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ABSTRACT 

The current growing volumes of data present a source of potentially valuable 

information for companies, but they also pose new challenges never faced before. Despite 

their intrinsic complexity, time series are a notably relevant kind of data in the 

entrepreneurial context, especially regarding prediction tasks. The Autoregressive 

Integrated Moving Average (ARIMA) models have been the most popular approach for 

such tasks, but they do not scale well to bigger and more granular time series which are 

becoming increasingly common. Hence, newer research trends involve the application of 

data-driven models, such as Recurrent Neural Networks (RNNs), to forecasting. 

Therefore, given the difficulty of time series prediction and the need for improved tools, 

the purpose of this project was to implement the classical ARIMA models and the most 

prominent RNN architectures in an automated fashion and posteriorly to use such models 

as foundation for the development of a modular system capable of supporting the common 

user along the entire forecasting process. Design science research was the adopted 

methodology to achieve the proposed goals and it comprised the activities of goal 

definition, followed by a thorough literature review aimed at providing the theoretical 

background necessary to the subsequent step that involved the actual project execution 

and, finally, the careful evaluation of the produced artifact. In general, each the 

established goals were accomplished, and the main contributions of the project were the 

developed system itself due to its practical usefulness along with some empirical evidence 

supporting the suitability of RNNs to time series forecasting. 

 

Keywords: Time Series Forecasting; Autoregressive Integrated Moving Average 

Models; Recurrent Neural Networks; Intelligent System; Data Mining
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RESUMO 

Os crescentes volumes de dados representam uma fonte de informação potencialmente 

valiosa para as empresas, mas também implicam desafios nunca antes enfrentados. 

Apesar da sua complexidade intrínseca, as séries temporais são um tipo de dados 

notavelmente relevantes para o contexto empresarial, especialmente para tarefas 

preditivas. Os modelos Autorregressivos Integrados de Médias Móveis (ARIMA), têm 

sido a abordagem mais popular para tais tarefas, porém, não estão preparados para lidar 

com as cada vez mais comuns séries temporais de maior dimensão ou granularidade. 

Assim, novas tendências de investigação envolvem a aplicação de modelos orientados a 

dados, como Redes Neuronais Recorrentes (RNNs), à previsão. Dada a dificuldade da 

previsão de séries temporais e a necessidade de ferramentas aprimoradas, o objetivo deste 

projeto foi a implementação dos modelos clássicos ARIMA e as arquiteturas RNN mais 

proeminentes, de forma automática, e o posterior uso desses modelos como base para o 

desenvolvimento de um sistema modular capaz de apoiar o utilizador em todo o processo 

de previsão. Design science research foi a abordagem metodológica adotada para 

alcançar os objetivos propostos e envolveu, para além da identificação dos objetivos, uma 

revisão aprofundada da literatura que viria a servir de suporte teórico à etapa seguinte, 

designadamente a execução do projeto e findou com a avaliação meticulosa do artefacto 

produzido. No geral todos os objetivos propostos foram alcançados, sendo os principais 

contributos do projeto o próprio sistema desenvolvido devido à sua utilidade prática e 

ainda algumas evidências empíricas que apoiam a aplicabilidade das RNNs à previsão de 

séries temporais.  

 

Palavras-chave:  Previsão de Séries Temporais; Modelos Autorregressivos Integrados 

de Médias Móveis; Redes Neuronais Recorrentes; Sistema Inteligente; Data Mining
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1. INTRODUCTION 

1.1. Problem description and motivation 

There has been an exponential increase in the amount of data collected by 

organizations over the past few years, largely due to great advances in technological 

infrastructures concerning data storage and processing (Siddiqa et al., 2017). These huge 

collections of data come with the promise of being a hidden source of opportunities that 

companies can exploit in order to better serve customers, as well as to improve operational 

efficiency and, hence, to achieve competitive advantage (Rey & Wells, 2012; Strohbach 

et al., 2016). The challenge lies, however, on how to extract actual value from such vast 

amounts of data when obviously it is no longer feasible to analyse them through most 

traditional methods that rely on a great deal of human intervention. There is a great need 

for new intelligent tools and techniques that can automatically transform these data into 

valuable information (Han et al., 2012; Bramer, 2016). 

As an effort to address the mentioned challenges and to unify novel methods and 

best practices, new fields and concepts have emerged, namely those of knowledge 

discovery in databases (KDD) and data mining (Coenen, 2011). Although the distinction 

between both concepts is not very sharp, being many times used interchangeably in the 

literature, one of the most popular definitions that prevails to this day is that of Fayyad et 

al. (1996) that describes KDD as being the global process of unveiling potentially useful 

and understandable patterns in data while data mining as being only a step of that process, 

that comprises the implementation of data analysis algorithms by which such patterns are 

extracted.    

Data comes in various formats that may require different handling techniques as 

each type of data presents its own challenges. For instance, time series data, albeit being 

an actively studied subject for many years, remains an important open topic especially in 

the more recent context of high volumes of data. In fact, Yang & Wu (2006) ranked time 

series data mining as one of the ten most challenging topics in data mining research. One 

of the major difficulties is that, although on one hand its temporal structure offers an 

additional source of information, on the other hand its resultant singular characteristics 

demand the use of specialised data analysis methods (Fu, 2011; Esling & Agon, 2012).  
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While time series data mining may serve plenty of different purposes, forecasting 

future values is the most commonly applied time series task in real-life settings and it is 

of crucial importance for organizations as it enables more informed decisions towards 

resource allocation, demand requirements, capacity planning and many other critical 

activities (Chatfield, 2004; Faloutsos et al., 2019). Nevertheless, as a result from being a 

topic whose foundations rely on a solid statistical background, producing reliable 

forecasts requires a significant level of expertise that often is not readily available inside 

organizations (Taylor & Letham, 2017). Even if such expertise is present, as the volume 

of collected time series data increases, it becomes impracticable to manually and 

individually analyse and produce forecasts for each of them, meaning that partially 

automating the forecasting process could be a beneficial solution  (Hyndman & 

Khandakar, 2008). There are various well established statistical methods to model time 

series that allow to attain high forecasting accuracies in numerous problems, but, besides 

requiring the abovementioned expertise, they usually do not scale well to bigger volumes 

of data (De Gooijer & Hyndman, 2006; Faloutsos et al., 2019). Therefore, as new 

technologies like Internet of Things’ sensors give rise to more complex time series 

structures, such as longer time series with higher frequency, it becomes apparent the need 

of exploring the suitability of new modern data mining methods to address these new 

challenges and achieve better forecasting results (Makridakis et al., 2018; Vaughan, 

2020).  A recent research trend on the topic is the development and application of new 

neural network architectures for time series forecasting and some remarkable cases of 

success have been reported as, for instance, the work of Zhu & Laptev (2017) at Uber and 

the work of Salinas et al. (2019) at Amazon. 

In the new data-oriented paradigm, python programming language has been one of 

the top tools of choice to develop and implement new algorithmic approaches to data 

analysis in business applications, as well as in scientific and academic research 

(Robinson, 2017). Some of the main reasons for python’s popularity are its simple syntax 

which makes the code easier to read and maintain, its vast number of specialized libraries 

that makes it a very versatile language which can be used in almost any development task 

from simple scripting to the development of large enterprise applications, and also its 

great community support that keeps improving the language’s capabilities and helping 

new users to get acquainted with its functionalities (Wu, 2019; Cass, 2019). With no 
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exception, it also offers notably useful capabilities to analyse and manipulate time series 

data (VanderPlas, 2018).  

