-

View metadata, citation and similar papers at core.ac.uk brought to you byﬁ CORE

provided by Kyoto University Research Information Repository

Bl
oo o e/,
&

Kyoto University Research Information Repository > KYOTO UNIVERSITY

Computer Program Synthesis From Computation Traces ({J [

Title 0o00o00000)

Author(s) | BIERMANN, A.W.

Citation gboboboOobgo (1973), 189: 89-100

Issue Date | 1973-10

URL http://hdl.handle.net/2433/107218

Right

Type Departmental Bulletin Paper

Textversion | publisher

Kyoto University

https://core.ac.uk/display/39237994?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ooooboooao
189 0 1973 0 89-100

COMPUTER PROGRAM SYNTHESIS FROM COMPUTATION TRACES

A.W. Biermann

presented at the
Symposium on

Fundamental Theory of Programming

October 9 to 11, 1972

Kyoto University
Kyoto, Japan

G

I. INTRODUCTLON

A computer programmer with an algorithm in mind always goes through
approximately the same process in obtaining an execution of the algorithm from
a machine. That is, he writes a program in some language, debugs it by whatever
means possible, and, at length, obtains a program which effectively executes
his algorithm. This paper will propose a new method for obtaining the desired
program and will show how that method can be implemented.

Specifically, we will propose that the programmer present the machine
with one or several examples of the desired computation and have the machine
synthesize the program from these examples. We know that if one human is to
describe a process to another, he will very likely give an example rather than
convey the idea with a series of general definitions and usages of those
definitions. Thus a person would probably teach another to do long division
by writing down several examples and working them out step-by-step with proper
explanation. He would probably have a great deal more difficulty in conveying
the idea if he restricted himself to X's and Y's, conditional statements,
branches, and so forth. &Even though the procedure is probably stored in each
human's mind in a very general form, the communication of the procedure from
one person to another is usually either partially or completely done using
examples. The learner uses his inductive abilities to synthesize the general
concept by observing the examples. This form of communication seems to be
very natural and easy for humans and perhaps should be employed when communi-
cating with machines as well.

A theory of inductive inference has begun to develop over the past several
years (6, 7, 8, 9, 10, 11, 15, 16, 19) leading one to wonder whether machines,
indeed, could conceivably construct their own programs from example computations.
In order for such program synthesis to become practical, it is necessary to

(1) develop a system through which the programmer can naturally construct
examples for transference to the machine and

(2) develop an algorithm which the machine can use to synthesize the
program from the example.

We will now consider each of these problems.

II. PROGRAMMER SYNTHESIS OF EXAMPLES

Many hardware and software methods could be used to enable a person to
synthesize example computations. The example might be worked and typed up on
cards in the manner that programs are often written. Such an example compu-
tation might look like this: read the number to be divided, 230; read the
divisor, 11; shift the 2 into register C; contents of register C is too small:
shift the 3 into register C to get 23; put a zero in register D; subtract 11
from C to get 12 and increment D; subtract 11 from C to get 1 and increment
D; contents of register C is too small: shift the O into register C to get
10; etc. This approach seems too cumbersome so we might propose a machine
similar to a desk calculator with one or two keys corresponding to each opera-
tion. Thus to do the example, the programmer might simply push a sequence
of keys: RA,23O,RB,11 C+C&L(A), B>C: C+C&L(A) ,D«D&" 0", C+C-B,D«D+1,C«C-B, D«D+1-——
etc. All of the registers would be visible to the user, and he would be able
to see the complete computation progress as he sequentially touches the keys.

g
The best implementation would be a general purpose computer with a display
unit and advanced input devices such as a light pen or touch sensitive screen.
Here the user would be able to manipulate the data at least as easily as with-
paper and pencil, and would, hopefully, be able to go through an example with
some facility.

The result of such a sequence of manipulations would be a computation
trace, a complete record of the actions required to do the.particular calcu-
lation. A computation trace consists of two types of elements, operation
commands and conditions, and these concepts are illustrated in Figure 1.

Condition Command Results

A B C D

RA 230 - - -

RB 230 11 - -

C « C&L(A) 30 11 2 -

B >C C + C&L(A) 0 11 23 -
D <+ D&" Q" 0 11 23 0
C«~C-38 0 11 12 0
D«D+ 1 0 11 12 1
C+C-B 0 11 1

D«D+ 1 0 11 2

B >C C « C&L(A) - 11 10 2
D « D&"0Q" - 11 10 20

Figure 1. A computation trace.

