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ABSTRACT

Deep learning has become one of the most important topics in Computer

Science, and recently it proved to deliver outstanding performances in the field

of Computer Vision, ranging from image classification and object detection to

instance segmentation and panoptic segmentation. However, most of these results

were obtained on large, publicly available datasets, that exhibit a low level

of scene complexity. Less is known about applying deep neural networks to

images acquired in industrial settings, where data is available in limited amounts.

Moreover, comparing an image-based measurement boosted by deep learning to

an established reference method can pave the way towards a shift in industrial

measurements.

This thesis hypothesizes that the particle size distribution can be estimated

by employing a deep neural network to segment the particles of interest. The

analysis was performed on two deep neural networks, comparing the results of

the instance segmentation and the resulted size distributions. First, the data was

manually labelled by selecting apatite and phlogopite particles, formulating the

problem as a two-class instance segmentation task. Next, models were trained

based on the two architectures and then used for predicting instances of particles

on previously unseen images. Ultimately, accumulating the sizes of the predicted

particles would result in a particle size distribution for a given dataset.

The final results validated the hypothesis to some extent and showed that

tackling difficult and complex challenges in the industry by leveraging state-

of-the-art deep learning neural networks leads to promising results. The

system was able to correctly identify most of the particles, even in challenging

situations. The resulted particle size distribution was also compared to a reference

measurement obtained by the laser diffraction method, but still further research

and experiments are required in order to properly compare the two methods. The

two evaluated architectures yielded great results, with relatively small amounts of

annotated data.
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1. INTRODUCTION

Particle size distribution (PSD) estimation is a well-known technique applied in many

industrial sectors for monitoring, controlling and optimization of various essential

processes. In the mining industry, the grinding process is responsible for reducing

the particle size by a combination of impact and abrasion, in dry environment or more

commonly, in suspension of fluid. It is also the last stage of the comminution process,

which is a mechanical process of size reduction for solid materials [1, 2, 3]. To monitor

and control the grinding circuit reliably, the size distribution of particles needs to be

constantly estimated, preferably in real-time.

The first method developed for the task of particle size distribution estimation was

sieve analysis, where particles of interest are run through a stack of sieves having

different size dimensions. The PSD is computed by weighting the amount of material

stopped by each sieve. A simple and efficient method, it provided decent enough

results for a long period of time. However, with the proliferation of non-intrusive

methods based on optical devices, more complex and robust solutions have been

designed. By using a laser beam oriented towards the particle, the laser diffraction

method can be applied, which relies on the angle and intensity of the scattered light

to estimate the size of a particle. Especially for small particles, ranging from a

few nanometers to millimeters, it proves to be a very efficient and accurate method.

Digital image processing represents another emerging technique used to estimate the

size distribution of particles by leveraging the recent developments in machine vision

cameras. In this case, the particles are directly identified in images and their real-

world size is obtained by converting the pixel size into a metric size. Moreover,

Deep Learning (DL) architectures are becoming increasingly popular even in industrial

computer vision applications, boosting traditional image processing techniques to

achieve better performance.

In this thesis, the focus is centered on image-based analysis methods for PSD

estimation applied in mining scenarios, which use state-of-the-art deep learning

architectures for instance segmentation. The general pipeline for obtaining the

PSD consists of individually identifying the particles of interest in the image, thus

obtaining a mask for each particle. This process is known as instance segmentation.

After obtaining the masks, the area for each particle is computed and together with

the camera parameters and the employed camera model, its real-world size can be

estimated. The instance segmentation module is usually implemented with traditional

image processing techniques, but lately, DL has been successfully applied for this

task and achieved better results than any other method. Although the performance of

DL models in solving computer vision tasks is well-documented [4], less is known

about their performance when applied on complex data collected in industrial settings

and how well they satisfy the requirements of industrial applications. Primarily, this

study evaluates the capability of a Deep Neural Network (DNN) to efficiently segment

the instances of mineral particles, with the final purpose of estimating the particle

size distribution. The main advantages of using a DNN rather than a traditional

image processing pipeline or machine learning (ML) approach are the reduced set

of parameters that need to be configured, increased accuracy, robustness and speed.

The only parameters that need to be adjusted are the network parameters, but they

are independent of the data on which it is trained, hence allowing for easy transfer to
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new data. Furthermore, rather than designing complex flows for corner-cases, we only

have to make sure that the training data consists of few corner cases, so the focus is

shifted from algorithm development to data analysis, which in most cases can be more

accessible.

Continuous monitoring and control tasks usually need to adhere to specific time,

latency and accuracy requirements. Since there are multiple DNN architectures that

solve the problem of instance segmentation, but have certain key differences, two of

them will be compared in-depth, taking into consideration the requirements of the

presented use case. Therefore, the main contributions of this thesis are:

• A pipeline for obtaining the size distribution of particles from mining images,

namely apatite and phlogopite, using a DNN for generating the instance

segmentation.

• Comparison of two DNN architectures considering the task of instance

segmentation and the resulted particle size distribution.

In the next section, the thesis introduces the context of particle size analysis in the

mining sector and gives a brief overview of the most popular methods for particle

analysis, with a strong emphasis on image-based methods. Section 3 starts describing

the underlying foundations of DL and presents the two DNNs architectures used in the

thesis. Then, previous work and results related to DL and particle size analysis are

discussed. Section 4 highlights the implemented pipeline and the data analysis, while

Section 5 shows the obtained results and both the comparison of the two architectures

and the comparison of the DL methods against the laser diffraction method. The last

two sections are critically analyzing the obtained results, further research directions

are proposed and the whole work is summarised.
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2. PARTICLE SIZE ANALYSIS - OVERVIEW

Mining has been performed for thousands of years across the whole world, and it is

the backbone of sustaining and developing the infrastructure of our societies. With the

huge increase in raw materials demand for emerging technologies and infrastructures,

it becomes clear that we need more efficient mineral excavation and processing, such

that we have a sustainable framework in which to operate, now and in the future.

Extracting useful minerals is a demanding and complex process. Most of the time,

valuable minerals are mixed with other non-valuable or useless materials and for

separating them, first we need tools to distinguish them. A particle analyzer is one such

tool that can analyze and report information about the size distribution of particles in

a sample. The results are then used for subsequent control and monitoring of various

mining processes such as grinding. Choosing the right particle analyzer depends on

some key parameters such as: size ranges, chemistry/material of the particles, desired

information, performance requirements. Of course, there are other indirect parameters

that can influence the decision, like budget, current analysis technique, etc.

There are three main types of particle analyzers, each relying on different technology

and having their own advantages and disadvantages. The most rudimentary technique

is sieve analysis, which works for reasonably sized particles, and it is a mechanical,

intrusive process. If we want to continuously analyze particles, especially small ones,

then we have to use either laser diffraction or image-analysis based methods. This

chapter will present an overview of these methods, highlighting the way in which they

are able to calculate the particle size distribution and the environment in which they

operate.

2.1. Sieve Analysis

Sieves have been used for a very long time in the mining industry. It provides a

quick and easy way of measuring the particle size for a large number of particles,

instead of individually picking particles and having a human operator measuring them.

This was the first step towards automating the process of measuring particles. The

system consists of a stack of sieve meshes placed vertically, like a column. The mesh

(screen) at the top has the largest screen openings and subsequently the lower levels

have smaller screen openings than the one above. The stack of meshes is placed inside

a shaker, which shakes the structure for a period of time. Then, on each mesh, the

weight of the material is measured and combining the results, a PSD is obtained.

This method is one of the most used one, mainly because of its simplicity, efficiency

and low cost. Also, the technology has evolved and there are sieve analyzers that

perform quite well in terms of accuracy, reliability and processing time. But, it is

still a mechanical process and particles can be affected by the impact with the mesh

grid, leading to some particles breaking in smaller pieces, therefore affecting the size

distribution. Moreover, the sieve meshes can suffer as well from the impact leading

to some screen openings getting larger and not preserving the size consistency for a

particular level in the mesh stack. From the measurement point of view, it lacks in

precision, since it assumes rectangular shaped objects and most of the time grinding

particles have irregular shapes. Furthermore, there are cases when elongated objects
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can fit through a small opening if they happen to be oriented in a specific way. It is not

an online measurement, since we need to perform the shaking for some time, wait for

the particles to settle and only after that we can get the results. Another drawback is the

limit on particle size that can be measured. Really small particles cannot be measured

since they are too small for this mechanical process, and it is impossible to design such

fined-grained sieve meshes which operate in the range of nanometers.

2.2. Laser Diffraction Analysis

Figure 1. Laser diffraction particle measurement. Reprinted with permission from

Outotec.

When particles are getting exceptionally small, somewhere in the range of a few

submicrons to millimeters, laser diffraction technique is the way to go. The working

principle behind this concept is depicted in Fig. 1. The particle flow is placed between

a laser light source and a detector. The laser beam is diffracted by the particles at

different angles, depending on the particle’s size and the scattered light is focused by a

lens on a concentric array of photodetectors. The particle size is obtained by measuring

the angular variation in intensity of the light scattered on the detector. Larger particles

scatter light at a lower angle relative to the laser beam than smaller particles. The

scattering pattern is then interpreted for getting the actual size of the particle using

either Mie [5] or Fraunhofer theory.

It is clear that such a procedure is much more complex than sieve analysis, due

to the increased cost of operation that it brings. It allows for faster and continuous

measurements, high throughput, increased accuracy, etc. Like sieve analysis, laser

diffraction also expects particles to have a pre-defined shape, which is spherical in this

case. Moreover, laser diffraction is a non-contact method, hence the particles maintain

their physical structure.
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A cutting-edge particle size analyzer that uses laser diffraction is Outotec’s PSI

500 Particle Analyzer 1. It provides real-time PSD estimation for particles in slurry

environment, usually used for monitoring grinding circuits, regrinding circuits, backfill

and tailings disposal and feed to the slurry machine. Fig. 2 shows the physical build of

the PSI 500 device along with a sample PSD computed by the system.

