.67 × 104

Ac-Lys-OMe 5.88 × 104

Ac-Arg-OMe 5.00 × 104

Phosphate buffer 10 mM pH 7.6
Ac-Lys-OMe 1.11 × 105

MST

L-Lysine 4.41 × 103

L-Arginine 1.43 × 103

Ac-Arg-OMe 1.30 × 104

Phosphate buffer 10 mM pH 7.2
Ac-Lys-OMe 5.26 × 104

MCT

L-Lysine 8.60 × 102

Phosphate buffer 10 mM pH 7.2
L-Arginine 1.64 × 103

Ac-Arg-OMe 3.56 × 103

Ac-Lys-OMe 1.56 × 103

Ac-Lys-OMe 4.42 × 103 Phosphate buffer 200 mM pH 7.6
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Table 1. Cont.

Host Guest Ka (M−1) Conditions Method Ref.

CEAT Lys-OMe

3.16 × 104 Methanol

[118]3.98 × 104 Water with 1.6% Methanol

7.0 × 101 HEPES buffer 50 mM pH 7.5 with
1.6% Methanol

CB6

L-Lysine 1.10 × 104 Deuterium oxide 0.1 M NaCl, 25 ◦C 1H-NMR [101]

Glycine 4.70 × 103

Aqueous Formic Acid 50%(v/v), 25 ◦C

ITC

[35]
L-Alanine 1.00 × 103

L-Valine 1.40 × 103

L-Phenylalanine 1.40 × 103

CB7

L-Phenylalanine

1.80 × 106 Water, 25 ◦C [36]

1.80 × 105 Phosphate Buffer pH 7, 25 ◦C
[102]

1.20 × 106 Phosphoric acid buffer pH 2, 25 ◦C

1.50 × 105 Water, 25 ◦C 1H-NMR

[44]8.20 × 105
nd

UV-Visible
Spectroscopy

L-Tyrosine

2.30 × 105

1.60 × 104 Phosphate Buffer pH 7, 25 ◦C
ITC [102]

1.80 × 105 Phosphoric acid buffer pH 2, 25 ◦C

2.40 × 104
Ammonium Acetate Buffer pH 6, 30 ◦C

Fluorescence
Spectroscopy [45]

2.20 × 104 ITC

L-Tryptophan

3.70 × 105 nd UV-Visible
Spectroscopy [44]

1.20 × 103 Phosphate Buffer pH 7, 25 ◦C
ITC [102]

7.40 × 103 Phosphoric acid buffer pH 2, 25 ◦C

1.60 × 103 Ammonium Acetate Buffer 10 mM pH 6, 25 ◦C Fluorescence
Spectroscopy

[45]
1.90 × 103 Ammonium Acetate Buffer 10 mM pH 6, 30 ◦C ITC

L-Lysine

8.70 × 102 Ammonium Acetate Buffer 10 mM pH 6, 25 ◦C Fluorescence
Spectroscopy

8.00 × 102 Ammonium Acetate Buffer 10 mM pH 6, 30 ◦C

ITC2.10 × 102 Phosphate Buffer pH 7, 25 ◦C
[102]

3.10 × 105 Phosphoric acid buffer pH 2, 25 ◦C

5.30 × 102

Sodium Acetate Buffer 50 mM, deuterium
oxide pD 4.7, 25 ◦C

1H-NMR [101]
Lys-NMe 1.80 × 103

Lys-NMe2 6.00 × 104

Lys-NMe3 1.90 × 106

L-Arginine

3.10 × 102 Ammonium Acetate Buffer 10 mM pH 6, 25 ◦C Fluorescence
Spectroscopy [45]

1.40 × 105 Phosphoric acid buffer pH 2, 25 ◦C
ITC

[102]

3.27 × 102 Ammonium Acetate Buffer 10 mM pH 6, 30 ◦C [45]
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Table 1. Cont.

Host Guest Ka (M−1) Conditions Method Ref.

L-Histidine
4.00 × 102 Ammonium Acetate Buffer 10 mM pH 6, 25 ◦C Fluorescence

Spectroscopy

2.40 × 103 Phosphoric acid buffer pH 2, 25 ◦C ITC [102]

CB8

L-Tyrosine a <1.00 × 103

Sodium Phosphate 10 mM pH 7
CB8-AA2, 27 ◦C

ITC

[110]L-Phenylalanine a 1.10 × 108

L-Tryptophan a 6.90 × 107

L-Tyrosine 2.20 × 103

Sodium Phosphate 10 mM pH 7, co-binding
with MV, 27 ◦C

[37]L-Phenylalanine 5.30 × 103

L-Tryptophan 4.30 × 104

L-Trp-OMe 6.30 × 104

L-Tryptophan
4.20 × 105 Co-binding with DPT UV-Visible

Spectroscopy [38]

3.40 × 104 Sodium Phosphate 10 mM pH 7, co-binding
with MBBI, 27 ◦C ITC [39]

CB6Ar

L-Phenylalanine 4.20 × 104

Sodium Acetate 50 mM pH 4.74, 22 ◦C Fluorescence
Spectroscopy [40]L-Tyrosine 5.70 × 104

L-Tryptophan 3.20 × 106

α-CDx

Glycine 5.60 × 102

Aqueous Formic Acid 50%(v/v), 25 ◦C ITC [35]
L-Alanine 1.12 × 103

L-Valine 1.62 × 103

L-Phenylalanine 2.6 × 102

β-CDx L-Tyrosine 5.0 × 101 Phosphate Buffer 0.01 M pH 7.0, 20 ◦C Fluorescence
Spectroscopy [119]

β-CDU

L-Tryptophan 5.24 × 104

Phosphate buffer 50 mM, 25 ◦C ITC [120]

L-Phenylalanine 2.24 × 104

L-Tyrosine 1.33 × 104

L-Alanine 5.00 × 103

L-Serine 1.97 × 104

CPQ

L-Tryptophan 1.00 × 103

Phosphate buffer 50 mM pH 7, 25 ◦C 1H-NMR [116]L-Tyrosine 4.54 × 102

L-Phenylalanine 1.06 × 102

Cav[(CH2)2
CH3,

CH2CH3]

N-Me-
Leucine·HCl 1.70 × 105

Methanol, 20 ◦C ITC [115]

N-Me-
Alanine·HCl 1.40 × 105

Proline·HCl 1.20 × 104

Threonine·HCl 2.00 × 104

Alanine·HCl 1.10 × 104

Tyrosine·HCl 1.10 × 104

Cysteine·HCl 7.30 × 103
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Table 1. Cont.

