

MASTER

MANAGEMENT INFORMATION SYSTEMS

MASTER´S FINAL WORK

PROJECT

INTELLIGENT SYSTEM FOR TIME SERIES PATTERN IDENTIFICATION

AND PREDICTION

JOANA FILIPA CAETANO CLAUDINO

NOVEMBER - 2020

MASTER

MANAGEMENT INFORMATION SYSTEMS

MASTER´S FINAL WORK
PROJECT

INTELLIGENT SYSTEM FOR TIME SERIES PATTERN IDENTIFICATION

AND PREDICTION

JOANA FILIPA CAETANO CLAUDINO

SUPERVISION:
PROF. DR. ANTÓNIO MARIA PALMA DOS REIS

JOANA CLAUDINO INTELLIGENT SYSTEM FOR TIME SERIES

PATTERN IDENTIFICATION AND PREDICTION

i

ACKNOWLEDGEMENTS

I would like to start by expressing my deepest gratitude to my parents and brother for

their invaluable encouragement and comprehension all the way through the completion

of this project. Their support and the trust they place in me are my greatest sources of

motivation for never giving up and always trying to do my best.

I would like to extend my gratitude to my boyfriend not only for being so

understanding of my absences during this process, but specially for his unconditional

support and willingness to always help me in everything he could. Without his

helpfulness, I would have not been able to finish this project. A special thanks to his

parents for their kindness and support, too.

In addition, I would like to emphasise my gratitude to two master’s degree colleagues

with whom I became good friends. All their companionship and precious help in several

aspects made this whole experience much more enjoyable and memorable than I could

have ever asked for.

Lastly but not least, I would like to express my sincere appreciation to Prof. Dr.

António Maria Palma dos Reis for the offered guidance, agreeableness, and patience

throughout this entire process, as well as for his determinant help in defining the

appropriate scope for the developed project.

As a final note, I would like to thank all my family members and friends, not

previously mentioned, who directly or indirectly helped me in this long journey.

JOANA CLAUDINO INTELLIGENT SYSTEM FOR TIME SERIES

PATTERN IDENTIFICATION AND PREDICTION

ii

GLOSSARY

ACF – Autocorrelation Function

AIC – Akaike Information Criterion

AICc – Corrected Akaike Information Criterion

ANN – Artificial Neural Network

ARIMA – Autoregressive Integrated Moving Average

CH – Canova-Hansen

DSR – Design Science Research

DSRM – Design Science Research Methodology

GD – Gradient Descent

GPU – Graphics Processing Unit

GRU – Gated Recurrent Unit

KDD – Knowledge Discovery in Databases

KDDM – Knowledge Discovery and Data Mining

KPSS – Kwiatkowski-Phillips-Schmidt-Shin

LSTM – Long Short-Term Memory

MAE – Mean Absolute Error

MdAE – Median Absolute Error

MLE – Maximum Likelihood Estimation

MLP – Multi-Layer Perceptron

MSE – Mean Square Error

PACF – Partial Autocorrelation Function

ReLU – Rectified Linear Unit

RMSE – Root Mean Square Error

RNN – Recurrent Neural Network

JOANA CLAUDINO INTELLIGENT SYSTEM FOR TIME SERIES

PATTERN IDENTIFICATION AND PREDICTION

iii

SARIMA – Seasonal Autoregressive Integrated Moving Average

SGD – Stochastic Gradient Descent

STL – Seasonal-Trend Decomposition Procedure Based on Loess

JOANA CLAUDINO INTELLIGENT SYSTEM FOR TIME SERIES

PATTERN IDENTIFICATION AND PREDICTION

iv

ABSTRACT

The current growing volumes of data present a source of potentially valuable

information for companies, but they also pose new challenges never faced before. Despite

their intrinsic complexity, time series are a notably relevant kind of data in the

entrepreneurial context, especially regarding prediction tasks. The Autoregressive

Integrated Moving Average (ARIMA) models have been the most popular approach for

such tasks, but they do not scale well to bigger and more granular time series which are

becoming increasingly common. Hence, newer research trends involve the application of

data-driven models, such as Recurrent Neural Networks (RNNs), to forecasting.

Therefore, given the difficulty of time series prediction and the need for improved tools,

the purpose of this project was to implement the classical ARIMA models and the most

prominent RNN architectures in an automated fashion and posteriorly to use such models

as foundation for the development of a modular system capable of supporting the common

user along the entire forecasting process. Design science research was the adopted

methodology to achieve the proposed goals and it comprised the activities of goal

definition, followed by a thorough literature review aimed at providing the theoretical

background necessary to the subsequent step that involved the actual project execution

and, finally, the careful evaluation of the produced artifact. In general, each the

established goals were accomplished, and the main contributions of the project were the

developed system itself due to its practical usefulness along with some empirical evidence

supporting the suitability of RNNs to time series forecasting.

Keywords: Time Series Forecasting; Autoregressive Integrated Moving Average

Models; Recurrent Neural Networks; Intelligent System; Data Mining

JOANA CLAUDINO INTELLIGENT SYSTEM FOR TIME SERIES

PATTERN IDENTIFICATION AND PREDICTION

v

RESUMO

Os crescentes volumes de dados representam uma fonte de informação potencialmente

valiosa para as empresas, mas também implicam desafios nunca antes enfrentados.

Apesar da sua complexidade intrínseca, as séries temporais são um tipo de dados

notavelmente relevantes para o contexto empresarial, especialmente para tarefas

preditivas. Os modelos Autorregressivos Integrados de Médias Móveis (ARIMA), têm

sido a abordagem mais popular para tais tarefas, porém, não estão preparados para lidar

com as cada vez mais comuns séries temporais de maior dimensão ou granularidade.

Assim, novas tendências de investigação envolvem a aplicação de modelos orientados a

dados, como Redes Neuronais Recorrentes (RNNs), à previsão. Dada a dificuldade da

previsão de séries temporais e a necessidade de ferramentas aprimoradas, o objetivo deste

projeto foi a implementação dos modelos clássicos ARIMA e as arquiteturas RNN mais

proeminentes, de forma automática, e o posterior uso desses modelos como base para o

desenvolvimento de um sistema modular capaz de apoiar o utilizador em todo o processo

de previsão. Design science research foi a abordagem metodológica adotada para

alcançar os objetivos propostos e envolveu, para além da identificação dos objetivos, uma

revisão aprofundada da literatura que viria a servir de suporte teórico à etapa seguinte,

designadamente a execução do projeto e findou com a avaliação meticulosa do artefacto

produzido. No geral todos os objetivos propostos foram alcançados, sendo os principais

contributos do projeto o próprio sistema desenvolvido devido à sua utilidade prática e

ainda algumas evidências empíricas que apoiam a aplicabilidade das RNNs à previsão de

séries temporais.

Palavras-chave: Previsão de Séries Temporais; Modelos Autorregressivos Integrados

de Médias Móveis; Redes Neuronais Recorrentes; Sistema Inteligente; Data Mining

JOANA CLAUDINO INTELLIGENT SYSTEM FOR TIME SERIES

PATTERN IDENTIFICATION AND PREDICTION

vi

TABLE OF CONTENTS

Acknowledgements .. i

Glossary .. ii

Abstract .. iv

Resumo ... v

Table of Contents ... vi

Table of Contents – Figures .. vii

Table of Contents – Tables .. viii

1. Introduction .. 1

1.1. Problem description and motivation ... 1

1.2. Objectives definition .. 3

1.3. Document organization... 3

2. Literature Review .. 3

2.1. Time Series Description ... 3

2.2. Time series in the context of data mining... 7

2.3. Time Series Forecasting Process .. 11

2.3.1. Data analysis and pre-processing .. 12

2.3.2. Model building and fitting... 13

2.3.2.1. ARIMA models ... 14

2.3.2.2. ANN models .. 16

2.3.3. Model selection and evaluation ... 22

2.3.4. Forecasting .. 23

3. Methodology .. 24

4. Project Development .. 26

5. Results .. 35

JOANA CLAUDINO INTELLIGENT SYSTEM FOR TIME SERIES

PATTERN IDENTIFICATION AND PREDICTION

vii

6. Conclusions, contributions, limitations and future work 39

References ... 41

Appendices .. 55

Appendix 1. Sliding window technique .. 55

Appendix 2. Sliding window function .. 55

Appendix 3. Computation of the required non-seasonal differences 56

Appendix 4. Computation of the required seasonal differences 56

Appendix 5. Code snippet from the ARIMA hyperparameter search 56

Appendix 6. Code snippet from the SARIMA hyperparameter search 56

Appendix 7. LSTM implementation (part 1) .. 56

Appendix 8. LSTM implementation (part 2) .. 56

Appendix 9. Code snippet from the ANNs’ forecast function 56

Appendix 10. ANNs’ searchable hyperparameter grid ... 56

Appendix 11. Grid and Random search methods implementation 56

Appendix 12. Data loading module output example .. 56

Appendix 13. Model fitting module output example .. 56

Appendix 14. Model comparison module output example 56

Appendix 15. Forecasting module output example .. 56

Appendix 16. Directory structure created by the initialization script 56

TABLE OF CONTENTS – FIGURES

Figure 1. Summary of the KDD Process .. 8

Figure 2. The time series forecasting process ... 11

Figure 3. Common dataset splitting approaches ... 13

Figure 4. Summary of the Box-Jenkins method ... 15

JOANA CLAUDINO INTELLIGENT SYSTEM FOR TIME SERIES

PATTERN IDENTIFICATION AND PREDICTION

viii

Figure 5. Traditional RNN and its unrolled version ... 19

Figure 6. Diagram of RNN, LSTM and GRU .. 20

Figure 7. Overview of the system modules and their outputs 33

Figure 8. Forecasting module output .. 38

TABLE OF CONTENTS – TABLES

Table I. Main Data Mining tasks for time series data ... 9

Table II. Hyperparameters and Parameters for each type of model 22

Table III. Sine wave prediction results ... 36

Table IV. Sine wave with Gaussian noise prediction results 36

Table V. Summary of the optimal hyperparameters found for each model and the

corresponding predictive performance for each dataset ... 38

JOANA CLAUDINO INTELLIGENT SYSTEM FOR TIME SERIES

PATTERN IDENTIFICATION AND PREDICTION

1

1. INTRODUCTION

1.1. Problem description and motivation

There has been an exponential increase in the amount of data collected by

organizations over the past few years, largely due to great advances in technological

infrastructures concerning data storage and processing (Siddiqa et al., 2017). These huge

collections of data come with the promise of being a hidden source of opportunities that

companies can exploit in order to better serve customers, as well as to improve operational

efficiency and, hence, to achieve competitive advantage (Rey & Wells, 2012; Strohbach

et al., 2016). The challenge lies, however, on how to extract actual value from such vast

amounts of data when obviously it is no longer feasible to analyse them through most

traditional methods that rely on a great deal of human intervention. There is a great need

for new intelligent tools and techniques that can automatically transform these data into

valuable information (Han et al., 2012; Bramer, 2016).

As an effort to address the mentioned challenges and to unify novel methods and

best practices, new fields and concepts have emerged, namely those of knowledge

discovery in databases (KDD) and data mining (Coenen, 2011). Although the distinction

between both concepts is not very sharp, being many times used interchangeably in the

literature, one of the most popular definitions that prevails to this day is that of Fayyad et

al. (1996) that describes KDD as being the global process of unveiling potentially useful

and understandable patterns in data while data mining as being only a step of that process,

that comprises the implementation of data analysis algorithms by which such patterns are

extracted.

Data comes in various formats that may require different handling techniques as

each type of data presents its own challenges. For instance, time series data, albeit being

an actively studied subject for many years, remains an important open topic especially in

the more recent context of high volumes of data. In fact, Yang & Wu (2006) ranked time

series data mining as one of the ten most challenging topics in data mining research. One

of the major difficulties is that, although on one hand its temporal structure offers an

additional source of information, on the other hand its resultant singular characteristics

demand the use of specialised data analysis methods (Fu, 2011; Esling & Agon, 2012).

JOANA CLAUDINO INTELLIGENT SYSTEM FOR TIME SERIES

PATTERN IDENTIFICATION AND PREDICTION

2

While time series data mining may serve plenty of different purposes, forecasting

future values is the most commonly applied time series task in real-life settings and it is

of crucial importance for organizations as it enables more informed decisions towards

resource allocation, demand requirements, capacity planning and many other critical

activities (Chatfield, 2004; Faloutsos et al., 2019). Nevertheless, as a result from being a

topic whose foundations rely on a solid statistical background, producing reliable

forecasts requires a significant level of expertise that often is not readily available inside

organizations (Taylor & Letham, 2017). Even if such expertise is present, as the volume

of collected time series data increases, it becomes impracticable to manually and

individually analyse and produce forecasts for each of them, meaning that partially

automating the forecasting process could be a beneficial solution (Hyndman &

Khandakar, 2008). There are various well established statistical methods to model time

series that allow to attain high forecasting accuracies in numerous problems, but, besides

requiring the abovementioned expertise, they usually do not scale well to bigger volumes

of data (De Gooijer & Hyndman, 2006; Faloutsos et al., 2019). Therefore, as new

technologies like Internet of Things’ sensors give rise to more complex time series

structures, such as longer time series with higher frequency, it becomes apparent the need

of exploring the suitability of new modern data mining methods to address these new

challenges and achieve better forecasting results (Makridakis et al., 2018; Vaughan,

2020). A recent research trend on the topic is the development and application of new

neural network architectures for time series forecasting and some remarkable cases of

success have been reported as, for instance, the work of Zhu & Laptev (2017) at Uber and

the work of Salinas et al. (2019) at Amazon.

In the new data-oriented paradigm, python programming language has been one of

the top tools of choice to develop and implement new algorithmic approaches to data

analysis in business applications, as well as in scientific and academic research

(Robinson, 2017). Some of the main reasons for python’s popularity are its simple syntax

which makes the code easier to read and maintain, its vast number of specialized libraries

that makes it a very versatile language which can be used in almost any development task

from simple scripting to the development of large enterprise applications, and also its

great community support that keeps improving the language’s capabilities and helping

new users to get acquainted with its functionalities (Wu, 2019; Cass, 2019). With no

JOANA CLAUDINO INTELLIGENT SYSTEM FOR TIME SERIES

PATTERN IDENTIFICATION AND PREDICTION

3

exception, it also offers notably useful capabilities to analyse and manipulate time series

data (VanderPlas, 2018).

1.2. Objectives definition

The main goal of the project is to devise two automatic forecasting algorithms: a

statistical one that comprises the class of seasonal and non-seasonal Autoregressive

Integrated Moving Average Models (ARIMA), and a data mining one that comprises a

specific type of Artificial Neural Networks (ANNs), more concretely Recurrent Neural

Networks (RNNs) and their most popular variants, that are especially suited to sequential

data.

In addition, given the fairly high level of difficulty inherent to the time series data

analysis and the forecasting process, it is intended to use the implemented algorithms as

foundation for the development of a small modular system capable of supporting the user

along the entire process, from the data ingestion and pre-processing steps to the

production of actual forecasts into the future, while providing informative and easily

interpretable reports and graphs.

1.3. Document organization

The next sections of this document are organized as follows: the literature review

where an in-depth description of time series data, their positioning in the context of data

mining and the steps of the time series forecasting process, as well as the most relevant

forecasting models, are presented; the methodology, where the chosen approach is

described and justified; the project development, where the steps taken to achieve the

proposed goal are carefully detailed; results, where the output of the project is evaluated;

and conclusion where the key takeaways from the project and possible future work

directions are presented.

2. LITERATURE REVIEW

2.1. Time Series Description

Time series are a very common type of data that occurs naturally in a variety of

fields spanning from Medicine, Geophysics and Engineering to Industry, Finance and

Economics (Keogh & Kasetty, 2003; Fu, 2011). Furthermore, the continuous

JOANA CLAUDINO INTELLIGENT SYSTEM FOR TIME SERIES

PATTERN IDENTIFICATION AND PREDICTION

4

technological advances, such as improved time series database systems, and the

widespread adoption of the Internet of Things paradigm, potentiate even further the

collection and generation of such data (Tahmassebpour, 2017; Vaughan, 2020).

Therefore, it should come as no surprise that an increasingly large fraction of the world’s

supply of data is in the form of time series and, consequently, the interest in exploiting

their value is bigger than ever, as argued by many researchers (Ratanamahatana et al.,

2009; Rey & Wells, 2012; Faloutsos et al., 2019).

