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Notes on the topology of analytic sets

By. S. Morita

§ 0. Introduction.

In this note, we will collect some results on the topology of
analytic sets. First, in § 1 we will construct hypersurfaces
Ve ettt
for all n 2 4, 2n 1is not of the form 22 -2 for any a, having
the following properties.
(1) v" has exactly one Brieskorn type isolated singularity.

(ii) v? is a compact topological manifold without boundary.

(iii) v? admits no differentiable structure.

The cénstruction is due to Kuiper [10],’whpfhas constructed
this kind of hypersurfaces for the case n = 4. 1Indeed this was
my starting point.

The proof of the property (iii) depends on the Brumfiel's
work on 7T, (PL/0) =rﬂ *? bthe group of oriented differentiable
structures on the spheres [3], and on Brumfigl;-Madsén, Milgram's
recent work [5].

In § 2, we will consider the problem:

How to calculate various numerical invariants of compact
complex analytic variety, such as various characteristic numbers (if-
they exist), the Euler characteristic énd the signature?

This problem has been solved by Kato [9] for the pfojective

hypersurfaces with isolated singularity and by Hirzebruch [7] for
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the signature of (some kind of) compact normal complex variety of
complex dimension two.

Using Kato's work, we will calculate numerical invariants of
the hypersurfaces constructed in § 1.

In § 3, we will remark some elementary properties of recently
introduced characteristic homology classes for analytic varieties.

The author would like to express his hearty thanks to Professor
M. Kato for introduciﬁg me to this area of subjects with many
stimulating lectures and discussions. He also would like to thank

Professor G. Brumfiel for kind letters.

§ 1. Some hypersurfaces in €Pn+1.
We define a hypersurface v, A , a)C €Pn+l {(n 2 4) by
the following homogeneous polynomial of degree d
fg,iﬁ(zﬁ’zl’ o ’Zn-%-l) N zz zi: +_z:lz:+il: oo 4.“ Z:OZZSTB?‘- i.ZZ:'O ’)\izid
where a, is an integer 2 2," }d;Zai'T for all i =0, 1, ***, n

n
and T A. # 0.
. i
i=0

Then it is easy to verify that if we choose A\ = (,AO, A1
N -n) carefully, then Vn(d, A , a) has exactly one Brieskorn
type singularity defined by the following polynomial

ag a; a
gy, (zg» "t 52 ) = zg tz otz

= 0

n

(ef. [10]).

We fix A (which of course depends on n, d and a) so
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that the condition (i) is satisfied and write Vn(d, a) for
Vi(d, A , a).

Let [ (&) be the graph of a (in the sense of Milnor).
Then by Brieskorn, Vn(d, a) 1is a topological maﬁifold if and
only if [T (a) satisfies some condition, which we may call the
"Brieskorn condition" [2], [8].

Henceforth we assume that [~ (a) satisfies this condition.
Thus Vn(d, a8) 1is a compact topdlogical manifold without boundary,
Moreover Vn(d, a) —{XO} has a‘strugture oﬁ complex.analytic mani-
fold, where Xg = [0, O, -, 0, 1] is the singular point of
vi(d, a).

To étudy the property (iii), we consider the following generél .
problem.

Problem. Let Man‘(n 2 2) be a compact topological mapifoid'
without boundary such that Man'-{point} admits a differentiable
strucfure. Then when M admits a global differentiable structure.
(which may not coincide the original onern' M - {point})?

A partial answer to thié probiem cén be obtained from the
following theorem of Brumfiel.

Theorem (Brumfiel [3]). The Kervaire-Milnor exact sequence

0 — [, ) &—?r’4n_l — cok J — 0

splits and a canonical splitting f can be obtained as fbllows.
Let Z;4n-1€§ an-1~ be a homotopy sphere. Then by a result in
the spin cobordism ring ﬂ:pm’ ,}_:Zm-l bounds-a spin’ manifold

N4n, ‘
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-1
aNlm - Zlm )
Moreover, by a slightly extended version of the Hattori-Stong
theorem, we may assume that all the decomposable Pontrjagin numbers

of N4n vanish. Then

n-1, _ 1 . 4n
f(Z;4 ) = g sien (N mod # rlm-l(an')
where sign(Nan) is the signature of NZm and I rwan_l(a7t) is
the order of the cyclic group [“Ln_l(a7t).

From this theorem, we conclude the following proposition (see

also [4]).

Proposition 1-1. Let M4n (n 2 2) be a compact spin topological
manifold with a differentiable structure on M-{point}. Let 21}4
be the homotopy sphere in the neighborhood of the "point". Then

£(Z,) = -2 2@y (A - AGD)
mod # [7,. ;(370),

where M is a closed spin manifold whose decomposable Poptrjagin
numbers are equal to those of M and a#QM) is the Borel-Hirzebruch's
a4igenus of M.