Host Guest Ka (M−1) Conditions Method Ref.

N-Me-
Lysine·HCl 1:1 1.07 × 106

Methanol, 20 ◦C (amino acid:cavitand)
N-Me-

Lysine·HCl 1:2 1.45 × 103

Cav[(CH2)2
CH3Py+Cl−,
CH2CH3]

N-Me-Glycine-
methyl

ester·HCl

6.80 × 104 Methanol, 20 ◦C

3.43 × 103 Water, 20 ◦C

1.89 × 103 Phosphate Buffer Saline 0.1 M pH 7, 20 ◦C

Sarcosine 1.02 × 103

Water, 20 ◦C
N-Me-Lysine·HCl 1.49 × 103

1.13 × 103 Phosphate Buffer Saline 0.1 M pH 7, 20 ◦C

TeCPh L-Tryptophan 1.21 × 103 Phosphate Buffer 10 mM pH 7.4, 25 ◦C [42]

OA (R,R)-1
N-Ac-D-Aspartate 1.62 × 104

Tetramethylammonium chloride 0.1 M, 20 ◦C
pH-metric
titrations

[53]N-Ac-D-Glutamate 3.31 × 103

OA
(S,S,S,S)-2

N-Ac-L-Aspartate 3.40 × 102

N-Ac-L-Glutamate 6.30 × 102

GP3cat
N-Ac-L-Alanine 2.10 × 103 1:1 90% water/10% Dimethyl sulfoxide

ITC [59]
N-Ac-L-Glutamate 1.52 × 106 2:1 90% water/10% Dimethyl sulfoxide

a 1:2 host-guest stoichiometry. Overall binding constant in M−2. The overall binding constant corresponds to the product of the stepwise
binding constants for the 1:1 and 1:2 complexes, i.e., K11.K12.

The first of these receptors to be tested was the phosphonate tweezer, which showed
selectivity towards Lys, with even higher affinity towards its α-N/C-Protected form. NMR
and ITC studies elucidated the interactions formed in these complexes where all the
analytes tested showed a full incorporation of their side chain near the hydroquinone
group (Figure 16). The binding process is aided by cation–π interactions between the
positively charged groups of the amino acids and the electron-rich interior region of the
tweezer, as well as by hydrophobic interactions between the alkyl chains of the analytes
and the aromatic groups. However, the formation of the complexes are mainly driven by
ionic interactions between the receptor’s anionic groups and the positive charges in the
analyte—explaining the higher affinity towards Lys, seeing as arginine presents a more
delocalized charge, diminishing the stability of this latter complex [24].

This was supported by later studies with molecular tweezers comprising different
anionic moieties, in which the phosphate and sulfonate containing tweezers present the
highest affinities, in contrast to phosphonate and carboxylate which present lower charge
density. The lower affinity of most of these tweezers to non-protected forms of the amino
acids is most likely due to the presence of repulsive forces between the receptor and the
carboxylate group of the amino acids [25].

Another application of this concept was developed by Mandl and König, in which they
made a receptor with two modified crown ether moieties, CEAT [118] (Figure 17). These
are capable of binding O-methylated Lys, with an affinity of 4.0 × 104 M−1, namely by
the formation of H-bonds between the crown ether ring and the amines in the amino acid.
However, these receptors have rather small affinities when in aqueous buffered solutions,
while also needing the presence of a small percentage of methanol, which indicates that
they are less suitable for physiological applications [118].
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Schmuck and Geiger also developed an open chain receptor for amino acids, based
on a guanidinium pyrrole unit, with 2 added cationic groups, GP3cat (Figure 18). This
receptor showed a remarkable increase in affinity towards acetylated L-Ala, in comparison
to other mono or di-cationic forms of the receptor. This 1:1 complex is mainly stabilized by
ionic interactions between the receptor and the carboxylate of the analyte, as well as by
multiple hydrogen bonds that are formed at the same time with the same groups. Despite
the extra carboxylate of glutamate, the 1:1 complex is more stable with alanine, although
two receptors can bind to 1 molecule of glutamate, which increases the affinity towards this
amino acid. Although promising, this system was not studied solely in water, still needing
10% DMSO in order to increase its solubility [59].
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4. Recognition of Peptides: Taking Inspiration in Nature

One of the main targets for protein detection is the recognition of key elements, most
often on the surface of the protein, seeing as this is the region most easily available for
binding. For small peptides most of their residues are easily available for binding and is
also easier to select a target region for detection. In either case, the best way to achieve this
is by the recognition of the peptide side-chains or C and N-terminal amino acid residues [7].
In this section, the focus will be on the previously mentioned receptors, and other, more
complex structures, applied in the selective recognition of target amino acid sequences in
peptides [22,24–26,35,52,121–123].

4.1. Macrocyclic Receptors

From the receptors presented before, there are a few that have received a larger focus
and that their affinity towards certain residues and groups is well defined. Cyclodextrins,
for example, have been shown to have affinity for hydrophobic amino acids like phenylala-
nine, but still bind weakly to the peptides studied in most works, while cucurbit[n]urils,
which are selective for hydrophobic and basic amino acids form complexes with peptides
and proteins that are significantly more stable, reaching nanomolar affinities in specific
cases [37,108,124,125]. Charged macrocyclic receptors, as can be expected, bind oppositely
charged residues, being this, together with the hydrophobic effect, the main driving forces
for peptide binding in aqueous solutions while other non-covalent interactions may con-
tribute in a small extent for overall binding energy [7,9,33]. However, it must be stressed
that these secondary interactions may play a decisive role in the overall selectivity and
structure of the complexes.

The simplest and non-modified forms of these macrocycles can be used for selective
binding of peptides, which is reported in many studies [21,35,41]. Using these as a starting
point, many other receptors have been developed, modifying the original structures to suit
the type of amino acids and peptides that are being targeted [40,52]. There are also other
types of macrocycles that, while less used for biological applications, have been adapted
and show promise in the binding and detection of peptides, as was touched upon in the
previous chapters [51,94,95].