A time series is a sequential collection of values associated with a target variable,

usually, sampled at evenly spaced intervals of time. More formally, it can be expressed

as {𝑦t, t ∈ ℤ}, with each 𝑦𝑡 ∈ ℝ and 𝑡 = 1, … 𝑁, where 𝑁 denotes the length of the

time series and 𝑦𝑁 the last or most recent observation. Some diversified examples of time

series could be the number of visitors of a website per minute, the hourly air temperature,

the daily closing price of a stock, the monthly demand for a product, the quarterly earnings

of a company or the yearly birth rate of a country (Fu, 2011; Mahalakshmi et al., 2016).

The implicit order of time series’ observations inherent to their temporal dimension

leads to some peculiar characteristics of this kind of data, which can be translated into

three interrelated key properties: the common patterns that they exhibit, the serial

dependence that they possess and the way their statistical properties vary over time

(Hyndman & Athanasopoulos, 2018; Nau, 2019).

First, time series tend to exhibit certain common patterns that reflect how their

values change over time and that are broadly classified as:

• Trends, which reflect long-term changes, either upward or downward, in the values

of a time series (Chatfield, 2004);

• Seasonality, which refers to predictable, regular variations in time series’ values that

happen in specific time intervals over a one-year period. Variables whose

observations are recorded in very short time intervals such as hourly or smaller,

typically exhibit multiple seasonal patterns that are considerably more difficult to

handle (Hyndman, 2014; Nau, 2019);

• Cycles, which are characterised by fluctuations in time series’ values that last more

than one year but whose period is not previously known. A straightforward example

of such type of variation, is the business cycle that reflects the rise and fall of the

global economic growth over time (Amadeo, 2008).

JOANA CLAUDINO INTELLIGENT SYSTEM FOR TIME SERIES

PATTERN IDENTIFICATION AND PREDICTION

5

Usually, due to the unpredictable nature of cycles, trends and seasonality are the

patterns of most interest when analysing time series data. The identification of these

patterns, however, is not a trivial process as, many times, they are contaminated with

noise (Yang & Wu, 2006). For that reason, it may be useful to use methods that aim to

explicitly separate the trend (𝑇𝑡) and seasonal (𝑆𝑡) patterns from the aleatoric remainder

patterns (𝑅𝑡). One of the most notable methods in this matter is the one introduced by

Cleveland et al. (1990), designated “Seasonal-Trend Decomposition Procedure Based on

Loess” (STL) and which consists on a sequence of operations that employ locally

weighted regression smoothing to extract the trend and seasonal components. The

patterns extracted through the STL or similar techniques can be subsequently used to de-

trend or de-seasonalize the time series under analysis, or as inputs to compute other useful

measures such as the trend (𝐹𝑇) and seasonal (𝐹𝑠) strength indices, introduced by Wang

et al. (2006) and defined by Eq. (1) and (2), that help to quantitatively determine the

relevance or impact of such patterns in the time series’ behaviour.

Furthermore, as previously mentioned, time series tend to possess serial

dependence, meaning that they usually are correlated with their own prior values

(Kritzman, 1994). This property can be expressed through the autocorrelation coefficient

(𝑟𝑘), whose values lie within the range [−1, 1] and is given by

𝑟𝑘 =
∑ (𝑦𝑡 − y̅)(𝑦𝑡−𝑘 − y̅)N

t=k+1

∑ (𝑦𝑡 − y̅)2n
t=1

(3)

where 𝑦𝑡 is the observation in time period 𝑡, �̅� is the mean of all observations in the series,

and 𝑦𝑡−𝑘 is the value of the observation 𝑘 periods earlier. It measures both the direct

correlation of 𝑦𝑡 and 𝑦𝑡−𝑘, and the indirect correlation resulting from the observations in

between them (Levich & Rosario, 1999; Hyndman & Athanasopoulos, 2018). The plot of

the autocorrelation coefficient as a function of the lag 𝑘 is denominated the

Autocorrelation Function (ACF) (Box et al., 2016). The ACF is a very useful device to

analyse the behaviour of time series because the aforementioned patterns, trend and

 𝐹𝑇 = max (0, 1 −
Var(𝑅𝑡)

Var(𝑇𝑡 + 𝑅𝑡)
) (1)

 𝐹𝑆 = max (0, 1 −
Var(𝑅𝑡)

Var(𝑆𝑡 + 𝑅𝑡)
) (2)

JOANA CLAUDINO INTELLIGENT SYSTEM FOR TIME SERIES

PATTERN IDENTIFICATION AND PREDICTION

6

seasonality, are characterized by specific autocorrelation structures and thus also reflected

in the ACF. More concretely, if there is a trend, successive observations will likely be

highly correlated, while if a seasonal pattern exists, there will be significant

autocorrelation at multiples of the seasonal lag (Hanke & Wichern, 2014). According to

Box et al. (2016), the significance of the autocorrelations in the ACF can be assessed

through the lower and upper bounds that also frequently accompany the ACF plot and

which, assuming a normal distribution with a mean of zero, are computed as in Eq. (4).

 ±𝑧1−𝛼/2 𝑆𝐸(𝑟𝑘) (4)

Here, 𝑧 is the z-score, 𝛼 is the confidence level, 𝑟𝑘 is the sample autocorrelation at lag 𝑘

and the standard error (SE), is computed as 1/√𝑛, for lag = 1 and as

√
1

𝑛
(1 + 2 ∑ 𝑟𝑘

2ℎ−1
𝑘=1), for lag > 1, being 𝑛 the number of data points in the time series

(Bartlett 1946 ; Quenouille 1949). If one or more autocorrelations exceed the mentioned

bounds, then it means that they are significantly different from zero and there are

predictable patterns in the time series. If, however, all autocorrelations stay within these

bounds, the time series can be regarded as random or non-serially correlated.

A closely related concept is that of partial autocorrelation coefficient that only

measures the direct correlations between 𝑦𝑡 and 𝑦𝑡−𝑘 (Hyndman & Athanasopoulos,

2018). The plot of the partial autocorrelation coefficient as a function of the lag 𝑘 is the

called the Partial Autocorrelation Function (PACF) and its bounds are calculated in a

similar way as in Eq. (4) (Levich & Rosario, 1999).

As asserted by Hyndman & Athanasopoulos (2018), instead of checking the

significance of each autocorrelation coefficient separately through the ACF and PACF

plots, it is possible to perform a more formal assessment by testing a set of autocorrelation

coefficients through the Box-Ljung test (Ljung & Box, 1978), whose null hypothesis is

that of serial independence and its test statistic is computed as in Eq (5).

𝑄∗ = 𝑛(𝑛 + 2) ∑
𝑟𝑘

2

𝑛 − 𝑘

ℎ

𝑘=1

 (5)

The test statistic, 𝑄∗, has a 𝜒2 distribution with ℎ − 𝐾 degrees of freedom, where

𝐾 is the number of parameters in the model when testing the residuals of a fitted model,

and 𝐾 = 0 when testing raw data.

JOANA CLAUDINO INTELLIGENT SYSTEM FOR TIME SERIES

PATTERN IDENTIFICATION AND PREDICTION

7

Finally, the mentioned third key property of time series can be described through

the concept of stationarity. A stationary time series is one whose statistical properties –

mean, variance and autocorrelation structure – remain constant over time (Nau, 2019).

This does not mean, however, that the time series does not change, just that it fluctuates

around a fixed level with a constant variance and it does not depend on time (Hanke &

Wichern, 2014). Nonetheless, in practice most time series exhibit a non-stationary

behaviour as strong trends or seasonal patterns affect the referred statistical properties at

different points in time (Chatfield, 2004; Hyndman & Athanasopoulos, 2018).

Thus, once again, formal methods to test non-stationary behaviour have been

developed, more concretely, a class of statistical tests called unit root tests (Haldrup et

al., 2013). A unit root in a time series indicates the presence of a systematic non-

predictable pattern (Glen, 2016). For time series with a trend pattern, one of the most

widely used unit root tests is the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test, whose

null hypothesis is that of the time series being stationary around a constant trend against

the alternative of having a unit root (Kwiatkowski et al., 1992). For time series with a

seasonal pattern, in turn, one of the most popular tests is the Canova-Hansen (CH) test

whose null hypothesis is that of the times series having stationary seasonal cycles against

the alternative of having seasonal unit roots (Canova & Hansen, 1995).

2.2. Time series in the context of data mining

The increasingly massive volumes of time series data and the consequent demand

for more sophisticated data-driven analysis tools and techniques to exploit their value has

increased the attention and interest of the data mining community on this subject (Fu,

2011; Faloutsos et al., 2019). Data mining is a relatively recent and somewhat ambiguous

term that has distinct meanings for different authors and is, many times, used in the

literature as synonymous of Knowledge Discovery in Databases (KDD). At an early stage

of the emergence of this new field, some authors, namely Fayyad et al. (1996), made an

effort to concisely distinguish both terms by defining KDD as the nontrivial process,

composed by many steps, of identifying new, useful and comprehensible patterns in data,

and data mining as being merely one of its many steps, concerned with the

implementation of intelligent algorithms that allow the extraction of such patterns.

Nevertheless, throughout the years, the boundaries between both concepts became blurry

and they are now mostly used interchangeably referring to the overall process of

JOANA CLAUDINO INTELLIGENT SYSTEM FOR TIME SERIES

PATTERN IDENTIFICATION AND PREDICTION

8

automatically identifying and extracting patterns from data, with data mining being the

preferred and most widely adopted terminology (Chung & Gray, 1999; Han et al., 2012).

There have also been some suggestions to rename the field with the aim to clarify this

terminological issue and, simultaneously, adapt it to a more modern technological reality,

given that we no longer are uniquely concerned with data stored in traditional databases.

For instance, Kurgan & Musilek (2006) and Coenen (2011) advocate that Knowledge

Discovery and Data Mining (KDDM), would be a more appropriate nomenclature for

data coming from any source and would also emphasise the fact that both terms are

related, yet distinct. This lack of full consensus regarding terminologies and boundaries

of the field is, in part, due to its multidisciplinary nature as it incorporates concepts and

techniques from many different areas including statistics, machine learning, database

systems, information theory and data visualization (Hand, 1998; Han et al., 2012).

This being said, in order to avoid any ambiguities, in the present text, the

perspective advocated by Fayyad et al. (1996) and also supported by Kurgan & Musilek

(2006), of data mining being a step of the KDD process, is adopted. As stated by Bramer

(2016), this standpoint has the advantage of highlighting that, although the data mining

step is crucial for knowledge discovery, the pre-processing steps and the proper

interpretation of the results are very important as well.

The full KDD process is summarized in Figure 1. In short, it starts with the selection

and integration of data that can come from multiple sources, followed by the cleaning

step that aims to deal with missing values or removing noise from the data. Then,

transformation comprises the conversion of the data, if necessary, to a more convenient

structure to be ingested by the selected algorithms in the data mining phase. These data

mining algorithms produce an output in the form of patterns that greatly varies depending

on the goal of the discovery process and on the type of data being analysed. Lastly, the

relevance of the extracted pattern is evaluated based on some predefined criterion and the

Figure 1. Summary of the KDD Process, adapted from Fayyad et al. (1996)

JOANA CLAUDINO INTELLIGENT SYSTEM FOR TIME SERIES

PATTERN IDENTIFICATION AND PREDICTION

9

results are interpreted, with the aid of visualization techniques, in order to obtain new and

useful knowledge (Fayyad et al., 1996; Han et al., 2012; Bramer, 2016).

As abovementioned, the type of data mining task carried out depends on the goal

of the KDD process and it can be broadly categorized as descriptive or predictive (Fayyad

et al., 1996). In a descriptive setting data mining tasks have an exploratory nature and

their purpose is to discover patterns that summarize hidden relationships in the data,

whereas in a predictive setting, data mining tasks aim at predicting the value of a

particular attribute based on identified patterns (Tan et al., 2006).

Despite their peculiar features, such as the ordering and implicit dependency

between successive observations, time series data are also typically analysed with either

a descriptive or predictive purpose (Shmueli & Lichtendahl, 2018). Therefore, some more

general data mining tasks, such as query by content, clustering, anomaly detection,

association or classification, performed with other types of data are also applied in the

context of time series data. There are, however, some more specific tasks related to their

sequential nature and temporal component, such as segmentation, motif discovery and

forecasting (Esling & Agon, 2012; Mahalakshmi et al., 2016). All these tasks are

summarized in Table I.

TABLE I. MAIN DATA MINING TASKS FOR TIME SERIES DATA

Goal Task Description

Descriptive

Query by

content

Given a time series and a similarity measure,

retrieves the set of solutions that better matches the query

provided by the user (Keogh & Kasetty, 2003).

Clustering

Finds natural groups, called clusters, in an unlabelled

time series dataset based on hidden similar

characteristics (Liao, 2005)

Segmentation

Reduces the dimensionality of a time series while

retaining its essential features, in order to create an

accurate approximation of the original series (Gullo et

al., 2009).

Motif

Discovery

Enumerates the most recurring patterns, called

motifs, that appear on a time series (Lin et al., 2002; Liu

et al., 2005).

Anomaly

Detection

Finds observations of the time series whose values

differ significantly from the rest of the data (Teng, 2010).

Association

Derives rules for discovered associations and

correlations among items within a dataset. In time series,

requires the discretization of the data and subsequent

JOANA CLAUDINO INTELLIGENT SYSTEM FOR TIME SERIES

PATTERN IDENTIFICATION AND PREDICTION

10

Although all the above data mining tasks have their own applications and merits, it

is rather consensual in the literature that forecasting is not only the most applied and

relevant time series data mining task in practical applications but, simultaneously, one of

the most difficult (Esling & Agon, 2012; Tahmassebpour, 2017; Faloutsos et al., 2019).

As a matter of fact, time series forecasting is applied in areas as diverse as

agriculture to improve the production of crops (Santos et al., 2019), the energy sector to

predict the electric power load (Almeshaiei & Soltan, 2011), epidemiology to predict

influenza outbreaks (Smolen, 2014) or in industry to predict production levels (Chen &

Wang, 2007), just to mention a few. In the more specific context of business and

management, time series forecasting is essential for any type of organization as well as

for any of its functional lines, since it plays a key role in the optimization and monitoring

of several business processes and, despite its intrinsic inaccuracies, it helps to reduce the

uncertainty for management decision-making and strategic planning, being an especially

critical tool in the current highly dynamic business environment (Rey & Wells, 2012;

Hanke & Wichern, 2014; Faloutsos et al., 2019).

Conversely, the main difficulties of this task arise mostly from the fact that it is

inherently a statistical subject that requires a considerable level of knowledge and

experience, now with the added complications of the ever growing volumes of data and

the consequent increasingly demand for higher quality forecasts and more efficient

algorithms (Esling & Agon, 2012; Taylor and Letham, 2017; Faloutsos et al., 2019).

The main steps involved in the time series forecasting process will be further

discussed in the following section.

conversion to a symbolic representation (Qin & Shi,

2006)

Predictive

Classification
Assigns the time series data to one of two or more

predefined classes (Ratanamahatana & Keogh, 2004).

Forecasting

(Prediction)

Given a time series, predicts its future values by

exploiting the correlations between successive

observations and, possibly, with other variables. It

implicitly assumes that some of the past patterns will

continue into the future. (Montgomery et al., 2015;

Hyndman & Athanasopoulos, 2018).

JOANA CLAUDINO INTELLIGENT SYSTEM FOR TIME SERIES

PATTERN IDENTIFICATION AND PREDICTION

11

2.3. Time Series Forecasting Process

Time series forecasting can be defined as a quantitative forecasting technique that

predicts the future values of a target variable based on an information set of current and

historical values, along with a model capable of summarizing the patterns contained in

that observed variable and projecting them into the future (Montgomery et al., 2015; Yau,

2018). More formally, it can be expressed as

 �̂�𝑁+𝐻 = 𝑓(Ω) + 𝜀 (6)

where �̂� is the predicted value for each timestep, 𝐻 is the forecast horizon, 𝑓 is the model,

Ω is the set of available information and 𝜀 is the error term that represents the random

variation not explained by the fitted model. According to Hyndman & Athanasopoulos

(2018), the choice of a particular model, 𝑓, may be influenced, to some extent, by the set

of available information. More concretely, when Ω comprises predictor variables that are

known to impact the target time series, it may be useful to build an explanatory model

that takes into account their effects. Such modelling approach has, however, some added

complications, namely the need to fully understand the relationships between predictor

variables and target time series and, even more difficult, the need to know the future

values of the predictors beforehand so that the target time series can actually be predicted.