Figure 2. PSI 500 particle size analyzer device and an estimated PSD. Reprinted with

permission from Outotec [6].

2.3. Image-Based Analysis

With the proliferation of machine vision algorithms and recent advances in cameras,

image analyzers have gained attention from the mining industry as well. Acquiring

images in an industrial environment is considered to be a challenging task due to

harsh conditions such as sudden temperature changes, dust or vibrations. New imaging

technologies are aiming at mitigating the artifacts introduced by these external factors,

and image-based analysis promises to be a very efficient measurement tool. The

stakeholders involved in mineral processes may be tempted to use machine vision

solutions for control processes due to being inexpensive, fast, non-intrusive, consistent,

robust and accurate.

The general pipeline of an image-based analysis starts by acquiring the raw image

with a camera sensor and the necessary illumination setup, such that the particles of

interest can be clearly distinguished in the image. The second step and usually the

most complex one consists in segmenting the image, obtaining a binary image that

can discriminate between objects (in our case, particles) of interest and background

or other non-related objects. After obtaining the segmented image, we can calculate

different size measures for each particle and obtain a size distribution across a batch of

samples, images in our case, so that the number of particles is statistically sufficient.

There are four main problems in computer vision related to identifying objects of

interest from images. A visual understanding of these problems is depicted in Fig. 3.

1https://www.mogroup.com/portfolio/psi-500i-particle-size-

analyzer/?r=2
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Figure 3. Different aspects of object identification in computer vision.

(1) Image classification (2) Semantic Segmentation (3) Object localization (4) Instance

Segmentation

Image classification was the first problem proposed, and it is simply aimed at solving

the task of identifying the class of the main object in the image, regardless of its

position, orientation or other objects. There is an assumption that only one class is

assigned for an image, representing the main object. Object localization can identify

and localize the objects at the same time, enclosing them in bounding boxes. It makes

the transition from image-level classification to instance-level classification. Semantic

segmentation operates in a slightly different way and performs the classification at

pixel level. As in the figure above, we are interested in segmenting the rocks from

all the other objects and background. But semantic segmentation does not tell us

how many objects there are in the picture, although this can be solved by additional

post-processing algorithms. The last problem, instance segmentation is one of the

most difficult one, and it builds on top of object localization, adding a segmentation

mask for each detected instance. Depending on the employed technique for size

measurement and on the object of interest to be detected, each technique has its own

advantage. The one having the most information is clearly instance segmentation,

but when comparing it with object localization, most networks designed for instance

segmentation are slower since it adds the overhead of calculating a segmentation mask

for each detection.

To get an overview of the segmentation and localization methods used for

estimating the PSD, we can categorize them as follows: conventional, ML based and

Convolutional Neural Network (CNN) based methods [7].

Conventional methods rely on traditional image processing techniques for creating a

pipeline that can segment the particles of interest. Popular methods include Watershed

Transform [8], ultimate erosion (UE) [9] and the Hough Transform [10]. The first two

methods can prove to be quite fast and utilize low memory, but are more prone to errors
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and susceptible to noise in images. On the other hand, Hough Transform can be more

robust, but is slower and has a large memory footprint. The big disadvantage shared by

all these conventional methods is having to adjust parameters by the user, depending

on the imaging conditions, the particles to be observed and other major changes in the

operating environment. These type of algorithms are unfortunately not robust enough

by themselves and any change can potentially lead to erroneous results, meaning that

the system needs to be recalibrated each time. Moreover, fine-tuning the parameters

can be time-consuming and if performed frequently, it can become a major bottleneck.

ML-based methods [11, 12] are one step closer towards making the process more

autonomous, since there are very few image or environment dependent parameters that

need to be set by the user. ML-based methods rely on two key concepts, namely feature

extractors and classifiers. The classifiers are trained with the extracted features, finding

patterns in the input data. Then, based on the learned features, the classifiers will label

unseen data. Descriptors are usually used as input data to the ML classifiers, meaning

that a lot of effort is shifted towards designing efficient and robust descriptors, capable

of capturing as much information as needed. By compressing parts of images in

descriptors, the available information is reduced, affecting the accuracy of the model.

CNN-based methods are end-to-end methods that can learn not only feature

interpretation, but feature extraction as well. This means that there are virtually no

parameters that need to be set by the user, as CNN methods work directly on the raw

image. On the other hand, they are heavily dependent on vast amounts of annotated

data, so that the model can extract useful information. Getting enough data for every

application where CNNs are used can be very tricky and most of the time even

impossible. But, a good technique to overpass the lack of data is transfer learning,

where a model is trained on general purpose data with the objective of learning the

feature extraction and later training only the last layers on the specific, reduced dataset

for our application. This will be discussed in detail later on.

There are also hybrid methods, that combine the principle of laser diffraction with

imaging techniques. In [13], the authors built a particle analyzer using a CMOS

image sensor and a collimated beam configuration, together with a ML model based on

Random Forest. Similarly to laser diffraction, they have used the angular distribution

of scattered light to measure particle size.

2.4. Limitations of Traditional Image Processing Methods

Image-based analysis proves to offer enough information and data for estimating the

PSD accurately and robustly, but even after choosing this approach, there are a wide

range of algorithms that can achieve the segmentation of an image. Conventional

methods based on traditional image processing techniques were the founding blocks

of image-based analysis. But, they soon proved to be difficult to develop, maintain

and transfer the same concept or pipeline to a new setup, even though the requirements

were the same. One of their main disadvantages is the huge number of parameters

involved. Each step in a general pipeline requires several parameters to be adjusted, for

example, image smoothing, edge detection, thresholding, morphological operations,

labelling, etc. Not only does this make the development hard, but a slight change

in the working environment may affect the pipeline altogether and crash the system.
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Moreover, none of these methods can compete with the accuracy of a human operator

[11].

A more robust approach is to use machine learning algorithms, that are able to better

predict properties of objects in the image or even classify them. These algorithms have

an increased tolerance for changes in the working environment and can better handle

unknown data. But, ML algorithms are also dependent on the extracted features and

part of the workload does not disappear, but is actually shifted towards designing robust

and efficient feature extractors and descriptors. While having far fewer parameters to

tune than traditional image processing techniques, there is still a number of parameters

that need to be set for the feature extractors and classification models and sometimes

designing the perfect features extractor can be quite time consuming.

Because of all these inconveniences, end-to-end methods are really desired in the

industry. Working conditions can change, especially in industrial environments, so

increased flexibility is needed. Also, there are a lot of mineral processes that have a

high degree of similarity and rather than designing a completely new system for each

in turn, it would make sense to transfer the core concept and adjust as few parameters

as possible. DNNs are pushing forward the state-of-the-art in computer vision and

are enabling end-to-end methods, where users only need to feed annotated data and

then the network is capable, on its own, of extracting the features, learning them and

ultimately classifying new data.
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3. DEEP LEARNING BASED INSTANCE SEGMENTATION

The computer vision community has seen a great increase in the utilization of DL in

last years and starting from the success of AlexNet [14] in the ImageNet competition

(Large Scale Visual Recognition Challenge, ILSVRC 2012 [15]) it has since been the

hot-topic of computer vision. Not only has DL extended to other tasks in computer

vision such as object detection and localization, semantic segmentation, instance

segmentation, pose estimation, and so on, but it has been successfully applied in

other domains as well, such as audio [16], natural language processing (NLP) [17],

3D reconstruction [18] and many others. Keeping in mind the recent advancements in

terms of GPU processing capabilities, it becomes more and more clear that DL is for

now, the tool of choice for solving the problems of today and tomorrow.

Because DL is such a vast domain, the next section will be focused on a brief

overview of the core idea behind DNNs and how they have evolved in the context of

machine learning and under the big umbrella of artificial intelligence. The explanations

will start from the building blocks of DNNs, then gradually going through state-of-

the-art architectures. Popular DL models will be presented, with applicability in the

instance segmentation domain.

3.1. AI Vs. ML Vs. DL

The concept of Artificial Intelligence was born in the 1956 by the AI pioneers

who envisioned complex machines capable of expressing human intelligence. This

means sensing, interacting with the real-world and taking human-like decisions.

Conceptually, this is known as ’General AI’ and would ideally be represented as

machines that can behave and reason like humans do. For now, this theoretically and

maybe frightening concept cannot be achieved, but instead, more specialized forms of

AI have been developed for particular scenarios and tasks, like image classification,

text recognition, natural language processing, robot control, etc. These are still tasks

or actions that require human-like intelligence, hence the algorithms based on DL are

built specifically for a task, rather than building a ’general AI’ robot that can solve

everything.

Figure 4. Venn diagram describing the relationship of the three concepts: AI, ML and

DL.

Machine learning is a subset of AI practices that shifts the paradigm from hand-

programming to data learning. Rather than designing algorithms to behave in a certain
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way, ML algorithms learn from the available data and then make educated guesses on

unseen data. This consists of parsing the data, learning different patterns that are likely

to occur by extracting features from data and then make a prediction about previously

unseen data. ML encapsulates a wide set of algorithmic approaches, like clustering,

reinforcement learning, decision-tree learning, feature-based learning, etc. Although it

is more robust and flexible than previous methods, it still involves a lot of hand-coding

and crafting of feature extractors.

Parts of the ML tool set are also Artificial Neural Networks (ANNs). They are

inspired by the way in which our brain functions, leveraging the inter-connection

between multiple neurons. In a Neural Network (NN), the neurons have weights

associated with each of them and represent how wrong or correct it is relative to

the performed task. Even though they were present from the early days of AI, the

hardware was not yet ready for supporting this concept. The most basic networks

were too computationally intensive and they were simply not feasible. With the

deployment of GPUs, specialized hardware for parallel processing, the breakthrough

of ANNs and specifically very deep ANNs (DNNs) was possible. Networks with

increased number of layers and neurons were possible to train in reasonable times and

some architectures proved to perform even better than humans in some tasks (image

classification). But there is a twist. Deep neural networks require huge amounts of

data, usually being trained on hundreds of thousands of images which requires them

to be labelled. As the task increases in complexity, e.g. from image classification

and up to instance segmentation and panoptic segmentation, the labelling process

becomes more difficult and requires more time and resources. Also, when applying

DL to a specialized, narrow domain, like mineral detection, there are few challenges

like manual annotation, lack of available data, complexity of labelling, ambiguity in

labelling and others.