4.1.1. Calixarenes

p-Sulfonatocalix[4]arene (SC4) binds not only cationic amino acids but also small
cationic peptides. Complexes with polycationic peptides are, in general, more stable due
to the formation multivalent ionic interactions. One of the first studies with polycationic
peptides and SC4 was reported by Morel-Desrosiers and co-workers [22], in which they
observe some changes in the way that peptides bind to this receptor, in comparison to
the single amino acid. For Lys-Lys, Arg-Arg and Lys-Arg, the N-terminal amino acid is
enclosed within the cavity of the receptor, with the C-terminal amino acid staying only
near the entrance of the macrocycle. NMR studies showed that, between Lys-Lys and
Arg-Arg, the latter binds deeper in the SC4 cavity, most likely due to the stabilization of
the complex by cation–π interactions. The two other peptides differ slightly in the mode
of binding—while Lys-Arg seems to bind with the N-terminal amino acid, lysine, in the
cavity and arginine remaining outside the macrocycle, the Arg-Lys peptide binds with the
C-terminal deeper in the cavity.

The tripeptides tested in this study showed higher stabilization than the remainder of
the analytes. This is most likely due to two main factors: the multivalent ionic interactions,
due to the presence of an added cationic group, increasing the sites of interaction and, so,
increasing the stability of the complex [126]; a greater distance between the C-terminal and
the sulfonate groups of the receptor diminishes the electrostatic repulsion between these
two negatively charged groups and allows for more stable binding with the N-terminal
amino acid, deeper in the cavity, and the middle amino acid, at the entrance of the cavity.
This study also showed that, in general, the complexes formed with the amino acid L-Arg
and Arginine peptides are slightly more stable than their L-Lys counterparts, due to the
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presence of the guanidinium moiety that may undergo π–π interactions with the calixarene
cavity, as explained in Section 3.1.1. [22].

Ghale et al. [127] also used p-sulfonatocalix[4]arene for the detection of arginine-rich
peptides, using an indicator displacement method. In this study, this receptor was applied
for the detection of several cationic analytes in liposomes (with more focus on protamine, a
natural occurring peptide with 21 arginine residues) and to study their transport across
membranes, mediated by the membrane protein OmpF. The association constants presented
in Table 2 further establish that, in general, this macrocycle forms more stable complexes
with peptides with higher number of positively charged residues due multivalent ionic
interactions, as commented above. Later studies show the same effect with an amphiphilic
SC4 and its complexation with heptaarginine and other small arginine-rich cell-penetrating
peptides [121].

The high affinities towards multivalent cationic peptides make this receptor a promis-
ing one, for in vitro study of several types of peptides—antimicrobial peptides [33], pro-
tamines [128], and mitochondrial signaling peptides [129]—but also make it a viable tool
for applications in sensing of proteins and their modulation. Selected examples of this
include the use of SC4 as a promoter of protein crystallization, protein assembly and as a
masking agent, to alter proteins’ surface properties [130–135].

This is the case of studies with the protein cytochrome c, with characteristic positively
charged regions at the surface, composed of several lysine residues, which have a very
important role in the protein–protein interactions that Cyt c can establish. McGovern
et al. have shown that SC4 binds this protein at three different lysine residues (Figure 19),
forming ionic and cation–π interactions with the residue, but being further stabilized by
hydrogen bonds with the nearest polar residues and groups, as well as by the hydrophobic
effect. The binding of SC4 results in a change in the overall charge at these sites, conceal-
ing the lysine residues and altering the protein–protein recognition properties of these
biomolecules. Moreover, the changes at the protein surface enhanced the protein’s ability
to form crystals, indicating possible uses of SC4, not only in physiological conditions, for
function modulation purposes, but also as an enhancer of crystallization [131].
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4.1.2. Calixpyridinium

This macrocycle was tested not only with amino acids, as previously mentioned, but
with a glutamate dipeptide, to evaluate if the high affinity was maintained or if there
were any changes in the binding mode. The same study showed that the calixpyridinium-
peptide complex presented very similar stability as the one with only glutamate, which
might indicate that the binding occurs mostly in the same way (Table 2) [52]. In the case of
the dipeptide it is possible that the N-terminal residue is also inside the macrocycle’s cavity
but that the electrostatic repulsion between the positive N-terminal hinders the binding,
resulting in equal affinity to that of L-Glu.

Despite the possible use of this system in the detection of peptides, it remains that cal-
ixpyridinium presents higher affinity constants towards nucleosides, in particular towards
ATP, and so, being more interesting as a receptor for this anionic molecule [136].

4.1.3. Pillararenes

Much like calixpyridinium, pillararenes previously mentioned either were not further
tested for their affinity towards peptides or were only tested with a couple of small
peptides, yielding very similar results as for the binding of the respective amino acids.
Carboxylatopillar[5]arene (CP5) was tested for two peptides—Ala-Arg-Ala and Ala-Lys-
Ala—in the same study mentioned before [26]. NMR studies showed that, in this case, the
CP5 receptor only encapsulated the side chain of the middle basic amino acids, stabilizing
both by ionic interactions and the hydrophobic effect. Similar to the amino acid results, this
macrocycle has five times higher affinity for the peptide with Arginine, most likely due to
the formation of cation–π interactions, giving it a rather high selectivity for the presence of
this amino acid.

4.1.4. Cucurbiturils

The binding of peptides to CB[n] constitutes a remarkable success story in the field of
host-guest systems comprising this type of biological molecules. As previously mentioned,
CB[n] generally display higher affinity for hydrophobic aromatic amino acids being the
release of high energy water molecules from the macrocycle’s cavity the main thermo-
dynamic driving force contributing for the stability of the complexes [105]. Ion-dipole
and hydrogen bonding interactions between carbonyls portals of the receptor and specific
functional groups present in the peptide are believed to contribute in a less extension for
the overall driving force but may have a decisive role in the observed selectivity. The
high affinity interactions of N-terminal aromatic residues, in particular phenylalanine,
with CB7 and CB8 constitutes a paradigmatic target for the selective binding behavior
of this class of hosts [7,37,108,122,124]. For example, Phe-Gly and CB7 form a 1:1 com-
plex with a K = 3.0 × 107 M−1 while the complex formed with Gly-Phe is much weaker
(K = 1.3 × 103 M−1), as is summarized in Table 2 [122]. In both cases the phenylalanine
residue is included in the CB7 cavity. However, while in Phe-Gly this binding mode favors
attractive ion-dipole interactions between the carbonyl portals and the ammonium group
and minimizes the repulsion of the portal with the carboxylate group, for Gly-Phe the
carboxylate is closer to the carbonyl group precluding optimal inclusion by electrostatic
repulsion. Furthermore, the attractive interaction between the ammonium group in the Gly
residue with the carbonyl portals of the receptor imposes a significant entropic penalty due
to conformational restriction of the guest [122]. Although displaying slightly lower binding
constant, both tryptophan- and tyrosine-glycine dipeptides display similar behavior to
that described for Phe-Gly/Gly-Phe [122]. It is also worth noting that the smaller CB6, in
contrast to CB7 and CB8 (see below), does not significantly bind peptides with terminal
aromatic residues, showing much higher affinity for those comprising terminal lysine [122].