When using explanatory models it is thus very common to forecast the target variable

based on forecasts of the predictor variables which ends up being an additional source of

error and uncertainty and should be avoided when possible (Hanke & Wichern, 2014;

Montgomery et al., 2015). Therefore, when enough historical data of the target time series

is available and the main goal is to forecast its future values and not necessarily

understand the forces that cause them, the use of pure time series models might be the

best solution (Hyndman & Athanasopoulos, 2018). These models assume that the impact

of external factors is already embodied in the patterns of the current and past values of

the target time series and exploit their statistical properties in order to predict the future

values, i.e., the information used by such models is given by Ω = {𝑦𝑁 , 𝑦𝑁−1, 𝑦𝑁−2, … , 𝑦1}

(Montgomery et al., 2015; Yau, 2018).

Figure 2. The time series forecasting process; adapted from Montgomery et al. (2015)

JOANA CLAUDINO INTELLIGENT SYSTEM FOR TIME SERIES

PATTERN IDENTIFICATION AND PREDICTION

12

Due to the fact of time series forecasting is regarded as a predictive data mining

task, the steps of its entire process are closely linked to that of KDD (in section 2.2.).

Besides the obvious first step of data collection, it comprises four more steps, depicted in

Figure 2: a data analysis and pre-processing step, a model building and fitting step, a

model selection and evaluation step and, finally, the step of producing actual forecasts

(Armstrong, 2002; Hanke & Wichern, 2014). Each of these will be further detailed in the

following subsections of the document.

2.3.1. Data analysis and pre-processing

This step comprises the visualization of the time series to aid in the identification

of potential patterns, as well as the computation of relevant metrics that describe the

dataset. It also deals with missing value imputation, with possible necessary

transformations in order to get the data into the correct form to be ingested by specific

forecasting models, and with data splitting for the subsequent model fitting and evaluation

(Hanke & Wichern, 2014; Montgomery et al., 2015).

Time series missing value imputation is a research topic on itself, however, some

of the most applied methods involve using aggregate values such as the mean of the time

series, using the most recent observation prior or following the missing value, or more

advanced techniques, such as interpolation (Moritz & Bartz-Beielstein, 2017).

The transformations applied to time series are, in turn, mostly dependent on the

characteristics of the particular dataset at hand and, to some extent, on the model that will

be fitted to the data. The most frequently used are:

• The logarithmic transformation whose purpose is to stabilize the variance of the time

series or to make its distribution normal (Lütkepohl & Xu, 2010).

• Data normalization, which involves squashing the values of time series so that all of

them lie within a smaller range, usually between 0 and 1. It is especially useful to

speed up the learning process and convergence in data mining models. The main

normalization techniques are min-max normalization and z-score normalization

(Shalabi et al., 2006; Patro & Sahu, 2015).

• Differencing, which is the most common transformation to make a time series

stationary. It stabilizes the mean of a time series as it removes changes in its level or,

in other words, it eliminates trend and seasonal effects (Hyndman &

JOANA CLAUDINO INTELLIGENT SYSTEM FOR TIME SERIES

PATTERN IDENTIFICATION AND PREDICTION

13

Athanasopoulos, 2018). For trends, differencing is given by Eq. (7) and it simply

computes the differences between consecutive observations. A first difference, i.e.

𝑑 = 1, can eliminate a linear trend, while a second difference, 𝑑 = 2, can eliminate a

quadratic trend, and so on (Shumway & Stoffer, 2017). For seasonal variation,

Hyndman & Athanasopoulos (2018) state that differencing means computing the

difference between an observation and the previous observation from the same season

and it is given by Eq. (8).

Here, 𝑑 is the differencing order, 𝐷 is the seasonal differencing order, 𝑠 is the

seasonal period and 𝐵 is the backward shift operator, defined by 𝐵𝑠𝑦𝑡 = 𝑦𝑡−𝑠, where 𝑠 =

1 for non-seasonal differences.

Finally, the splitting of the dataset involves partitioning the data into a training set,

used in the model fitting step to estimate the parameters of each model, and a testing set,

used in the model evaluation step to assess the predictive performance. Some models,

especially from the data mining field, may require the training set to be further split into

a validation set as depicted in Figure 3 (Brownlee, 2017b; Nau, 2019).

2.3.2. Model building and fitting

In the current forecasting landscape, time series forecasting methods are broadly

categorized as statistical or data mining methods (Makridakis et al., 2018). Given its wide

scope of application, there are many algorithms developed to deal with this task which

would make impossible to cover all of them. Therefore, this project focuses, under the

statistical category, on seasonal and non-seasonal Autoregressive Integrated Moving

 ∇𝑑𝑦𝑡 = 𝑦𝑡 − 𝑦𝑡−𝑑 = (1 − 𝐵)𝑑𝑦𝑡 (7)

 ∇𝑠
𝐷𝑦𝑡 = 𝑦𝑡 − 𝑦𝑡−𝐷 = (1 − 𝐵𝑠)𝐷𝑦𝑡 (8)

Figure 3. a) Common splitting approach for statistical methods; b) Common splitting

approach for data mining methods

JOANA CLAUDINO INTELLIGENT SYSTEM FOR TIME SERIES

PATTERN IDENTIFICATION AND PREDICTION

14

Average (ARIMA) models and, under the data mining category, on Artificial Neural

Networks (ANNs), more concretely on Recurrent Neural Networks (RNNs).

2.3.2.1. ARIMA models

Under the statistical methods for time series forecasting, the most notable work is

that of Box & Jenkins (1970). These authors devised a practical approach for modelling

linear time series that exhibit whether stationary or non-stationary behaviour and that

became widely known as the Box-Jenkins method. Up to that point, simple linear

stationary models were the prevailing approach in the field (Fildes & Makridakis, 1995).

The great capability of the Box-Jenkins family of models to deal with several types

of patterns, as well as their fairly high accuracy in short and medium-term forecasts allied

to the fact that, in practice, most time series are non-stationary makes them very popular

and widely used across many areas up to this day (Petropoulos et al., 2014; Makridakis

et al., 2018). The Box-Jenkins class of models encompasses three key components:

• The Autoregressive (AR) component, that aims to model the autocorrelation structure

of the time series and assumes that the current value of the series can be explained by

a linear combination of 𝑝 previous values. It is more formally referred to as an

autoregressive process of order 𝑝, denoted by 𝐴𝑅(𝑝) (Shumway & Stoffer, 2017);

• The Integration (I) component that accounts for the number, 𝑑, of differences required

to obtain a stationary time series. When any difference is needed, the time series is

said to be an integrated process of order 𝑑, denoted by 𝐼(𝑑) (Box et al., 2016);

• The Moving Average (MA) component, that attempts to capture the unknown factors

that affect the time series but are not explained by its past values and, hence, uses a

linear combination of 𝑞 past prediction errors. Referred to as a moving average

process of order 𝑞, denoted by 𝑀𝐴(𝑞) (Box et al., 2016; Nau, 2019).

From the combination of these components we can obtain the non-seasonal

Autoregressive Integrated Moving Average (ARIMA), which is parametrized by 𝑝, 𝑑 and

𝑞 and defined by Eq. (9). While this model allows to explicitly capture the correlations

between adjacent time series observations, it does not account for dependencies between

observations that are several periods apart and which are common in seasonal patterns

(Box et al., 2016; Shumway & Stoffer, 2017). In order to overcome such issue, a

generalization of the ARIMA model, known as Seasonal ARIMA (SARIMA) and also

JOANA CLAUDINO INTELLIGENT SYSTEM FOR TIME SERIES

PATTERN IDENTIFICATION AND PREDICTION

15

formulated by Box & Jenkins (1970), that is able to capture multiplicative seasonality,

can be used. This model has three additional parameters 𝑃, 𝐷 and 𝑄, which are the orders

of the corresponding seasonal 𝐴𝑅, 𝐼 and 𝑀𝐴 components and is defined by Eq. (10).

ARIMA(p, d, q): 𝜙(𝐵)∇𝑑𝑦𝑡 = 𝑐 + 𝜃(𝐵)𝜀𝑡 (9)

SARIMA(p, d, q)x(P, D, Q)𝑠: 𝜙(𝐵)Φ(𝐵𝑠)∇𝑑∇𝐷𝑦𝑡 = 𝑐 + 𝜃(𝐵)Θ(𝐵𝑠)𝜀𝑡 (10)

In these equations, 𝜙(𝐵) is the non-seasonal autoregressive polynomial of order 𝑝,

𝜃(𝐵) is the non-seasonal moving average polynomial of order 𝑞 while Φ(𝐵𝑠) and Θ(𝐵𝑠)

are their seasonal counterparts of order 𝑃 and 𝑄 respectively, ∇𝑑∇𝐷𝑦𝑡 is the time series,

differenced 𝑑 times and seasonally differenced 𝐷 times, 𝑠 is the seasonal period, 𝑐 is a

constant, and 𝜀𝑡~𝑁(0, 𝜎2) is a random error term with mean of zero and constant

variance, more precisely, white noise.

The process of building and fitting the described models, depicted in Figure 4, is

done through the iterative Box-Jenkins method. This method is comprised by three steps

that precede the actual forecasting step:

1. Identification. Involves checking if the time series is stationary and, if not, to

determine how many differences are required in order to achieve stationarity. This

stationarity assessment can be done by inspecting the ACF, PACF and time series plot

in order to identify any trends or seasonal patterns. After transforming the time series

to a stationary form, a careful inspection of the ACF and PACF plots must be carried

out once again, in order to determine the potentially correct orders of the

autoregressive and moving average components (Box et al., 2016).

2. Estimation. Once the set of possible orders for the autoregressive and moving average

components has been identified along with the number of differences, the preferred

method to estimate the coefficients of the model is, typically, the maximum likelihood

Figure 4. Summary of the Box-Jenkins method; adapted from Box et al. (2016)

JOANA CLAUDINO INTELLIGENT SYSTEM FOR TIME SERIES

PATTERN IDENTIFICATION AND PREDICTION

16

estimation (MLE) (Box et al., 2016). This estimation method usually requires non-

linear optimization techniques (Pelgrin, 2011).

3. Diagnostic checking. According to Box et al. (2016), the residuals from an adequate

model fitted to the data should be white noise – i.e., random, independent and have

zero mean – meaning that they should not possess any statistically significant

autocorrelation nor exhibit any type of pattern. The tools that can be used to assess

the adequacy of the model are the ACF plot of the residuals, which displays their

individual autocorrelation coefficients or the already mentioned Ljung-Box test.

Once the most adequate model is found, it can be further evaluated by comparing

its performance to other types of model or be directly used to produce forecasts.

2.3.2.2. ANN models

The application of ANNs to time series forecasting has been a topic of interest for

the data mining community since some time ago and it has recently gained a new wave

of attention, as more recent architectures are becoming the state-of-the-art for many tasks,

especially for those related to sequential data (Sutskever et al., 2014; Faloutsos et al.,

2019). An ANN is a data mining model inspired by the human brain used for information

processing and pattern recognition. Besides having been mathematically proven to be a

universal function approximator, it does not make strong assumptions about the data

generation mechanism, in contrast to the previously introduced statistical models, thus

being a flexible method capable of identifying and modelling complex patterns as well as

learning linear and non-linear relationships (Remus & O’Connor, 2002; Zhang, 2012).

In practice, the application of ANNs to time series forecasting has been mostly

through the multi-layer perceptron (MLP) also known as feed forward neural network

(Zhang, 2004). This latter designation derives from the fact that, in this model, the

information flows directly from the input layer, through the intermediate layers to the

output layer without any feedback to previous layers (Goodfellow et al., 2016). The MLP

is a generalization of the Perceptron model originally proposed by Rosenblatt (1958).

This model was composed by a single neuron – the basic information processing unit in

an ANN – that would compute the sum of the inputs weighted by the connections’ weights

plus a bias term and then pass it to a binary function. As demonstrated by Minsky &

Papert (1969), it could only solve problems of data that belonged to linearly separable

classes, making it of little value to more complex problems. The MLP overcame this

JOANA CLAUDINO INTELLIGENT SYSTEM FOR TIME SERIES

PATTERN IDENTIFICATION AND PREDICTION

17

weakness by introducing the concept of hidden layers, which are intermediate layers

between the input and output layers that apply non-linear transformations to the data

(Touretzky & Pomerleau, 1989). Such transformations are carried out through activation

functions, being the most common ones the sigmoid (𝜎), the hyperbolic tangent (tanh)

and the rectified linear unit (ReLU) function (Nair & Hinton, 2010; Karlik & Olgac,

2011). As shown in Eq. (11), each neuron (ℎ𝑗) included in the hidden layers has the role

of computing the sum of the input features (𝑥𝑖), once again weighted by the connections’

weights (𝑤𝑗𝑖) plus a bias term (𝑏), followed by the application of one of the referred

activation functions (𝑓).

ℎ𝑗 = 𝑓 (∑ 𝑤𝑗𝑖𝑥𝑖

𝑛

𝑖=1

+ 𝑏𝑗) (11)

All the intermediate layers perform this sort of calculation until the output layer is

reached. This last layer, in turn, also applies a function to the data which strongly depends

on the problem being solved. For time series forecasting, it generally is the identity

function (Kolarik & Rudorfer, 1994).

Being a supervised learning algorithm, in order to learn the correlations and patterns

directly from the data, ANNs must be trained by comparing their outputs to the true

values, also known as labels in this context, through a loss function (Lee et al., 2004).

The loss function can take many forms, however, in the particular case of time series

forecasting the most common one is the mean squared error (MSE), given by

𝑀𝑆𝐸 =
1

𝑁
 ∑(𝑦𝑡 − �̂�𝑡)2

𝑁

𝑡=1

 (12)

where 𝑁 is the number of data points, 𝑦𝑡 is the target value and �̂�𝑡 is the prediction made

by the neural network (Géron, 2019).

The main goal of the training process is to minimize the loss function. This can be

achieved by using the backpropagation algorithm introduced by Rumelhart et al. (1986),

which is of utmost importance for efficiently training any ANN. This algorithm iteratively

computes the gradient of the loss with respect to each parameter of the neural network

and then updates each parameter in the opposite direction of the gradient, through a

technique named gradient descent (GD). There are many alternative procedures to

perform GD, however, the standard applied method is Stochastic Gradient Descent (SGD)

(Amari, 1993; Rakhlin et al., 2012). The SGD updates the weights of the ANNs based on

JOANA CLAUDINO INTELLIGENT SYSTEM FOR TIME SERIES

PATTERN IDENTIFICATION AND PREDICTION

18

the gradient computed from each training example, or batch of training examples, fed to

the network by using the update rule defined by:

𝜃 ∶= 𝜃 − 𝜂 ∗

𝜕𝐽(𝜃)

𝜕𝜃
 (13)

Here, 𝜃 denotes the parameters of the neural network, more concretely the weights

of the connections, 𝜂 is the learning rate which defines the step size towards the minimum

of the loss, 𝐽(𝜃) is the loss function and
𝜕𝐽(𝜃)

𝜕𝜃
 is the gradient of the loss with respect to

the weights.

The great flexibility of ANNs stemming from their high number of parameters has,

however, the drawback of making them very prone to overfitting, i.e., they tend to also

model the noise in the data as being a relevant pattern, leading to poor generalization

capacity (Lawrence et al., 1997; Lever et al., 2016). Hence, it is usual to use regularization

methods that penalize large weights of the network with the aim of preventing such

problem. A fairly recent method intended to address this issue, and that has been

empirically shown to achieve remarkably good results, is the dropout technique

introduced by Srivastava et al. (2014). Dropout works by randomly omitting neurons and

their connections during training so that they do not adapt too much to the data.

Besides the feedforward connections, ANNs can also have feedback connections,

meaning that the output of any layer may be fed back to itself and to earlier layers (Li et

al., 2004). These are named Recurrent Neural Networks (RNNs) and, according to

Karpathy (2015), their great strength lies on the fact that they allow to operate in

sequences of vectors, which makes them a very flexible algorithm capable of handling a

wide range of sequential data tasks. They can be arranged in such a way that allows them

to take a single value as input and yield a sequence of output values (one-to-many), take

a sequence of input values and return a single output value (many-to-one), or take a

sequence of input values and produce a sequence of output values (sequence-to-sequence)

(Olah, 2015). Natural language processing has been their main field of application

(Graves, 2013; Sutskever et al., 2014). However, more recently, given their ability to

explicitly account for the order and dependency of sequential data – which are desirable

characteristics to model time series data –, RNNs have also attracted the interest of time

series forecasting researchers, namely Zhu & Laptev (2017) and Salinas et al. (2019),

who adapted and further extended their application to the field.