3.2. Neural Networks

The building block of a neural network is the neuron. Inspired from biology, the neuron

takes as input stimuli from multiple connections and when sufficient stimuli, it fires

on the output. Likewise, in ANNs, a node (neuron) multiplies input data with a set

of weights associated with every connection, trying to amplify or dampen that input,

based on its significance relative to the performed task. This allows the network to

characterize which input is helpful when classifying. The sum of product between

weights and data is passed through an activation function that decides if or how much

of the signal should pass onward. This can be mathematically formulated as:

y = θ(b+
N
∑

i=1

xiwi) (1)

where y is the output of the activation function, xi are the inputs, wi are the weights of

the networks, b is the bias and ultimately, θ is the activation function. Visually, a node

representation is depicted in Fig. 5a.
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(a) Node of a neural network (b) Neural network structure

Figure 5. Generic structure of a neural network.

A NN is formed by stacking layers of neurons and connecting the layers. A generic

architecture for a NN consists of an input layer, which consumes the input data, hidden

layers and ultimately an output layer responsible for the prediction (represented as

probability). A DNN is basically a NN that has many hidden layers, hence the name

’deep’. The motivation behind building deep neural networks is that the deeper you go

in a neural net, the more complex features nodes can learn, since they are aggregated

with previous nodes. Training is an iterative process that updates the weights and

biases such that the loss function is minimized and the data is learned.

3.2.1. Activation Functions

If we think about Eq. 1 and ignore the activation function, a neuron is just computing

the weighted sum of its input, obtaining a real number. Same as a biological neuron,

an artificial neuron needs to decide whether it fires or not (it is activated or not). The

mechanism allowing this is the activation function. There are two types of activation

functions: linear and non-linear functions. The non-linear functions are mostly used

due to their ability to generalize or adapt to the variety in data. Below, some of the

most used activation functions are presented, alongside their graphs.

The sigmoid function is defined by:

f(x) =
1

1 + e−x

It outputs a value between 0 and 1, it is non-linear, continuously, differentiable and

monotonic, all being desirable properties of an activation function. A big drawback is

the insignificant change in gradient for inputs that are far from the origin. This gives

rise to the problem of vanishing gradient, where the network is not capable of properly

learning anymore or the training becomes increasingly slower for saturated neurons.

A similar function, the hyperbolic tangent, is also a non-linear function, but unlike

the sigmoid, it is zero-centered, resulting in a better mapping of negative/positive

values, making them strongly negative/positive. Unfortunately, it also shares the

problem of vanishing gradient. Its mathematical definition is:
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f(x) =
ex − e−x

ex + e−x

Rectified Linear Units or ReLU, may sound complicated, but it can be easily

formulated as just:

f(x) = max(0, x)

It is non-linear, and has the same advantages as the sigmoid, but proves to have better

performance. Also, it does not suffer from saturation and it is much easier and faster to

compute the gradient. On the other hand, it is suffering from the well-known problem

of "dying ReLU". In the case of having an input x < 0, the gradient will be 0, which

means the weights will not be adjusted. Hence, those neurons will stop responding to

variations in input. Leaky ReLU is a variant of ReLU where a small, non-zero gradient

α is allowed when the input is below zero.

(a) Sigmoid (b) Tanh

(c) ReLU (d) Leaky ReLU

Figure 6. Graphs of activation functions.

3.3. Architecture of DNN

As it was mentioned in Section 3.1, general AI is rather a sci-fi dream than reality and

the same is true for DL. There is no ’good-for-all’ architecture and because of that, a

range of different techniques have been developed for specific tasks that can boost the

efficiency of a DNN. In this section, the most representative techniques are presented.
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3.3.1. Convolutional Neural Networks

Convolutional neural networks (CNN) or ConvNets, have gained massive attention in

computer vision and serve as basis for state-of-the-art architectures like AlexNet [14],

VGGNet [19] or GoogleNet [20]. The components of a CNN are usually: convolution

layer, pooling layer and fully connected layer. One of their main advantages is the

capability of capturing both the spatial and temporal dependencies in an image by

applying various filters. Since the core concept of ConvNets relies on reducing the

number of parameters, therefore retaining only the most important features, CNNs can

better fit the data than traditional NNs.

Convolutional layer

The convolutional layer is the most important part of a CNN. It relies on the

convolution operation [21] to convolve the input image with different filters and obtain

activation maps, which are in turn convolved again and again. Similarly, as in a

neural network, a neighborhood or spatial region of the image, regarded as the input

is convolved (multiplied) with the filter coefficients (weights). Then, an activation

function is applied and the results are getting propagated through the network, similarly

to a NN. The main objective of the convolution operation is to extract the high-level

features such as edges or blobs. A convolution layer consists of a stack of filters,

each with weights wi, that will be the weights of the neural network that have to be

learned. The spatial region on which we apply the convolution is called the receptive

field. Different than in a Multi Layer Perceptron (MLP), where the output of a neuron

depends on all the values from the previous layer, in a convolutional layer, the output

depends on the filter i, specifically its weights, and the receptive field on which it

is applied. The convolution operation usually decreases the dimensionality of the

convolved feature, although padding can be used to either increase the dimensionality

or keep it the same. In Fig. 7, a convolution with two 5x5x3 filters is applied.

Figure 7. Convolution of a 32x32x3 image with two 5x5x3 filters with stride 1 and no

zero padding, that produces two activation maps.

The key parameters for a convolutional layer are the stride and padding. The stride

is used for selecting the overlap between receptive fields and the padding, which is

usually performed with zero values, is used to increase the size of the input, so pixels
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situated near the border are considered as well. Using the following equation, one can

determine the output of a convolutional layer:

(w + 2 · p− k)/s+ 1,

where w is the size of the input, k is the size of the kernel, p is the size of the padding

and s is the stride.

Pooling layer

The pooling layer is responsible for down-sampling the input, reducing the spatial

dimensionality. This is desirable for concentrating the information and retaining

only what is considered to be most important, such that the network can learn more

efficiently. Usually, it is placed after a convolutional layer. Also, by down-sampling,

we obtain multi-resolution maps that can yield different important features. The

most used operator is the max-pool one, retaining only the maximum value in the

receptive field. Min and (global) average pooling are also applied, but are less frequent

[22]. There are also studies in favour of dropping the pooling layer, especially when

training Generative Adversarial Networks (GANs) or variational AEs, in favour of

using convolution with bigger strides [23, 24].

Figure 8. Pooling operation down-samples the input. Here, the input is downsampled

using a max-pool filter with stride 2.

Fully connected layer

The fully connected layer is usually used in the last stage of a CNN and is often

responsible for outputting class membership probabilities. It works in the same way

as a neuron in a MLP, taking into account all the input nodes from the previous layer.

The last vector obtained by convolution and pooling is usually flattened and then fed

to the fully connected layer, where a softmax function is applied.

3.3.2. Residual Block

A rule of thumb in deep learning was that the deeper the network is, the better it

performs in terms of accuracy. This technique was preferred by researchers because of
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its simplicity, but it proved to work only until a certain depth level. If the network

is too deep, then problems like vanishing/exploding gradients or degrading appear

[25, 26]. Vanishing gradient can happen if the weight initialization or data pre-

processing steps are not done properly and also when applying the chain-rule over

many stacked layers, then the gradient will get to zero eventually, resulting in the

network not learning properly. Another problem that happens in Recurrent Neural

Networks (RNNs), is the exploding gradient, where if we unroll the RNN for a

number of steps and observe what the backward pass is doing, we can see that the

gradient signal is getting multiplied many times with the same matrix, which can

lead to the gradient ’exploding’. Certain techniques have been developed to combat

these problems and enable networks to converge using stochastic gradient descent

(SGD) [27] by using normalized initialization and intermediate normalization layers

[28] (batch normalization). Degradation, in terms of training accuracy, was observed

when more layers were added, but the accuracy saturated or even started to decrease

dramatically [29].

Figure 9. Residual block. Copyright c© 2016, Reprinted with permission from IEEE.

This problem was addressed by K. He et al. [30], which introduced a deep

residual learning framework and were the winners of ILSVRC-2015 [15] classification

task. Instead of simply stacking multiple layers on top of each other in the hope

of learning an underlying mapping, they fit a residual mapping. This is done by

adding a skip connection, also known as identity shortcut connection, as in Fig. 9.

In their case, the skip connection just performs an identity mapping adding, where

their outputs are added to the outputs of the convolutional layers. This way, instead

of learning the desired underlying mapping H(x), the eq. F(x) + x is learned, where

F(x) := H(x) − x is the residual mapping and authors claim that it is easier to learn

the residual mapping than the original one. Hence, this framework enables the network

to be trained end-to-end using backpropagation with SGD and no extra parameters or

computational complexity is added by the shortcut connections. Moreover, the residual

learning framework is generic and can be applied to other architectures as well.

3.3.3. Feature Pyramid Network

One of the biggest problems in the object detection task is being able to recognize

objects at different scales. Especially for small objects, it can be hard for detectors to

recognize them. A popular technique consists in building a pyramid of different image

scales [31]. Then, processing each level in the image pyramid, objects at different

scales can be detected. In practice, this approach has some drawbacks. Regarding

performance, building an image pyramid takes significant time and memory and this
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creates a problem for real-time applications. Also, as we go higher in the pyramid,

the resolution decreases and the semantic value increases because of the high-level

structures detected, but we cannot use bottom layers since the semantic value is low,

although the resolution is higher.

A robust solution for this problem is the Feature Pyramid Network (FPN) [32].

