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Abstract

The series representation of the lattice Green's

function for the simple cubic lattice

I(a) = _l_ fzf ) dax dy dz

3 a - 1€ = COS X = CO8 ¥ = COS 2

around the singularity‘a'= 1 is obtained in fractional
powers of a’-1 (convergent for ]az-ll < 1), by the method
of the analytic continuation using Melliﬁ—Barnes type
integral and also by use of the ahalytic continuation
of 3F2( s » 3 s .3 1) as a function of the parameter.
It gives leading and full expansions near the singularity

a = 1,



1. INTRODUCTION

In the previous paper1 lattice Green's function

of the simple cubic lattice at the origin

v
I(q) = _1.?: fff dx dy dz (1. 1)
T 0 a «1e - cos X -~ cos y - CcOS %

whick has the singularities at a = 1 aﬁd a = 3, was
evaluated in series representation for a > 3 in powers
of l/ag, for 0 £ a £ 1 in powers of a2, and for
1 < a2 £ 3in powers of (a® - 5)/4 by the method of
analytic continuation using Mellin-Barnes type integral.
The exact values of I(0), I(1l), I(/5) were also given
in terms of the product of the complete eliiptic
integrals. The method was successfully applied for
the bee latticé2, the rectangular and the square 1attices3
and the tetragonal latticea. In this paper the expansion
of the lattice Green's function of thebsimple cubic lattice
around the singularity a = 1, which were not given in the
previous paper, 1is presented.

First I(a) is expressed as a Mellin-Barnes type
integral with the argument a2 - 1. 'The integrand is
a sum of two series expressed in the generaiized
hypergeometric function 3F2( N T
which include the integration variable as a parameter.
In order to obtain the expansion in powers of a2 - 1,
it is necessary to know the behavior of the integrand

in the left-half plane of the integration variable.



The difficulty is that those series in the integrénd

are divergent in the.left-half parameter plane whilé they are
convergeﬁt in:the‘right-halfvparameternplane. We have
succeeded in finding‘the behavior of the integrand in |

the left-half parametér—plane by éonsfrudting‘the

analytic continuation of 3F2 in the parameter plane.

Then the series'répresentation of I(a) around a® = 1,

which is conﬁérgent for lazéll < 1, is obtained by residue

calculations in fractional powers of a?—l



2. SERIES REPRESENTATION AROUND a2 =1

For large absolute values of a (a > 3), the
following integral expression using a hypergeometric

function has been derived in the previous paper.l

T r(-s)r (54512

' 11 =ls
I(a) = = 5= ds —=)
ma 2'”"7/_6_7:(0 F(S"‘l) aa?. .
X 2Fl(s+%, s+1l; 1; l/a?) s ' (2. 1)
Iarg(-u/az)l < m, (2. 1)

where &6 1is a small positive number and the path of

the integration is taken as a straight line parallel

to the imaginary axis, The restriction (2. 1') ensures
the convergence of the integration, and -4 1s to be taken
e™%™4 since we consider a in the lower half plane.5

Applying a formula

2Fl(a, By v; 2) = (l—z)-azFl(u, Y-B3 Y3 z/2-1)

to the hypergeometric function in the r.h.s. of the Eq.

(2. 1) with a = s+%, we obtain

“tie F(—s)[P(s+%)]2(e—i“4)s(

1 1 1 s+l/2
I(a) B = ds )
T 2T 2_
S I'(s+1l) a®-~1
1 2
X 2Fl(S+§’ -s3; 1; 1/(1-a“)) - (2. 2)

Here we take the branch where (aa)l/2

B 2.
Using the representation of the hypergeometric

function by Mellin-Barnes type integral, we have
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S+ 1 4io
I(a)=%(-—l—-2 [ das [ at

T (s+5)T(=6)T (s+6+3)T (~s+t) (¢7T4)°
211 o
A S

T(s+1l)T(t+1)