After one or several such traces are produced, the machine must produce a
general program which is capable of doing all such computations. In this
example, the program shown in Figure 2 might be constructed. We will consider
in the next section exactly how such a program can be constructed from compu-
tation traces.

ITI. PROGRAM SYNTHESIS

We will model a computation trace with a string of condition-command
pairs with the understanding that the first element will often be the trivial
condition: no conditional test at all., Thus the problem is to find for a
string of condition-command pairs, a program which is compatible with the
string (See Figure 3). That is, the string must correspond to some path through
the program. If a set of traces are given, each trace must correspond to a
path through the program. There may be a large number of compatible programs
for a given set of traces, and the strategy will be to find the simplest possible
such program. Previous experience (4) with this type of synthesis indicates
that only a few traces are usually needed in order to produce the desired
program. ' -

C+C&L(A)

B>C:C«C&L(A)

P

D<D+1 D«D&"0"

Figure 2. A synthesized program.

-3 -

Condition Command
A A
B B
A R
B A
A R
C A
B B
C Z
c Halt

Figure 3. The problem: Find the program at right
from the trace on the left.

An algorithm for solving this problem was given in (4) but that method
was found to be inefficient for synthesizing complex flow diagrams with five
or more nodes. In that paper, Turing machine controllers with three states
could be constructed in several seconds of computer time, controllers with four
states could be constructed in several minutes, and larger controllers often
required even more time. During the past year, two methods have been under
study for increasing the power and speed of the algorithm. The first technique
involves the parallel usage of multiple traces and will be described here.
The second technique involves a method for efficiently pruning the search
tree, and this will be described in a later paper. Both techniques are capable
of speeding up the synthesis process by orders of magnitude as shown by some
recent experiments.

We will therefore describe a simple algorithm for synthesis of program
flow diagrams from multiple traces which processes the traces in parallel.
Consistent with our assertions above, we will communicate the algorithm by giving
an example and avoid introducing innumerable definitions and abstract notations.
The complete formalism for description of this algorithm does exist but it
is not clear that the reader would like to see it.

The example is worked out in Figure 4 where the problem is to find the
simplest possible flow diagram which is consistent with the seven given traces.
Each trace consists of a string of six condition-operation pairs ending with
the operation H, halt. A termination pair CH, for example, indicates that
the program in its current state under condition C yields no operation or
transition to another state. The problem is to discover the sequence of states
traversed by each trace starting with state 1 and ending with the proper halting
condition. Thus in Figure 4(a) the seven traces are shown with a 1 preceding.
the first transition of each trace indicating that each computation begins in
state 1.

Studying Figure 4(a), we see that when the program is in state 1, con-
dition A is followed by operation Z and condition B is followed by operation B.

4

R

The problem is to guess correctly which state the program will be in after
each transition. We will always choose the first condition by some ordering
technique (in this case alphabetical order), and thus we will attempt to
guess what the state will be after transition AZ from state 1. We will al-
ways guess the lowest numbered state which has not been previously found to
be in contradiction. Here we guess the next state will be 1 which means the
program will have a transition 1 AZ 1 as shown in Figure 4(b). The parenthe-
sized state in trace 2 indicates that it is in this state due to a transition
constructed at an earlier time.

Now each trace is in state 1 with a B condition and a B operation indi-
cated. If we again make the simplest possible guess that the next state is
1, we will have a contradiction in trace 1. Here it is apparent that if BB
yields state 1, then state 1 under condition B must yield operation A which
is in contradiction with the 1 BB 1 transition. So state 2 must be the next
state as shown in Figure 4{(c).

The reader may wish to follow each of the succeeding parts of Figure
4 and see what contradictions arise and why the resulting transitions are
constructed. Before the algorithm is started, the maximum number k of states
to be allowed is set. If at some point in the search, all of the possible
state choices 1, 2, 3, ..., k are found to yield contradictions, the search
is "backed up", a previous decision is changed, and the search is continued.
The resulting program flow diagram is shown in Figure 3.