1.2. Objectives definition 

The main goal of the project is to devise two automatic forecasting algorithms: a 

statistical one that comprises the class of seasonal and non-seasonal Autoregressive 

Integrated Moving Average Models (ARIMA), and a data mining one that comprises a 

specific type of Artificial Neural Networks (ANNs), more concretely Recurrent Neural 

Networks (RNNs) and their most popular variants, that are especially suited to sequential 

data.  

In addition, given the fairly high level of difficulty inherent to the time series data 

analysis and the forecasting process,  it is intended to use the implemented algorithms as 

foundation for the development of a small modular system capable of supporting the user 

along the entire process, from the data ingestion and pre-processing steps to the 

production of actual forecasts into the future, while providing informative and easily 

interpretable reports and graphs.  

1.3. Document organization 

The next sections of this document are organized as follows: the literature review 

where an in-depth description of time series data, their positioning in the context of data 

mining and the steps of the time series forecasting process, as well as the most relevant 

forecasting models, are presented; the methodology, where the chosen approach is 

described and justified; the project development, where the steps taken to achieve the 

proposed goal are carefully detailed; results, where the output of the project is evaluated; 

and conclusion where the key takeaways from the project and possible future work 

directions are presented. 

 

2. LITERATURE REVIEW 

2.1. Time Series Description 

Time series are a very common type of data that occurs naturally in a variety of 

fields spanning from Medicine, Geophysics and Engineering to Industry, Finance and 

Economics (Keogh & Kasetty, 2003; Fu, 2011). Furthermore, the continuous 
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technological advances, such as improved time series database systems, and the 

widespread adoption of the Internet of Things paradigm, potentiate even further the 

collection and generation of such data (Tahmassebpour, 2017; Vaughan, 2020). 

Therefore, it should come as no surprise that an increasingly large fraction of the world’s 

supply of data is in the form of time series and, consequently, the interest in exploiting 

their value is bigger than ever,  as argued by many researchers (Ratanamahatana et al., 

2009; Rey & Wells, 2012; Faloutsos et al., 2019). 

A time series is a sequential collection of values associated with a target variable, 

usually, sampled at evenly spaced intervals of time. More formally, it can be expressed 

as {𝑦t, t ∈ ℤ}, with each 𝑦𝑡  ∈  ℝ and 𝑡 =  1, … 𝑁, where 𝑁 denotes the length of the 

time series and 𝑦𝑁 the last or most recent observation. Some diversified examples of time 

series could be the number of visitors of a website per minute, the hourly air temperature, 

the daily closing price of a stock, the monthly demand for a product, the quarterly earnings 

of a company or the yearly birth rate of a country (Fu, 2011; Mahalakshmi et al., 2016). 

The implicit order of time series’ observations inherent to their temporal dimension 

leads to some peculiar characteristics of this kind of data, which can be translated into 

three interrelated key properties: the common patterns that they exhibit, the serial 

dependence that they possess and the way their statistical properties vary over time 

(Hyndman & Athanasopoulos, 2018; Nau, 2019). 

First, time series tend to exhibit certain common patterns that reflect how their 

values change over time and that are broadly classified as: 

• Trends, which reflect long-term changes, either upward or downward, in the values 

of a time series (Chatfield, 2004); 

• Seasonality, which refers to predictable, regular variations in time series’ values that 

happen in specific time intervals over a one-year period. Variables whose 

observations are recorded in very short time intervals such as hourly or smaller, 

typically exhibit multiple seasonal patterns that are considerably more difficult to 

handle (Hyndman, 2014; Nau, 2019); 

• Cycles, which are characterised by fluctuations in time series’ values that last more 

than one year but whose period is not previously known. A straightforward example 

of such type of variation, is the business cycle that reflects the rise and fall of the 

global economic growth over time (Amadeo, 2008). 
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Usually, due to the unpredictable nature of cycles, trends and seasonality are the 

patterns of most interest when analysing time series data. The identification of these 

patterns, however, is not a trivial process as, many times, they are contaminated with 

noise (Yang & Wu, 2006). For that reason, it may be useful to use methods that aim to 

explicitly  separate the trend (𝑇𝑡) and seasonal (𝑆𝑡) patterns from the aleatoric remainder 

patterns (𝑅𝑡). One of the most notable methods in this matter is the one introduced by 

Cleveland et al. (1990), designated “Seasonal-Trend Decomposition Procedure Based on 

Loess” (STL) and which consists on a sequence of operations that employ locally 

weighted regression smoothing to extract the trend and seasonal components. The 

patterns extracted through the STL or similar techniques can be subsequently used to de-

trend or de-seasonalize the time series under analysis, or as inputs to compute other useful 

measures such as the trend (𝐹𝑇) and seasonal (𝐹𝑠) strength indices, introduced by Wang 

et al. (2006) and defined by Eq. (1) and (2),  that help to quantitatively determine the 

relevance or impact of such patterns in the time series’ behaviour.  

Furthermore, as previously mentioned, time series tend to possess serial 

dependence, meaning that they usually are correlated with their own prior values 

(Kritzman, 1994). This property can be expressed through the autocorrelation coefficient 

(𝑟𝑘), whose values lie within the range [−1, 1] and is given by  

𝑟𝑘 =
∑ (𝑦𝑡 − y̅)(𝑦𝑡−𝑘 − y̅)N

t=k+1

∑ (𝑦𝑡 − y̅)2n
t=1

(3) 

where 𝑦𝑡 is the observation in time period 𝑡, �̅� is the mean of all observations in the series, 

and 𝑦𝑡−𝑘 is the value of the observation 𝑘 periods earlier. It measures both the direct 

correlation of 𝑦𝑡 and 𝑦𝑡−𝑘, and the indirect correlation resulting from the observations in 

between them (Levich & Rosario, 1999; Hyndman & Athanasopoulos, 2018). The plot of 

the autocorrelation coefficient as a function of the lag 𝑘 is denominated the 

Autocorrelation Function (ACF) (Box et al., 2016). The ACF is a very useful device to 

analyse the behaviour of time series because the aforementioned patterns, trend and 

 𝐹𝑇 = max (0, 1 −
Var(𝑅𝑡)

Var(𝑇𝑡 + 𝑅𝑡)
) (1) 

 𝐹𝑆 = max (0, 1 −
Var(𝑅𝑡)

Var(𝑆𝑡 + 𝑅𝑡)
) (2) 
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seasonality, are characterized by specific autocorrelation structures and thus also reflected 

in the ACF. More concretely, if there is a trend, successive observations will likely be 

highly correlated, while if a seasonal pattern exists, there will be significant 

autocorrelation at multiples of the seasonal lag (Hanke & Wichern, 2014). According to 

Box et al. (2016), the significance of the autocorrelations in the ACF can be assessed 

through the lower and upper bounds that also frequently accompany the ACF plot and 

which, assuming a normal distribution with a mean of zero, are computed as in Eq. (4). 

 ±𝑧1−𝛼/2 𝑆𝐸(𝑟𝑘) (4) 

Here, 𝑧 is the z-score, 𝛼 is the confidence level, 𝑟𝑘 is the sample autocorrelation at lag 𝑘 

and the standard error (SE), is computed as 1/√𝑛,  for lag = 1 and as 

√
1

𝑛
(1 + 2 ∑ 𝑟𝑘

2ℎ−1
𝑘=1 ),     for lag > 1, being 𝑛 the number of data points in the time series 

(Bartlett 1946 ; Quenouille 1949). If one or more autocorrelations exceed the mentioned 

bounds, then it means that they are significantly different from zero and there are 

predictable patterns in the time series. If, however, all autocorrelations stay within these 

bounds, the time series can be regarded as random or non-serially correlated.  