Urbach and co-workers [37,108] focus their earlier work on the binding of N-terminal
amino acids to the larger CB8. As described above for CB7, CB8 also binds preferentially
peptides containing aromatic amino acids at the N-terminal. These receptor-analyte pairs
can form 1:1:1 complexes in the presence of methyl viologen as an auxiliary guest [37], but
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can also assist the dimerization N-terminal aromatic peptides in the absence of methyl
viologen by forming 1:2 host–guest complexes. CB8 shows selectivity towards Trp-Gly-Gly
and Phe-Gly-Gly (Figure 20) [108], forming CB8-peptide2 complexes with overall binding
constant up to 3 × 1011 M−2 (Table 2) [108,137,138]. While the arguments described above
to rationalize the selective binding of N-terminal aromatic residues to CB7 are also likely to
hold here, the crystal structures shown in Figure 20, besides showing those interactions,
also demonstrate that hydrogen bonding between the amide protons and the oxygen atoms
in the carbonyl portals may also contribute to increase the stability of these complexes [108].
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More studies have been done with CB8, screening for any specificity among peptides
with N-terminal aromatic residues [125]. Most of these were performed with tripeptides,
in which the N-terminal residue was aromatic, and the two others varied, in order to assess
their importance in the binding process. It was discovered that, even though most of the
peptides bind in a 2:1 ratio to CB8, the sequence Tyr-Leu-Ala showed high affinity (in the
nM range) for this macrocycle. However, it bonded in a 1:1 ratio instead of the 2:1 observed
previously. This was not only true for Tyr-Leu-Ala; when tyrosine was the N-terminal
amino acid, some peptides formed a 1:1 complex with CB8, because the adjacent amino
acid could also be encapsulated in the CB8′s cavity along with L-Tyr, leaving the C-terminal
at the entrance of the macrocycle (Figure 21). These peptides were of the Tyr-X-Ala kind
(with X being either Leu, Lys, Phe or Tyr), and did not bind in this way to CB8 when
X and Ala were switched. This high affinity towards a Tyr-Leu-Ala peptide is a step
towards developing simple supramolecular systems that mimic the specificity displayed
by antibody-based receptors.

The same researchers proceeded to do further screening, namely with a library of
144 tripeptides, X1-X2-Ala. X1 consisted of amino acids with large hydrophobic or cationic
side chains, seeing as this will be the residue farther inside CB8s cavity and the larger size
is needed in order to have 1:1 binding. X2 corresponds to 18 possible amino acids, leaving
off only Trp and Cis from the existing 20 human physiological amino acids, due to possible
interference in the measurements [123].

This study showed that CB8 had affinity towards peptides with Tyr, Phe, Ile, and Leu
at X1 and Tyr, Phe, Leu, and Lys at X2. Sequences with Met, Arg and Lys also showed
considerable affinity. The affinity towards methionine at the X1 position was the one
explored in this study, seeing as Met is often found on N-terminal of proteins before
further post-translational modification, being of particular interest to study these PTM
mechanisms [139].
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Analyzing the binding by ITC studies, showed that the second amino acid should be
large and hydrophobic or cationic, but without branching in the beta carbon, while the third
amino acid should be small, so as to avoid having stereochemical hindrances [123]. These
types of tripeptides show sub micromolar affinities towards CB8 and are also a plausible
target for the detection of proteins by their N-terminal, seeing as, despite methionine being
a common site of excision, large amino acids in the position next to Met can block the
binding of the enzymes that catalyze this process, which distinguishes these N-terminal
sequences from the excised ones [139]. Additionally, this functionality of the macrocycle
can be used as a protection against excision of the N-terminal, for proteins presenting these
sequences [109].

More recent studies focus on different modes of peptide binding to the receptor CB8,
with a focus on peptides containing the pairs of residues Tyr-Leu or Phe-Leu. Here it is
shown that CB8 can bind to these residues even if farther away from the N-terminal, with
a diminished affinity by one order of magnitude, and that the binding can occur not only
in a 1:1 ratio, but also in a 1:2 ratio for longer peptides with repeated Tyr-Leu sequences
(Tyr-Leu-Ala-Gly-Gly-Ala-Leu-Tyr) [140].

Due to the presence of aromatic amino acids in insulin’s N-terminal, this protein
comes up as a possible target for this type of receptors. With this in mind, Chinai et al.
evaluated the affinity of this system towards human insulin and a mutant variety without
the N-terminal aromatic amino acid [124]. This latter variant showed an obvious decrease
in affinity towards CB7 when compared to human insulin. The latter showed similar
affinity towards the macrocycle as Phe-Gly-Gly. Furthermore, it was observable a slight
change in conformation in insulin to allow for this binding, exposing the N-terminal to
the complexation, but without altering the overall structure of the protein. This implies
that even less exposed N-terminal amino acids could be targets for this type of sensing
without any major interference with the rest of the structure, while also distinguishing
them from other aromatic amino acids in a protein’s surface or in a peptide’s sequence
(Figure 22). Additionally, the N-terminal is usually a more exposed and flexible region in
proteins, being possible that this could be more easily transposed to studies with peptides
with a corresponding sequence.

As can be seen by this example, CB[n]’s can be used for the detection of proteins, due
to its specificity towards aromatic and cationic residues. Control over protein assembly and
function is another route that is being explored for this supramolecular system [9,141–148].
Brunsveld and co-workers have used CB8 as a tool to aid in the dimerization of proteins,
making use of the target Phe-Gly-Gly motif as an N-terminal modification, in order to
better control enzyme activity [149] and protein assemblies [142].
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The second example consists of the use of a modified peptide, with a 14-3-3 protein
binding site at the C-terminal and with an Phe-Gly-Gly moiety at the N-terminal. This
structure allows for the binding of this peptide to the 14-3-3 protein, which presents two
binding sites, with affinities comparable to those of the physiological targets. CB8 can
be added to stabilize this bivalent complex by 14 times, by complexation of the two N-
terminals of the peptides bound to this protein, serving as a tool to switch the “availability”
of the 14-3-3 binding site [142].