FPN is a feature extractor that satisfies the requirements of speed and memory. As

it can be seen in Fig. 10, it consists of a bottom-up and a top-down pathway, with

lateral connections. The bottom-up pathway is pretty intuitive, enriching semantically

each higher level while decreasing the resolution. The top-down pathway aims at

reconstructing higher resolution layers from semantic rich layers. In terms of accuracy,

the reconstructed layers are not so precise because of the upsample/downsample

operations, so lateral connections are used to better predict the locations of objects.

Similar as in ResNet, the lateral connections act as skip connections, making training

easier. As a result, the architecture is able to build a feature pyramid with rich semantic

features at all levels from a single input image scale. Another great advantage of FPN

is being a generic solution that can be applied to many problems and architectures,

like RPN (Region Proposal Network), R-CNNs (Region based Convolutional Neural

Networks) or extracting masks for image segmentation.

Figure 10. FPN Architecture. Copyright c© 2017, Reprinted with permission from

IEEE.

3.4. Related Work

This section will give an overview of the evolution of Mask R-CNN, starting from

the simple R-CNN and analyzing all the intermediate architectures which eventually

led to the creation of the aforementioned. Yolact architecture will also be discussed

as an alternative to Mask R-CNN and key differences will be highlighted, especially

regarding those that affect the processing time.

3.4.1. From R-CNN to Faster R-CNN

Object detection in computer vision is still one of the greatest challenge, since it is

also the foundation of other tasks, like instance segmentation or size distribution of

objects. Because we cannot assume the number of objects to be detected in an image,

it is impossible to use a ConvNet with a fully connected layer and have as input only
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one image. Multiple patches from an image could be used, but the question is how to

choose them smartly in terms of aspect ratio and spatial location, since a brute-force

method would be too computational intensive.

In [33], R. Girshick et al. proposed R-CNN, which stands for Regional-based

Convolutional Neural Networks. R-CNN uses selective search [34] to extract only

2000 regions from an image which will represent region proposals. Their system

consists of three modules. The first one is the region proposal generator, which

fabricates 2000 candidate regions. Then, each region is fed to a CNN, which acts

as a feature extractor and outputs a fixed-length vector as output. The last module is

a set of class-specific linear SVMs, that classifies each region and also regresses four

values, representing an offset of the bounding box, such that the location precision of

the bounding box is increased.

Figure 11. R-CNN. Copyright c© 2016, Reprinted with permission from IEEE.

The same author, in [35] managed to solve the problem of processing many region

proposals by feeding the input image to the CNN, which generates a convolutional

feature map. Then, region of proposals are identified from the convolutional feature

map and a RoI pooling layer reshapes them into a fixed size by warping, so that they

can be connected to a fully connected layer. Now, having a RoI vector, a softmax layer

is introduced to predict the class and in parallel, a bounding box regressor finds the

optimal offset. The new architecture is depicted in Fig. 12. These modifications allow

the training to be single-stage, using a multi-task loss and the training can update all

network layers.

Figure 12. Fast R-CNN. Copyright c© 2015, Reprinted with permission from IEEE.

Another notable attempt at speeding up R-CNN was the use of SPP nets [36]. Like

Fast R-CNN, the SPP net computes a convolutional feature map from one image,
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computes a feature vector for each object proposal and then classifies it using SVMs.

Again, we have a multi-stage pipeline that takes significantly more time to train.

Figure 13. Faster R-CNN. Copyright c© 2017, Reprinted with permission from IEEE.

The authors of [37] proposed a new method for selecting the region proposals.

Both R-CNN and Fast R-CNN were still using selective search, a bottleneck for the

whole network because of the slow processing time. Therefore, after a convolutional

feature map is obtained from the image, a separate network is used to learn the region

proposals. The network is known as Region Proposal Network (RPN). Ultimately,

proposals are fed into the RoI pooling layer for reshaping and are then classified

and offsets are predicted. One of the main advantages of RPN is that it can be

trained end-to-end by stochastic gradient descent. Starting from the foundation of

R-CNN, Faster R-CNN became the distilled version which is significantly more

accurate in predictions, but also achieves real-time inference performance. All these

advancements paved the way for efficient instance segmentation, which is a much more

complex task.

3.4.2. Mask R-CNN

After the huge success of Faster R-CNN architecture, it was clear that somewhere

along those lines, future architectures for object detection and instance segmentation

would need to be developed. And this was the case of Mask R-CNN [38], which

is an extension of Faster R-CNN. With the addition of a mask head, it is capable of

segmenting each detected object. So, instead of having just a bounding box around the

object, the model computes a pixel-wise segmentation of that object. The novelties of

Mask R-CNN are: the use of FPN [32], replacing ROIPool with ROIAlign layer and

an additional branch that generates masks. A visual representation of the architecture

is depicted in Fig. 14.
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Figure 14. Mask R-CNN framework [38]. Copyright c© 2017, Reprinted with

permission from IEEE.

Mask R-CNN shares the same two-stage type procedure as Faster R-CNN. In the

first one, RPN is responsible for generating region proposal, then in the second one,

the class and bounding box offsets are predicted in parallel, with the addition of a mask

predictor that works in parallel. Because of that, the multi-task loss is defined as:

L = Lcls + Lbox + Lmask

The mask branch is unique in the sense that it generates masks for every class, hence

there is no competition among classes and the classification is left to the class predictor.

By doing this, mask and class predictions are decoupled, unlike usual FCNs [39],

where a per-pixel softmax and multinomial cross entropy loss is used. Different than

Fast R-CNN, pixel-to-pixel alignment is of high importance, which led the authors to

propose ROIAlign, a layer responsible for aligning the extracted features with the input

and getting rid of the aggressive quantization introduced by ROIPool.

A closer look at the architecture reveals that RPN is not applied on the original input

image, but rather a backbone is used for extracting feature maps and subsequently,

RPN scans over the backbone feature map. A backbone is a convolutional neural

network that acts as a feature extractor, producing feature maps, which are passed

further down the network. In terms of backbone architectures, the authors experiment

with ResNet [30] and ResNeXt [40]. They also use a FPN [32], such that RoI features

are extracted at different levels of the feature pyramid, resulting in substantial accuracy

and speed improvement.

In [41], authors discover an inconsistency in assigning the score of an instance

mask by using the box-level classification confidence. The confidence score takes into

consideration only the difference between the semantic categories, and it is oblivious

to the quality of the instance mask. For example, we might get a good bounding-

box localization and a high classification score, but the mask quality can vary. This

can further impact the evaluation and the training procedure. In the COCO [42]

challenge, the evaluation is done by taking the average precision (AP) metric that

uses Intersection-over-Union (IoU) score between the prediction and the ground-truth

mask, but that is calculated for a fixed confidence threshold score. So, inspired by

this, the authors propose a network capable of directly learning the mask IoU score

and combining it with the confidence score as well, resulting in an alignment between

the mask quality and its score. By addressing the problem of instance scoring, their

solution improves the Mask R-CNN framework.



25

3.4.3. Yolact

Initial experiments using Mask R-CNN for the task of particle detection proved to be

promising, but there was another requirement that had to be taken into consideration

for the purpose of the overall system and that is the speed of processing. To

efficiently monitor the PSD in the grinding process, real-time processing is mandatory,

specifically in our case, we would need to process at least 10 frames per second (FPS).

Bearing in mind this requirement, using Mask R-CNN is not feasible anymore since

it can process 5 FPS on a beefy GPU. For this, the attention is shifted towards an

architecture that is able to offer real-time processing without sacrificing too much

accuracy. And Yolact [43] is the perfect candidate.

Fig. 15 depicts a comparison in terms of FPS vs. mAP on the COCO dataset. It

can be easily seen that Mask R-CNN has a very good mAP score, but it lacks in speed.

On the other hand, Yolact offers the best trade-off between accuracy and speed of

processing. Another aspect that needs to be taken into consideration is the GPU on

which the performance results are computed. All these comparisons have been done

on beefy GPUs and considering our use case, it may be more feasible to have more

compact processing units, like embedded GPUs, which do not have the same high

processing power and memory capacity, so it is expected for the FPS rate to decrease

when the model is deployed on such GPUs.

Figure 15. Comparison of various architectures in terms of speed and mAP [43].

Copyright c© 2019, Reprinted with permission from IEEE.

Previously, it was shown that Mask R-CNN is a two-stage detector, that relies on

feature localization to generate masks. Only after the features have been re-pooled

in the bounding-box region, they can be fed to the mask predictor, resulting in a

sequential pipeline that represents a bottleneck in speed. To overcome this, D. Bolya

et al. proposed Yolact [43], a single stage instance segmentation model capable of

achieving real-time performance.

In order to achieve real-time performance, the authors break up the task of instance

segmentation in two, parallel stages that are finally combined with minimum overhead.

The overall architecture is presented in Fig. 16. The common parts of the network are
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the backbone used for feature extraction and the FPN for producing more robust masks

and high resolution prototypes. Then, in parallel, prototypes and mask coefficients are

generated.

Figure 16. Yolact Architecture [43]. Copyright c© 2019, Reprinted with permission

from IEEE.

Protonet is the network responsible for the generation of k prototypes. It is

implemented as a FCN which has k channels in the last layer and uses as input

a backbone feature layer, enhanced by the FPN. Although this looks similar to a

semantic segmentation task, it differs by having no loss over the prototypes, instead the

optimization is done from the final mask loss, that is calculated after assembly. Mask

coefficients are generated in parallel to Protonet. Being an anchor-based detector, it

has two branches in the prediction head, namely classification and bounding-box offset

regression. To compute mask coefficients, another branch is added, in parallel to the

other two. In the final step, the masks are assembled by combining the prototype

branch and the mask coefficient branch. The operations are implemented as a matrix

multiplication and sigmoid:

M = σ(PCT )

where P is a h× w × k prototype masks and C is a n× k matrix of mask coefficients

corresponding to n instances that passed through Non Maximum Suppression (NMS).