A closely related concept is that of partial autocorrelation coefficient that only 

measures the direct correlations between 𝑦𝑡 and 𝑦𝑡−𝑘 (Hyndman & Athanasopoulos, 

2018). The plot of the partial autocorrelation coefficient as a function of the lag 𝑘 is the 

called the Partial Autocorrelation Function (PACF) and its bounds are calculated in a 

similar way as in Eq. (4) (Levich & Rosario, 1999). 

As asserted by Hyndman & Athanasopoulos (2018), instead of checking the 

significance of each autocorrelation coefficient separately through the ACF and PACF 

plots, it is possible to perform a more formal assessment by testing a set of autocorrelation 

coefficients through the Box-Ljung test (Ljung & Box, 1978), whose null hypothesis is 

that of serial independence and its test statistic is computed as in Eq (5). 

 

𝑄∗ = 𝑛(𝑛 + 2) ∑
𝑟𝑘

2

𝑛 − 𝑘

ℎ

𝑘=1

 (5) 

The test statistic, 𝑄∗, has a 𝜒2 distribution with ℎ − 𝐾 degrees of freedom, where 

𝐾  is the number of parameters in the model when testing the residuals of a fitted model, 

and 𝐾 = 0 when testing raw data.   
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Finally, the mentioned third key property of time series can be described through 

the concept of stationarity. A stationary time series is one whose statistical properties – 

mean, variance and autocorrelation structure – remain constant over time (Nau, 2019). 

This does not mean, however, that the time series does not change, just that it fluctuates 

around a fixed level with a constant variance and it does not depend on time (Hanke & 

Wichern, 2014). Nonetheless, in practice most time series exhibit a non-stationary 

behaviour as strong trends or seasonal patterns affect the referred statistical properties at 

different points in time (Chatfield, 2004; Hyndman & Athanasopoulos, 2018).  

Thus, once again, formal methods to test non-stationary behaviour have been 

developed, more concretely, a class of statistical tests called unit root tests (Haldrup et 

al., 2013). A unit root in a time series indicates the presence of a systematic non-

predictable pattern (Glen, 2016). For time series with a trend pattern, one of the most 

widely used unit root tests is the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test, whose 

null hypothesis is that of the time series being stationary around a constant trend against 

the alternative of having a unit root (Kwiatkowski et al., 1992). For time series with a 

seasonal pattern, in turn, one of the most popular tests is the Canova-Hansen (CH) test 

whose null hypothesis is that of the times series having stationary seasonal cycles against 

the alternative of having seasonal unit roots (Canova & Hansen, 1995). 

2.2. Time series in the context of data mining 

The increasingly massive volumes of time series data and the consequent demand 

for more sophisticated data-driven analysis tools and techniques to exploit their value has 

increased the attention and interest of the data mining community on this subject (Fu, 

2011; Faloutsos et al., 2019). Data mining is a relatively recent and somewhat ambiguous 

term that has distinct meanings for different authors and is, many times, used in the 

literature as synonymous of Knowledge Discovery in Databases (KDD). At an early stage 

of the emergence of this new field, some authors, namely Fayyad et al. (1996), made an 

effort to concisely distinguish both terms by defining KDD as the nontrivial process, 

composed by many steps, of identifying new, useful and comprehensible patterns in data, 

and data mining as being merely one of its many steps, concerned with the 

implementation of intelligent algorithms that allow the extraction of such patterns. 

Nevertheless, throughout the years, the boundaries between both concepts became blurry 

and they are now mostly used interchangeably referring to the overall process of 
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automatically identifying and extracting patterns from data, with data mining being the 

preferred and most widely adopted terminology (Chung & Gray, 1999; Han et al., 2012). 

There have also been some suggestions to rename the field with the aim to clarify this 

terminological issue and, simultaneously, adapt it to a more modern technological reality, 

given that we no longer are uniquely concerned with data stored in traditional databases. 

For instance, Kurgan & Musilek (2006) and Coenen (2011) advocate that Knowledge 

Discovery and Data Mining (KDDM), would be a more appropriate nomenclature for 

data coming from any source and would also emphasise the fact that both terms are 

related, yet distinct.  This lack of full consensus regarding terminologies and boundaries 

of the field is, in part, due to its multidisciplinary nature as it incorporates concepts and 

techniques from many different areas including statistics, machine learning, database 

systems, information theory and data visualization (Hand, 1998; Han et al., 2012).  

This being said, in order to avoid any ambiguities, in the present text, the 

perspective advocated by Fayyad et al. (1996) and also supported by Kurgan & Musilek 

(2006), of data mining being a step of the KDD process, is adopted. As stated by Bramer 

(2016), this standpoint has the advantage of highlighting that, although the data mining 

step is crucial for knowledge discovery, the pre-processing steps and the proper 

interpretation of the results are very important as well. 

The full KDD process is summarized in Figure 1. In short, it starts with the selection 

and integration of data that can come from multiple sources, followed by the cleaning 

step that aims to deal with missing values or removing noise from the data. Then, 

transformation comprises the conversion of the data, if necessary, to a more convenient 

structure to be ingested by the selected algorithms in the data mining phase. These data 

mining algorithms produce an output in the form of patterns that greatly varies depending 

on the goal of the discovery process and on the type of data being analysed. Lastly, the 

relevance of the extracted pattern is evaluated based on some predefined criterion and the 

Figure 1. Summary of the KDD Process, adapted from Fayyad et al. (1996) 
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results are interpreted, with the aid of visualization techniques, in order to obtain new and 

useful knowledge (Fayyad et al., 1996; Han et al., 2012; Bramer, 2016). 

As abovementioned, the type of data mining task carried out depends on the goal 

of the KDD process and it can be broadly categorized as descriptive or predictive (Fayyad 

et al., 1996). In a descriptive setting data mining tasks have an exploratory nature and 

their purpose is to discover patterns that summarize hidden relationships in the data, 

whereas in a predictive setting, data mining tasks aim at predicting the value of a 

particular attribute based on identified patterns (Tan et al., 2006).  

Despite their peculiar features, such as the ordering and implicit dependency 

between successive observations, time series data are also typically analysed with either 

a descriptive or predictive purpose (Shmueli & Lichtendahl, 2018). Therefore, some more 

general data mining tasks, such as query by content, clustering, anomaly detection, 

association or classification, performed with other types of data are also applied in the 

context of time series data. There are, however, some more specific tasks related to their 

sequential nature and temporal component, such as segmentation, motif discovery and 

forecasting (Esling & Agon, 2012; Mahalakshmi et al., 2016). All these tasks are 

summarized in Table I. 

TABLE I. MAIN DATA MINING TASKS FOR TIME SERIES DATA 

Goal Task Description 

Descriptive 

Query by 

content 

Given a time series and a similarity measure, 

retrieves the set of solutions that better matches the query 

provided by the user (Keogh & Kasetty, 2003). 

Clustering 

Finds natural groups, called clusters, in an unlabelled 

time series dataset based on hidden similar 

characteristics (Liao, 2005) 

Segmentation 

Reduces the dimensionality of a time series while 

retaining its essential features, in order to create an 

accurate approximation of the original series (Gullo et 

al., 2009). 

Motif 

Discovery 

Enumerates the most recurring patterns, called 

motifs, that appear on a time series (Lin et al., 2002; Liu 

et al., 2005). 

Anomaly 

Detection 

Finds observations of the time series whose values 

differ significantly from the rest of the data (Teng, 2010). 