A more recent study reported the role of CB8 as a modulator of enzymatic activity
using caspase 8, an enzyme that is typically only active upon dimerization. In this work
Dang et al., after observing that the Casp-8 N-terminal residues of the two monomers are in
close proximity in the dimeric active state, engineered this region of the Casp-8 to have an
Phe-Gly-Gly motif [149]. This motif allowed for the use of CB8 to control the dimerization
in the inactive mutants and resulted in an easily modulated, dimeric form of Casp-8 active
towards a synthetic ligand as well as its physiological substrate, caspase-3.

The CB[n]’s affinity towards basic residues has also been explored in the scope of
protein recognition. Namely, Crowley and co-workers tested CB7′s affinity towards a
demethylated lysine in a protein, Ralstonia solanacearum lectin (RSL). Despite having other
methylated lysine residues in its sequence, CB7 recognized selectively the Lys34Me2, which
is located in a more accessible region of RSL, yielding an affinity in the mM range (Table 2).
Moreover, CB7 has also been successfully exploited in this context to create novel protein
assemblies around CB7 trimers and tetramers, in the crystal structure of the CB7-RSL
complexes [150].

4.1.5. Cyclodextrins

As described in the previous sections, the properties of these natural occurring macro-
cycles translate to higher affinities towards aromatic residues or residues with small, apolar
side chains in the context of peptides and proteins [35,41,119,151,152]. The same types of
interactions occur with both amino acids and peptides—the binding at the cyclodextrin
cavity is generally driven by hydrophobic effects, with some hydrogen bonds formed with
the outer shell of the macrocycle. In most cases, these interactions only allow for small
affinities, only surpassing mM affinities in 50% methanol solutions [152], or with further
modification of the original macrocycle [151].

4.1.6. Crown Ethers

A different approach for detection of aromatic amino acids and small peptides con-
taining these residues was presented by Weißenstein et al. [153]. In their studies they joined
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the properties of two different moieties—as readout mechanism they used a perylene
bisimide dye (PBI), which has high fluorescence quantum yield and can be quenched
by photoinduced electron transfer (PET)—this process can occur when this group forms
bonds with electron rich moieties, e.g., aromatic amino acids which can bind to PBI by π–π
stacking of aromatic groups; the other distinct moiety is composed of two crown ethers
that serve as a receptor for ammonium cations, e.g., the N-terminal of short peptides or
amine groups present in cationic amino acids. The presence of two crown ethers allows for
the binding of two analytes, while PBI can form two π–π stacking bonds with the aromatic
amino acids (Figure 23).
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The highest affinity of PBI, at least one order of magnitude above that of other peptides
and amino acids tested, was towards Ala-Trp. This peptide is believed to have the optimal
characteristics for binding to occur due to the separation between the ammonium ion at
the N-terminal and the aromatic residue. It must be ideal for the formation of interactions
between the N-terminal ammonium group and the crown ether and between the aromatic
side chain and the perylene bisimide unit, at the same time. The downside of this probe is
that its studies were not made in water (probably due to poor solubility of the receptor)
and so, the conclusions taken, and the overall system are, most likely, not applicable in
water and physiological conditions.

Similar systems have been explored before, in water, as is seen as early as 1998 in the
work of Hossain and Schneider [154]. They used a crown ether and a trimethylammonium
moieties to bind to the peptide’s N and C-terminals, respectively. These moieties were
connected by a hydrophobic linker, with an added fluorescent dansyl unit for the detection
of the biomolecules (Figure 24). The synthesized receptor, CENMe3, reached affinities up
to 103 M−1, for both Gly-Phe-Gly and Gly-Trp-Gly, at least 1 order of magnitude above
the affinities towards other tested peptides. Even though this receptor shows specificity
towards the middle positioning of an aromatic residue in this type of peptides, for biological
applications, a 103 M−1 affinity constant is not the most desired value, since physiological
concentrations are much lower than those needed for considerable complex formation.

4.1.7. Cavitands

Cavitand receptors have seen multiple applications in recognition of small organic
molecules, including peptides and proteins. Some examples comprise the integration of
these macrocycles in sensing scaffolds [155,156], nanostructures [157], as well as their use
in solution [158–160]. The latter includes a group of self-folding deep cavitands, DCv
(Figure 25), which have been applied in the detection of select histone sequences and their
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respective post-translational modifications (PTM) in water. These interact with lysine
residues, showing different affinities depending on the R5 group’s nature (Figure 25) and
the degree of methylation of the guest. The complexes established are stabilized mainly
by cation–π interactions but also with the contribution of a variety of other electrostatic
interactions [157,159,160]. Furthermore, all three of the deep cavitands schematized have
been applied in a dye displacement assay for the screening and monitoring of the PTM on
a select library of peptides. These included several methylation sites that are recognized by
both histone methyltransferase and demethylase, allowing for an analysis of their activity
at several of the specific sites in which they act upon [159].
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4.2. Open-Chain Receptors

Besides the obvious interest in peptide and protein sensing, many receptors for pep-
tides have been explored focusing on the role of these biomolecules as targets for the
action of several pharmacological agents. The antibiotic vancomycin and its derivatives
are amongst the most recognized examples.

Vancomycin binds a specific sequence in the cell wall of gram-positive bacteria, D-Ala-
D-Ala-OH, disabling the action of a transpeptidase at this site, which has a very important
role in the crosslinking of several peptide strands in the peptidoglycan layer and stabilizing
it. Without this crosslinking, the cell envelope is severely destabilized, and lysis of the cell
will occur if there are variations in the local osmotic pressure. In drug resistant strands
of the same bacteria, this target sequence is mutated to D-Ala-D-Lac-OH. This change in
one amino acid breaks a bond between vancomycin and the peptide and adds electrostatic
repulsion between the two oxygens indicated below (Figure 26). This diminishes the affinity
constant of vancomycin by two orders of magnitude, but does not affect the binding of the
bacterial transpeptidase [6].
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Figure 26. (a) Vancomycin, (b) its target sequence in the cell wall of gram positive bacteria, D-Ala-D-
Ala-OH and (c) the mutated sequence, D-Ala-D-Lac-OH. The sites in vancomycin highlighted in pink,
blue and green interact with the same colored groups in the sequences. In the mutated sequence,
one of the hydrogen bonds is broken and there is instead electrostatic repulsion between the groups
in blue [6].