As corollaries, we obtain

Corollary 1-2. Let M be as above. If {CZ:M) is ﬁot diffeo-

SAn-l, then M admits no differen-

morphic to the standard sphere
tiable structure.
Corollary 1-3. Let Mlm (n =2 or 3) be a closed spin

topological manifold which admits a differentiable structure on

M-{ point}‘ Then M admits a differentiable structure if and only if

Ao e a M

-4 -
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where a_ = 1 if n =0 (mod 2) and a = 2 if n=1 (mod 2). .

No& we go back to the original problem.

We constructed hypersurfaces

v, a) C &Pn+1
such that Vn(d, a) satisfies the conditioné (i) and (ii). Thus
v?(d, a) 1is a closed topological manifold. Let Z:V be the
homotopy sphere in-the neighborhooﬂ of the singular point Xqe
Then we have

Theorem 1-4.

(i) If n=d =0 (mod 2) with n 2 4, then V'(d, a) admits
a differentiable structure if and only if Z:V is difféomorphic
to the natural sphere.

(ii) If n=1 (mod 2) and 2n is not of the form 2 -2 for
any a, then Vn(d, a)  admits a differentiable structufe if and
only if Z:V is diffeomorphic to the natural sphefe.,

Proof. It is easy to verify that Vn(d, a) 1is a spin mani- .
fold if and only if n =d (mod'Zj. Then (i) fpliows from dorollary
1-2. (ii) follows from theﬂrecent result of Brumfiel, Médsen and

Milgram [5], that the Kervaire manifold K4n+

2 (4n+2 is not of the
form 2%-2 for any a) is not topologically bordant to smooth

manifold. | Q. E. D.

§ 2. Numerical invariants of analytic varieties.

In this section, we will calculate various numerical invariants
of Vn(d, a) constructed in § 1. The calculation depends’on the

Kato's topological resolution theory [9].

-5 -



1 be the Kato's topological resolution of

~ +
Let V'(d, a)C ¢p"
Vn(d, a). Roughly speaking, it can be obtained from Vn(d, a) by

deleting a closed small neighborhood of the singular point Xq and

"pasting'" (in GPn+1) the non-singular affine variety Va defined
by
: a a a
8, = zoo+zll+"'+znn = 1.

1

Vn(d, a) 1is an almost compiex submanifold of CPn+ and the

Poincaré dual of the fundamental class [Vn] is do, where

oe rlcp™!

; 2) 1s the standard generator.

Therefore various numerical invariants of 'Vn(d, a) such as
characteristic number, the Euler characteristic and the signature are
calculable and are equal to those of the non-singular hypersurface
of degree d, which we will write Vn(d).

Since Va is parallelizable, we have the following result
- essentially due to Kato.

Proposition 2-1.

(i) All the Stiefel-Whitney classes except Wzn of Vp(d, a)
pulled back to CPn+l by the Gysin homomorphism are equal to
those of Vn(d).

In particular all the decomposable Stiefel-Whitney numbers of

Vn(d, a) are equal to those of Vn(d).

(i1) The Euler characteristic is given by

) n
X"@, 8) = 3 Q-0+ 2y -1+ (D™ @y - 1)
i=0

Now assume n 1is even, say n = 2k. Then
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(iii) All the Pontrjagin classes except Pk of Vn(d, a) pulled
back t:o'ﬂ)PrH-1 by the Gysin  homomorphism are equal to th;se of
v?(d). In particular, all the decomposable Pontrjagin numbers of
v7(d, a) are equal to those of Vn(d).

(iv) The signature of Vn(d, a) 1is given by
sign Vn(d,_a) = sign Vn(d) - sign Va'
(v) The Pontrjagin élass Pk(VQ(d, a)) 1is determined by (iii)
and the requirement that sign Vn(d, 8) 1is equal to the L-genus of

vid, a).

§ 3. Some remarks on the characteristic homology classes for analytic

variety.

In this section, we will stﬁdy the recently inﬁroduced charac-
teristic homology classes for analytic varieties. But we can say
something only for the varieties whose singularities are isolated.

Now we recall the definition of the Stiefel-Sullivan homology
classes for compact real analytic variety [11].

Definition 3-1. A triangulated compact pair (K, L) is said
to be a relative Euler (resp. mod 2 Euler) spacé if the Euler charac-
teristic (resp. mod 2 Euler characteristic) of the link of any vertex
of K-L is equal to zero. In case L =@, we say that K is an
Euler (resp. mod 2 Euler) space. /

This definition was ﬁotivated by the following theorem.