Association 

Derives rules for discovered associations and 

correlations among items within a dataset. In time series, 

requires the discretization of the data and subsequent 
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Although all the above data mining tasks have their own applications and merits, it 

is rather consensual in the literature that forecasting is not only the most applied and 

relevant time series data mining task in practical applications but, simultaneously, one of 

the most difficult (Esling & Agon, 2012; Tahmassebpour, 2017; Faloutsos et al., 2019).  

As a matter of fact, time series forecasting is applied in areas as diverse as 

agriculture to improve the production of crops (Santos et al., 2019), the energy sector to 

predict the electric power load (Almeshaiei & Soltan, 2011), epidemiology to predict 

influenza outbreaks (Smolen, 2014) or in industry to predict production levels (Chen & 

Wang, 2007), just to mention a few. In the more specific context of business and 

management, time series forecasting is essential for any type of organization as well as 

for any of its functional lines, since it plays a key role in the optimization and monitoring 

of several business processes and, despite its intrinsic inaccuracies, it helps to reduce the 

uncertainty for management decision-making and strategic planning, being an especially 

critical tool in the current highly dynamic business environment (Rey & Wells, 2012; 

Hanke & Wichern, 2014; Faloutsos et al., 2019). 

Conversely, the main difficulties of this task arise mostly from the fact that it is 

inherently a statistical subject that requires a considerable level of knowledge and 

experience, now with the added complications of the ever growing volumes of data and 

the consequent increasingly demand for higher quality forecasts and more efficient 

algorithms (Esling & Agon, 2012; Taylor and Letham, 2017; Faloutsos et al., 2019).  

The main steps involved in the time series forecasting process will be further 

discussed in the following section. 

conversion to a symbolic representation (Qin & Shi, 

2006) 

Predictive 

Classification 
Assigns the time series data to one of two or more 

predefined classes (Ratanamahatana & Keogh, 2004). 

Forecasting 

(Prediction) 

Given a time series, predicts its future values by 

exploiting the correlations between successive 

observations and, possibly, with other variables. It 

implicitly assumes that some of the past patterns will 

continue into the future. (Montgomery et al., 2015; 

Hyndman & Athanasopoulos, 2018). 
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2.3. Time Series Forecasting Process 

Time series forecasting can be defined as a quantitative forecasting technique that 

predicts the future values of a target variable based on an information set of current and 

historical values, along with a model capable of summarizing the patterns contained in 

that observed variable and projecting them into the future (Montgomery et al., 2015; Yau, 

2018). More formally, it can be expressed as 

 �̂�𝑁+𝐻 = 𝑓(Ω) + 𝜀 (6) 

where �̂� is the predicted value for each timestep, 𝐻 is the forecast horizon, 𝑓 is the model, 

Ω is the set  of available information and 𝜀 is the error term that represents the random 

variation not explained by the fitted model. According to Hyndman & Athanasopoulos 

(2018), the choice of a particular model, 𝑓, may be influenced, to some extent, by the set 

of available information. More concretely, when Ω comprises predictor variables that are 

known to impact the target time series, it may be useful to build an explanatory model 

that takes into account their effects. Such modelling approach has, however, some added 

complications, namely the need to fully understand the relationships between predictor 

variables and target time series and, even more difficult, the need to know the future 

values of the predictors beforehand so that the target time series can actually be predicted. 

When using explanatory models it is thus very common to forecast the target variable 

based on forecasts of the predictor variables which ends up being an additional source of 

error and uncertainty and should be avoided when possible (Hanke & Wichern, 2014; 

Montgomery et al., 2015). Therefore, when enough historical data of the target time series 

is available and the main goal is to forecast its future values and not necessarily 

understand the forces that cause them, the use of pure time series models might be the 

best solution (Hyndman & Athanasopoulos, 2018). These models assume that the impact 

of external factors is already embodied in the patterns of the current and past values of 

the target time series and exploit their statistical properties in order to predict the future 

values, i.e., the information used by such models is given by Ω = {𝑦𝑁 , 𝑦𝑁−1, 𝑦𝑁−2, … , 𝑦1} 

(Montgomery et al., 2015; Yau, 2018).  

Figure 2. The time series forecasting process; adapted from Montgomery et al. (2015) 
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Due to the fact of time series forecasting is regarded as a predictive data mining 

task, the steps of its entire process are closely linked to that of KDD (in section 2.2.). 

Besides the obvious first step of data collection, it comprises four more steps, depicted in 

Figure 2: a data analysis and pre-processing step, a model building and fitting step, a 

model selection and evaluation step and, finally, the step of producing actual forecasts 

(Armstrong, 2002; Hanke & Wichern, 2014). Each of these will be further detailed in the 

following subsections of the document. 

2.3.1.  Data analysis and pre-processing 

This step comprises the visualization of the time series to aid in the identification 

of potential patterns, as well as the computation of relevant metrics that describe the 

dataset. It also deals with missing value imputation, with possible necessary 

transformations in order to get the data into the correct form to be ingested by specific 

forecasting models, and with data splitting for the subsequent model fitting and evaluation 

(Hanke & Wichern, 2014; Montgomery et al., 2015). 

Time series missing value imputation is a research topic on itself, however, some 

of the most applied methods involve using aggregate values such as the mean of the time 

series, using the most recent observation prior or following the missing value, or more 

advanced techniques, such as interpolation (Moritz & Bartz-Beielstein, 2017). 

The transformations applied to time series are, in turn, mostly dependent on the 

characteristics of the particular dataset at hand and, to some extent, on the model that will 

be fitted to the data. The most frequently used are:  

• The logarithmic transformation whose purpose is to stabilize the variance of the time 

series or to make its distribution normal (Lütkepohl & Xu, 2010).  

• Data normalization, which involves squashing the values of time series so that all of 

them lie within a smaller range, usually between 0 and 1. It is especially useful to 

speed up the learning process and convergence in data mining models. The main 

normalization techniques are min-max normalization and z-score normalization 

(Shalabi et al., 2006; Patro & Sahu, 2015). 

• Differencing, which is the most common transformation to make a time series 

stationary. It stabilizes the mean of a time series as it removes changes in its level or, 

in other words, it eliminates trend and seasonal effects (Hyndman & 
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Athanasopoulos, 2018). For trends, differencing is given by Eq. (7) and it simply 

computes the differences between consecutive observations. A first difference, i.e. 

𝑑 = 1, can eliminate a linear trend, while a second difference, 𝑑 = 2, can eliminate a 

quadratic trend, and so on (Shumway & Stoffer, 2017). For seasonal variation, 

Hyndman & Athanasopoulos (2018) state that differencing means computing the 

difference between an observation and the previous observation from the same season 

and it is given by Eq. (8). 

Here, 𝑑 is the differencing order, 𝐷 is the seasonal differencing order, 𝑠 is the 

seasonal period and 𝐵 is the backward shift operator, defined by 𝐵𝑠𝑦𝑡 = 𝑦𝑡−𝑠, where 𝑠 =

1 for non-seasonal differences. 

Finally, the splitting of the dataset involves partitioning the data into a training set, 

used in the model fitting step to estimate the parameters of each model, and a testing set, 

used in the model evaluation step to assess the predictive performance. Some models, 

especially from the data mining field, may require the training set to be further split into 

a validation set as depicted in Figure 3 (Brownlee, 2017b; Nau, 2019). 