In order to circumvent bacterial mechanisms of resistance, Ellman and co-workers [161]
synthesized a library of water soluble receptors, based on vancomycin’s structure, but
with a peptidyl sequence in the region where the repulsive forces were introduced when
a mutation occurred. The peptidyl group has freer rotation than the rigid group of van-
comycin, and this will allow for the increase of the distance between receptor and peptide,
diminishing the effect of the repulsion when binding occurs. The receptor shows better com-
plementarity to the sequences and, so, the highest affinity was observed for VD1 (104 M−1),
represented in Figure 27.
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Figure 27. Structure of the peptidyl vancomycin derivative receptor, VD1 [161].

In more recent studies, with other receptors, smaller libraries are being utilized, taking
advantage of information obtained from previous studies to focus the design of new
receptors towards the properties that are needed [162].

In a study by Schmuck and Heil, with the tetrapeptide N-Ac-D-Glu-L-Lys-D-Ala-D-
Ala-OH—EKAA—in mind as a target (a bigger fragment of the peptide recognized by
vancomycin), a small library of water-soluble receptors was created, with 512 members.
They used a similar strategy as the one used for VD1, synthesizing these receptors with
a peptidyl chain, with three variable residues, adding the guanidiniocarbonyl pyrrole
binding motif (GCP), which was previously shown to bind to the C-terminal of peptides
(as mentioned in Section 2.3, relative to the binding of single amino acids) [117]. The GCP
binding motif shows similarities with vancomycin in the types of interactions established
with the carbonyl group of this sequence with several H-bonds stabilizing both complexes.
In the GCP-peptide complex there is the additional ionic bond previously mentioned.

The residues of the peptidyl group varied between Lys, Tyr, Ser, Glu, Phe, Val, Leu,
and Trp, being expected that some of these can form more ionic interactions with the
analyte and further stabilize the resulting complex. Due to the pyrrole moiety it was
possible to monitor the binding of the target peptides with the receptors from the variations
in the absorption and fluorescence spectra of the receptors. It was found that the receptor
with the sequence Lys-Lys-Phe, GCP-KKF (Figure 28), was the one which presented higher
affinity towards both EKAA and the opposite sequence, AAKE, but with markedly higher
affinity towards the peptide with Ala at the C-terminal (Ka = 1.71× 104 M−1, 4 times higher
than that for AAKE), indicating the importance of the C-terminal in the binding of the
peptide. Furthermore, the lysine residue also takes part in the binding with the C-terminal,
stabilizing the binding to the tetrapeptide further [163].
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The receptor which showed highest affinity towards EKAA was also tested for its affin-
ity towards other tetrapeptides, with variable residues, originating a library of ~300 target
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tetrapeptides, including those with D-Ala and D-Lac in the C-terminal (the first similar to
the native sequence of Gram positive bacteria peptidoglycan peptidyl chain and respective
mutated sequence, related to vancomycin resistance). The GCP-KKF receptor showed
an even higher affinity towards Ac-D-Glu-D-Glu-D-Glu-D-Glu-OH (K = 2.65 × 104 M−1)
and a very accentuated stereoselectivity for D-Ala in D-Glu-D-Glu-D/L-Ala-D-Glu-OH
peptide (almost 4× higher than for L-Ala, Ka (L stereoisomer) = 1.40 × 103 M−1 and
Ka (D stereoisomer) = 4.50 × 103 M−1) [164].

This shows that focusing on libraries and taking inspiration on known and well-
studied host-guest complexes helps to understand the bonds created and how to further
stabilize other peptide-receptor complexes [6,163,164].

Molecular Tweezers

Molecular tweezer and clips constitute another example of small supramolecular
receptors that have been widely explored for the recognition of peptides. These com-
pounds offer an (often electron-rich aromatic) pocket-like binding site, which is usually
decorated with functional groups that may provide additional sites of interaction and
water-solubility [165–167].

The most popular molecular tweezers with applications in the recognition of amino
acids and peptides are probably those developed by the Klärner group, which bind pref-
erentially basic amino acid lysine and arginine, as mentioned in Section 3.2. [167]. Some
of these compounds show a tendency to form self-assembled dimers, a process that may
compete with the complexation of selected targets and lead to concentration dependent
apparent binding constants [168]. However, anionic tweezers such as the ones shown is
Figure 15 (see Section 3.2) are fluorescent, allowing the monitorization of the complexation
process and determination of the binding constants at low concentrations [168]. Besides
the amino acids tested, a small library of bioactive peptides with basic residues was also
investigated, with importance and applications in several fields [167]. The results showed
that the stability of the complexes depends on the anionic groups decorating the receptor
and increases according to the following trend: O-methylenecarboxylate < phosphonate
< sulfate < phosphate. Due to their electron-rich cavities and anionic functional groups
this type of receptor fails to bind peptides lacking basic amino acids, showing, in the other
hand, high affinity (µM range) for peptides bearing arginine and/or lysine residues, being
the last generally more stable probably due to charge delocalization in the guanidinium
groups. The highest affinities were reported for the peptides comprising several adjacent
lysine residues at the N-terminal which provide more sites to form ionic interactions while
minimizing the repulsion of the C-terminal [25].

In general, the complexes seem to be slightly more stable in water than in the methanol,
demonstrating the important role of the hydrophobic effect that, nevertheless, is coun-
terbalanced by the increasing strength of the ionic interactions in the organic solvent.
Noteworthy, although the binding constant present modest variation upon changing from
aqueous to organic media, NMR studies clearly showed that the type of complexes can
be dramatically different depending on the solvent: in water the formation of inclusion
complexes predominate while methanol favors external complexes [168]. However, it
should be stressed that this behavior cannot be generalized and depends on the nature of
the anionic groups.

The phosphonate, phosphate and sulfate containing molecular tweezers all complexed
peptides with at least one L-Lys residue, while the carboxylate containing tweezer had
rather low affinities or did not bind at all to the peptides studied, similarly to their behavior
in the binding of the amino acids.

The phosphate molecular tweezer, MPT, has been of great interest, due to its high
affinity and specificity towards the positive residues of peptides. Early on, they have been
tested as a possible pharmacological agent [25,169–171] and showed positive therapeutic
effects in tests with animal models of several diseases, without significant cytotoxicity—
they bind to amyloidogenic lysine and arginine-rich proteins (e.g., α-synuclein), inhibiting
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their aggregation [25]; MPT also has shown the ability to disrupt and distort viral envelopes
(e.g., Zika, Ebola [170], HIV [169,170]), due to their high levels of sphingomyelin and
cholesterol. The carboxylate molecular tweezer, MCT, also shows to inhibit viral activity
and disrupt the viral envelope, despite not binding strongly with cationic residues—it was
hypothesized, in a 2020 study [171], that the MCT and MPT tweezers are able to interact
at virus-like lipid rafts, forming inclusion complexes with sphingomyelin, and disrupt
them at the interface with the rest of the membrane, by increasing the already high surface
tension of these envelopes.