Theorem (Sullivan {11]). Let V be a compact complex (real)

analytic variety and fix a Lojasiewicz triangulation. Then V 1is
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i

an Euler (mod 2 Euler) space.

Now the Stiefel-Sullivan homology classes for relative mod 2
Euler space (K, L) are defined as follows. Let S3K be the
first barycentric subdivision of K. Let cie Ci(SdK’ SqL; 2/2)

be the chain defined by

c; = >, ot
6 -
1ESdK S 4L

Then it can be shown that c is actually a cycle. We define the
i-th Stiefel-Sullivan class Si(K’ LE Hi(K’ L; Z/2) by
Si(K’ L) = [ci].

Now let M" be a closed smooth manifold and fix abcl-triangula-
tion. Then clearly M is a mod 2 Eﬁler space. Thus we have the
Stiefel-Sullivan class si(M)EE Hi(M; Z/2). But this is nothing but
the Poincaré dual of the Stiefel Whitney class wn_i(M)eg Hn-i(M; 272).
This fact was first observed by Whitney and recently proved by Cheeger.

Now assume M' 1is a compact complex manifold of complex dimen~
sion n. Then there is the '"Chern homology class" |

?:‘ie HZi(M; z)

which is the Poincaré dual of the ordinary Chern class cﬁ_ie

Hzn-Zl(M;\Z). Observing the following facts
(i) 521+1(M) =0 for all i,
(ii) SZi(M) = Ci(M) mod 2,
we consider the following question :
Question 3-2. Does this situation hold also for compact complex

. . . n . .
variety? i.e. if V  is a compact complex variety of complex dimen-

sion n, then
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. = i7
(i) 521+1(V) 0 for all i
(ii). Can we define the "Chern homology class" E} € HZi(V; Z) -

so that
8& mod 2 = SZi(M)?

The notion of "Chern homology class'", 1 take from Sullivan's
note [11], in which he says Deligne has constructed a candidate for
the Chern homology classes.

Now we remark the following observation.

Proposition 3-3. Let v" be a compact complex variety of
complex dimension n. Then

(i) 52i+1(V) =0 for all i guch that 2i+l > 2 dimC 2_V.

(ii) I£f i> dimC >V, then we can ugiquely define the Chern
homology class

T, € Hy, (V; Z).
In particular, sZn-l(V) =0 for any V and‘if -3V 1is isolated,
then the question 3-2 is solved. (We put Eb(V) =X V), VifsiV~‘is
connected.) | ‘ “

Proof. We first oﬂserve Lemma 3-4. Let M be a compact
differentiable manifold with boundary 2 M # @ Fix a C']"-trif-.
‘angulation on M. Then |

si(M,A 2M) € Hi(M, o M; Z/2)
is the Poincaré dual of the Stiefel Whitney class
w0 € g 2/2).

Proof. This can be reduced to the absolute case by‘considering-

the double of M. | |

Proof of Proposition 3-3. Let N be a regular neighborhood

-9 -
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of 5.V and put W = V-Int N. We may assume that W 1is an almost

complex manifold. Consider the following exact sequence. (Coef-

ficient is &/2 or Z.)

v—-éHi(N) —li?Hl(V) —;]-ii‘Hi(\;, N) _a__,Hi_l(N) — e s .
]
Hi(W,SW)

Now clearly
Ga(s (M) = 5,04, 3W).
But since W 1is an almost complex manifold, by Lemma 3-4, we have
0 i =1 (mod 2)
s;(W,oW) = {
E&(W) mod 2 i = 2k,

where E'k(W) is the Poincaré dual of the Chern class cn_k(W)e

HZn-Zk(w; ).

Now if i > 2 dimQj 2.V, then j, is a monomorphism, for

1l

Hi(N> _-_-'Hi(Z.V) 0.

Hence we have
-521+1(V) =0 for 2i+1 > 2 dlmC V.
Next we define E/i(V) e HZi(V; Z) for 1i> dimc >.V. Clearly
if we could define E’i(V)}, then we should have
3G W) =T ).
Since j, 1is a monomorphism, we have only to show that
3 ci(W) =0 .
We prove this for all i. Let T: V—>V be a resolution

of V. Consider the following diagram

06,

- 10 -



H, (W, 2W)
. Is
: V) =5 H (v, N) 2o H, L (N) — e
—> Hy ( iV i-1
T”I’x Tsm \1755
kv a A * o 0
© = H (V) = H,(V, N) —H,_ & —

where N = 7t-1(N).
Now to show EQE;(W) = 0, it suffices to show that a1t;1(81(w))
= 0. But clearly,
-1, ~ T o~ o
Ty (€f W) = jye; (V),
where E}(V} is the i-th Chern homology class of V. Hence

ag; () = 0. Q. E. D.
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