2.3.2.  Model building and fitting 

In the current forecasting landscape, time series forecasting methods are broadly 

categorized as statistical or data mining methods (Makridakis et al., 2018). Given its wide 

scope of application, there are many algorithms developed to deal with this task which 

would make impossible to cover all of them. Therefore, this project focuses, under the 

statistical category, on seasonal and non-seasonal Autoregressive Integrated Moving 

  ∇𝑑𝑦𝑡 = 𝑦𝑡 − 𝑦𝑡−𝑑 = (1 − 𝐵)𝑑𝑦𝑡 (7) 

  ∇𝑠
𝐷𝑦𝑡 = 𝑦𝑡 − 𝑦𝑡−𝐷 = (1 − 𝐵𝑠)𝐷𝑦𝑡 (8) 

Figure 3. a) Common splitting approach for statistical methods; b) Common splitting 

approach for data mining methods 
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Average (ARIMA) models and, under the data mining category, on Artificial Neural 

Networks (ANNs), more concretely on Recurrent Neural Networks (RNNs).  

2.3.2.1. ARIMA models 

Under the statistical methods for time series forecasting, the most notable work is 

that of Box & Jenkins (1970). These authors devised a practical approach for modelling 

linear time series that exhibit whether stationary or non-stationary behaviour and that 

became widely known as the Box-Jenkins method. Up to that point, simple linear 

stationary models were the prevailing approach in the field (Fildes & Makridakis, 1995).  

The great capability of the Box-Jenkins family of models to deal with several types 

of patterns, as well as their fairly high accuracy in short and medium-term forecasts allied 

to the fact that, in practice, most time series are non-stationary makes them very popular 

and widely used across many areas up to this day (Petropoulos et al., 2014; Makridakis 

et al., 2018). The Box-Jenkins class of models encompasses three key components:  

• The Autoregressive (AR) component, that aims to model the autocorrelation structure 

of the time series and assumes that the current value of the series can be explained by 

a linear combination of 𝑝 previous values. It is more formally referred to as an 

autoregressive process of order 𝑝, denoted by 𝐴𝑅(𝑝) (Shumway & Stoffer, 2017); 

• The Integration (I) component that accounts for the number, 𝑑, of differences required 

to obtain a stationary time series. When any difference is needed, the time series is 

said to be an integrated process of order 𝑑, denoted by 𝐼(𝑑) (Box et al., 2016); 

• The Moving Average (MA) component, that attempts to capture the unknown factors 

that affect the time series but are not explained by its past values and, hence, uses a 

linear combination of 𝑞 past prediction errors. Referred to as a moving average 

process of order 𝑞, denoted by 𝑀𝐴(𝑞) (Box et al., 2016; Nau, 2019). 

From the combination of these components we can obtain the non-seasonal 

Autoregressive Integrated Moving Average (ARIMA), which is parametrized by 𝑝, 𝑑 and 

𝑞  and defined by Eq. (9). While this model allows to explicitly capture the correlations 

between adjacent time series observations, it does not account for dependencies between 

observations that are several periods apart and which are common in seasonal patterns 

(Box et al., 2016; Shumway & Stoffer, 2017). In order to overcome such issue, a 

generalization of the ARIMA model, known as Seasonal ARIMA (SARIMA) and also 
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formulated by Box & Jenkins (1970), that is able to capture multiplicative seasonality, 

can be used. This model has three additional parameters 𝑃, 𝐷 and 𝑄, which are the orders 

of the corresponding seasonal 𝐴𝑅, 𝐼 and 𝑀𝐴 components and is defined by Eq. (10).  

ARIMA(p, d, q):    𝜙(𝐵)∇𝑑𝑦𝑡 = 𝑐 + 𝜃(𝐵)𝜀𝑡 (9) 

SARIMA(p, d, q)x(P, D, Q)𝑠: 𝜙(𝐵)Φ(𝐵𝑠)∇𝑑∇𝐷𝑦𝑡 = 𝑐 + 𝜃(𝐵)Θ(𝐵𝑠)𝜀𝑡 (10) 

In these equations, 𝜙(𝐵) is the non-seasonal autoregressive polynomial of order 𝑝, 

𝜃(𝐵) is the non-seasonal moving average polynomial of order 𝑞 while Φ(𝐵𝑠) and Θ(𝐵𝑠) 

are their seasonal counterparts of order 𝑃 and 𝑄 respectively, ∇𝑑∇𝐷𝑦𝑡 is the time series, 

differenced 𝑑 times and seasonally differenced 𝐷 times, 𝑠 is the seasonal period, 𝑐 is a 

constant, and 𝜀𝑡~𝑁(0, 𝜎2) is a random error term with mean of zero and constant 

variance, more precisely, white noise.  

The process of building and fitting the described models, depicted in Figure 4, is 

done through the iterative Box-Jenkins method. This method is comprised by three steps 

that precede the actual forecasting step:  

1. Identification. Involves checking if the time series is stationary and, if not, to 

determine how many differences are required in order to achieve stationarity. This 

stationarity assessment can be done by inspecting the ACF, PACF and time series plot 

in order to identify any trends or seasonal patterns. After transforming the time series 

to a  stationary form, a careful inspection of the ACF and PACF plots must be carried 

out once again, in order to determine the potentially correct orders of the 

autoregressive and moving average components (Box et al., 2016).  

2. Estimation. Once the set of possible orders for the autoregressive and moving average 

components has been identified along with the number of differences, the preferred 

method to estimate the coefficients of the model is, typically, the maximum likelihood 

Figure 4. Summary of the Box-Jenkins method; adapted from Box et al. (2016) 
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estimation (MLE) (Box et al., 2016). This estimation method usually requires non-

linear optimization techniques (Pelgrin, 2011). 

3. Diagnostic checking. According to Box et al. (2016), the residuals from an adequate 

model fitted to the data should be white noise – i.e., random, independent and have 

zero mean – meaning that they should not possess any statistically significant 

autocorrelation nor exhibit any type of pattern. The tools that can be used to assess 

the adequacy of the model are the ACF plot of the residuals, which displays their 

individual autocorrelation coefficients or the already mentioned Ljung-Box test.  

Once the most adequate model is found, it can be further evaluated by comparing 

its performance to other types of model or be directly used to produce forecasts.  

2.3.2.2. ANN models 

The application of ANNs to time series forecasting has been a topic of interest for 

the data mining community since some time ago and it has recently gained a new wave 

of attention, as more recent architectures are becoming the state-of-the-art for many tasks, 

especially for those related to sequential data (Sutskever et al., 2014; Faloutsos et al., 

2019). An ANN is a data mining model inspired by the human brain used for information 

processing and pattern recognition. Besides having been mathematically proven to be a 

universal function approximator, it does not make strong assumptions about the data 

generation mechanism, in contrast to the previously introduced statistical models, thus 

being a flexible method capable of identifying and modelling complex patterns as well as 

learning linear and non-linear relationships (Remus & O’Connor, 2002; Zhang, 2012). 

In practice, the application of ANNs to time series forecasting has been mostly 

through the multi-layer perceptron (MLP) also known as feed forward neural network 

(Zhang, 2004). This latter designation derives from the fact that, in this model, the 

information flows directly from the input layer, through the intermediate layers to the 

output layer without any feedback to previous layers (Goodfellow et al., 2016). The MLP 

is a generalization of the Perceptron model originally proposed by Rosenblatt (1958). 