This algorithm and other similar algorithms have been programmed and
tested extensively. These tests indicate that small but practical programs
can be constructed by this technique with a few seconds of computer time on
the basis of a small number of traces (usually only one). A simple sorting
program (4), a program for finding the prime factors of an integer (4), and
a program for multiplying n by n matrices (3) required 3, 8, and 10 seconds,
respectively, to comstruct. Each was constructed on the basis of one short
example computation. The technique for processing multiple traces in par-
allel is designed to make it possible to construct much more difficult programs
by using information from many sources simultaneously. Contradictions not
found with one trace will hopefully be discovered immediately from other traces
without the necessity for executing long searches. For example, when the
problem worked in Figure 4 was repeated using one trace of length 25, it took
42 steps to find the solution rather than the 7 steps shown here. The addi-
tional calculation was required because of wrong guesses made and the later
backing up which resulted. '

IV, DISCUSSION

This paper describes a method for comstructing computer programs from
computation traces. It is clear from this work that all phases of the method
could be automated and that computer programs can be automatically generated.
It is not clear whether such an implementation would actually be more desir-
able for constructing programs than other methods currently in use.

Two critical questions remain to be answered:

(1) 1Is it true, as we have suggested, that it is easier to work through
one or several example computations than it is to write the program?
We suspect that the answer to this question depends greatly on the
program and on the facilities available for implementing the example.

- 5 -

39

Trace Trace Tface Trace Trace Trace Trace Transitions
1 2 3 4 5 - 6 7
1 1 1 1 1 1 1
B B AZ AZ BB BB AZ B B
B A AZ B B BA BA B B AR
AR B B AR CA AR AR B A
AR Cz B A BB CA AR AR
CA B B AR Cz BB c z AR
CH DH B H CH DH CH B H
(a)
1 1 1 1 1 1 1
B B AZ AZ B B B B AZ B B 1A7 1
1 1 1
B A AZ BB B A B A B B AR
(1)
AR B B AR C A AR AR B A
AR cz B A B B cA AR AR
C A B B AR C Z B B o/ AR
CH D H B H CH DH cH B H
(b)
1 1 1 1 1 1 1
B B AZ AZ BB BB AZ B B 1AZ1
2 1 1 2 2 1 2 1 BB 2
B A AZ B B B A B A BB AR
(1) 2 - 2
AR BB AR CA AR AR B A
2
AR Cc 7z B A BB CA AR AR
CA BB AR C Z BB C 7z AR
CH D H B H CH DH CH B H
(c)
Figure 4

- 6 -

Gy

Trace Trace Trace Trace Trace Trace Trace Transitions

1 2 3 4 5. 6 7
1 1 1 1 1 1 1
B B Az AZ B B B B AZ B B 14z 1
2 1 1 2 2 1 2 1BB 2
B A AZ B B B A B A BB AR 2 AR 2
(1) 2 2 2
AR B B AR CA AR AR B A
2 2 2
AR C z B A BB CA AR AR
(2)
C A B B AR C z B B C 7z AR
CH DH B H CH DH CH B H
(@
1 1 1 1 1 1 1
B B AZ AZ B B BB ~ AZ B B 1AZ 1
2 1 1 2 2 1 2 1BB 2
B A AZ BB - BA B A B B AR 2 AR 2
3 (1) 2 3 3 2 2 2 BA 3
AR B B AR C A AR AR B A
2 2 2 3
AR C Z B A B B C A AR AR
3 2)
CA B B AR C z B B Cz AR
CH D H B H CH DH cH B H
(e)
1 1 1 1 1 1 1
B B Az A7 B B BB Az B B 1AZ 1
2 1 1 2 2 1 2 1 BB 2
B A Az B B B A B A B B AR 2 AR 2
3 &) 2 3 3 2 2 2 BA 3
AR B B AR C A AR AR B A 2021
2 2 2 3
AR C Z B A B B C A AR AR
1 3 2
C A B B AR CZ BB Cc z AR
2) o1
CH DH B H CH DH CH B H
(£)

Figure 4 (cont'd)
-7 -

Trace

2

Trace
3

Trace
[

CH

(g)

Trece Trace Trace
5 6 7
1 1 1

B B AZ BB
2 1 2
B A B B AR
3 2 2
AR AR B A
3 2 3
C A AR AR

2) 3
BB C2Z AR
1 3
DH CH B H
1 1 1
B B AZ BB
2 1 2
B A BB AR
3 2 2
AR AR B A
3 2 3
C Z AR AR
1 (2) 3
B B C Z AR
(2) 1 (3)
DH CH B H
Figure 4 (cont'd)

8

Transitions

G N N DD e

W W NN
(@] [N
> % NP TN

AZ
BB
AR
BA
cZ
AR

Wk W NN

W W

o

o=

TRV

(2) Can a person produce a debugged example any more easily than he
can produce a debugged program? Again, the answer is not obvious.