JOANA CLAUDINO INTELLIGENT SYSTEM FOR TIME SERIES

PATTERN IDENTIFICATION AND PREDICTION

19

The presently known simplest RNN derives from the contributions of many

researchers throughout time, such as those of Werbos (1990), Elman (1990) and Jordan

(1997), and it is loosely designated in the literature as traditional RNN.

The key component of the traditional RNN is the hidden state (ℎ𝑡) defined by Eq.

(14), that acts as a memory unit, and is computed at each time step by adding the previous

hidden state (ℎ𝑡−1) to the current input (𝑥𝑡), each of them parametrized by their weight

matrices 𝑊 and 𝑈, respectively, plus a bias (𝑏) followed by the application of an

activation function (𝑓), that usually is the tanh. Both weight matrices are shared across

all time steps (Goodfellow et al., 2016).

 ℎ𝑡 = 𝑓(𝑊ℎ𝑡−1 + 𝑈𝑥𝑡 + 𝑏) (14)

A RNN is trained in the same way as a feedforward network but, in this

circumstance, the training algorithm has the name of backpropagation through time

(BPTT) because the network, as depicted in Figure 5, must be first unrolled so that the

gradient can, then, be propagated back through time (Werbos, 1990). It is, however, a

known issue that, in practice, traditional RNNs are quite difficult to train for long

sequences due to the recurrent formulation which results in the sharing of parameters

through a very deep computational graph. This, in turn, leads to unstable gradients that

mostly tend to vanish and, sometimes, to explode ultimately causing the network to be

unable to learn long-term dependencies (Bengio et al., 1994; Pascanu et al., 2013).

The most effective solution to overcome the shortcomings of the traditional RNN,

has been the use of gated memory units, specifically the Long Short-Term Memory

(LSTM) and the Gated Recurrent Unit (GRU) (Hochreiter & Schmidhuber, 1997; Cho et

al., 2014). Both LSTM and GRU, depicted in Figure 6, aim to explicitly avoid the long-

term dependency problem related to vanishing gradients, by using layers that act as gates

to control the flow of information. In opposition to the RNN, that fully replaces its hidden

Figure 5. Traditional RNN and its unrolled version; adapted from Olah (2015)

JOANA CLAUDINO INTELLIGENT SYSTEM FOR TIME SERIES

PATTERN IDENTIFICATION AND PREDICTION

20

state at each time step, the LSTM and GRU are able to retain most of their hidden state’s

content while adding new information to it. As depicted in Figure 6, in contrast with the

traditional RNN whose memory unit has a single tanh layer, both LSTM and GRU

memory units have three and two additional sigmoid layers, respectively.

The LSTM layers are named the forget gate (𝑓𝑡), the input gate (𝑖𝑡), the candidate

values gate (�̃�𝑡) and the output gate (𝑜𝑡). Each of them has the function of selectively

discarding or adding information to the cell state (𝐶𝑡), also known as the long-term

memory because it is the key component in preventing the vanishing gradient problem,

and to the hidden state (ℎ𝑡) also known as the short-term memory because it is the key

component responsible for enabling the LSTM to make decisions over short periods of

time (Hochreiter & Schmidhuber, 1997; Olah, 2015; Jozefowicz et al., 2015). All these

components of the LSTM are defined by the following equations:

The 𝑊∗ and 𝑏∗ denote the weight matrixes and bias vectors for each gate and the ⊙

denotes element-wise multiplications. Furthermore, 𝐶𝑡−1, ℎ𝑡−1 and 𝑥𝑡 denote the previous

cell state, the previous hidden state and the current input, respectively.

 𝑓𝑡 = 𝜎(𝑊𝑓 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (15)

 𝑖𝑡 = 𝜎(𝑊𝑖 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (16)

 �̃�𝑡 = tanh(𝑊𝐶 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶) (17)

 𝑜𝑡 = 𝜎(𝑊𝑜 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) (18)

 𝐶𝑡 = 𝑓𝑡 ⊙ 𝐶𝑡−1 + 𝑖𝑡 ⊙ �̃�𝑡 (19)

 ℎ𝑡 = 𝑜𝑡 ⊙ tanh(𝐶𝑡) (20)

Figure 6. Diagram of a recurrent unit from a traditional RNN, a LSTM and a GRU;

adapted from Olah (2015).

JOANA CLAUDINO INTELLIGENT SYSTEM FOR TIME SERIES

PATTERN IDENTIFICATION AND PREDICTION

21

The GRU was proposed by Cho et al. (2014) with the aim of simplifying the LSTM

while still preserving its benefit of circumventing the vanishing gradients problem. Its

layers are named the update gate (𝑧𝑡), the reset gate (𝑟𝑡) and the candidate values gate

(ℎ̃𝑡). There are two crucial differences between this recurrent unit and the LSTM; the first

is the fact that the update gate combines the functionality of both the forget and input

gates, meaning that it is fully accountable for the decision of retaining past memory and

of adding new information, and, second, it does not possess a cell state, only a hidden

state (ℎ𝑡) which stores both long and short-term patterns. All the components of the GRU

are defined by the following equations:

Once again, the 𝑊∗ and 𝑏∗ denote the weight matrixes and bias vectors for each

gate, the ⊙ represents element-wise multiplications, and ℎ𝑡−1 and 𝑥𝑡 denote the previous

hidden state and current input, respectively.

The performance of the three memory units depicted in Figure 6 – RNN, LSTM

and GRU – has been compared by many researchers in distinct sequential data tasks,

especially in those related to natural language processing. While there is clear evidence

that both gated units consistently outperform the traditional RNN, there is no definite

conclusion on which of them is better (Chung et al., 2014; Jozefowicz et al., 2015).

Moreover, in the specific case of time series forecasting, although also no concrete

conclusion can be drawn yet due to the early stage of the research in the field, some

studies seem to suggest a slight superiority of the GRU over LSTM (Fu et al., 2016;

Kumar et al., 2018; Gallicchio et al., 2019).

Lastly, it should be noted that although the presented gated RNNs overcome the

vanishing gradients problem, they do not address the exploding gradients problem.

Hence, a somewhat simple but very effective solution for this issue is to combine them

with the gradient clipping technique introduced by Pascanu et al. (2013). By using this

technique, a threshold value is established and whenever the gradients exceed it, they are

forced or “clipped” to that threshold.

 𝑧𝑡 = 𝜎(𝑊𝑧 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑧) (21)

 𝑟𝑡 = 𝜎(𝑊𝑟 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑟) (22)

 ℎ̃𝑡 = tanh(𝑊ℎ ∙ [𝑟𝑡 ⊙ ℎ𝑡−1, 𝑥𝑡] + 𝑏ℎ) (23)

 ℎ𝑡 = (1 − 𝑧𝑡) ⊙ ℎ𝑡−1 + 𝑧𝑡 ⊙ ℎ̃𝑡 (24)

JOANA CLAUDINO INTELLIGENT SYSTEM FOR TIME SERIES

PATTERN IDENTIFICATION AND PREDICTION

22

2.3.3. Model selection and evaluation

Essentially, any algorithm has two types of parameters, those that are estimated

from the available data and the hyperparameters which require some specialised

knowledge about the model and dataset being used and must be set before any training or

model fitting begins (Brownlee, 2017a). For the previously discussed models, both types

of parameters are summarized in Table II.

TABLE II. HYPERPARAMETERS AND PARAMETERS FOR EACH TYPE OF MODEL

As described in the previous section, ARIMA models are typically estimated by

maximum likelihood. The model selection procedure can thus be carried out by using an

information criterion, that measures the relative quality of each model belonging to a set

of candidate models by balancing their goodness-of-fit, based on the MLE, and their

complexity in terms of number of parameters (Ding et al., 2018). One popular IC for time

series model selection is the Akaike Information Criterion (AIC) introduced by Akaike

(1973) and defined by Eq. (25). For small sample sizes, Hurvich & Tsai (1989)

recommend using a corrected version of the AIC, defined by Eq. (26).

In these equations, �̂� denotes the logarithm of the maximum likelihood estimate, 𝐾

the number of parameters in the model, and 𝑛 the number of time series data points.

According to Ding et al. (2018), the use of the AIC or AICc not only avoids the need to

further split the training data into a validation set for model selection, as depicted in

Figure 3 a), but also prevents the choice of a model that overfits the data.

1 Other hyperparameters may exist depending on the particular architecture of the ANN and on its

 training process

 Hyperparameters Parameters

ARIMA based models 𝑝, 𝑑, 𝑞, 𝑃, 𝐷, 𝑄 𝜙𝑝, Φ𝑃, 𝜃𝑞 , Θ𝑄 , 𝜎2, and 𝑐

ANNs (MLPs, RNNs)

Number of hidden

neurons, learning rate,

batch size.1

Weights and biases

 𝐴𝐼𝐶 = −2𝑙𝑛(�̂�) + 2𝐾 (25)

 𝐴𝐼𝐶𝑐 = 𝐴𝐼𝐶 + (2𝐾2 + 2𝐾)/(𝑛 − 𝐾 − 1) (26)

JOANA CLAUDINO INTELLIGENT SYSTEM FOR TIME SERIES

PATTERN IDENTIFICATION AND PREDICTION

23

For ANNs, as for most data mining methods, it is usually recommended to save a

portion of the training data for validation purposes, as depicted in Figure 3 b). This

happens because, different sets of hyperparameters are evaluated against the validation

set so that the best architecture, i.e. the set of “optimal” hyperparameters, can be chosen

(Brownlee, 2017a; Barry-Straume et al., 2018). In this context, the best model is the one

that minimizes the loss function both in the training and validation sets which, as

previously stated, typically is the MSE for time series forecasting (Géron, 2019).

Finally, after the best model has been found, its performance must be evaluated on

the test set through the computation of predictive accuracy measures. The usefulness of

this procedure is two-folded, i.e. besides the computed measures being a representative

indicator of the accuracy of the model in real forecasts, they also allow the comparison

of different algorithms, for example, an ARIMA model to a LSTM (Brownlee, 2017a;

Nau, 2019). According to Hyndman & Koehler (2006), the most commonly used

accuracy metrics to compare different methods on the same dataset are based on squared

errors or on the absolute error, more concretely, the mean squared error (MSE) in Eq.

(12), the root mean square error (RMSE) in Eq. (27), the mean absolute error (MAE) in

Eq. (28) and the median absolute error (MdAE) in Eq. (29).

 RMSE = √𝑀𝑆𝐸 (27)

 MAE = mean(|𝑒|) (28)

 MdAE = median(|𝑒|) (29)

In all these equations, 𝑒 = 𝑦 − �̂�, and 𝑦 is the actual value while �̂� is the predicted value.

2.3.4. Forecasting

When producing actual forecasts there are two additional aspects that must be

considered, the forecast horizon and the underlying uncertainty of the forecasts.

Regarding the forecast horizon, there are two possible scenarios: one-step-ahead

forecasting, where 𝐻 = 1, and multi-step forecasting, where 𝐻 > 1, in Eq. (6). Single-

step forecasting is the default behaviour of most forecasting methods. Nonetheless, most

practical applications, require forecasts for longer term horizons. Thus, several methods

that can be used to generate multi-step forecasts have been proposed, from which the

recursive method is the most simple and intuitive one (Kline, 2004; Sorjamaa et al., 2007).

As described by Sorjamaa et al. (2007), this method simply adds one-step-ahead forecasts

JOANA CLAUDINO INTELLIGENT SYSTEM FOR TIME SERIES

PATTERN IDENTIFICATION AND PREDICTION

24

as input to predict the immediate next unknown future value, in a recursive fashion, until

the end of the forecast horizon, 𝐻, is reached. It is the standard approach used to produce

multi-step forecasts for ARIMA models and it can be extended to ANNs (Graves, 2013;

Nau, 2019).

Forecasting is an inherently uncertain activity. As such, in addition to the point

forecasts, many authors emphasise the need and usefulness of also producing prediction

intervals that reflect the degree of uncertainty underlying the point forecasts (Chatfield,

2002; Hanke & Wichern, 2014). Due to its importance, it is a well-studied subject in the

context of ARIMA models whose prediction intervals are computed based on the standard

deviation of the residuals, that are assumed to be uncorrelated and normally distributed

(Hyndman & Athanasopoulos, 2018). Data mining models in general, however, do not

account for the uncertainty associated with their predictions, although some alternative

approaches have been proposed to overcome this problem (Shrestha & Solomatine,

2006). For ANNs in particular, Gal & Ghahramani (2016) have proposed a new method

of computing prediction intervals that builds on the already mentioned concept of

dropout. These authors suggest extending the use of the dropout technique from the ANN

training period to the prediction period. Given that dropout randomly omits neurons,

using it at the prediction stage leads to some variation in the predicted values if several

predictions for the same time steps are made. It is, hence, possible to take advantage of

this phenomenon by making 𝑁 simulations and calculating their mean value along with

the respective standard deviation that is, then, used to compute the prediction intervals.

3. METHODOLOGY

This project closely follows the design science research methodology (DSRM)

proposed by Peffers et al. (2007), which unifies and builds on previous contributions from

the Design Science Research (DSR) literature, such as the guidelines presented by Hevner

et al. (2004) on the application of design science to information systems research.

According to Hevner et al. (2004), DSR is, at its core, a problem-solving oriented process

whose primary goal is to produce novel and useful artifacts meant to solve an identified

relevant practical problem. As defined by March & Smith (1995), such artifacts can have

different levels of abstraction and take the form of constructs, methods, models or

instantiations. While constructs provide a language to describe a problem within its

JOANA CLAUDINO INTELLIGENT SYSTEM FOR TIME SERIES

PATTERN IDENTIFICATION AND PREDICTION

25

domain, models are representations of real-life situations expressed through relationships

among constructs. Methods, in turn, define the steps of a problem-solving process

towards a solution based on constructs and models. Finally, instantiations instrumentalize

constructs, models and methods into working systems (Gregor & Hevner, 2013; March

& Smith 1995). In addition, a crucial factor inherent to DSR is the demonstration and

thorough evaluation of the produced artifact in terms of its utility in serving its intended

purpose (Hevner et al. 2004; Sonnenberg & Brocke, 2012). The choice of a particular

evaluation method is influenced by the type of artifact produced. Nevertheless, as asserted

by Peffers et al. (2012), technical experiments are the dominant evaluation method for

any given artifact. This form of evaluation involves simulating the execution of the

artifact with real or artificial data in a controlled environment to assess if it works as

expected and fulfils its main goal (Hevner et al. 2004; Peffers et al. 2012).

That being said, the DSRM established by Peffers et al. (2007) encompasses six

core activities that will be described and framed in the context of the present project. The

first activity, which comprises the problem identification and motivation, has been carried

out in section 1.1. In summary, the identified problem was the inherent difficulty of time

series forecasting and the need of new automatic methods to address it in the recent

paradigm of big volumes of data, whereas the motivation behind it was the ascertainment

of the great importance of time series forecasting across several domains, including

business and industry. The second activity involves the definition of objectives for a

solution regarding the identified problem. According to Peffers et al. (2007), such

objectives should be inferred from the problem specification and the knowledge of the

state of the problem. The overall objectives were introduced in section 1.2 and are further

extended in section 4 into more practical and concrete goals. The third activity entails the

design and development of the artifact which is described in detail in the following section

4. Moving from the pre-defined objectives to the actual development of the artifact

requires knowledge of the useful theory that can lead to a solution (Hevner et al., 2004;

Peffers et al., 2007). The theory supporting the present project has been thoroughly

analysed in the literature review (section 2). The artifact produced in the project can be

regarded as an instantiation, as it results from the confluence of constructs, models and

methods. The fourth and fifth activities are the artifact demonstration and evaluation,

respectively. Demonstration involves using the artifact on one example of the problem

JOANA CLAUDINO INTELLIGENT SYSTEM FOR TIME SERIES

PATTERN IDENTIFICATION AND PREDICTION

26

whilst evaluation is considered a more formal activity that involves the assessment of the

effectiveness of the artifact in solving the problem it was intended for, by comparing the

results of the demonstration with the established objectives (Hevner et al., 2004; Peffers

et al., 2007). Due to their interdependency, the results of both these activities are

presented in the results section (section 5). Finally, the sixth activity of the DSRM is the

communication of the problem and its importance, as well as the utility and effectiveness

of the created artifact and it is accomplished through the present document.