Other studies explored the importance of the linker in these tweezer receptors, show-
ing again that it is necessary to have some rigidity in the linker between the “arms of the
tweezer” and a certain angle and distance between the arms to be able to encase the peptide
between them [172–174].

4.3. Self-Assembled Coordination Cages

Metal organic capsules (or self-assembled coordination cages) constructed from or-
ganic ligands and metal ions often display well defined binding pockets, suitable to
accommodate complementary guest molecules in their interior. These have been widely
explored as receptors for a variety of molecular targets [175–177]. The positively charged
Pd6L4 coordination cage (Figure 29) reported by Fujita was shown to bind complementary
oligopeptides with high affinity and impressive sequence selectivity [178,179]. The Pd6L4
binding pocket was found to be large enough to accommodate up to three amino acid
residues in its interior. By analyzing tripeptides with different sequences strong binding
was observed for the Ac-Trp-Trp-Ala-NH2 sequence (K > 106 M−1) while very similar
sequences, such as Ac- Trp-Ala-Trp-NH2, Ac-Ala-Trp-Trp-NH2, Ac-Trp-Trp-Gly-NH2, Ac-
Trp-Tyr-Ala-NH2 showed much lower affinity (affinities of the first two sequences can be
seen in Table 2) [179]. The results suggest that the cooperative interactions between the two
indole rings and the Ala methyl group with the cage and as well intramolecular interactions
between the residues (such as π–π and CH-π) may impart a decisive contribution to the
thermodynamic driving force. This seems to put in evidence the potential advantages of
using receptors with cavities large enough to accommodate more than one residues in its
interior as potential strategies to reach exquisite selectivity [179].
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More recently, Nitschke and co-workers reported a large Fe8L6 cubic coordination
cage assembled from Zn-porphyrin based ligands and iron(II) metal ions, FeZnP, able to
encapsulate guest molecule containing imidazole functional groups that were anticipated
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to interact with the Zn-porphyrin capsule walls [180]. After demonstrating the affinity of
the capsule for this type of guests, the authors investigated the ability of the nanocontainer
to bind peptides with histidine residues in a 1:1 acetonitrile:water solvent system. Clavanin
A, a peptide antibiotic, containing four histidines among its 23 amino acids was found to
bind strongly to the capsule with a dissociation constant of 80 nM in a 1:2 binding manner
(Table 2). A less hydrophobic peptide containing only three histidines was found to bind
100-fold more weakly, while peptides lacking histidine residues did not interact at all.

Table 2. Binding constants (Ka) for the formation of host-guest complexes between small peptides and synthetic
supramolecular receptors.

Receptor Guest Ka (M−1) Conditions Method

SC4

Arg-Arg 7.00 × 103

90% water/10% Deuterium oxide
Phosphate Buffer 10 mM pH 8, 20 ◦C

1H-NMR
[22]

Arg-Lys 3.90 × 103

Arg-Arg-Arg 3.30 × 104

Lys-Lys 3.40 × 103

Lys-Arg 3.70 × 103

Lys-Lys-Lys 3.30 × 104

Trp-Lys-Arg-Thr-Leu-
Arg-Arg-Leu 1.20 × 106 HEPES buffer 10 mM pH 7, 20 ◦C Fluorescence

Spectroscopy
Protamine 1.20 × 109 Phosphate buffer 10 mM pH, 25 ◦C [127]

Cyt C binding site 1 1.20 × 103 20 mM Potassium
dihydrogenophosphate, 50 mM NaCl, 1

mM sodium ascorbate, 10% D2O,
pH 6, 30 ◦C

[131]
Cyt C binding site 2 6.30 × 102

(Arg)7 7.00 × 107

HEPES buffer 10 mM pH 7, 25 ◦C

Fluorescence
Spectroscopy

[121]
SC4-C5

(Arg)7 2.90 × 107

Trp-Lys-Arg-Thr-Leu-
Arg-Arg-Leu 2.80 × 106

C4Pyr Glu-Glu 1.7 × 103 Water pH 6 [52]

CP5
Ala-Arg-Ala 4.20 × 103

Deuterium oxide pD 7.2, 25 ◦C 1H-NMR [26]
Ala-Lys-Ala 7.50 × 102

CB7

Phe-Gly 3.00 × 107

Water, 25 ◦C

ITC

[122]

Gly-Phe 1.30 × 103

Tyr-Gly 3.60 × 106

Gly-Tyr 2.00 × 102

Trp-Gly 5.60 × 105

Gly-Trp 2.80 × 102

Phe-Gly-Gly 2.80 × 106
Sodium Phosphate 10 mM pH 7, 27 ◦C [124]

Insulin 1.50 × 106

RSL-Lys34Me2 1.00 × 103

20 mM Potassium Phosphate, 50 mM
Sodium Chloride,1.2 mM

α-methyl-L-fucoside, 90%H2O/10%D2O,
pH 6, 30 ◦C

1H15N HSQC [150]

CB8

Trp-Gly-Gly 1.30 × 105

Sodium Phosphate 10 mM pH 7,
co-binding with MV, 27 ◦C

ITC
[37]Gly-Trp-Gly 2.10 × 104

Gly-Gly-Trp 3.1 × 103

Gly-Gly-Trp-Gly-Gly 2.50 × 104
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Table 2. Cont.