+t+
% ( 21 )S t 1/2,
a -1

(2. 3)

where ' 1is a small positive number chosen so as to-
make Re(-s+t) > 0, i.e., &' < 6.
Introducing a new variable u = s+t and changing

the order of the integration, we have

~§M4ioo
_ 1,1 .2 1 2 ~-u=1/2
I(a) = F(W) f du I'(u+§)(a -1)
: ~§Mfoo
O p(sd)r(s-u)r(u-2s) (70 H)®
b4 f ds e " s (20 l‘)
Siw I'-(s+l)I‘(1+u-S)
where §" = §+6'. Note that Re s-u = %6' ?vo, and

Re u-2s = §'-§ <ZQf |

Now s—integrétién:is carried out by collecting the
residues of the ééleé at s = %+q and %+%+q (q=0,'1, 2, «..)
in the right-half nglane. Then we have

Lo, L1 u
1 T(Grarz)ra-3)

271

Jaseee=l g (&7 yu/2%a

q=0 (2q)lF(%+q+l)F(l+%-q)

1 :
© I(5+q+1)T(q-3+5) -
I 2 2 2 (e"’b.'ﬂ'u )u/2+q+1/2.

]

2 u

q=0 (2q+1)!r(§+q+%)r(%4g—q)
(2. 5)
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It is éhdwn_that the summations with respect to
q are di?ergent for Re u £ -1, while the integration
path in the u-plane is to be closed to the 1eft~ha1f
plane where Re u < q to obtain the series valid for
{azl < 1. Therefore it is necessary to transform the.
summations of Eq. (2. 5) and to get other expressions
which are valid for Re u £ 1.

The r.h.s. of the ‘Eq. (2. 5) is expressed in terms
of a generalized hypergeometric functlon 3F2 with the
argument equal to unity, and leads

de‘e.{ = - ;-__(ue—iﬂ)u/gsin‘i F(—2—+-2_)[1"(__2_)]

1
217

- 2" 1 o, U
1,u u Au,
' 2 T
X 3F2
1 u
70 142

| 1 2
u .P.(l+%)[?(-2— —%)-]

¢ Z_(ygtmyu/2

cCOSxT -
2 3 3,u
2/ r(Priz
u 1 -u 1 u,
STt l t
X 3F2
3 38
5 53

(2. 6)

The expansion of avgeneralized hypergeometric
function in terms of hypergeometric functions of
lower order6 (Eq. (5. 1) inref.3) and the value of

2F1 with the argument equal to unity lead to



a formula

P(a ). oy, a2;‘a3; 1
3 2
(8, )F(B 5)
812 B
e I‘(Bl+82-—ul—a2—a3)-

= F (2. 9)
3.u 3 32 .
r(§+-2-)r(2+§u)
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X 3F2 . .
By*Bom0y =03, By #By-ay-0g:
(2. 7)°
Applying the formula7to the two 3F2's in.>(6)v
with oy = = %— and a3 = %—— %, 'respectively', we have
1,u u u,
(-3, EA UL
C L LNmra LUy 302
F(§)F(l+§) 1 ,u )
’ 2 T2
1.u -
T (1+u) §+§, l1+u, 1+u; 1 , "
= F 2.
u 3.3 372
2 3 2*‘
and
u 1 u 1 u
(-2 M3 5720 7735 1
r¢3 )r(§+“) 372
3 3,u
2° 2 2
u
I(1+u) 1+§, 1+u, l+u; 1
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The two hypergeometric series in the £.h.s. of Eg. (8)
and (9) are convergent for Re u > 1 while those in the
r.h.s. of Egs. (8) and (9) are convergent for Re u < 0
and Re u < 1, respectively. The r.h.s. gives the
analytic continuation of the £.h.s. as a function of u.
Using the above transformations (8) and (9) and

the oseries representation of (in the r.h.s.) and

32
changing the order of the summation and the integration,

we obtain

I(a) = - %(w)—3/2(a241)-1/2 I g%
. p==0 *
) I (3T (= DT (Ggurp) [T (Lrurp) Psingun , —iw2
X g du - - - 5 )
et P(l+u)P(l+p+%)P(%+p+%u) a -1

4o
)
Pan
Ss
i
w
~
N
~
Q
S}
I
[nd
N
i
]
~N
N
18

1
o P!