4. PROJECT DEVELOPMENT

The thorough literature review provided the foundations required to transform the

previously established global objectives, into clearer and somewhat more practical

objectives that could, more concisely, guide the project execution.

Therefore, the first devised objective towards the achievement of the main goal of

forecasting algorithm automation, was to fully understand which elements form the basic

building blocks of an algorithm and how they are related to the previously introduced

models. In this context, it was useful to adopt the view, presented by Fayyad et al. (1996)

and Chung & Gray (1999), of any algorithm consisting of three common components: a

model representation, an evaluation criterion and a search method. According to these

authors, the model representation is an artificial construct used to describe the patterns in

the data, with each representation having its own assumptions. Regarding the models

intended to be implemented, it was inferred from the literature review that ARIMA

models make somewhat strong assumptions about the data, whereas ANNs being data-

driven models are less restrictive and should, in theory, be able to learn any pattern. The

second component, an evaluation criterion, is the means by which the goodness-of-fit of

each model is evaluated. As pointed in section 2.3.3, the preferred criterion for ARIMA

model selection, when estimated by MLE, is the AIC which measures the goodness-of-

fit of the model and, simultaneously, penalizes the model complexity with the aim of

preventing the overfitting problem. On the other hand, the preferred criterion for ANNs

in time series forecasting is the MSE and any possible overfitting is handled by

regularization techniques such as dropout. Lastly, the third component, the search

method, is linked to a model’s hyperparameters whose correct identification, as

aforementioned, requires knowledge about the data at hand and the model being used.

JOANA CLAUDINO INTELLIGENT SYSTEM FOR TIME SERIES

PATTERN IDENTIFICATION AND PREDICTION

27

They are, however, the key component for algorithm automation. As the name of the

component suggests, the search method involves finding the best hyperparameters by

testing several combinations and choosing the one that leads to the best results. According

to Liashchynskyi & Liashchynskyi (2019), two types of search tecnhiques possible to

implement in order to automate the search process are the grid search and the random

search. Given a global set of hyperparameters, the grid search performs a cartesian

product over the set, i.e., it tries all the possible combinations of hyperparameter subsets,

whilst the random search randomly picks combinations of hyperparameter subsets up to

a pre-specified maximum number of iterations. Hence, although the grid search method

is guaranteed to lead to the optimal solution – from the provided hyperparameter space –

it may be intractable in high dimensional spaces due to its high computational cost and,

in such cases, random search comes as an efficient alternative that usually leads to good

enough results (Liashchynskyi & Liashchynskyi, 2019; Bergstra & Bengio, 2012). In

short, the rule of thumb would be to use grid search for low dimensional hyperparameter

spaces and the random search otherwise.

The next practical goal was to search for any already existing algorithms related to

the proposed system and analyse their inner workings. Not surprisingly, given its huge

popularity and the many years that have passed since its introduction, there are some

algorithms addressing the the Box-Jenkins method automation. In fact, there has always

been a significant interest in automating such method, as suggested by the existence of

proposals to do so dated back as far as the early 80’s (Hopwood, 1980; Hill &

Woodworth, 1980). Nonetheless, the state-of-art algorithm for automatic ARIMA

forecasting is the one proposed by Hyndman & Khandakar (2008), implemented in the R

programming language and adapted by some other languages and even by commercial

packages. From the analysis of this algorithm in combination with the knowledge

acquired through the literature review, it was possible to understand that the Box-Jenkins

models could not be automated by blindly applying a search method to its

hyperparameters without taking into account some theoretic aspects as, not doing so,

would lead to results inconsistent with their theoretical underpinnings. More concretely,

it is required to identify the correct number of necessary differences to make the time

series stationary before proceeding to any hyperparameter search. This occurs because,

as explained by Hyndman (2013), differencing involves the loss of a number of data

JOANA CLAUDINO INTELLIGENT SYSTEM FOR TIME SERIES

PATTERN IDENTIFICATION AND PREDICTION

28

points equivalent to the order of the differencing and, as such, the AIC for models with a

dissimilar number of differences is computed based on different sample sizes thus making

its comparison invalid. In the original paper, Hyndman & Khandakar (2008) propose the

use of successive unit root tests for determining the number of differences, more

specifically, the CH test for seasonal differences and KPSS for trend related differences.

Nevertheless, it was possible to find out, through careful inspection of the algorithm, that

in its more recent versions, instead of the CH test, the index of seasonal strength, 𝐹𝑆 in

Eq. (2), is the preferred measure to determine the required number of seasonal

differences. Hence, every time the 𝐹𝑆 exceeds a threshold value, defined as 0.64 by the

authors, it means that a seasonal difference is required. Finally, after the number of

differences has been inferred it is, then, possible to employ a search method to find the

orders of the AR and MA polynomials. Moreover, it is important to add that the choice

between a seasonal or non-seasonal ARIMA is left up to the user.

Conversely, there are not any specific authoritative algorithms for ANNs

automation, which is explained by the already stated fact that these models learn patterns

directly from the data without making many assumptions, thus allowing their

hyperparameters to be automatically found through one of the abovementioned search

methods, without compromising the validity of their results. There is, however, one

additional issue, not exactly related to their automation but simply to their supervised

learning nature and their general usage with time series data, which is the requirement for

transforming the time series into a specific format before they are passed into the neural

network models. More specifically, time series must be converted into windows of

sequences and their corresponding labels. This can be achieved by means of a sliding

window technique (Appendices 1 and 2).

At this point, it was possible to already have a clearer idea of the practical

requirements needed to achieve the proposed main goal of the project, especially in what

concerned the ARIMA models. Regarding the ANNs there were still some unknowns but

that were thought to be more easily cleared up during the actual development of the

system. Hence, with the general aspects of algorithm automation outlined, the next step

was to find the Python libraries that could be used to leverage the system development.

First of all, it is worth to mention that the main reason that motivated the choice of Python

as the programming language for this project was its huge diversity of libraries, that

JOANA CLAUDINO INTELLIGENT SYSTEM FOR TIME SERIES

PATTERN IDENTIFICATION AND PREDICTION

29

greatly extend its base functionalities, in combination with its simple syntax and multi-

paradigm support (Wu, 2019; Cass, 2019). After a thorough search, the libraries deemed

as relevant for the project and from which some functionalities ended being used, as will

be further explained, were:

• Pandas, a very useful library for data analysis and manipulation that presents

important functionalities regarding datetime objects (McKinney, 2010);

• NumPy, which offers a very efficient data structure in the form of n-dimensional

arrays, great for faster computations (Harris et al., 2020);

• Matplotlib, a very flexible library for graphics generation capable of creating any

relevant graph for the project (Hunter, 2007);

• Scikit-learn, the most prominent python library for machine learning related

functionalities (Pedregosa et al., 2011);

• Statsmodels, that takes care of statistical computations, such as model estimation, and

offers important statistical hypothesis tests (Seabold & Perktold, 2010);

• Pytorch, which is a very powerful library for neural network architectures

development. Its basic data structure in form of tensors, also n-dimensional, can

leverage the power of Graphics Processing Unit (GPU) acceleration to perform

computations even faster than those attained through Numpy’s arrays. Moreover, it

has the capability of keeping track of all the performed tensor operations and

automatically computing the correct partial derivatives for each of them, thus greatly

simplifying the backpropagation process during training (Paszke et al., 2017).

From here, the development stage could finally take place. The first concern was to

implement the core functionality of the system, i.e., the ARIMA and RNN models. Since

the mechanics of the ARIMA models were better understood, their implementation was

the first step in the development process. Luckily, an already existing data structure in the

Statsmodels library could be used as base for the model fitting and parameter estimation

part which would require a heavy mathematical background otherwise. Nonetheless, all

the logic underlying the application of the statistical tests and measures to determine the

need of differencing as well as the search loop for an optimal model had to be

independently developed. Some snippets of the code can be found in Appendices 3, 4, and

JOANA CLAUDINO INTELLIGENT SYSTEM FOR TIME SERIES

PATTERN IDENTIFICATION AND PREDICTION

30

5 2. In short, the workflow of the algorithm is based on the one previously mentioned, and

it also requires that the user decides if the model should be seasonal or non-seasonal,

however, after all the components of the system were built, the choice between the two

becomes a very easy process as it will be seen further ahead. If a non-seasonal model is

chosen, the algorithm works by first determining if the inputted time series is stationary

and, if it is not, it finds the necessary number of 𝑑 differences in order for it to become

stationary. Then, it only needs to find the 𝑝 and 𝑞 orders of the AR and MA polynomials,

respectively. It does so by maintaining 𝑑 fixed at the found number of differences and by

trying all the possible combinations of the 𝑝 and 𝑞 hyperparameters up to a pre-defined

limit, whose default value is set to 3, but that can be changed by the user. Finally, it

chooses the combination of hyperparameters for which the AIC or the AICc is smaller.

For a seasonal model, the procedure is very similar, except that the algorithm has also to

determine the number of seasonal differences, 𝐷, and the 𝑃 and 𝑄 orders of the

corresponding seasonal 𝐴𝑅 and 𝑀𝐴 polynomials (Appendix 6). It is worth to highlight

that some theoretical aspects as, for instance, first finding the seasonal differences and

only after finding the non-seasonal differences, in the case of seasonal models, were taken

into account in order to ensure the correctness and validity of the found models.

Next, the implementation of the ANN models was fairly more challenging, and it

was done in an iterative fashion. First, the models decided to be implemented were the

traditional RNN, the LSTM and the GRU. Once again, in this case the existing python

libraries were very helpful, more specifically Pytorch, which had already available an

implementation of each of the memory units, thus, avoiding the cumbersome process of

coding them from scratch. It was, however, necessary to define several architectural

aspects of the ANNs, as well as to define the forward pass of the data through each of

them. Given the fact that the data that flows through neural networks is arranged in the

form of tensors, time series data must be converted to 3D tensors before being passed to

any of them. This could be achieved through the combination of the referred sliding

window technique plus some additional functions of Numpy and Pytorch. These 3D

tensors are subject to several transformations throughout the forward pass of each ANN

until the output layer is reached. Such transformations had to be carefully defined, in

2 Due to its extension, it is not possible to reproduce the entire code in the Appendices section. The full

 code can be found at: https://github.com/joana94/intelligent-ts-predictor

https://github.com/joana94/intelligent-ts-predictor

JOANA CLAUDINO INTELLIGENT SYSTEM FOR TIME SERIES

PATTERN IDENTIFICATION AND PREDICTION

31

order to guarantee that the ANNs would produce consistent results. Furthermore, it was

needed to understand the correct way of initializing the hidden states for all the ANNs,

and the cell state in the case of LSTMs, and to decide which parts of their information

should be passed to the output layer. The final decision was to use the information from

all hidden states in the output layer as the default option since it demonstrated better

results, but also to offer the alternative of allowing the user to choose to only use the

information from the most recent hidden state.

At the end, all the ANNs ended up being implemented with a similar architecture,

i.e., with an input layer, two stacked recurrent layers, a linear output layer and a dropout

layer between the recurrent layers (Appendices 7 and 8). The reason behind the decision

of using two fixed recurrent layers and a dropout layer in between instead of giving the

option of these factors being part of the searchable hyperparameter grid, was to guarantee

that after the models were trained, they could generate prediction intervals along with the

point forecasts at inference time. The implementation of the prediction intervals was

inspired by the method presented in section 2.3.4, being the variability associated with

the dropout technique used to generate several simulations of the future values and their

corresponding mean and standard deviation used to compute the intervals’ upper and

lower bounds, whose coverage probabilities were assumed to follow a normal distribution

(Appendix 9). Thus, the only searchable hyperparameter regarding the neural networks’

architecture ended being the size of the hidden dimension of the recurrent layers, i.e., the

number of hidden neurons that they possess and which greatly influence the

representational power of the neural networks and their capability of learning patterns.

The main hyperparameters to be searched in the neural networks are related to their

training. The training process is what enables a neural network to progressively capture

the patterns contained in the data and, as such, is a key part in their use for time series

forecast generation. It is during training that many decisions have to be made, namely,

how many samples of sequences and labels, known as the batch size, should be

simultaneously passed to the network at each iteration for computing the gradients and

updating the networks’ weights. There is also the decision of whether to shuffle these

samples or not. For independent and identically distributed random variables, shuffling is

basically a pre-requisite as it prevents the neural networks from incorrectly learning

patterns that simply resulted from the way that the samples were ordered when they were

JOANA CLAUDINO INTELLIGENT SYSTEM FOR TIME SERIES

PATTERN IDENTIFICATION AND PREDICTION

32

passed to them. In the case of time series, although the order of the observations is

extremely important and, in principle, should not be changed, doing so sometimes

improves pattern learning, especially in the case of long time series as has been

empirically asserted by some researchers (Peralta et al., 2009). In addition, other very

important hyperparameter to be searched, that highly impacts the learning process, is the

learning rate of the optimizer when performing gradient descent. The learning rate

controls how fast the weights are updated by gradient descent towards the minimum of

the loss function and it really has a huge impact in the ability of the ANNs to learn

patterns. So, in sum, the resulting hyperparameters to be automatically optimized in the

implemented RNNs, ended being the hidden dimension, the batch size, the shuffling and

the learning rate (Appendix 10). The selected decision criterion for finding the best set of

hyperparameters was the validation loss with the minimum MSE. The creation of the

validation set was decided to be computed as a fraction of the training set, with the default

value of 10% but with the possibility of being controlled by the user. This splitting logic

was incorporated as the first step of the training loop. Finally, both grid and random search

methods were implemented and it is up to the user to choose which one to use to find the

best set of hyperparameters depending on the dataset at hand (Appendix 11).

Two additional remarks about the ANNs were the fact that when testing their

functioning, it was concluded that the time series data had to mandatorily go through an

extra pre-processing step of normalization, before being passed to the ANNs or otherwise

the models would not work properly, and the fact that in some cases the gradients would

become very unstable during training which led to the inclusion of the gradient clipping

technique in the training loop. The chosen normalization technique was the min-max

scaling, which rescales the values of the time series to values between 0 and 1, whereas

the defined threshold value for gradient clipping was 1 and it significantly aided to

overcome the exploding gradients problem.

Finally, after the automation of the forecasting models had been achieved, they

could be now used as foundation to build a support system able to guide the user through

the entire forecasting process while abstracting its inherent complexity. As depicted in

Figure 2, this would include the process of ingesting time series data, splitting them into

training and testing sets, comparing the performance of competing models in the testing

set and, lastly, choosing the best performing model to produce real forecasts into the

JOANA CLAUDINO INTELLIGENT SYSTEM FOR TIME SERIES

PATTERN IDENTIFICATION AND PREDICTION

33

future. To accomplish this, a modular system, whose overall functionality and outputs are

summarized in Figure 7, was developed.

In more detail, this system is comprised by the following components:

• The data loading module, which takes care of the time series data reading and the

checking of their values. The reading function expects a csv file containing a date

column in a valid format, which is automatically detected, and, evidently, a column

containing the respective values for each timestamp. Given the fact that any missing

dates negatively impact the performance of the models, especially that of ARIMA

models as ANNs are more robust to such scenario, it automatically checks for any

missing dates and, if any are detected, it adds them to the original time series and also

the corresponding missing values, through linear interpolation. The great flexibility

of the python Pandas library to handle datetime objects was a valuable aspect that

aided in the development of this module. Additionally, it produces two extra csv files,

one containing the training set and the other containing the test set, which are used by

the subsequent modules, and two reports. The first report provides some descriptive

statistics of the time series including the trend and seasonal strength measures which

give the user an hint about the possible presence of trend and seasonal patterns, and

the other report contains the results of the KPSS test thus providing a prior indication

of the stationarity of the time series. These are accompanied by the time plot, which

also allows to visually detect any patterns, along with the ACF and PACF plots that

help to assess the existence of any significant autocorrelations (Appendix 12). All the

plots are generated through the Matplotlib library.