This model was composed by a single neuron – the basic information processing unit in 

an ANN – that would compute the sum of the inputs weighted by the connections’ weights 

plus a bias term and then pass it to a binary function. As demonstrated by Minsky & 

Papert (1969), it could only solve problems of data that belonged to linearly separable 

classes, making it of little value to more complex problems. The MLP overcame this 
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weakness by introducing the concept of hidden layers, which are intermediate layers 

between the input and output layers that apply non-linear transformations to the data 

(Touretzky & Pomerleau, 1989). Such transformations are carried out through activation 

functions, being the most common ones the sigmoid (𝜎), the hyperbolic tangent (tanh) 

and the rectified linear unit (ReLU) function (Nair & Hinton, 2010; Karlik & Olgac, 

2011). As shown in Eq. (11), each neuron (ℎ𝑗) included in the hidden layers has the role 

of computing the sum of the input features (𝑥𝑖), once again weighted by the connections’ 

weights (𝑤𝑗𝑖) plus a bias term (𝑏), followed by the application of one of the referred 

activation functions (𝑓). 

 
ℎ𝑗 = 𝑓 (∑ 𝑤𝑗𝑖𝑥𝑖

𝑛

𝑖=1

+ 𝑏𝑗) (11) 

All the intermediate layers perform this sort of calculation until the output layer is 

reached. This last layer, in turn, also applies a function to the data which strongly depends 

on the problem being solved. For time series forecasting, it generally is the identity 

function (Kolarik & Rudorfer, 1994). 

Being a supervised learning algorithm, in order to learn the correlations and patterns 

directly from the data, ANNs must be trained by comparing their outputs to the true 

values, also known as labels in this context, through a loss function (Lee et al., 2004). 

The loss function can take many forms, however, in the particular case of time series 

forecasting the most common one is the mean squared error (MSE), given by  

 

𝑀𝑆𝐸 =  
1

𝑁
 ∑(𝑦𝑡 − �̂�𝑡)2

𝑁

𝑡=1

  (12) 

where 𝑁 is the number of data points, 𝑦𝑡 is the target value and �̂�𝑡 is the prediction made 

by the neural network (Géron, 2019).  

The main goal of the training process is to minimize the loss function. This can be 

achieved by using the backpropagation algorithm introduced by Rumelhart et al. (1986), 

which is of utmost importance for efficiently training any ANN. This algorithm iteratively 

computes the gradient of the loss with respect to each parameter of the neural network 

and then updates each parameter in the opposite direction of the gradient, through a 

technique named gradient descent (GD). There are many alternative procedures to 

perform GD, however, the standard applied method is Stochastic Gradient Descent (SGD) 

(Amari, 1993; Rakhlin et al., 2012). The SGD updates the weights of the ANNs based on 
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the gradient computed from each training example, or batch of training examples, fed to 

the network by using the update rule defined by: 

 
𝜃 ∶= 𝜃 − 𝜂 ∗

𝜕𝐽(𝜃)

𝜕𝜃
  (13) 

Here, 𝜃 denotes the parameters of the neural network, more concretely the weights 

of the connections, 𝜂 is the learning rate which defines the step size towards the minimum 

of the loss,  𝐽(𝜃) is the loss function and 
𝜕𝐽(𝜃)

𝜕𝜃
 is the gradient of the loss with respect to 

the weights.  

The great flexibility of ANNs stemming from their high number of parameters has, 

however, the drawback of making them very prone to overfitting, i.e., they tend to also 

model the noise in the data as being a relevant pattern, leading to poor generalization 

capacity (Lawrence et al., 1997; Lever et al., 2016). Hence, it is usual to use regularization 

methods that penalize large weights of the network with the aim of preventing such 

problem. A fairly recent method intended to address this issue, and that has been 

empirically shown to achieve remarkably good results, is the dropout technique 

introduced by Srivastava et al. (2014). Dropout works by randomly omitting neurons and 

their connections during training so that they do not adapt too much to the data. 

Besides the feedforward connections, ANNs can also have feedback connections, 

meaning that the output of any layer may be fed back to itself and to earlier layers (Li et 

al., 2004). These are named Recurrent Neural Networks (RNNs) and, according to 

Karpathy (2015), their great strength lies on the fact that they allow to operate in 

sequences of vectors, which makes them a very flexible algorithm capable of handling a 

wide range of sequential data tasks. They can be arranged in such a way that allows them 

to take a single value as input and yield a sequence of output values (one-to-many), take 

a sequence of input values and return a single output value (many-to-one), or take a 

sequence of input values and produce a sequence of output values (sequence-to-sequence) 

(Olah, 2015). Natural language processing has been their main field of application 

(Graves, 2013; Sutskever et al., 2014). However, more recently, given their ability to 

explicitly account for the order and dependency of sequential data –  which are desirable 

characteristics to model time series data –, RNNs have also attracted the interest of time 

series forecasting researchers, namely  Zhu & Laptev (2017) and Salinas et al. (2019), 

who adapted and further extended their application to the field.  
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The presently known simplest RNN derives from the contributions of many 

researchers throughout time, such as those of Werbos (1990), Elman (1990) and Jordan 

(1997), and it is loosely designated in the literature as traditional RNN.  

The key component of the traditional RNN is the hidden state (ℎ𝑡) defined by Eq. 

(14), that acts as a memory unit, and is computed at each time step by adding the previous 

hidden state (ℎ𝑡−1) to the current input (𝑥𝑡), each of them parametrized by their weight 

matrices 𝑊 and 𝑈, respectively, plus a bias (𝑏) followed by the application of an 

activation function (𝑓), that usually is the tanh. Both weight matrices are shared across 

all time steps (Goodfellow et al., 2016). 

 ℎ𝑡 = 𝑓(𝑊ℎ𝑡−1 +  𝑈𝑥𝑡 + 𝑏) (14) 

A RNN is trained in the same way as a feedforward network but, in this 

circumstance, the training algorithm has the name of backpropagation through time 

(BPTT) because the network, as depicted in Figure 5, must be first unrolled so that the 

gradient can, then, be propagated back through time (Werbos, 1990). It is, however, a 

known issue that, in practice, traditional RNNs are quite difficult to train for long 

sequences due to the recurrent formulation which results in the sharing of parameters 

through a very deep computational graph. This, in turn, leads to unstable gradients that 

mostly tend to vanish and, sometimes, to explode ultimately causing the network to be 

unable to learn long-term dependencies (Bengio et al., 1994; Pascanu et al., 2013).  

The most effective solution to overcome the shortcomings of the traditional RNN, 

has been the use of gated memory units, specifically the Long Short-Term Memory 

(LSTM) and the Gated Recurrent Unit (GRU) (Hochreiter & Schmidhuber, 1997; Cho et 

al., 2014). Both LSTM and GRU, depicted in Figure 6, aim to explicitly avoid the long-

term dependency problem related to vanishing gradients, by using layers that act as gates 

to control the flow of information. In opposition to the RNN, that fully replaces its hidden 

Figure 5. Traditional RNN and its unrolled version; adapted from Olah (2015) 
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state at each time step, the LSTM and GRU are able to retain most of their hidden state’s 

content while adding new information to it. As depicted in Figure 6, in contrast with the 

traditional RNN whose memory unit has a single tanh layer, both LSTM and GRU 

memory units have three and two additional sigmoid layers, respectively.  

The LSTM layers are named the forget gate (𝑓𝑡), the input gate (𝑖𝑡), the candidate 

values gate (�̃�𝑡) and the output gate (𝑜𝑡). Each of them has the function of selectively 

discarding or adding information to the cell state (𝐶𝑡), also known as the long-term 

memory because it is the key component in preventing the vanishing gradient problem, 

and to the hidden state (ℎ𝑡) also known as the short-term memory because it is the key 

component responsible for enabling the LSTM to make decisions over short periods of 

time (Hochreiter & Schmidhuber, 1997; Olah, 2015; Jozefowicz et al., 2015). All these 

components of the LSTM are defined by the following equations: 

The 𝑊∗ and 𝑏∗ denote the weight matrixes and bias vectors for each gate and the ⊙ 

denotes element-wise multiplications. Furthermore, 𝐶𝑡−1, ℎ𝑡−1 and 𝑥𝑡 denote the previous 

cell state, the previous hidden state and the current input, respectively. 