In addition to the new architecture, they also propose an improved version of NMS,

called FastNMS, where the decision of keeping or not an instance is done in parallel

for all instances, therefore improving the speed performance even more. Although

this version suffers from removing a little bit too many boxes, the accuracy drop is

negligible in comparison to the huge increase in speed performance.

3.5. Particle Detection Using ConvNets

Object detection, instance segmentation and semantic segmentation techniques have

been used in a variety of real-world applications, ranging from autonomous driving,

aerial navigation to more industrial oriented applications, such as smart manufacturing

or specialized tasks in factories. Therefore, these techniques have also been used for
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estimating the PSD in different industrial applications and have added new challenges

for these algorithms, pushing the level of innovation and demanding more research. It

comes as no surprise that methods based on DL are proving to be more efficient than

traditional methods even for this type of estimation, but they are relatively new and

ongoing research is still needed.

In [44], authors use DL for estimating the distributions of grain size and porosity

from micro-CT images. As training data, they generate synthetic 3D images of spheres,

simulating how a micro-CT image would look like. They’ve chosen a 3D CNN [45],

which was initially used for human action recognition from video images. The 3D

CNN takes as input the 3D images and outputs directly two values, the grain size

and the porosity label, hence in this case, a regression rather than segmentation is

performed. Training was done on the synthetic data and then the model was tested on

real-world data, showing promising results.

In the case of 2D images, we can also encounter the problem of partially sintered

and agglomerated particles, since the 3D particles are projected on the image plane. [7]

aims at addressing this problem by using Mask R-CNN architecture to first segment

instances of particles and to compute the PSD. The same strategy is applied as in the

latter article, training and validating on synthetic images and then testing on real-world

scanning electron microscopy images (SEM) or transmission electron microscopy

images (TEM). After inference on the test images, the PSD is calculated using the

Feret diameter as the equivalent diameter of a particle. Although the method produces

satisfying results in terms of accuracy, the time and memory requirements are not

taken into consideration and may pose a problem if this solution would be integrated

in a real-time application.

Another domain that picked the interest of deep learning and particle detection

is Cryo-electron microscopy (cryo-EM). Here, detection is difficult mainly because

of extremely low signal-to-noise ratio (SNR). The approach used in [46] is quite

unique and uses two DNNs, one classification network and one segmentation network.

First, the classification network is trained and then using its parameters as initial

values for the segmentation network, the training process is accelerated. The

segmentation network is responsible for getting probability (density) maps that are

fed to the selection algorithm (Grid-based Local-maximum selection) and produces

initial results. Ultimately, preliminary results are fed to the classification network and

final results are obtained. Similar to [47], they use ’Atrous convolution’ feature in

the segmentation network. In terms of training data, because of the low SNR which

causes very difficult manual annotation, they generate images from real-world datasets

and also use simulated datasets.

Xiao Y. proposed in [48] a solution for particle picking based on the Fast R-CNN

framework [35]. To develop a fast method, they have tried to solve one of Fast R-

CNN’s bottleneck, which was the region proposal. Instead of using selective search,

they have proposed a sliding window approach. Their solution reduces the test time

from 1.5 minutes obtained from [49] to 2 seconds. They have also tried to use Faster R-

CNN, which replaced selective search with RPN, but argued that for cryo EM images,

the RPN performs terrible and because of their special case where possible particles are

of fixed size, the sliding window is much faster and better. Also, the papers discussed

so far dealt with particle picking when there is only one particle of interest in the image,

but in this case, their images contained ice particles, which makes classification harder,
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specifically the rate of false positives increases. To deal with that, they have annotated

ice particles as well and formulated the problem as a three-class classification, so that

the neural network would learn the subtle difference between ice and protein particles.

As a result, the rate of false positives decreased significantly.
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4. DETAILED DESIGN AND IMPLEMENTATION

The focus of this thesis is building a system capable of estimating the PSD of mineral

rocks from images taken in a flow-through system. From a commercial point of view,

an emphasis is put on apatite particles, since they are the most valuable, but as a

challenge and to ensure generality, we take into consideration phlogopite particles as

well. For estimating the size distribution, we need to segment instances of particles

in each image. Although this can be achieved with conventional image processing

techniques, deep learning techniques prove to be much more robust, accurate and

faster, representing the state-of-the-art in the instance segmentation task. Moreover,

although semantic segmentation networks, like DeepLab [47], can also segment the

image, the dataset on which we are working includes a lot of particles that overlap

and would thus require post-processing steps that would slow the pipeline. Hence,

we choose two instance segmentation networks, Mask R-CNN [38] and Yolact [43],

both having their own specific advantages. Mask R-CNN represents the state-of-

the-art architecture in instance segmentation, but Yolact is able to achieve real-time

performance with sacrificing just a fraction of accuracy. An overview of the pipeline

applied in this thesis is depicted in Figure 17. Regarding implementation, Matterport’s

implementation [50] of Mask R-CNN has been used and for Yolact [43], authors have

released their open-sourced repository.

Figure 17. Pipeline overview.

4.1. Imaging Setup

This section will present the setup used for acquiring the data. Outotec’s PSI 500

was the device of choice, being capable of computing the size distribution using

laser diffraction, hence having a reference measurement. A flow through cuvette was

connected with a tube to PSI 500 outlet, such that the minerals are imaged in a flow-

through system. There were two setups of lightning, front lightning which emphasized

the color of particles and back lightning, which resulted in grayscale images. For

our case, we have decided to use front lightning. The camera used for capturing

images from the flow-through system had a magnification factor of 3.5 micrometers
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per pixel. The magnification factor was important for aligning the size distribution

obtained from images with the real-world scale and also to compare it with the size

distribution obtained by PSI 500. The dataset consisted of colour images, having a

resolution of 2448x2048. Fig. 18 shows an example of captured images.

(a) Raw image data. (b) Annotated image.

Figure 18. Images captured by PSI 500 and annotated with VIA tool.

4.2. Task Description

For this use case, there are 2 particles of interest, namely apatite and phlogopite. By

looking at Fig. 18, one can already start discriminating between them. Apatite particles

are more transparent and clear while the phlogopite particles are mostly opaque and

have a brownish tint. The central task of this project is getting the size distribution

of apatite particles across a sample of images. The stakeholders are mainly interested

in apatite detection because phlogopite is much less valuable, therefore it is not so

relevant for the grinding process. On the other hand, training an algorithm to detect

phlogopite as well, may result in increased accuracy and may serve well for other use

cases, where multiple different particles may need to be detected. Hence, the task is

now formulated as a two-class instance segmentation problem.

The dataset consists of hard and tricky cases as well, where particles can be

occluded, partially captured in the image and even particles that are mixed or hard

to classify because of similarity. When particles are occluded or partially captured in

the image, it represents a problem for the PSD because we do not know its actual size,

hence we may alter the accuracy of the PSD. In our case, it was decided that particles

laying on the border of the image can be discarded, provided that we have enough

detected particles so that the result is statistically meaningful. Mixed particles are also

interesting, because one can be interested in detecting the ratio of apatite/phlogopite

from the particle or simply label it as mixed. There are also difficult particles to classify

even for a human operator. Some can be semi-transparent and have a faint tint of

brown, so it may be really difficult to assign one class. Another major challenge

for this dataset is represented by making the distinction between a particle that is

in-focus and out-of-focus. Because every measurement that it is performed needs

to be converted to a real-world scale, for particles that are not in-focus we cannot

approximate correctly their true size. The magnification factor is known only for the
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region where particles are in-focus, everything else cannot be estimated by a simple

linear adjustment. Therefore, only particles that are in-focus need to be detected, so we

can get a reliable PSD. In Fig. 18, particles of interest are highlighted and annotated

manually.

An important note is the lack of 100% correct ground-truth, since the provided

dataset does not include annotations as well, hence particles need to be manually

annotated, with limited knowledge in the domain of mineral processing. The only

reference measurement available is the PSD provided by PSI 500, which unfortunately

cannot discriminate between apatite and phlogopite and computes the PSD considering

both particles and using the technique of laser diffraction.

4.3. Dataset Description

The datasets of images were provided by Outotec. There are 5 datasets, each having a

different ratio of apatite and phlogopite particles, measured by another system. For

each of the dataset, a reference measurement was provided by using the PSI 500

particle analyzer, namely a graph consisting of particle size (µm) and their frequency,

which can be seen in Figure 24. Because the data had to be manually labelled, only one

of the dataset was labelled and the others were used only for running the inference on

the trained model and getting the particle distribution for comparison with the reference

measurement. The only difference between the datasets was the distribution of apatite

vs. phlogopite particles. As a result of the similar structure between datasets, it allows

for easy transfer learning. For training a model, the dataset would need to be split in

a training, validation and test set. A proportion of 60-20-20 was chosen, having 72

training images, 30 validation images and 33 test images.

4.3.1. Annotation Process

When dealing with DL models, one of the most common problems is data. For a model

to be able to learn and to generalize well, a relatively big dataset is needed. There are

a number of big datasets on the internet, like COCO [42], ImageNET [15], Cityscapes

[51] and so on, but they cannot contain all the images from all domains, but they are

rather intended as natural images, containing everyday scenes/objects. Hence, in the

case of real-world data and specialized domains, researchers have to manually label

their specific dataset, which in many cases is a laborious work. Also, depending on the

task, from object detection to instance segmentation, the annotation can be more and

more challenging. In the case of image classification, it can be fairly quick to label

images, but going to instance segmentation, where one has to draw polygons carefully,

it can take significant time, especially if we have lots of instances per image, and we

need to label hundreds of images. For labelling the data, the VIA labelling tool [52]

has been used, where one can draw polygons around the object of interest. Generating

bounding boxes afterwards is really easy. The software exports the annotations in

JSON format and can be directly used in Matterport’s implementation. When training

the Yolact model, the implementation expects COCO-style annotations, therefore a

script for converting the VIA annotations to COCO annotations was implemented.
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When annotating the images, although the annotation task is fairly easy, few

challenges were encountered. First of all, there are no clear guidelines to distinguish

between the apatite or phlogopite particles. As a rule of thumb, the apatite particles are

clear and transparent, while the phlogopite ones are less transparent, sometimes opaque

and have a brownish color. Unfortunately, there are also particles that are mixed and

contain both apatite and phlogopite, or the brownish color cannot be clearly seen. All

of these are increasing the complexity of the annotation process.