Figure 7. Overview of the system modules and their outputs

JOANA CLAUDINO INTELLIGENT SYSTEM FOR TIME SERIES

PATTERN IDENTIFICATION AND PREDICTION

34

• The model fitting module, which is the one that makes most use of the previously

developed automatic algorithms. It fits a model, chosen by the user through a

configuration file, to the time series training set and then the automatic algorithms do

all the work of finding the best hyperparameters and estimating the parameters for the

inputted time series data. If a statistical model is chosen, it is fitted to the data after

computing the required differences. Its optimal hyperparameters are found by

minimizing the AIC or AICc, whilst the associated parameters are then estimated by

Maximum Likelihood. On the other hand, if an ANN model is chosen, the dataset is

first normalized through the min-max scaling functionality offered by the Scikit-learn

library, and transformed into windows of sequences and their corresponding labels,

prior to the model training. Its deemed optimal hyperparameters are those which

produce the lowest MSE in the validation set, whereas the corresponding parameters

are estimated by gradient descent also towards the minimum MSE but on the training

set. The outputs of this module are very important and consist of reports and csv files

containing the summary of the fitted/trained models, the set of the found optimal

hyperparameters, the predictions of the models for the test set and the predictive

performance metrics – the MSE, RMSE, MAE and MdAE – computed for those

predictions, which are the key element to compare different models. It also produces

graphics of the predicted values compared against the real values. Finally, for ARIMA

models an additional set of plots, intended to address the diagnostics step of the Box-

Jenkins method, is generated for the residuals of the model and comprise their ACF

and PACF plots, that allow to check the existence of any remaining autocorrelations,

and their density plot, which enables to verify if they follow a normal distribution.

For the ANNs, a plot showing the training and validation set losses is provided and

its usefulness lies on the fact that it provides an indication of how many iterations

should be used when training the model on the entire time series (Appendix 13).

• The model comparison module, which is just a utility and is not an essential part for

the correct functioning of the system. It simply grabs the predictive performance

results of each of the fitted competing models, and produces a report and a csv file

indicating which one made the lowest error accompanied by a bar plot that displays

the same information but in a more intuitive way. By using this module, the user

avoids the need to manually check the outputted reports of each model and can

JOANA CLAUDINO INTELLIGENT SYSTEM FOR TIME SERIES

PATTERN IDENTIFICATION AND PREDICTION

35

quickly and easily compare all the different types of models, in order to decide which

one is really the best for the time series at hand (Appendix 14).

• The forecasting module, which, as expected, produces point forecasts

accompanied by their prediction intervals. It refits the chosen model to the entire

dataset with the found optimal set of hyperparameters and produces forecasts for the

number of periods along with the predictions’ confidence level, pre-specified by the

user in the configuration file. Forecasts of both ARIMA and ANN models are

produced using the recursive method, where each of the predicted values are reused

as inputs for the subsequent predictions. The forecasts are outputted in the form of

report and a csv file, which can be used for further analysis. These are accompanied

by a time plot that allows to visualize how the values are expected to change in the

future, and how confident the models are on their predictions (Appendix 15).

In addition, before any of the referred modules can be used, an initial script

responsible for creating the directory structure for each forecasting project, must be

executed so that every module output is placed in the correct folder (Appendix 16).

5. RESULTS

The designed artifact was evaluated through experimentation, a process that was

carried out in several steps. First, the automated algorithms were iteratively assessed

during their development in order to assure their correct implementation. The goal was to

verify that both ARIMA and ANNs could select the best hyperparameter set from the

available hyperparameter grid and, simultaneously, to confirm if the ANNs were able to

actually learn any patterns from the data. Therefore, to perform this evaluation an artificial

dataset was used, more concretely, a sine wave which due to its simplicity would allow

to test the algorithms in several occasions in a short amount of time and, due to its periodic

pattern, would also allow to check the ability of the ANNs to learn its pattern3. This initial

experiment lead to very positive results as shown by the low errors that any of the models

made on the artificial dataset in Table III. Note that only the seasonal ARIMA error is

reported, as fitting a non-seasonal ARIMA model to a dataset of a periodic nature like

3 Furthermore, the used artificial dataset has also the advantage of being easily reproducible, thus

 facilitating the replication of the experiment by other researchers.

JOANA CLAUDINO INTELLIGENT SYSTEM FOR TIME SERIES

PATTERN IDENTIFICATION AND PREDICTION

36

this one would be nonsensical4. Moreover, the extremely low error reported for the

SARIMA model is explained by the fact that, in some circumstances, its forecasting

function can be obtained as a mixture of sines and cosines, hence, originating this almost

perfect prediction for the test data (Box et al., 2016).

TABLE III. SINE WAVE PREDICTION RESULTS

 SARIMA Traditional RNN LSTM GRU

MSE 1.373644e-07 0.030167 0.007415 0.020094

RMSE 3.706270e-04 0.173688 0.086109 0.141754

MAE 2.768829e-04 0.150737 0.077472 0.123896

MdAE 2.425354e-04 0.135817 0.085139 0.120943

An additional experiment, with another artificial dataset, was carried out to further

assess the capacity of the neural networks to learn patterns. This dataset comprised, once

again, a sine wave but this time with some gaussian noise added to it. As expected, the

error increased slightly but the results were still pretty remarkable as shown in Table IV,

meaning that the relevant patterns were still captured.

TABLE IV. SINE WAVE WITH GAUSSIAN NOISE PREDICTION RESULTS

 SARIMA Traditional RNN LSTM GRU

MSE 0.046699 0.131497 0.064780 0.071001

RMSE 0.216100 0.362624 0.254519 0.266461

MAE 0.177564 0.284824 0.208243 0.214373

MdAE 0.136900 0.258987 0.202693 0.185101

The use of these two artificial datasets was very important as it not only made clear

that both algorithms were choosing the best set of hyperparameters, but it also showed

that, even in the presence of noise distorting the target signal, the RNNs were able to

approximate the data generating function, thus capturing the relevant patterns and

achieving very competitive results when compared to the SARIMA model, with the

4 In addition, the correct functioning of the SARIMA model implies the also correct functioning of

 ARIMA, as both rely on the same automatic algorithm.

JOANA CLAUDINO INTELLIGENT SYSTEM FOR TIME SERIES

PATTERN IDENTIFICATION AND PREDICTION

37

LSTM being the best performing ANN for both datasets. Furthermore, as previously

explained, this experiment also allowed to conclude the necessity of further tweaking the

ANN algorithms by incorporating the min-max normalization as a pre-processing step

and by clipping the gradients in the training loop to avoid exploding gradients.

The next experiment intended to check if the entire system built on top of the

automated algorithms also worked as expected. In order to do so, two publicly available

real datasets5, with diverging characteristics regarding length and frequency, were used

in an end-to-end time series forecasting task. This allowed to demonstrate and assess the

correct functioning of each of the modules and the performance of the system as a whole.

The dataset 1 comprised a short time series with less than two hundred observations

and monthly frequency, encompassing a clear seasonal pattern, and did not have any

missing dates or values. Each module of the system was able to produce the expected

outputs for this dataset, and the automatic algorithms were able to effortlessly find the

best hyperparameters for each model. The best performing model on this dataset was the

GRU, followed by the LSTM, SARIMA and traditional RNN. The MSE computed in the

test set, as well as the found best hyperparameter set for each model is reported in Table

V. Furthermore, the time plots outputted by the model fitting and the forecasting module

for the two best performing models, GRU and LSTM, are shown in Figure 8.

The dataset 2 consisted of a long time series, with more than three thousand

observations and daily frequency, also encompassing a seasonal pattern, and with some

missing dates and values. Once again, each module of the system worked as expected,

namely by detecting the missing data and filling it appropriately, and by producing the

correct outputs. For this dataset the automatic algorithms, however, required a much

longer fitting/training time and were slower to converge to a solution, with SARIMA

being the model that struggled the most, which was an expected outcome since this type

of model does not scale well for big time series datasets with a high frequency. In fact,

SARIMA simply cannot model data with higher than daily frequency, which has

prevented the assessment of the system in a more complex hourly dataset. Anyway, at the

end all models were able to fit dataset 2 and actually produced similar results as can be

seen in Table V, with the LSTM being the best performing one.

5 Dataset 1: https://www.kaggle.com/chirag19/air-passengers

 Dataset 2: https://github.com/jbrownlee/Datasets/blob/master/daily-max-temperatures.csv

https://www.kaggle.com/chirag19/air-passengers
https://github.com/jbrownlee/Datasets/blob/master/daily-max-temperatures.csv

JOANA CLAUDINO INTELLIGENT SYSTEM FOR TIME SERIES

PATTERN IDENTIFICATION AND PREDICTION

38

TABLE V. SUMMARY OF THE OPTIMAL HYPERPARAMETERS FOUND FOR EACH MODEL

AND THE CORRESPONDING PREDICTIVE PERFORMANCE FOR EACH DATASET

 Models Optimal Hyperparameters MSE

Dataset 1

SARIMA
𝑝 = 2, 𝑑 = 0, 𝑞 = 0, 𝑃 = 1, 𝐷 = 1 and

𝑄 = 2
2693.78

Traditional

RNN

Batch size = 10, learning rate = 0.001,

Hidden dimension = 512, Shuffle = True
3315.31

LSTM
Batch size = 10, learning rate = 0.001,

Hidden dimension = 512, Shuffle = True
2540.68

GRU
Batch size = 10, learning rate = 0.01,

Hidden dimension = 256, Shuffle = True
2231.89

Dataset 2

SARIMA
𝑝 = 3, 𝑑 = 0, 𝑞 = 2, 𝑃 = 0, 𝐷 = 0 and

𝑄 = 2
43.28

Traditional

RNN

Batch size = 60, learning rate = 0.001,

Hidden dimension = 256, Shuffle = True
53.10

LSTM
Batch size = 60, learning rate = 0.001,

Hidden dimension = 512, Shuffle = True
42.83

GRU
Batch size = 60, learning rate = 0.001,

Hidden dimension = 512, Shuffle = True
43.63

Figure 8. Forecasting module output for dataset 1. In the upper row of the image, we find

the time plots outputted by the model fitting module for both GRU and LSTM models for

dataset 1, where the predictions for the test set are plotted against the real values. In the

bottom row, we find the time plots outputted by the forecasting model which show the

forecasted values along with their prediction intervals.

JOANA CLAUDINO INTELLIGENT SYSTEM FOR TIME SERIES

PATTERN IDENTIFICATION AND PREDICTION

39

As shown in Figure 8, the implemented RNNs are able to quantify the uncertainty

of their predictions. The wide prediction intervals produced by the GRU imply a high

uncertainty of the model about its predicted future values, in contrast with the very narrow

prediction intervals produced by the LSTM which indicate a high confidence of the model

regarding its predicted future values. Furthermore, from Table V it is possible to conclude

that for both datasets, the automatic algorithm found that shuffling the time series data

before feeding it to any of the ANNs would lead to the best results.

In sum, from the obtained results the RNN models revealed to be a competitive

alternative to classical ARIMA models. Moreover, it should be noted that the optimal set

of hyperparameters for the RNNs is chosen conditioned on the hyperparameter grid

provided by the user. In the carried experiments the provided grid was considerably small,

due to computational resources limitations, meaning that there is some probability that a

potentially better performing model could be found if a larger grid was provided.

6. CONCLUSIONS, CONTRIBUTIONS, LIMITATIONS AND FUTURE WORK

For this project, a design science research approach was used to develop a

purposeful artifact that addresses the identified problem of the need for more advanced

automated data-driven forecasting algorithms, and their usage to reduce the underlying

complexity of the time series forecasting process. In global terms, all the established

objectives towards the development of the proposed artifact were successfully achieved.

The final designed artifact can be considered an instantiation as it combines constructs,

models and methods into a fully working system. From the models included in the system,

the statistical ARIMA models are a well-studied subject in the context of time series

forecasting, whereas the application of RNNs to time series forecasting is a fairly recent

subject and remains an open topic requiring further research.

Regarding the contributions of the project, the experiments carried out to test the

system suggested that RNNs are indeed capable of learning patterns from time series data

and to extrapolate them into the future, actually leading to competitive results when

compared to classical models, thus supporting the recent interest in using these models

for time series forecasting. Moreover, in accordance with recent research, they also

suggested a better performance of the gated RNNs, the LSTM and GRU, over the

JOANA CLAUDINO INTELLIGENT SYSTEM FOR TIME SERIES

PATTERN IDENTIFICATION AND PREDICTION

40

traditional RNN. The system also hinted at the possible suitability of shuffling time series

data during the ANN training phase. Nevertheless, the main contribution of the project is

the artifact itself and it is two-folded. First, it offers a unique fully automated tool capable

of performing time series forecasting while including the most well-known statistical

models, as well as some of the most recent and promising models for such task. This is

useful either for the expert and non-expert user, as it provides a way of quick and easily

fitting competing models and compare their performance while obtaining insightful

reports and graphical representations. It also mitigates the burden of dealing with the most

complex technical issues linked with timestamped data and of having to implement the

models or to manually tune their hyperparameters, which are far from trivial tasks. On

the other hand, given the fact that the system’s code was made publicly available along

with the fact that it was developed in an object oriented fashion, with its main

functionalities being abstracted and encapsulated into classes, more experienced

programmers can take advantage of this factor and break down the system into its core

components, in order to use them as in a regular python package. This could lead to a

great gain of flexibility and control over the model building process, especially for the

neural networks, and would allow to further extend the offered capabilities.

The limitations faced in the project, were mainly related to computational

performance constraints which precluded the use of bigger time series datasets with the

system. The use of such datasets would possibly grant the system’s evaluation in more

representative conditions of the real-world time series forecasting scenario. Nevertheless,

the performed experiments still indicate an overall good performance of the system, as

long as the required computational resources are available.

Finally, some possible future work directions regarding the system’s usability and

performance improvements are provided. Concerning the usability aspect of the system,

a clear enhancement would be to provide it with a more user-friendly interface in

opposition to its current interface which relies on the operating system’s command line.

Concerning the performance aspect, the main factors to consider would be the assessment

of more advanced methods for hyperparameter search, such as Genetic Algorithms, and

the implementation of more complex recurrent neural network architectures capable of

taking into the account the influence of other predictors in the target time series other than

its own current and past values.

JOANA CLAUDINO INTELLIGENT SYSTEM FOR TIME SERIES

PATTERN IDENTIFICATION AND PREDICTION

41

REFERENCES

Agrawal, R., Imieliński, T. and Swami, A. (1993). Mining association rules between sets

of items in large databases. ACM SIGMOD Record, 22(2), pp.207–216.

Akaike, H. (1973). Information theory and an extension of the maximum likelihood

principle. In B. N. Petrov and F. Csaki (Eds.), Second international symposium on

information theory (pp. 267-281). Budapest: Academiai Kiado

Almeshaiei, E. and Soltan, H. (2011). A methodology for Electric Power Load

Forecasting. Alexandria Engineering Journal, 50(2), pp.137–144.

Amadeo, K. (2008). What Is the Business Cycle? [online] The Balance. Available at:

https://www.thebalance.com/what-is-the-business-cycle-3305912 [Accessed 26

Mar. 2020].

Amari, S. (1993). Backpropagation and stochastic gradient descent

method. Neurocomputing, 5(4–5), pp.185–196.

Armstrong, J.S. (2002). Introduction. In: Principles of Forecasting: A Handbook for

Researchers and Practitioners. Springer US, pp.1–12.

Barry-Straume, J., Tschannen, A., Engels, D.W. and Fine, E. (2018). An Evaluation of

Training Size Impact on Validation Accuracy for Optimized Convolutional Neural

Networks. SMU Data Science Review, [online] 1(4). Available at:

https://scholar.smu.edu/datasciencereview/vol1/iss4/12/ [Accessed 22 Jul. 2020].

Bartlett, M.S. (1946). On the Theoretical Specification and Sampling Properties of

Autocorrelated Time-Series. Supplement to the Journal of the Royal Statistical

Society, 8(1), pp.27–41.

Bengio, Y., Simard, P. and Frasconi, P. (1994). Learning long-term dependencies with

gradient descent is difficult. IEEE Transactions on Neural Networks, 5(2), pp.157–

166.

Bergstra, J. and Bengio, Y. (2012). Random Search for Hyper-Parameter

Optimization. Journal of Machine Learning Research, [online] 13(10), pp.281–305.

https://www.thebalance.com/what-is-the-business-cycle-3305912
https://scholar.smu.edu/datasciencereview/vol1/iss4/12/

JOANA CLAUDINO INTELLIGENT SYSTEM FOR TIME SERIES

PATTERN IDENTIFICATION AND PREDICTION

42

Available at: https://www.jmlr.org/papers/v13/bergstra12a.html [Accessed 7 Jun.

2020].

Box, G.E.P. and Cox, D.R. (1964). An Analysis of Transformations. Journal of the Royal

Statistical Society. Series B (Methodological), 26(2), pp.211–252.