        𝑓𝑡 =  𝜎(𝑊𝑓 ∙  [ℎ𝑡−1, 𝑥𝑡]  + 𝑏𝑓) (15) 

        𝑖𝑡 =  𝜎(𝑊𝑖 ∙  [ℎ𝑡−1, 𝑥𝑡]  +  𝑏𝑖) (16) 

        �̃�𝑡 =  tanh(𝑊𝐶 ∙  [ℎ𝑡−1, 𝑥𝑡]  +  𝑏𝐶) (17) 

        𝑜𝑡 =  𝜎(𝑊𝑜 ∙  [ℎ𝑡−1, 𝑥𝑡]  +  𝑏𝑜) (18) 

        𝐶𝑡 =  𝑓𝑡 ⊙   𝐶𝑡−1 +  𝑖𝑡  ⊙  �̃�𝑡 (19) 

        ℎ𝑡 =  𝑜𝑡  ⊙  tanh(𝐶𝑡) (20) 

 

Figure 6. Diagram of a recurrent unit from a traditional RNN, a LSTM and a GRU; 

adapted from Olah (2015). 
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The GRU was proposed by Cho et al. (2014) with the aim of simplifying the LSTM 

while still preserving its benefit of circumventing the vanishing gradients problem. Its 

layers are named the update gate (𝑧𝑡), the reset gate (𝑟𝑡) and the candidate values gate 

(ℎ̃𝑡). There are two crucial differences between this recurrent unit and the LSTM; the first 

is the fact that the update gate combines the functionality of both the forget and input 

gates, meaning that it is fully accountable for the decision of retaining past memory and 

of adding new information, and, second, it does not possess a cell state, only a hidden 

state (ℎ𝑡) which stores both long and short-term patterns. All the components of the GRU 

are defined by the following equations: 

Once again, the 𝑊∗ and 𝑏∗ denote the weight matrixes and bias vectors for each 

gate, the ⊙ represents element-wise multiplications, and ℎ𝑡−1 and 𝑥𝑡 denote the previous 

hidden state and current input, respectively. 

The performance of the three memory units depicted in Figure 6 – RNN, LSTM 

and GRU – has been compared by many researchers in distinct sequential data tasks, 

especially in those related to natural language processing. While there is clear evidence 

that both gated units consistently outperform the traditional RNN, there is no definite 

conclusion on which of them is better (Chung et al., 2014; Jozefowicz et al., 2015). 

Moreover, in the specific case of time series forecasting, although also no concrete 

conclusion can be drawn yet due to the early stage of the research in the field, some 

studies seem to suggest a slight superiority of the GRU over LSTM (Fu et al., 2016; 

Kumar et al., 2018; Gallicchio et al., 2019). 

Lastly, it should be noted that although the presented gated RNNs overcome the 

vanishing gradients problem, they do not address the exploding gradients problem. 

Hence, a somewhat simple but very effective solution for this issue is to combine them 

with the gradient clipping technique introduced by Pascanu et al. (2013). By using this 

technique, a threshold value is established and whenever the gradients exceed it, they are 

forced or “clipped” to that threshold.  

 𝑧𝑡 =  𝜎(𝑊𝑧 ∙  [ℎ𝑡−1, 𝑥𝑡]  +  𝑏𝑧) (21) 

 𝑟𝑡 =  𝜎(𝑊𝑟 ∙  [ℎ𝑡−1, 𝑥𝑡]  +  𝑏𝑟) (22) 

 ℎ̃𝑡 =  tanh(𝑊ℎ ∙ [𝑟𝑡  ⊙  ℎ𝑡−1, 𝑥𝑡] + 𝑏ℎ) (23) 

 ℎ𝑡 = (1 − 𝑧𝑡)  ⊙  ℎ𝑡−1 +  𝑧𝑡  ⊙  ℎ̃𝑡 (24) 
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2.3.3. Model selection and evaluation  

Essentially, any algorithm has two types of parameters, those that are estimated 

from the available data and the hyperparameters which require some specialised 

knowledge about the model and dataset being used and must be set before any training or 

model fitting begins (Brownlee, 2017a). For the previously discussed models, both types 

of parameters are summarized in Table II. 

TABLE II. HYPERPARAMETERS AND PARAMETERS FOR EACH TYPE OF MODEL 

As described in the previous section, ARIMA models are typically estimated by 

maximum likelihood. The model selection procedure can thus be carried out by using an 

information criterion, that measures the relative quality of each model belonging to a set 

of candidate models by balancing their goodness-of-fit, based on the MLE, and their 

complexity in terms of number of parameters (Ding et al., 2018). One popular IC for time 

series model selection is the Akaike Information Criterion (AIC) introduced by Akaike 

(1973) and defined by Eq. (25). For small sample sizes, Hurvich & Tsai (1989) 

recommend using a corrected version of the AIC, defined by Eq. (26).  

In these equations, �̂� denotes the logarithm of the maximum likelihood estimate, 𝐾 

the number of parameters in the model, and 𝑛 the number of time series data points. 

According to Ding et al. (2018), the use of the AIC or AICc not only avoids the need to 

further split the training data into a validation set for model selection, as depicted in 

Figure 3 a), but also prevents the choice of a model that overfits the data.  

 
1 Other hyperparameters may exist depending on the particular architecture of the ANN and on its  

   training process 

 Hyperparameters Parameters 

ARIMA based models 𝑝, 𝑑, 𝑞, 𝑃, 𝐷, 𝑄 𝜙𝑝, Φ𝑃,  𝜃𝑞 , Θ𝑄 , 𝜎2,  and 𝑐 

ANNs (MLPs, RNNs) 

Number of hidden 

neurons, learning rate, 

batch size.1 

Weights and biases 

            𝐴𝐼𝐶 = −2𝑙𝑛(�̂�) +  2𝐾 (25) 

 𝐴𝐼𝐶𝑐 = 𝐴𝐼𝐶 + (2𝐾2 + 2𝐾)/(𝑛 − 𝐾 − 1) (26) 
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For ANNs, as for most data mining methods, it is usually recommended to save a 

portion of the training data for validation purposes, as depicted in Figure 3 b). This 

happens because, different sets of hyperparameters are evaluated against the validation 

set so that the best architecture, i.e. the set of “optimal” hyperparameters, can be chosen 

(Brownlee, 2017a; Barry-Straume et al., 2018). In this context, the best model is the one 

that minimizes the loss function both in the training and validation sets which, as 

previously stated, typically is the MSE for time series forecasting (Géron, 2019). 

Finally, after the best model has been found, its performance must be evaluated on 

the test set through the computation of predictive accuracy measures. The usefulness of 

this procedure is two-folded, i.e. besides the computed measures being a representative 

indicator of the accuracy of the model in real forecasts, they also allow the comparison 

of different algorithms, for example, an ARIMA model to a LSTM (Brownlee, 2017a; 

Nau, 2019). According to Hyndman & Koehler (2006), the most commonly used 

accuracy metrics to compare different methods on the same dataset are based on squared 

errors or on the absolute error, more concretely, the mean squared error (MSE) in Eq. 