Another challenge involved the annotation of particles that are not in-focus. The

reason for not wanting particles out of focus is that after the segmentation, the particles

need to be measured and then multiplied with the magnification factor of the camera.

Particles that are not in focus do not have the same magnification, hence including

out of focus particles will alter the accuracy of the PSD. Because of the small focus

area, it was very hard in some cases to distinguish between what is in focus and what

is out of focus. In some cases, large particles were partly in focus and partly out of

focus because of their size. Another difficult case is when the particles are overlapping.

Not only do they influence the color of one another, but sometimes it can be hard to

correctly guess and label its true contour.

4.3.2. Dataset Analysis

Matterport’s implementation of Mask R-CNN offers scripts for analysing the dataset,

which helps in carefully setting some of the network’s configuration parameters. The

first analysis is carried on the mean value of all the pixels in the dataset, for each color

channel. This value is useful for mean subtraction, as part of the network preprocessing

steps. This also had to be done for Yolact as well. If we are dealing with images of

multiple dimensions, we also need to analyse their dimension and choose the optimal

size, as input images are resized to one size, so the model can be trained with multiple

images per batch. Other statistics, such as number of particles per image or per dataset

can be obtained, which can be useful for the evaluation of the network. A function

for computing the bounding box distribution was also added, as this allows for better

choosing the anchor scales. The anchors can be overlaid on the input images, so we

can hint how they are covering the feature maps. Unfortunately, Numpy uses bytes

for Boolean values, resulting in large masks for high resolution images, making the

training really slow. For this, mini masks are used (resize masks to a smaller scale e.g.

56 × 56). They can also be inspected to see which mask size achieves the optimal

trade-off between accuracy and low memory.

The size of particles was also analyzed by plotting the histogram of equivalent

diameters. Figure 19 reveals that most of the particles have the equivalent diameter

less than 290 pixels, which translates to roughly 1 mm in metric scale. The maximum

size that can be detected by PSI 500 is 1 mm, but by looking at the histogram, the

imaging system allows for identifying even larger particles.
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Figure 19. Particle size histogram for the training dataset.

4.3.3. Transfer Learning

As mentioned above, the size and quality of data play a major role in building a good

DL model. State-of-the-art DNNs require thousands of labelled images, which in some

cases, as in this work, is just impossible to get.

Transfer learning paradigm [53, 54] hopes to offer a solution to this problem

by transferring the common features that are shared by multiple data points. This

technique consists of training a model on a big dataset, like ImageNet or COCO, and

use the weights as initial weights for training the model on a much smaller, specific

dataset. The reasoning behind why this works is that many images share the same

low-level spatial characteristics, and it is much easier for the model to learn these

features from big data. Not only it solves the problem of having a small training

dataset, but transfer learning is also a technique used for preventing overfitting. In this

work, pre-trained weights of models trained on COCO and ImageNet have been used,

but the difference in accuracy between them is negligible considering the use case of

this thesis.

Depending on the implementation and models, in some cases a restrictive rule is to

have the same image size as the images on which the pre-trained model was trained. In

the case of Matterport’s implementation, that was not an issue, but in the case of Yolact,

only 550x550 or 700x700 images can be used. Therefore, that means scaling down the

images from 2448x2048 to 550x550, which greatly affects the quality of the images

and annotations. Especially smaller particles became so small that it was impossible to

visually localize them, while the blurriness was accentuated a lot. Moreover, rescaling

the dataset makes the comparison between models a bit more difficult and inconsistent.
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4.3.4. Data Augmentation

Transfer learning solves the problem of having huge data for training, but it works

until a certain moment. While it can transfer low-level spatial features, we still need to

deal with the high-level ones. And even for this task, the available dataset was really

small, namely only 73 images for training. Data augmentation is the technique used to

artificially generate new, similar data from existing one. The aim of data augmentation

is to increase the size of a dataset. There are two major categories of image data

augmentation according to [55], specifically basic manipulations and deep learning

approaches. In this work, the focus will be on the first one, consisting of basic image

processing techniques that alter the images in a slight way, so that the dataset size is

increased with plausible fabricated images. This process is applied only to the training

dataset as opposed to data preparation, where the same operations need to be applied to

the validation and testing dataset as well. The choice of image processing operations

needs to be taken carefully, by analyzing the context of the data. For example, it does

not make any sense to rotate a picture with a car upside-down as the model will most

surely not see anything like that.

For the training dataset, in the case of Mask R-CNN, the considered augmentations

were flipping of the image left/right, flipping up/down, rotating it, blurring, sharpening

and edge enhancement. With each new augmentation operation, the dataset doubles its

size. For the current use case, a lot of flipping and rotations can be done, since spatially,

the particles can be anywhere in the image and placed in any direction. But when

dealing with colors, it was essential to capture the brownish color of the phlogopite

as a distinctive landmark, consequently no operations altering the color channels has

been performed. If using augmentations that change the spatial location of the objects,

annotations also have to be modified accordingly. Yolact data augmentation consists

of photometric distortion, random sample crops, mirroring, flipping and rotations.

4.4. Training and Optimization

When training a DNN, the two most important metrics are training and validation loss.

They represent all the losses summed up and offer a general overview of the network

performance and how well it is learning. The losses have to be evaluated together, so

that we can choose the best model. By analyzing the training loss, we can see if the

model has started to learn or not, by how the loss converges or spikes. But a converging

training loss does not indicate the performance of the model and from a certain

point, the model actually overfits the training data, resulting in poor generalization.

The validation loss can indicate the overfitting, as it stops improving after a certain

amount of epochs and afterwards it keeps degrading. Validation loss is also used for

early stopping [56], namely stop training after there is no more improvement in the

validation loss for a specified interval.

In Fig. 20, the training and validation loss from the Mask R-CNN model are shown.

The Matterport’s implementation saves a new model whenever a better validation

loss has been recorded, so at the end of the training we are sure to get the best

model. Unfortunately, Yolact’s implementation does not provide such a feature, but

by analyzing the losses, we can select the best model.
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(a) Training Loss (b) Validation Loss

Figure 20. Training and validation loss of Mask R-CNN model.

In Mask R-CNN, we are training the model with the full-resolution images, so that

we can accurately segment small particles as well. Because of this, we can work with

a batch size of only one image. On the other hand, on Yolact we have to work with

much lower resolution images (550 × 550) and the architecture is more lightweight,

meaning that we can have a batch size of even 8 images, which is highly recommended

by the authors. A bigger batch size usually allows for a better convergence to the local

minimum when applying gradient descent.

Other parameters, such as weight decay, learning rate, learning momentum, etc.

were left the same as in the original implementation. Adjusting different parameters

and obtaining different models can easily become hard to track and then especially

difficult to compare them. Also, visualizing independently the losses (class loss,

bounding-box loss, mask loss) can yield some insights into what may go wrong with

the training. A great tool for solving all these issues is W&B (Weights and Biases) [57].

With few lines of code, it is able to log all the desired metrics and stores them in the

cloud, offering a nice centralized visualization. This way, we can compare the losses

between different models and choose which one was the best one and what parameters

were used. It can also keep track of all the losses, so they can be inspected separately.

4.4.1. Blurry Class

When doing the evaluation of the first model, we observed an interesting fact: the rate

of false positives was significantly high, and they usually occurred when the model

was detecting out-of-focus particles. Strictly considering detection, this proves how

remarkable the network is and how capable it is of detecting a good variety of particles.

On the other hand, considering the use case of PSD, out-of-focus particles represent

false positives, and they should be avoided. Our idea was to formulate again the

problem, but as a three class instance segmentation problem, adding the blurry class,

which would have blurry apatite and phlogopite particles under the same category,

simply blurry particles. This way, when running the inference on the data, we get in the

same time in-focus and out-of-focus particles. There are also cases in which a particle

is detected both as an apatite/phlogopite and as a blurry particle, but considering the

NMS, the detection with higher confidence is kept.
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4.5. Size Distribution

After training the network, we obtain the best model, which will be used for inference

on the unlabeled datasets. Once the particles are segmented, we can easily compute

their area in terms of number of pixels. To be able to compare the results with the ones

obtained from laser diffraction, we need to approximate the area by the equivalent

diameter, which is done using:

D = 2 ·

√

A

π

where D is the diameter and A is the area of the particle expressed in pixels.

The final step consists in converting from pixels to real-world measurement, by

applying the magnification factor of the camera. For the camera in our experiment,

the magnification is 3.5 micro-meters per pixel.

There are other methods as well for measuring the size distribution, especially suited

for when particles have shapes that are more elongated. In [58], the authors use the

Feret’s diameter, which is the longest dimension of the particles, independent of its

angular rotation.
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5. TESTING AND VALIDATION

The quality of the estimated PSD is heavily dependent on how well the instance

segmentation task is performed. The first requirement that needs to be satisfied is the

accuracy of our models. Because instance segmentation is a more complex task, we

need to combine multiple metrics to get a complete understanding of how these models

perform and to evaluate them accordingly. Working with closed-source datasets from

customers means that evaluating a model requires more in-depth analysis. The results

obtained on the current datasets cannot be straightforward compared to other open-

source datasets, simply because the data is significantly different. Most researchers

develop their DNN architecture and benchmark it against well-known open-source

datasets, such as COCO [42], PASCAL [59], CityScapes [51] etc. These datasets

contain general objects which are clearly distinguishable and in-focus. On the contrary,

our dataset exhibits some difficult challenges, considering that even for a human

operator it may be difficult to discriminate between apatite or phlogopite or in-focus

vs. out-of-focus. Therefore, the metrics are applied on data that has been manually

annotated and considered as ground-truth by non-experts. While these metrics would

validate the model on the instance segmentation task, the PSD computed from the

instance segmentation can be assessed by comparing it to the PSD obtained by

Outotec’s PSI 500 device. The second requirement that needs to be satisfied after

ensuring accuracy is real-time performance. PSD is relevant only if we have a large

enough number of samples, and it is updated in real-time, so that we can infer the result

on the whole population. For our setup, this can be achieved if the processing time is

at least 10 FPS.