L
271

2
P (1+u) I (S+p+3)T (24p+3u) a®-1

X

[ P(%+u)r(% - %)P(l+p+%u)fr(l+p+u)]2coslun(2e_ay2)u
u ; : .

Closing the integration path to the left-half
u-plane, the evaluation of the lntegrals is carried

out by summing residues of poles 1ln the left-halfl u-plane.
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The poles of the integrand are located at u == %;.q
(@ =0, 1, 2, +..), and at u = -l-p-q where p+q+l is

odd integer for the Tirst integrand of Eq. (10) and
is even integer for the second integrahd with g 2 0.
The calculation 1s tedious but straightforward and -

we finaglly obtain

‘I(a) = Ireg(a) + Iirreg(a) s (2. 11a)
© .q
I (q) = —2 z L
reg 4/2w q=0 al
N 1 q 1 1
I (DT (G4+3q) T2 2" W34l
[r(n’*'z-):’

T P i)

- (1-%)

rpdi1®
| (2. 11b)
_ . 1
1 3 4 142r, =, -r: 1 S
* [(z)..1] ’ 2 ?
, 3 2°'r 2 2r+l/2
I.. (a) ==i5> I ——s——a—o _F (a®=1)"
irre en_ 3y (5y 372 :
rreg r=0 r}(E)r(E)r ; l+r, l+r
1
re3 3 242r, =, -r; 1
L1 ow <1)r[(§)r] 2 v .2 2r+3/2
gy ! 75y Ty 3R (¢™-1) ’
r=0 [(2)1?] (E)r(ll_)r :

2+r, 2+r ,
' (2. 130

where Ireg(a) and I (a) represent regular and irregular

irreg
parts of I(a) at a = 1, and the leading singularity is

/0
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2 1/2 2
(a© - 1) . For a~ < 1, the irregular part does not

contribute to the imaginary part but to the real part
of i(a). 3F2's in the irregular part are finite series
and give rational numbers.

The generalized hypergeomeﬁric function
3F2(d1, Gy, g3 Bl’ 82; 1) convérges when ¢ = Zei— Zai? 0,
and the convergence becomes faster as ¢ increases, i.e.,

the degree of the convergenceis of the order of I (l/n°+l).

_ n=1
From a point of view of the convergence of 3F2(1), it

is more convenient to transform Ireg(a) into another
form, though Eq. (2. 11 ) is a desired expression as

far as it goes. Using a transformationsof 3F2, we have

i ored [oad-abi]en,
T3 0372 gz QA 372
3.9 2_4
LF-2> 57" 3
; 1 1 2
‘ o T(5+a) [T (7+2) ]
+ ‘—‘1—37'2— I [(-1)%4] ,2 3 E+22
(2m)>/“q=0 a![T(F+3)]
1 1 1 q
S A T A RN
X 3F2 - (__2______)‘1‘
1 3 q
> ta '
f— 1T s r(g+a)(r(3+)12
- ~1
/21372 g=0 QT (HHrg+d)
3.9 3 .49 3,4,
U L - L -
x gF, (&=1)q,
3,5+% 2 (2. 114)

//



The convergence indices ¢ in 3F2's in (2. 114)
are all %+q, while thoge in (2. 11b) are %+% and
‘%+%, showing better éonvergence.than the ofiginal
3F2 in (2. 11b).
Now we investigate the radius of éhe'convergence
of Eq. (2. 11). Consider the double séries»Zﬁququp

generalized from the first term of (2. 11d), where

\ [T(5 -a+p) T30 R - Dr3 -
P qpt8ir(z ~)IN(G - $oIr( - T

Put p = Aq, then from

A

IR EL R picL2 SR ) —————~—~81‘,2" 5
. =00 A ' 1=\

4a Ag, p | 18 : ) !
1 Ay pe1 I(1-2)2
= = 14m | Qo P¥ | o e

-2\
q® Aq’ p (1-22)
we have

1. 3—‘5—7:—3 (2. 12)
r

by elliminating A. The double series~Zquxq¥? converges
absolutely in the region |x| < r; and |y| < s, where r
and s are determined by Eq. (2. 12). For s.=_1, we have
r = 1. That is, the first term in Eq. (2. 11d) converges
for laznll <1, 1.e., 0 < a < /2 for real a. The radii

of convergence of other terms in Egs. (2. 11d) and

(2. 11lc) are also shown to be |a2-1[ < 1.