Receptor Guest Ka (M−1) Conditions Method

Phe-Gly-Gly a 1.50 × 1011 Sodium Phosphate 10 mM pH 7,
CB8-peptide2 complex, 27 ◦C [108]

Trp-Gly-Gly a 3.60 × 109

Tyr-Leu-Ala 1.39 × 108

Sodium Phosphate 10 mM pH 7, 27 ◦C

[37]
Tyr-Lys-Ala 5.00 × 106

Tyr-Phe-Ala 3.44 × 106

Tyr-Tyr-Ala 1.43 × 106

Met-Phe-Ala 7.14 × 106

[123]

Met-Tyr-Ala 4.00 × 106

Met-Leu-Ala 1.39 × 106

Met-Lys-Ala 3.85 × 105

Met-Tyr-Gly-Gly-Tyr 6.25 × 106

Met-Leu-Gly-Gly-Tyr 3.33 × 106

Leu-Met-Gly-Gly-Tyr 6.25 × 106

Met-Lys-Gly-Gly-Tyr 2.38 × 106

Gly2-Trp-Gly2 2.20 × 104

Sodium Phosphate 10 mM pH 7,
co-binding with peptide-MV

conjugates, 27 ◦C
[181](Gly2-Trp-Gly2)2 5.00 × 105

Asp2-(Gly2-Trp-
Gly2)3-Asp2

4.70 × 106

MPnT

Lys-Ala-Ala 1.20 × 103 Deuterium oxide, dihydrogenophosphate
25 mM pH 4.4

1H-NMR [24]

1.10 × 103
Deuterium oxide, Phosphate buffer 200

mM pH 7.6Lys-Lys-Leu-Val-Phe-
Phe

1.41 × 104

3.80 × 104

Deuterium oxide, Sodium
dihydrogenophosphate 25 mM pH 4.4

Lys-Thr-Thr-Lys 5.50 × 103

Lys-Thr-Thr-Lys-Ser 4.20 × 103

Gly-Arg-Gly-Gly 9.00 × 102

Arg-Gly-Asp 1.20 × 103

1.00 × 103 Deuterium oxide unbuffered

MPT

Lys-Ala-Ala 3.33 × 104

Phosphate buffer 200 mM pH 7.6

Fluorescence
Spectroscopy

[25]

Lys-Leu-Val-Phe-Phe 5.00 × 104

Lys-Lys-Leu-
Val-Phe-Phe 2.50 × 105

Lys-Lys-Leu-Val-Phe
-Phe-Ala-Lys 1.43 × 105

Lys-Lys-Lys-Lys 1 × 105

Arg-Gly-Asp 1.16 × 104

MST
Lys-Ala-Ala 3.30 × 103

Phosphate buffer 10 mM pH 7.6
Lys-Leu-Val-Phe-Phe 2.63 × 104

MCT Lys-Ala-Ala 30 Phosphate buffer 10 mM pH 7.2

PBI Ala-Trp a 3.72 × 109 Acetonitrile:Methanol (9:1) 2:1 host guest
complexes, 23 ◦C [153]
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Table 2. Cont.

Receptor Guest Ka (M−1) Conditions Method

CENMe3

Gly-Gly-Gly 2.10 × 102

Water, 25 ◦C [154]
Gly-Trp-Gly 2.15 × 103

Gly.Phe-Gly 1.7 × 103

Gly-Gly-Phe 2.15 × 102

α-CDx
Gly-Leu 2.63 × 102

Formic Acid 50%(v/v), 25 ◦C ITC [35]
Gly-Val 2.82 × 102

β-CDx

Tyr-Ile-Gly-Ser-Arg 2.24 × 102

Phosphate Buffer 0.01 M pH 7.0, 20 ◦C Fluorescence
Spectroscopy

[119]
Tyr-Gly-Gly-Phe-Leu 1.23 × 102

cyclic peptide
-Asp-Phe-D-Pro-Asp-

Phe-D-Pro-
2.20 × 102 Bicarbonate buffer 0.2 M pH 9, 25 ◦C

ITC

[151]

DCv1

H3 (1–21) b 2.11 × 105

Tris Buffer 20 mM, pH 7.4, 25 ◦C [159]PKP c 2.68 × 105

MBP d 3.00 × 104

VD1

N-Ac2-L-Lys-D-
Ala-D-Ala 1.02 × 105

Water [161]
N-Ac2-L-Lys-D-

Ala-D-Lac 3.19 × 104

GP3KKF (D-Glu)4 2.37 × 104 Bis Tris Buffer 1.5 mM pH 6.10

UV-Visible
Spectroscopy

[164]

Pd6L4

Ac-Trp-Trp-Ala-NH2 >1.00 × 106

Water, 20 ◦C [179]Ac-Trp-Ala-Trp-NH2 2.50 × 105

Ac-Ala-Trp-Trp-NH2 2.10 × 104

FeII
8L6

cage
Clavanin analogue e 1.11 × 105

Acetonitrile:water (1:1) [180]
Clavanin A a,f 1.25 × 107

a 1:2 host-guest stoichiometry. Overall binding constant in M−2. The overall binding constant corresponds to the product of the stepwise
binding constants for the 1:1 and 1:2 complexes, i.e., K11.K12. b Ala-Arg-Thr-Lys-Gln-Thr-Ala-Arg-Lys-Ser-Thr-Gly-Gly-Lys-Ala-Pro-
Arg-Lys-Gln-Leu-Ala. c Gly-Arg-Thr-Gly-Arg-Arg-Asn-Ser-Ile. d Ala-Pro-Arg-Thr-Pro-Gly-Gly-Arg-Arg. e Sequence of the analogue:
Ser-Ser-Trp-Gly-His-Val-Gly-Lys-Tyr-Val-His-Gly-Trp-Ser-His-Val-Ser. f Val-Phe-Gln-Phe-Leu-Gly-Lys-Ile-Ile-His-His-Val-Gly-Asn-Phe-
Val-His-Gly-Phe-Ser-His-Val-Phe.

5. Conclusions and Outlook

Despite the clear difficulty in the binding and recognition of the biological targets
here presented, supramolecular systems begin to approach affinities and selectivities
that are observable in nature, as is the case of protein–protein interactions, lock-and-key
complementarity and the highly specific antigen–antibody recognition. Furthermore, many
of the receptors explored here already possess the ability to directly modify or detect their
target analytes, despite the majority of them presenting simple, modular structures. This is
the case of p-sulfonatocalix[4]arene and cucurbit[n]urils, which can modulate the properties
of proteins, such as cytochrome c and Casp-8, respectively. Additionally, some of these
receptors present either an intrinsic colorimetric or fluorometric response in the presence of
the respective ligands, e.g., the tweezers MPT and MCT, making them especially promising
in sensing applications. Moreover, these characteristics are not the only ones that can
be explored, seeing as the receptors can also be integrated in more complex structures,
as synthetic binding pockets, with the addition of other groups for the creation of new
functionalities.
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The logical steps going forward are the continuous creation of new receptors, the
eventual conjugation of several of these molecules for the multivalent binding of one
complex analyte with several binding sights and smaller modifications and optimizations
of the preexisting receptors, to enhance their selectivity and affinity towards one particular
target ligand.
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