Box, G.E.P. and Jenkins, G.M. (1970). Time series analysis: Forecasting and control.

San Francisco: Holden-Day.

Box, G.E.P., Jenkins, G.M., Reinsel, G.C. and Ljung, G.M. (2016). Time Series Analysis:

Forecasting and Control. 5th ed. Hoboken, New Jersey: John Wiley & Sons.

Bramer, M. (2016). Principles of Data Mining. Undergraduate Topics in Computer

Science. London: Springer London.

Brownlee, J. (2017a). What is the Difference Between a Parameter and a

Hyperparameter? [online] Machine Learning Mastery. Available at:

https://machinelearningmastery.com/difference-between-a-parameter-and-a-

hyperparameter/ [Accessed 11 Jul. 2020].

Brownlee, J. (2017b). What is the Difference Between Test and Validation Datasets?

[online] Machine Learning Mastery. Available at:

https://machinelearningmastery.com/difference-test-validation-datasets/ [Accessed

6 Jul. 2020].

Canova, F. and Hansen, B.E. (1995). Are Seasonal Patterns Constant Over Time? A Test

for Seasonal Stability. Journal of Business & Economic Statistics, 13(3), pp.237–252.

Cass, S. (2019). The Top Programming Languages 2019. [online] IEEE Spectrum:

Technology, Engineering, and Science News. Available at:

https://spectrum.ieee.org/computing/software/the-top-programming-languages-

2019 [Accessed 18 Feb. 2020].

Chatfield, C. (2002). Prediction Intervals for Time-Series Forecasting. In: Principles of

Forecasting: A Handbook for Researchers and Practitioners. Springer US, pp.475–

494.

Chatfield, C. (2004). The Analysis of Time Series: An Introduction. 6th ed. Boca Raton,

FL: Chapman & Hall/Crc.

https://www.jmlr.org/papers/v13/bergstra12a.html
https://machinelearningmastery.com/difference-between-a-parameter-and-a-hyperparameter/
https://machinelearningmastery.com/difference-between-a-parameter-and-a-hyperparameter/
https://machinelearningmastery.com/difference-test-validation-datasets/
https://spectrum.ieee.org/computing/software/the-top-programming-languages-2019
https://spectrum.ieee.org/computing/software/the-top-programming-languages-2019

JOANA CLAUDINO INTELLIGENT SYSTEM FOR TIME SERIES

PATTERN IDENTIFICATION AND PREDICTION

43

Chen, K.-Y. and Wang, C.-H. (2007). A hybrid SARIMA and support vector machines

in forecasting the production values of the machinery industry in Taiwan. Expert

Systems with Applications, 32(1), pp.254–264.

Cho, K., van Merrienboer, B., Bahdanau, D. and Bengio, Y. (2014). On the Properties of

Neural Machine Translation: Encoder-Decoder Approaches. arXiv:1409.1259 [cs,

stat]. [online] Available at: https://arxiv.org/abs/1409.1259 [Accessed 3 Aug. 2020].

Chung, H.M. and Gray, P. (1999). Special Section: Data Mining. Journal of Management

Information Systems, 16(1), pp.11–16.

Chung, J., Gulcehre, C., Cho, K. and Bengio, Y. (2014). Empirical Evaluation of Gated

Recurrent Neural Networks on Sequence Modeling. [online] arXiv.org. Available at:

https://arxiv.org/abs/1412.3555 [Accessed 21 Aug. 2020].

Cleveland, R.B., Cleveland, W.S. and Terpenning, I. (1990). STL: A Seasonal-Trend

Decomposition Procedure Based on Loess. Journal of Official Statistics, 6(1), pp.3–

73.

Coenen, F. (2011). Data Mining: Past, Present and Future. The Knowledge Engineering

Review, 26(1), pp.25–29.

De Gooijer, J.G. and Hyndman, R.J. (2006). 25 Years of Time Series

Forecasting. International Journal of Forecasting, 22(3), pp.443–473.

Ding, J., Tarokh, V. and Yang, Y. (2018). Model Selection Techniques: An

Overview. IEEE Signal Processing Magazine, 35(6), pp.16–34.

Elman, J.L. (1990). Finding Structure in Time. Cognitive Science, [online] 14(2), pp.179–

211. Available at:

https://onlinelibrary.wiley.com/doi/abs/10.1207/s15516709cog1402_1 [Accessed

7 Apr. 2020].

Esling, P. and Agon, C. (2012). Time-series data mining. ACM Computing Surveys,

45(1), pp.1–34.

Faloutsos, C., Flunkert, V., Gasthaus, J., Januschowski, T. and Wang, Y. (2019).

Forecasting Big Time Series: Theory and Practice. In: Proceedings of the 25th ACM

https://arxiv.org/abs/1409.1259
https://arxiv.org/abs/1412.3555
https://onlinelibrary.wiley.com/doi/abs/10.1207/s15516709cog1402_1

JOANA CLAUDINO INTELLIGENT SYSTEM FOR TIME SERIES

PATTERN IDENTIFICATION AND PREDICTION

44

SIGKDD International Conference on Knowledge Discovery & Data Mining. KDD

’19. pp.3209–3210.

Fayyad, U., Piatetsky-Shapiro, G. and Smyth, P. (1996). Knowledge Discovery and Data

Mining: Towards a Unifying Framework. pp.82–88.

Fildes, R. and Makridakis, S. (1995). The Impact of Empirical Accuracy Studies on Time

Series Analysis and Forecasting. International Statistical Review / Revue

Internationale de Statistique, 63(3), pp.289–308.

Fu, R., Zhang, Z. and Li, L. (2016). Using LSTM and GRU neural network methods for

traffic flow prediction. In: 31st Youth Academic Annual Conference of Chinese

Association of Automation (YAC). pp.324–328.

Fu, T. (2011). A review on time series data mining. Engineering Applications of Artificial

Intelligence, 24(1), pp.164–181.

Gallicchio, C., Micheli, A. and Pedrelli, L. (2019). Comparison between DeepESNs and

gated RNNs on multivariate time-series prediction. arXiv:1812.11527 [cs, stat].

[online] Available at: https://arxiv.org/abs/1812.11527 [Accessed 16 Aug. 2020].

Gal, Y. and Ghahramani, Z. (2016). Dropout as a Bayesian Approximation: Representing

Model Uncertainty in Deep Learning. arXiv:1506.02142 [cs, stat]. [online] Available

at: https://arxiv.org/abs/1506.02142 [Accessed 12 Aug. 2020].

Géron, A. (2019). Hands-on machine learning with Scikit-Learn and TensorFlow:

concepts, tools, and techniques to build intelligent systems. 2nd ed. 1005 Gravenstein

Highway North, Sebastopol, CA 95472: O’Reilly Media, Inc.

Glen, S. (2016). Unit Root: Simple Definition, Unit Root Tests. [online] Statistics How

To. Available at: https://www.statisticshowto.com/unit-root/ [Accessed 20 Apr.

2020].

Goodfellow, I., Bengio, Y. and Courville, A. (2016). Sequence Modeling: Recurrent and

Recursive Nets. In: Deep Learning. [online] MIT Press, pp.367–415. Available at:

http://www.deeplearningbook.org [Accessed 16 May 2020].

Graves, A. (2013). Generating Sequences With Recurrent Neural Networks. [online]

arXiv.org. Available at: https://arxiv.org/abs/1308.0850 [Accessed 24 Jun. 2020].

https://arxiv.org/abs/1812.11527
https://arxiv.org/abs/1506.02142
https://www.statisticshowto.com/unit-root/
http://www.deeplearningbook.org/

JOANA CLAUDINO INTELLIGENT SYSTEM FOR TIME SERIES

PATTERN IDENTIFICATION AND PREDICTION

45

Gregor, S. and Hevner, A.R. (2013). Positioning and Presenting Design Science Research

for Maximum Impact. MIS Quarterly, 37(2), pp.337–355.

Gullo, F., Ponti, G., Tagarelli, A. and Greco, S. (2009). A time series representation model

for accurate and fast similarity detection. Pattern Recognition, 42(11), pp.2998–3014.

Haldrup, N., Kruse, R., Teräsvirta, T. and Varneskov, R.T. (2013). Unit roots, non-

linearities and structural breaks. In: N. Hashimzade and M.A. Thornton,

eds., Handbook of Research Methods and Applications in Empirical

Macroeconomics. Cheltenham: Edward Elgar Publishing, pp.61–94.

Hand, D.J. (1998). Data Mining: Statistics and More? The American Statistician, 52(2),

pp.112–118.

Han, J., Kamber, M. and Pei, J. (2012). Data Mining : Concepts and Techniques. 3rd ed.

225 Wyman Street, Waltham, MA 02451, USA: Elsevier.

Hanke, J.E. and Wichern, D.W. (2014). Business forecasting. 9th ed. Harlow, Essex:

Pearson.

Harris, C.R., Millman, K.J., van der Walt, S.J., Gommers, R., Virtanen, P., Cournapeau,

D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van

Kerkwijk, M.H., Brett, M., Haldane, A., del Río, J.F., Wiebe, M., Peterson, P.,

Gérard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke,

C. and Oliphant, T.E. (2020). Array programming with NumPy. Nature, 585(7825),

pp.357–362.

Hevner, A.R., March, S.T., Park, J. and Ram, S. (2004). Design Science in Information

Systems Research. MIS Quarterly, 28(1), pp.75–105.

Hill, G.W. and Woodworth, D. (1980). Automatic Box-Jenkins Forecasting. The Journal

of the Operational Research Society, 31(5), pp.413–422.

Hochreiter, S. and Schmidhuber, J. (1997). Long Short-Term Memory. Neural

Computation, 9(8), pp.1735–1780.

Hopwood, W.S. (1980). On the Automation of the Box-Jenkins Modeling Procedures:

An Algorithm with an Empirical Test. Journal of Accounting Research, 18(1),

pp.289–296.

JOANA CLAUDINO INTELLIGENT SYSTEM FOR TIME SERIES

PATTERN IDENTIFICATION AND PREDICTION

46

Hunter, J.D. (2007). Matplotlib: A 2D graphics environment. Computing in Science &

Engineering, 9(3), pp.90–95.

Hurvich, C.M. and Tsai, C.-L. (1989). Regression and time series model selection in small

samples. Biometrika, 76(2), pp.297–307.

Hyndman, R.J. (2011). Business Forecasting Methods. In: International Encyclopedia of

Statistical Science. pp.185–187.

Hyndman, R.J. (2013). Facts and fallacies of the AIC. [online] Hyndsight. Available at:

https://robjhyndman.com/hyndsight/aic/ [Accessed 7 Sep. 2020].

Hyndman, R.J. (2014). Seasonal periods. [online] Hyndsight. Available at:

https://robjhyndman.com/hyndsight/seasonal-periods/ [Accessed 9 Feb. 2020].

Hyndman, R.J. and Athanasopoulos, G. (2018). Forecasting: Principles and Practice.

2nd ed. [online] Heathmont, Vic.: Otexts. Available at:

https://otexts.com/fpp2/index.html [Accessed 13 Jan. 2020].

Hyndman, R.J. and Khandakar, Y. (2008). Automatic Time Series Forecasting: The

Forecast Package for R. Journal of Statistical Software, 27(3), pp.1–22.

Hyndman, R.J. and Koehler, A.B. (2006). Another Look at Measures of Forecast

Accuracy. International Journal of Forecasting, [online] 22(4), pp.679–688.

Available at: https://www.sciencedirect.com/science/article/pii/S0169207006000239

[Accessed 28 Jun. 2020].

Jordan, M.I. (1997). Serial Order: A Parallel Distributed Processing Approach. Neural-

Network Models of Cognition - Biobehavioral Foundations, 121, pp.471–495.

Jozefowicz, R., Zaremba, W. and Sutskever, I. (2015). An Empirical Exploration of

Recurrent Network Architectures. In: Proceedings of the 32nd International

Conference on Machine Learning, in PMLR. ICML’15. pp.2342–2350.

Karlik, B. and Olgac, A. (2011). Performance Analysis of Various Activation Functions

in Generalized MLP Architectures of Neural Networks. International Journal of

Artificial Intelligence And Expert Systems (IJAE), 1(4), pp.111–122.

https://robjhyndman.com/hyndsight/aic/
https://robjhyndman.com/hyndsight/seasonal-periods/
https://otexts.com/fpp2/index.html

JOANA CLAUDINO INTELLIGENT SYSTEM FOR TIME SERIES

PATTERN IDENTIFICATION AND PREDICTION

47

Karpathy, A. (2015). The Unreasonable Effectiveness of Recurrent Neural Networks.

[online] Andrej Karpathy blog. Available at:

http://karpathy.github.io/2015/05/21/rnn-effectiveness/ [Accessed 16 Jul. 2020].

Keogh, E. and Kasetty, S. (2003). On the Need for Time Series Data Mining Benchmarks:

A Survey and Empirical Demonstration. Data Mining and Knowledge Discovery,

7(4), pp.349–371.

Kolarik, T. and Rudorfer, G. (1994). Time series forecasting using neural networks. ACM

SIGAPL APL Quote Quad, 25(1), pp.86–94.

Kritzman, M. (1994). What Practitioners Need to Know about Serial

Dependence. Financial Analysts Journal, 50(2), pp.19–22.

Kumar, S., Hussain, L., Banarjee, S. and Reza, M. (2018). Energy Load Forecasting using

Deep Learning Approach-LSTM and GRU in Spark Cluster. In: 2018 Fifth

International Conference on Emerging Applications of Information Technology

(EAIT). pp.1–4.

Kurgan, L.A. and Musilek, P. (2006). A Survey of Knowledge Discovery and Data

Mining Process Models. The Knowledge Engineering Review, 21(1), pp.1–24.

Kwiatkowski, D., Phillips, P.C.B., Schmidt, P. and Shin, Y. (1992). Testing the Null

Hypothesis of Stationarity Against the Alternative of a Unit Root. Journal of

Econometrics, 54(1–3), pp.159–178.

Lawrence, S., Giles, C.L. and Tsoi, A.C. (1997). Lessons in Neural Network Training:

Overfitting May be Harder than Expected. In: Proceedings of the Fourteenth National

Conference on Artificial Intelligence. AAAI-97. AAAI Press, pp.540–545.

Lee, K., Booth, D. and Alam, P. (2004). Backpropagation and Kohonen Self-Organizing

Feature Map in Bankruptcy Prediction. Neural Networks in Business Forecasting,

Idea Group Publishing, pp.158–171.

Lever, J., Krzywinski, M. and Altman, N. (2016). Model selection and overfitting. Nature

Methods, 13(9), pp.703–704.

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

JOANA CLAUDINO INTELLIGENT SYSTEM FOR TIME SERIES

PATTERN IDENTIFICATION AND PREDICTION

48

Levich, R. and Rosario, R. (1999). Alternative Tests for Time Series Dependence Based

on Autocorrelation Coefficients. [online] NYU Stern. Available at:

http://pages.stern.nyu.edu/~rlevich/wp/LR1.pdf [Accessed 2 Apr. 2020].

Liao, T.W. (2005). Clustering of Time Series Data — A Survey. Pattern Recognition,

38(11), pp.1857–1874.

Liashchynskyi, P. and Liashchynskyi, P. (2019). Grid Search, Random Search, Genetic

Algorithm: A Big Comparison for NAS. arXiv:1912.06059 [cs, stat]. [online]

Available at: https://arxiv.org/abs/1912.06059 [Accessed 7 Sep. 2020].

Li, L.-K., Pang, W.-K. and Yu, W.-T. (2004). Forecasting Short-Term Exchange Rates:

A Recurrent Neural Network Approach. In: Neural Networks for Business

Forecasting. Idea Group Inc, pp.195–212.

Lin, J., Keogh, E., Lonardi, S. and Patel, P. (2002). Finding Motifs in Time Series.

In: Eighth ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining. 2nd Workshop on Temporal Data Mining. pp.53–68.

Liu, Z., Yu, J.X., Lin, X., Lu, H. and Wang, W. (2005). Locating Motifs in Time-Series

Data. In: PAKDD 2005: Advances in Knowledge Discovery and Data Mining.

Pacific-Asia Conference on Knowledge Discovery and Data Mining. pp.343–353.

Ljung, G.M. and Box, G.E.P. (1978). On a measure of lack of fit in time series

models. Biometrika, 65(2), pp.297–303.