The purpose of the evaluation phase is to assess the performance of DNNs in the

context of instance segmentation applied on mineral images and to compare the PSD

obtained by DL-based segmentation with the one resulted from PSI 500, which relies

on laser diffraction. This chapter first introduces and defines the metrics that will be

used in the evaluation phase, presenting the obtained results on our specific dataset.

Then, the size distribution results are revealed and analysed in comparison with the

reference measurement provided by Outotec. Ultimately, size distributions obtained

by the two models are compared against one another.

5.1. Metrics

To measure the performance level of DNNs with the intent of comparing them, we

use a range of metrics. Especially when dealing with complex tasks such as instance

segmentation, simply looking at the classification accuracy of the model is not enough.

Popular metrics include confusion matrix, precision-recall curve (PR curve) and mean

average precision (mAP) score. The metrics are performed for both Mask R-CNN and

Yolact. We also measure the inference time in frames per second and consider it a vital

part in comparing the two architectures from the overall system’s point of view.
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5.1.1. Confusion Matrix

As its name suggest, the confusion matrix is a matrix that expresses how many

instances we managed to detect correct, incorrect or could not detect at all. In literature,

the following terms are used:

• true positives (TP): the model correctly predicts an instance

• true negative (TN): the model correctly predicts a misdetection. This does not

apply to object detection or instance segmentation, since it would represent all

bounding boxes (masks) that are not detected in an image, which would be a

huge number.

• false positives (FP): the model incorrectly predicts an instance

• false negatives (FN): the model is not capable to predict an instance

Computing these terms gives a better image of how the model is performing and

what should be improved. But in object detection or instance segmentation, the

classification of a detection is not binary, like detected or not detected, as the detection

can partially overlap with the ground-truth. Because of this, another metric is needed,

to establish what we consider a valid or not valid detection.

Intersection Over Union (IoU) is a measure based on the Jaccard Index that evaluates

the overlap between two bounding boxes or instances, known as detection and ground-

truth. The formula for IoU score is depicted in Fig. 21. The IoU score is a number

between 0 and 1 and represents how much the two bounding boxes are overlapping.

By setting a threshold (usually 0.5), a detection can then be classified as a TP or FP

and subsequently for a ground-truth instance, we can tell if it is a FN or not.

Figure 21. Intersection over Union mathematical formulation.

In our experiments, we benchmarked the two models by using the test dataset. The

validation dataset is used only in the training phase, to be sure that there is no bias

towards the data on which the evaluation metrics are calculated. Confusion matrices

for both Mask R-CNN and Yolact models have been generated and the results are

depicted in Table 1. To have a fair comparison, we generated the confusion matrices by

adopting the same thresholds, setting the confidence score threshold at 0.3 and the IoU

threshold score at 0.5. Predictions that have the confidence score below the threshold
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are discarded, as well as predictions that have lower IoU score than the threshold are

considered as two separate instances.

Yolact Mask R-CNN

Apatite Phlogopite Apatite Phlogopite

True Positives 112 117 130 138

False Positives 155 42 322 153

False Negatives 20 59 2 38

Table 1. Performance metrics for test data.

The test dataset consists of 132 apatite particles and 176 phlogopite particles. By

focusing on the Mask R-CNN results only, the number of TP is exceptionally high

while the number of FN is low, meaning that the model can detect the majority of

apatite particles. In the case of phlogopite particles, the number of undetected particles

is higher, but still at a decent level. However, the number of FP is much higher than

TP, both for apatite and phlogopite particles. After visually inspecting the inference

on the test images and comparing it with the ground-truth, the following conclusions

have been drawn. First, the network is able to detect exceptionally small particles,

which were ignored in the annotation process. On the other hand, it has problems in

distinguishing between in-focus and out-of-focus particles, detecting many particles

that are blurry. If only the instance segmentation task is considered, then the network

performs really well in finding all the particles, but in our specific use case, blurry

particles are not relevant.

Relating the results from Mask R-CNN to Yolact, we can draw the conclusion that

the first model is capable of detecting more particles. Although the number of FP is

relatively low compared to that of Mask R-CNN, a potential explanation is the rescaled

images to lower resolution for Yolact model, which makes the detection of really small

particles almost impossible.

The confusion matrix for both models shows that the model is detecting too many

particles and the visual inspection confirms the fact that the models are struggling in

avoiding blurry particles. As a potential solution, we have decided to label particles,

both apatite and phlogopite that are blurry, in the hope that the system will learn

the difference between in-focus apatite and phlogopite and blurry particles. After

blurry particles have been identified, they are no longer used in the size distribution

estimation. The NMS is also modified to favour blurry particles, by suppressing other

detections if the current one is a blurry one with the confidence score above 0.5. The

results are documented as a confusion matrix in Table 2.

Yolact Mask R-CNN

Apatite Phlogopite Apatite Phlogopite

True Positives 110 118 118 137

False Positives 159 39 317 114

False Negatives 22 58 14 39

Table 2. Performance metrics for test data. The model was trained with the blurry

class.
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Despite lowering a bit the number of FP, there is an increase in FN. The same

applies for both architectures. Although the confusion matrix is a robust performance

measurement, one has to fix a confidence score threshold and an IoU score threshold,

which offers just a snapshot. Optimal thresholds can be chosen by applying a metric

that is based on varying these scores and assess how the model performs.

5.1.2. Precision-Recall Curve

Precision - Recall measure (PR) is a useful performance measure when the classes are

imbalanced and when the main objective is to find a trade-off between parameters.

Precision represents the rate of FP, while recall represents the rate of FN. They can be

mathematically formulated as:

P =
TP

TP + FP

R =
TP

TP + FN

We can assess the performance of the model by visually inspecting the area under

the PR curve. A high area indicates high precision and high recall, meaning low FP

and FN rates. A system with high precision, but low recall returns few results, but most

of them are correct. On the other hand, a system with high recall, but low precision

returns many results, but most of them are incorrect. The ideal system has both high

precision and recall, but in real-world scenarios, we have to aim for a trade-off between

these two, depending on the use-case of the system.

Figure 22 shows a comparison of PR curves between two models, both trained on

Mask R-CNN architecture, but one has been trained with an additional blurry class for

blurry particles. On the same figure, the IoU score threshold is varied and different

confidence scores are highlighted.
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(a) Model trained with two classes: apatite and

phlogopite

(b) Model trained with three classes: apatite,

phlogopite and blurry particle

Figure 22. Precision-Recall curve for test set using Mask R-CNN.

Following the same procedure, we compute the PR curves for the Yolact model,

trained with and without the blurry particle class. Figure 23 shows the obtained results.

For Yolact, it is obvious that the addition of the third class, blurry particle, results in

an improved precision and recall. To achieve a trade-off between precision and recall,

the best configuration would be an IoU score of 0.5 and a confidence score of 0.5.

Depending on the specificity or sensitivity requirements, different configurations can

be selected. Unexpectedly, for certain configurations, the Yolact model proves to work

even better than the Mask R-CNN, precisely in terms of precision, since Yolact is much

less likely to predict false positives.

(a) Model trained with two classes (b) Model trained with three classes

Figure 23. Precision - Recall curve for the test set using Yolact model.
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Mean average Precision

Most of the time though, expressing the overall performance in just a number is

desired due to its simplicity and ease of understanding. The Average Precision (AP)

represents one of the most used metric for assessing a DL model in the task of instance

segmentation. The AP is defined as the area under the PR curve.

AP =

∫

1

0

p(r)dr

As a pre-processing step, usually the PR curve has a zig-zag pattern and needs to

be smoothed out. This is done by replacing each precision value with the maximum

precision value to the right of that recall score. Then, an interpolation is performed

to get the final result. In COCO, a 101-point interpolation is performed on the PR

curve. Traditionally, AP is performed across a range of IoU thresholds (0.5-0.95). The

mean Average Precision (mAP) is the average of AP’s calculated at all IoU thresholds

between 0.5 and 0.95, for all classes.

5.1.3. Inference Time

To have a complete analysis of the two DNN architectures applied for this use case,

a comparison in terms of processing speed must be performed. Both architectures

had a ResNet 101 backbone. Regarding image size, Mask R-CNN was trained with

2048x2048 images, while for Yolact, images had to be resized to 550x550, which

resulted in slight accuracy loss, but gained significant processing time. Even if the

input image size differs, according to [43], Yolact is supposed to be faster than Mask

R-CNN. In our experiments, inferencing on a sample of images resulted in 23 FPS

processing speed for Yolact and only 5 FPS for Mask R-CNN. The requirement for

online grinding control and monitoring is a processing time of at least 10 FPS.

5.2. Size Distribution

All the evaluated metrics above rely on one essential concept: having a reliable,

fixed ground-truth. As it was specified in Section 4.3.1, the annotation process is

not straightforward and can suffer from errors due to the highly specialized domain.

Because of this, it is mandatory to evaluate our models with respect to a reference

measurement, which does not rely on manual annotation. Outotec provided reference

measurements by operating the PSI 500. Figure 24 depicts the size distributions

for different datasets, by applying the laser diffraction method. Due to the inherent

inability of laser diffraction to distinguish between particles of different classes, the

DL-based pipeline must also combine the size distributions obtained from the apatite

and phlogopite particles in a mixed distribution, for achieving a correct comparison.
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Figure 24. Reference measurements provided by Outotec’s PSI 500, using laser

diffraction technology.