/2

185
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The expression (2. 11) includes only a2

,» while the
original form (1. 1) depends on a such that I(a-ic)
= -I(-a+Ze). This suggests that the expression (2. 1) )
has a branch point at a2 = 0. That 1s the reason why
Eq. (2. 11) is convergent for |a2—1[ < 1.

For o° = 1, only the terms of @ = 0 in Eq. (2. 11b)
do not vanish, aﬁd,3F2(1) for q = 0 can be expressed in
gamma functionsgand the exact value of I(1l) announced

in the previous paper (Eg. (33) in ref. 1) is derived.

The leading term is given by .

I@) = T /2 r(@rpi172- 3@l %w06P-1).
' (2, 13)
The third term givés,a realipart>for a2 <1,

Equations (2. 1la), (2. 1llc) and (2., 11d) are
the series representation of I(a) around a = 1,

convergent for ]a2n1| < 1.

/73
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3. CONCLUSION

The lattice Green's function of the simple cubic
lattice is expandedkat the singularity a = 1 by the
method of the analytic continuation in terms of Mellin-
Barnes type integral. In the process of calculation
it is shown that the analytic continuation of a
~generalized hypergeometric function 3F2( s s b s §~i)
in a complex-parameter plane allows us to obtain the
series representation of I(a) in fractiohal powers of
a2—l. The result is giveh in Eq. (2. 11) and the
series is convergent for Ia2-1| < 1. It gives insights
of the nature of the singularity and simple and rapid
subroutines for numerical calculations near the
singularity. |

The numerical calculation of Eq. (2. 11) reproduces
the values in tﬁe table by Morita and Horiguch%o, The

values of first several terms of 3F2 used are listed in

Appendix.

/¥
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APPENDIX VALUES OF 3F2
The values of 3F2( s 5 3 s 3 1) in Egs. (2. 1lc)
and (2. 114) are calculated by a subroutine based on
the definition of 3F2. Those in Iirreg(q) are‘fin;te
series and give rational numbers. Those in Eq. (2. 114
are infinite series with ¢ = % + q and the convergence
becomes faster as q increases. Here we list the values

of 3F2‘s in Eq. (2. 11d ) for the first several terms

of q. The values of them for large q can be calculated

rapidly.
1 1: 1,
i 7~ 9 7 -4 355 1
Fa(Q) = 3F2
3 .45 q
R )
1 1 1 Coq]
BERE Rl T A
Fb(q)=3F2
1 3.4q
> T t3 N
(3 _a 3 .49 3,4, 1]
T3 T ity l
Fc(q)=3F‘2
3 5.4
(2> T3 i
q F_(a) Fy (@) F,(q)

o 2 2r1? ar@@Pr@rt wr@ P!

/$



w o N O WU

10
11

12

13-

F— VO A

Fa(q)

.1764390572
. 2086411047
.1825835244
.1518523862
.1241300083
.1006733423
8130444869
6549578345
5267460718
. 4231589025
.3396715097
2724952366
. 2185065481

E+01
E+02

E+03

E+04 -

E+05
E+06
E+06
E+07
E+08
E+09
E+10

E+11

E+12-

Fb(q)

.1114018565
.1095404897

.1821375868

3477117659
.6832596364
1353545539
.2690471748

.5357641342 "
.1068076513

.2130836520
.4253236238

.8492762411

.1696281019
.3388737728

/6

=322 (hr1? a1
.1428125286 E+01

E+01

E+0L

E+01

E+01
E+01
E+02

E+02

E+02.

E+G3
E+03
E+03
E+03
E+04
E+04

Fola)

.1046372292

.1036961125

.1310778150
.1891707243

2948617543
4824681185

.8159238967
.1413060823
.24911485647
. 4454815485

.8055058548

1469922940

1539

nr (D11
- .1830796988

E+01
E+01
E+Q1
E+01
E+01

E+01

E+01

E+01
E+02
E+02
E+02
E+02
E+03

+2702993008 E+03
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