Lütkepohl, H. and Xu, F. (2010). The role of the log transformation in forecasting

economic variables. Empirical Economics, 42(3), pp.619–638.

Mahalakshmi, G., Sridevi, S. and Rajaram, S. (2016). A Survey on Forecasting of Time

Series Data. In: 2016 International Conference on Computing Technologies and

Intelligent Data Engineering. ICCTIDE’16. pp.1–8.

Makridakis, S., Spiliotis, E. and Assimakopoulos, V. (2018). Statistical and Machine

Learning forecasting methods: Concerns and ways forward. PLoS ONE, 13(3).

March, S.T. and Smith, G.F. (1995). Design and natural science research on information

technology. Decision Support Systems, 15(4), pp.251–266.

http://pages.stern.nyu.edu/~rlevich/wp/LR1.pdf
https://arxiv.org/abs/1912.06059

JOANA CLAUDINO INTELLIGENT SYSTEM FOR TIME SERIES

PATTERN IDENTIFICATION AND PREDICTION

49

McKinney, W. (2010). Data Structures for Statistical Computing in Python.

In: Proceedings of the 9th Python in Science Conference. [online] pp.51–56.

Available at: http://conference.scipy.org/proceedings/scipy2010/mckinney.html

[Accessed 19 Jul. 2020].

Minsky, M. and Papert, S. (1969). Perceptrons: An introduction to computational

geometry. Cambridge, Mass.-London.

Montgomery, D.C., Jennings, C.L. and Kulahci, M. (2015). Introduction to Time Series

Analysis and Forecasting. 2nd ed. Wiley-Interscience.

Moritz, S. and Bartz-Beielstein, T. (2017). imputeTS: Time Series Missing Value

Imputation in R. The R Journal, 9(1), pp.207–218.

Nair, V. and Hinton, G. (2010). Rectified linear units improve restricted boltzmann

machines. In: ICML’10: Proceedings of the 27th International Conference on

International Conference on Machine Learning. ICML’10. pp.807–814.

Nau, R. (2019). Statistical forecasting: notes on regression and time series analysis.

[online] Duke.edu. Available at: https://people.duke.edu/~rnau/411home.htm

[Accessed 9 Feb. 2020].

Olah, C. (2015). Understanding LSTM Networks. [online] colah’s blog. Available at:

http://colah.github.io/posts/2015-08-Understanding-LSTMs/ [Accessed 2 Jul. 2020].

Pascanu, R., Mikolov, T. and Bengio, Y. (2013). On the difficulty of training Recurrent

Neural Networks. arXiv:1211.5063 [cs]. [online] Available at:

https://arxiv.org/abs/1211.5063 [Accessed 2 Jul. 2020].

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison,

A., Antiga, L. and Lerer, A. (2017). Automatic differentiation in PyTorch. In: NIPS

2017 Autodiff Workshop.

Patro, S.G.K. and Sahu, K.K. (2015). Normalization: A Preprocessing

Stage. arXiv:1503.06462 [cs]. [online] Available at:

https://arxiv.org/abs/1503.06462 [Accessed 16 Jul. 2020].

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel,

M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau,

http://conference.scipy.org/proceedings/scipy2010/mckinney.html
https://people.duke.edu/~rnau/411home.htm
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://arxiv.org/abs/1211.5063
https://arxiv.org/abs/1503.06462

JOANA CLAUDINO INTELLIGENT SYSTEM FOR TIME SERIES

PATTERN IDENTIFICATION AND PREDICTION

50

D., Brucher, M., Perrot, M. and Duchesnay, É. (2011). Scikit-learn: Machine Learning

in Python. Journal of Machine Learning Research, [online] 12, pp.2825–2830.

Available at: http://jmlr.org/papers/v12/pedregosa11a.html [Accessed 19 Jul. 2020].

Peffers, K., Rothenberger, M., Tuunanen, T. and Vaezi, R. (2012). Design Science

Research Evaluation. In: Design Science Research in Information Systems. Advances

in Theory and Practice. International Conference on Design Science Research in

Information Systems. pp.398–410.

Peffers, K., Tuunanen, T., Rothenberger, M.A. and Chatterjee, S. (2007). A Design

Science Research Methodology for Information Systems Research. Journal of

Management Information Systems, 24(3), pp.45–77.

Pelgrin, F. (2011). Lecture 4: Estimation of ARIMA models. [online] Available at:

https://math.unice.fr/~frapetti/CorsoP/Chapitre_4_IMEA_1.pdf [Accessed 8

Apr. 2020].

Peralta, J., Gutierrez, G. and Sanchis, A. (2009). Shuffle design to improve time series

forecasting accuracy. In: 2009 IEEE Congress on Evolutionary Computation.

pp.741–748.

Petropoulos, F., Makridakis, S., Assimakopoulos, V. and Nikolopoulos, K. (2014).

‘Horses for Courses’ in Demand Forecasting. European Journal of Operational

Research, 237(1), pp.152–163.

Qin, L. and Shi, Z. (2006). Efficiently Mining Association Rules from Time

Series. International Journal of Information Technology, 12(4), pp.30–38.

Quenouille, M.H. (1949). Approximate Tests of Correlation in Time-Series. Journal of

the Royal Statistical Society. Series B (Methodological), 11(1), pp.68–84.

Rakhlin, A., Shamir, O. and Sridharan, K. (2012). Making Gradient Descent Optimal for

Strongly Convex Stochastic Optimization. arXiv:1109.5647 [cs, math]. [online]

Available at: https://arxiv.org/abs/1109.5647 [Accessed 12 Jul. 2020].

Ratanamahatana, C.A. and Keogh, E. (2004). Making Time-series Classification More

Accurate Using Learned Constraints. In: Proceedings of the 2004 SIAM International

Conference on Data Mining. pp.11–22.

http://jmlr.org/papers/v12/pedregosa11a.html
https://math.unice.fr/~frapetti/CorsoP/Chapitre_4_IMEA_1.pdf
https://arxiv.org/abs/1109.5647

JOANA CLAUDINO INTELLIGENT SYSTEM FOR TIME SERIES

PATTERN IDENTIFICATION AND PREDICTION

51

Ratanamahatana, C.A., Lin, J., Gunopulos, D., Keogh, E., Vlachos, M. and Das, G.

(2009). Mining Time Series Data. In: O. Maimon and L. Rokach, eds., Data Mining

and Knowledge Discovery Handbook. Boston, MA: Springer, pp.1049–1077.

Remus, W. and O’Connor, M. (2002). Neural Networks for Time-Series Forecasting. In:

J.S. Armstrong, ed., Principles of Forecasting: A Handbook for Researchers and

Practitioners. Springer, pp.245–256.

Rey, T. and Wells, C. (2012). Integrating data mining and forecasting. ORMS Today,

[online] 39(6). Available at: https://www.informs.org/ORMS-Today/Public-

Articles/December-Volume-39-Number-6/Integrating-data-mining-and-forecasting

[Accessed 24 Feb. 2020].

Robinson, D. (2017). Why is Python Growing So Quickly? [online] Stack Overflow Blog.

Available at: https://stackoverflow.blog/2017/09/14/python-growing-quickly/

[Accessed 21 Feb. 2020].

Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage and

organization in the brain. Psychological Review, 65(6), pp.386–408.

Rumelhart, D.E., Hinton, G.E. and Williams, R.J. (1986). Learning representations by

back-propagating errors. Nature, 323(6088), pp.533–536.

Salinas, D., Flunkert, V., Gasthaus, J. and Januschowski, T. (2019). DeepAR:

Probabilistic Forecasting with Autoregressive Recurrent Networks. International

Journal of Forecasting. [online] Available at: https://arxiv.org/pdf/1704.04110

[Accessed 22 Jul. 2020].

Santos, U., Pessin, G., Costa, C. and Righi, R. (2019). AgriPrediction: A proactive

internet of things model to anticipate problems and improve production in agricultural

crops. Computers and Electronics in Agriculture, 161, pp.202–213.

Seabold, S. and Perktold, J. (2010). Statsmodels: Econometric and Statistical Modeling

with Python. In: Proceedings of the 9th Python in Science Conference. [online]

Available at: https://conference.scipy.org/proceedings/scipy2010/pdfs/seabold.pdf

[Accessed 28 Jul. 2020].

Shalabi, L.A., Shaaban, Z. and Kasasbeh, B. (2006). Data Mining: A Preprocessing

Engine. Journal of Computer Science, 2(9), pp.735–739.

https://www.informs.org/ORMS-Today/Public-Articles/December-Volume-39-Number-6/Integrating-data-mining-and-forecasting
https://www.informs.org/ORMS-Today/Public-Articles/December-Volume-39-Number-6/Integrating-data-mining-and-forecasting
https://stackoverflow.blog/2017/09/14/python-growing-quickly/
https://arxiv.org/pdf/1704.04110
https://conference.scipy.org/proceedings/scipy2010/pdfs/seabold.pdf

JOANA CLAUDINO INTELLIGENT SYSTEM FOR TIME SERIES

PATTERN IDENTIFICATION AND PREDICTION

52

Shmueli, G. and Lichtendahl, K.C. (2018). Practical time series forecasting with R : a

hands-on guide. Axelrod Schnall Publishers.

Shrestha, D.L. and Solomatine, D.P. (2006). Machine learning approaches for estimation

of prediction interval for the model output. Neural Networks, 19(2), pp.225–235.

Shumway, R.H. and Stoffer, D.S. (2017). Time Series Analysis and Its

Applications. Springer Texts in Statistics. Cham: Springer International Publishing.

Siddiqa, A., Karim, A. and Gani, A. (2017). Big data storage technologies: a

survey. Frontiers of Information Technology & Electronic Engineering, 18(8),

pp.1040–1070.

Smolen, H.J. (2014). Development Of An Influenza Outbreak Forecasting Model Using

Time Series Analysis Methods. Value in Health, 17(7).

Sonnenberg, C. and Brocke, J. (2012). Evaluation Patterns for Design Science Research

Artefacts. In: EDSS 2011: Practical Aspects of Design Science. European Design

Science Symposium. pp.71–83.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I. and Salakhutdinov, R. (2014).

Dropout: A Simple Way to Prevent Neural Networks from Overfitting. Journal of

Machine Learning Research, [online] 15(56), pp.1929–1958. Available at:

https://jmlr.org/papers/v15/srivastava14a.html [Accessed 3 Aug. 2020].

Strohbach, M., Daubert, J., Ravkin, H. and Lischka, M. (2016). Big Data Storage. In: J.M.

Cavanillas, E. Curry and W. Wahlster, eds., New Horizons for a Data-Driven

Economy. Springer, pp.119–141.

Sutskever, I., Vnyals, O. and Le, Q.V. (2014). Sequence to Sequence Learning with

Neural Networks. [online] arXiv:1409.3215v3 [cs.CL]. Available at:

https://arxiv.org/pdf/1409.3215.pdf [Accessed 12 Jul. 2020].

Tahmassebpour, M. (2017). A New Method for Time-Series Big Data Effective

Storage. IEEE Access, 5, pp.10694–10699.

Tan, P., Steinbach, M. and Kumar, V. (2006). Introduction to Data Mining. San

Francisco: Pearson Education.

https://jmlr.org/papers/v15/srivastava14a.html
https://arxiv.org/pdf/1409.3215.pdf

JOANA CLAUDINO INTELLIGENT SYSTEM FOR TIME SERIES

PATTERN IDENTIFICATION AND PREDICTION

53

Taylor, S.J. and Letham, B. (2017). Forecasting at Scale. The American Statistician,

72(1), pp.37–45.

Teng, M. (2010). Anomaly detection on time series. In: 2010 IEEE International

Conference on Progress in Informatics and Computing. PIC. IEEE Xplore, pp.603–

608.

Touretzky, D.S. and Pomerleau, D.A. (1989). What’s hidden in the hidden layers? BYTE,

14(8), pp.227–233.

VanderPlas, J. (2018). Working with Time Series. [online] Pythonic Preambulations.

Available at: https://jakevdp.github.io/PythonDataScienceHandbook/03.11-

working-with-time-series.html [Accessed 2 Mar. 2020].

Vaughan, J. (2020). IoT Developers May Need Time Series Data Analysis Skills. [online]

IoT World Today. Available at: https://www.iotworldtoday.com/2020/01/03/iot-

developers-may-need-time-series-data-analysis-skills/ [Accessed 9 Mar. 2020].

Wang, X., Smith, K. and Hyndman, R. (2006). Characteristic-Based Clustering for Time

Series Data. Data Mining and Knowledge Discovery, 13(3), pp.335–364.

Werbos, P.J. (1990). Backpropagation through time: what it does and how to do

it. Proceedings of the IEEE, 78(10), pp.1550–1560.

Wu, J. (2019). Python’s Advantages and Disadvantages Summarized. [online] Medium.

Available at: https://medium.com/better-programming/pythons-advantages-

and-disadvantages-summarized-212b5fdf8883 [Accessed 18 Feb. 2020].

Yang, Q. and Wu, X. (2006). 10 Challenging Problems in Data Mining

Research. International Journal of Information Technology & Decision Making,

05(04), pp.597–604.

Yau, J. (2018). Time Series Forecasting Using Recurrent Neural Network and Vector

Autoregressive Model: When and How. [Video] Available at:

https://youtu.be/i40Road82No [Accessed 13 May 2020].

Zhang, G.P. (2012). Neural Networks for Time-Series Forecasting. In: G. Rozenberg, T.

Bäck and J.N. Kok, eds., Handbook of Natural Computing. Springer, pp.461–477.

https://jakevdp.github.io/PythonDataScienceHandbook/03.11-working-with-time-series.html
https://jakevdp.github.io/PythonDataScienceHandbook/03.11-working-with-time-series.html
https://www.iotworldtoday.com/2020/01/03/iot-developers-may-need-time-series-data-analysis-skills/
https://www.iotworldtoday.com/2020/01/03/iot-developers-may-need-time-series-data-analysis-skills/
https://medium.com/better-programming/pythons-advantages-and-disadvantages-summarized-212b5fdf8883
https://medium.com/better-programming/pythons-advantages-and-disadvantages-summarized-212b5fdf8883
https://youtu.be/i40Road82No

JOANA CLAUDINO INTELLIGENT SYSTEM FOR TIME SERIES

PATTERN IDENTIFICATION AND PREDICTION

54

Zhang, P. (2004). Business Forecasting with Artificial Neural Networks: An Overview.

In: Business Forecasting with Artificial Neural Networks. Idea Group Publishing,

pp.1–14.

Zhu, L. and Laptev, N. (2017). Deep and Confident Prediction for Time Series at

Uber. 2017 IEEE International Conference on Data Mining Workshops (ICDMW).

[online] Available at: https://arxiv.org/abs/1709.01907 [Accessed 18 Jul. 2020].

https://arxiv.org/abs/1709.01907

JOANA CLAUDINO INTELLIGENT SYSTEM FOR TIME SERIES

PATTERN IDENTIFICATION AND PREDICTION

55

APPENDICES

Appendix 1. Sliding window technique

Appendix 2. Sliding window function

JOANA CLAUDINO INTELLIGENT SYSTEM FOR TIME SERIES

PATTERN IDENTIFICATION AND PREDICTION

56

Appendix 4. Computation of the required seasonal differences

Appendix 3. Computation of the required non-seasonal differences

Appendix 5. Code snippet from the ARIMA hyperparameter search

JOANA CLAUDINO INTELLIGENT SYSTEM FOR TIME SERIES

PATTERN IDENTIFICATION AND PREDICTION

57

Appendix 7. LSTM implementation (part 1)

Appendix 6. Code snippet from the SARIMA hyperparameter search

Appendix 8. LSTM implementation (part 2)

JOANA CLAUDINO INTELLIGENT SYSTEM FOR TIME SERIES

PATTERN IDENTIFICATION AND PREDICTION

58

Appendix 10. ANNs’ searchable hyperparameter grid

Appendix 9. Code snippet from the ANNs’ forecast function

Appendix 11. Grid and Random search methods implementation

JOANA CLAUDINO INTELLIGENT SYSTEM FOR TIME SERIES

PATTERN IDENTIFICATION AND PREDICTION

59

Appendix 12. Data loading module output example

Appendix 14. Model comparison module output example

Appendix 13. Model fitting module output example

JOANA CLAUDINO INTELLIGENT SYSTEM FOR TIME SERIES

PATTERN IDENTIFICATION AND PREDICTION

60

Appendix 16. Directory structure created by the initialization script

Appendix 15. Forecasting module output example