Figure 25 shows the PSD of all samples, when Mask R-CNN model has been used, in

two formats: histogram and kernel density estimation (KDE). The process of obtaining

a histogram for a specific dataset is presented in Section 4.5. The same process

is applied for all samples and each histogram is normalized individually. However,

plotting all histograms on the same canvas leads to cluttered areas, from which it can

be hard to analyse the result. Additionally, due to the frequent spikes in the histograms,

a smooth curve that approximates the underlying distributions would be desirable. This

can be achieved by calculating the KDE for each sample, which replaces the discrete

histogram with a continuous, smooth curve that characterizes the observed PSD. It

can also introduce potential distortions, if the underlying data is not smooth enough or

bounded, but choosing a good set of smoothing parameters can alleviate this problem.

The computation of KDE was performed with the help of Seaborn [60], a Python data

visualization library, that uses only Gaussian kernels. The final curves are plotted on a

logarithmic scale, so that the axes match with the reference measurement.

When comparing the reference PSD with the ones obtained by our method, we have

to take into consideration certain aspects. First, the laser diffraction method is capable

of measuring only particles of up to 1 mm, which translates to approximately 286

pixels. By referring to Section 4.3.2 and Figure 19, the imaging system is capable

of detecting larger particles, hence the size distribution might vary from the reference

measurement. Second, after a visual inspection of the datasets, it was observed that a

significant number of medium-large particles, usually phlogopite, are out-of-focus, due

to the narrow depth-of-field. Hence, there is a strong possibility that such particles are

measured by the laser diffraction, but for the current imaging system it is impossible

to correctly process them.

Analysing Figure 25 and Figure 24, it seems like sample4 and sample5 still have

the highest magnitude and sample1, sample2 and sample3 follow the trend of two

spikes, although the magnitude is reversed. Comparing the positions of distributions,

DL-based system detects particles that are smaller than particles detected by the laser

diffraction. Surprisingly, the PSD obtained when applying Yolact indicates different

distributions. Corroborating the shape and position of the PSD curves with confusion

matrix and with the limitation of Yolact processing only 550x550 images, it becomes
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clear that Yolact model is having difficulties in detecting smaller particles. The shapes

of PSD curves are tighter than that of the ones obtained with Mask R-CNN, while the

peaks are slightly shifted to the left.

(a) Histogram of particle size (b) Kernel density estimation for the PSD

Figure 25. PSD estimated by Mask R-CNN model trained with blurry labelled

particles.

(a) Histogram of particle size (b) Kernel density estimation for the PSD

Figure 26. PSD estimated by Yolact model trained with blurry labelled particles.

To better understand the impact of each model on the PSD, Figure 27 shows the

ground-truth PSD compared to the PSD obtained by the two models. The graph

supports the hypothesis that Mask R-CNN is more biased towards detecting small,

blurry particles than Yolact is. Furthermore, the inference PSD results validate that DL

models can successfully segment instances of particles and produce PSDs similar to

the ground-truth. We have also analysed the PSD of apatite and phlogopite individually

by plotting the graph in Figure 28, and the same conclusion was reached, that small

apatite particles are detected by the Mask R-CNN. Regarding phlogopite, the PSDs

look more similar and closer to the ground-truth, since they are easier to segment.
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Figure 27. PSD of ground-truth instances and the PSDs resulted from inference with

Mask R-CNN and Yolact.

(a) Apatite PSD. (b) Phlogopite PSD.

Figure 28. Individual PSD for apatite and phlogopite.

A shortcoming of the laser diffraction method is that it cannot distinguish between

different particles, hence the resulting size distribution is a characteristic of the mixture

of particles. Whereas if using the imaging system, particles can be identified separately

and size distribution can be likewise computed individually or for the whole mixture.

In Figure 29, we have plotted the histogram of apatite and phlogopite particles and

computed the KDE for one of the samples.
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(a) (b)

Figure 29. Histogram and KDE for apatite and phlogopite particles of sample 1.



47

6. DISCUSSION

This work investigates the application of DL-based instance segmentation in the

context of estimating PSD. To achieve this goal, two DNNs, specialised for the

task of instance segmentation, have been trained with images of particles in fluid

suspension. The first architecture to be tested was Mask R-CNN, a robust and powerful

architecture, especially suited for transfer learning. Although the model yielded

good results on our dataset, the major drawback was the slow processing time and

considering the purpose of the overall system, which is real-time particle monitoring,

we had to shift the focus towards an architecture more specialized in real-time

processing. Yolact is designed to be a simple, lightweight, real-time DNN for instance

segmentation, while maintaining a high level of accuracy. An extensive comparison

was performed between the two models to understand the key differences and to obtain

an optimal trade-off between accuracy and speed, so that the requirements for an online

particle monitoring system would be fulfilled. Moreover, the PSDs obtained from the

DL-based pipeline were compared to a reference measurement provided by the PSI

500 particle analyzer from Outotec, based on the laser diffraction principle. Despite

implementing a successful proof-of-concept, there are still a number of challenges

that need to be addressed in order to have a robust and reliable mechanism for PSD

estimation.

Inspired by the emerging concept of transfer learning, utilizing DNN for specialized

data and use cases seems like a promising idea. The known phrase that ’a DNN is as

good as the data you feed it’ has solid foundations and applies for each DL architecture.

Nevertheless, in specialized domains, good data is tremendously difficult to obtain and

even much harder it is to label it correctly and efficiently. Thanks to transfer learning,

we can utilize the general knowledge of a network to solve our particular task. This

results in significantly less labelled data and reduced training time. Transfer learning

represents the core concept of this work. The obtained results support the idea of

transferring knowledge, since the models are pre-trained on huge datasets containing

general objects and then the last layers of the models are fine-tuned for our specific

dataset.

Unfortunately, there is still a significant part of manual annotation involved. One

potential solution inspired from I. Yalniz et al. [61], would be to employ an iterative

pipeline that would expand the training set. In the beginning, few labelled instances

would be needed so that the system can be trained. Then, unlabelled data would be

fed to the network and only predictions that have a high confidence score would be

retained. Next, we would use the new labelled data by our model to expand the training

set and we would re-train the model, with the purpose of achieving better accuracy.

There are few investigations of how such frameworks would work, but it seems like a

promising new concept.

The dataset proved to be complex and required careful analysis. Blurriness has

also been a major challenge when carrying out the experiments. First, it is hard to

distinguish between an in-focus and out-of-focus particle, especially because of the

slurry composition that surrounds the particles. Apatite particles are significantly more

difficult to recognize as blurry due to their transparent nature. Second, some particles,

especially the large ones, are big enough to be partly in-focus and blurry at the same

time. This is caused by the narrow depth-of-field, resulting in possible inaccurate
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measurements if such particles are considered. It is also not clear yet if the DNNs can

learn to distinguish between blurry and in-focus particles. The results obtained from

training with a blurry class support the idea that the DNN is capable of identifying

some of the blurry particles, but it is not yet robust enough. It may be that the network

has to be modified in order to also calculate a blurriness measure and to be part of the

learning and inference process, rather than a post-processing step, so that the impact on

the inference time is not significant. Moreover, comparing the PSDs from the PSI 500

with the ones obtained from the imaging system can be almost impossible, as the laser

diffraction can take into account also the blurry particles. Another observation resulted

from the annotation process was that some particles can be also mixed, consisting

of both apatite and phlogopite. Also, some cases were extremely hard to manually

annotate, namely attributing a class, due to increased similarity in particles. In turn,

this can affect the evaluation, as annotation is biased by the human annotator, especially

if he or she is not an expert in the mining field.

To overcome the detection of small particles in the case of Yolact, a possible solution

is to partition the original sized image, for example in four equal patches, then run

inference on each of them individually and in the last step, assemble the final picture.

The complex part lies in stitching back the four patches and solving the case of particles

that are split between the patches. Naturally, this operation would add an overhead for

the processing time, but may increase the number of small detected particles.

An experiment utilizing controlled particle size distributions obtained by sieving

enriched material was planned to strengthen the evaluation part of this thesis.

This would have allowed further analysing the performance of the approach. The

experiment would have been conducted first with pure apatite, allowing analysing

multiple distributions and directly comparing to the laser diffraction result. Then,

material from the same distribution would have been mixed with phlogopite to evaluate

the capability in a real scenario. Unfortunately, because of bad circumstances leading

to delays in the project, such an experiment was not feasible anymore.

There are still areas that need further research in order to apply DNNs to real-world,

hard engineering problems, but as the work performed up to this point shows, the trend

looks promising.
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7. CONCLUSION

The principal objective of this thesis was the study of DL-based instance segmentation

for obtaining the PSD. Obtaining the PSD in real-time serves for control and monitor

processes in the grinding circuit. The dataset comprised of images containing apatite

and phlogopite particles in fluid suspension, captured by a color camera. The particles

had to be identified in images and for that, two DNN models, specialized for the task

of instance segmentation, were trained and used for inference on the unlabeled data.

Once the particles have been identified, the PSD can be easily computed.

In contrast to other works [7], not only testing, but also validation and training

is performed on real-world data by leveraging the concept of transfer learning. No

synthetic data is generated and the data is manually annotated, taking in consideration

difficult cases where particles are mixed, partially blurred or overlapping with other

particles. The first trained architecture was Mask R-CNN, which provided exceptional

results, unfortunately being too slow for real-time processing. The focus was shifted

towards Yolact, a DNN designed with real-time performance in mind. In agreement

with the author’s claims, the results of applying Yolact confirmed both the real-

time processing and high accuracy, by achieving more than 20 FPS and comparable

accuracy to Mask R-CNN. Although a reference PSD was provided, the measurement

mechanism relies on laser diffraction, which operates entirely different and comparing

with the PSD obtained with the imaging system can be really difficult.

However, a key advantage of the image-based system, corroborated with the high

precision and real-time processing of the DNN, consists of computing a separate PSD

for each particle of interest. In our case, the apatite PSD is of utmost importance

and the proposed system is capable of completing this task. Moreover, it is capable

of distinguishing between blurry and in-focus particles and even detect overlapped

particles. The potential of using DNN in PSD estimation still needs to be explored and

refined further. Furthermore, limiting the amount of manual annotation is one of the

biggest challenge and this will be the focus of our future research.
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