Our current research is aimed at increasing the power of the synthesis
technique and discovering its properties. Furthermore, we are designing what
we call an autoprogramming system which will include the features discussed
above plus subroutine and macroprocessing facilities. We believe that a
proper combination of these concepts may yield a useful programming system.

ACKNOWLEDGMENT

I am greatly indebted to Professor J.A. Feldman for many invaluable
discussions during the period of this research.

The research reported here was done partly in the Computer Science De-
partment, Stanford University and was supported by the Advanced Research Projects
Agency of the Office of the Secretary of Defense (SD~183) and the National
Science Foundation Grant No. GJ~776. Part of the work was done in the Computer
and Information Science Department at The Ohio State University and was support-
ed by Grant Numbers GN-534.1 and GJ-34739X from the National Science Founda-
tion.

(Wed]
)

REFERENCES

10.

11.

J12.

13.

14,

Amarel, S. On the automatic formation of a computer program which
represents a theory. Self Organizing Systems - 1962 (Yovits, Jacobi
and Goldstein, eds.). Spartan Books, New York, 1962.

Amarel, S. Representations and modelling in problems of program
formation. Machine Intelligence 6 (Meltzer and Michie, eds.). Amer-
ican Elsevier Publishing Company, Inc., New York, 1971.

Biermann, A.W. An Approach to the Design of Trainable Machines, Report
to the National Science Foundation, Computer and Information Science
Department, Chio -State University, June 1972, 6.35 - 6.39.

Biermann, A.W. On the Inference of Turing Machines, Artificial Intelli~-
gence 3 (1972), 181-198.

Biermann, A.W. and Feldman, J.A. On the synthesis of finite-state machines
from samples of their behavior, IEEE Trans. Electron. Computers, C-21,
No. 6 (1972).

Biermann, A.W. and Feldman, J.A. A survey of results in grammatical
inference. Frontiers in Pattern Recognitions (Watanabe, M.S., ed.)
Academic Press, New York 1972.

. Enomoto, H., Tomita, E., Doshita, S. Synthesis of Automata that Recognize

Given Strings and Characterization of Automata by Representative Sets
of Strings, First USA-Japan Computer Conference Proceedings, Tokyo, Japan,
1972, ' :

Feldman, J.A. First thoughts on grammatical inference. A.I. Memo No. 55,
Computer Science Department, Stanford University, August 1967.

Feldman, J.A. Some decidability results on grammatical inference and
complexity, Information and Control, 1972,

Feldman, J.A., Gips, J., Horning, J.J., and Reder, S. Grammatical
Complexity and Inference. Technical Report No., CS125, Computer Science
Department, Stanford University, June 1969. ‘

Feldman, J.A. and Shields, P.C. Total complexity and the inference of
best programs. A.I. Memo No. AIM-159, Computer Science Department,
Stanford University, April 1972.

Gill, A. Realization of input—output relations by sequential machines.
J.ACM 13, No. 1 (1966), 33-42.

Ginsburg, S. Synthesis of minimal-state machines. IRE Trans. Electron.
Commputers EC8 (1959), 441-449.

Ginsburg, S. An Introduction to Mathematical Machine Theory. Addison-
Wesley, Reading, Mass., 1962.

109

15.

16.

20.

Gold, M. Languége identification in the limit. Irnfoimation and Control
10 (1967), 447-47¢.

Horring, J.J. A study of grammatical infcrence, Technical Repcrt No. CS
139, Computer Science Department, Stanford University, August 1969.

Manna, Z. and Waldinger, R.F. Toward automatic program synthesis.
Comm. Ass. Computing Machinery 14, No. 3 (1971), 151-165,

Minsky, M.L. Computation: Finite and Infinite Machines. Prentice Hall,
Englewood Cliffs, N.J., 1967. '

Solomonoff, R. A formal theory of inductive inference. Information

and Control 7 (1964), 1-22; 224-254,

Waldinger, R.J. and Lee, R.C.T. PROW: A Step Toward Automatic Program

‘Writing. Proceedings of the International Joint Conference on Artificial

Intelligence, Washington, D.C., 1969.