(12), the root mean square error (RMSE) in Eq. (27), the mean absolute error (MAE) in 

Eq. (28) and the median absolute error (MdAE) in Eq. (29).  

 RMSE = √𝑀𝑆𝐸 (27) 

 MAE = mean(|𝑒|) (28) 

 MdAE = median(|𝑒|) (29) 

In all these equations, 𝑒 = 𝑦 − �̂�, and 𝑦 is the actual value while �̂� is the predicted value. 

2.3.4. Forecasting 

When producing actual forecasts there are two additional aspects that must be 

considered, the forecast horizon and the underlying uncertainty of the forecasts.  

Regarding the forecast horizon, there are two possible scenarios: one-step-ahead 

forecasting, where 𝐻 = 1, and multi-step forecasting, where 𝐻 > 1, in Eq. (6). Single-

step forecasting is the default behaviour of most forecasting methods. Nonetheless, most 

practical applications, require forecasts for longer term horizons. Thus, several methods 

that can be used to generate multi-step forecasts have been proposed, from which the 

recursive method is the most simple and intuitive one (Kline, 2004; Sorjamaa et al., 2007). 

As described by Sorjamaa et al. (2007), this method simply adds one-step-ahead forecasts 
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as input to predict the immediate next unknown future value, in a recursive fashion, until 

the end of the forecast horizon, 𝐻, is reached. It is the standard approach used to produce 

multi-step forecasts for ARIMA models and it can be extended to ANNs (Graves, 2013; 

Nau, 2019).  

Forecasting is an inherently uncertain activity. As such, in addition to the point 

forecasts, many authors emphasise the need and usefulness of also producing prediction 

intervals that reflect the degree of uncertainty underlying the point forecasts (Chatfield, 

2002; Hanke & Wichern, 2014). Due to its importance, it is a well-studied subject in the 

context of ARIMA models whose prediction intervals are computed based on the standard 

deviation of the residuals, that  are assumed to be uncorrelated and normally distributed 

(Hyndman & Athanasopoulos, 2018). Data mining models in general, however, do not 

account for the uncertainty associated with their predictions, although some alternative 

approaches have been proposed to overcome this problem (Shrestha & Solomatine, 

2006). For ANNs in particular, Gal & Ghahramani (2016) have proposed a new method 

of computing prediction intervals that builds on the already mentioned concept of 

dropout. These authors suggest extending the use of the dropout technique from the ANN 

training period to the prediction period. Given that dropout randomly omits neurons, 

using it at the prediction stage leads to some variation in the predicted values if several 

predictions for the same time steps are made. It is, hence, possible to take advantage of 

this phenomenon by making 𝑁 simulations and calculating their mean value along with 

the respective standard deviation that is, then, used to compute the prediction intervals.  

 

3. METHODOLOGY 

This project closely follows the design science research methodology (DSRM) 

proposed by Peffers et al. (2007), which unifies and builds on previous contributions from 

the Design Science Research (DSR) literature, such as the guidelines presented by Hevner 

et al. (2004) on the application of design science to information systems research. 

According to Hevner et al. (2004), DSR is, at its core, a problem-solving oriented process 

whose primary goal is to produce novel and useful artifacts meant to solve an identified 

relevant practical problem. As defined by March & Smith (1995), such artifacts can have 

different levels of abstraction and take the form of constructs, methods, models or 

instantiations. While constructs provide a language to describe a problem within its 
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domain, models are representations of real-life situations expressed through relationships 

among constructs. Methods, in turn, define the steps of a problem-solving process 

towards a solution based on constructs and models. Finally, instantiations instrumentalize 

constructs, models and methods into working systems (Gregor & Hevner, 2013; March 

& Smith 1995). In addition, a crucial factor inherent to DSR is the demonstration and 

thorough evaluation of the produced artifact in terms of its utility in serving its intended 

purpose (Hevner et al. 2004; Sonnenberg & Brocke, 2012). The choice of a particular 

evaluation method is influenced by the type of artifact produced. Nevertheless, as asserted 

by Peffers et al. (2012), technical experiments are the dominant evaluation method for 

any given artifact. This form of evaluation involves simulating the execution of the 

artifact with real or artificial data in a controlled environment to assess if it works as 

expected and fulfils its main goal (Hevner et al. 2004; Peffers et al. 2012). 

That being said, the DSRM established by Peffers et al. (2007) encompasses six 

core activities that will be described and framed in the context of the present project. The 

first activity, which comprises the problem identification and motivation, has been carried 

out in section 1.1. In summary, the identified problem was the inherent difficulty of time 

series forecasting and the need of new automatic methods to address it in the recent 

paradigm of big volumes of data,  whereas the motivation behind it was the ascertainment 

of the great importance of time series forecasting across several domains, including 

business and industry. The second activity involves the definition of objectives for a 

solution regarding the identified problem. According to Peffers et al. (2007), such 

objectives should be inferred from the problem specification and the knowledge of the 

state of the problem. The overall objectives were introduced in section 1.2 and are further 

extended in section 4 into more practical and concrete goals. The third activity entails the 

design and development of the artifact which is described in detail in the following section 

4. Moving from the pre-defined objectives to the actual development of the artifact 

requires knowledge of the useful theory that can lead to a solution (Hevner et al., 2004; 

Peffers et al., 2007). The theory supporting the present project has been thoroughly 

analysed in the literature review (section 2). The artifact produced in the project can be 

regarded as an instantiation, as it results from the confluence of constructs, models and 

methods. The fourth and fifth activities are the artifact demonstration and evaluation, 

respectively. Demonstration involves using the artifact on one example of the problem 
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whilst evaluation is considered a more formal activity that involves the assessment of the 

effectiveness of the artifact in solving the problem it was intended for, by comparing the 

results of the demonstration with the established objectives (Hevner et al., 2004; Peffers 

et al., 2007). Due to their interdependency, the results of both these activities are 

presented in the results section (section 5). Finally, the sixth activity of the DSRM is the 

communication of the problem and its importance, as well as the utility and effectiveness 

of the created artifact and it is accomplished through the present document. 

 

4. PROJECT DEVELOPMENT 

The thorough literature review provided the foundations required to transform the 

previously established global objectives, into clearer and somewhat more practical 

objectives that could, more concisely, guide the project execution.  

Therefore, the first devised objective towards the achievement of the main goal of 

forecasting algorithm automation, was to fully understand which elements form the basic 

building blocks of an algorithm and how they are related to the previously introduced 

models. In this context, it was useful to adopt the view, presented by Fayyad et al. (1996) 

and Chung & Gray (1999), of any algorithm consisting of three common components: a 

model representation, an evaluation criterion and a search method. According to these 

authors, the model representation is an artificial construct used to describe the patterns in 

the data, with each representation having its own assumptions. Regarding the models 

intended to be implemented, it was inferred from the literature review that ARIMA 

models make somewhat strong assumptions about the data, whereas ANNs being data-

driven models are less restrictive and should, in theory, be able to learn any pattern. The 

second component, an evaluation criterion, is the means by which the goodness-of-fit of 

each model is evaluated. As pointed in section 2.3.3, the preferred criterion for ARIMA 

model selection, when estimated by MLE, is the AIC which measures the goodness-of-

fit of the model and, simultaneously, penalizes the model complexity with the aim of 

preventing the overfitting problem. On the other hand, the preferred criterion for ANNs 

in time series forecasting is the MSE and any possible overfitting is handled by 

regularization techniques such as dropout. Lastly, the third component, the search 

method, is linked to a model’s hyperparameters whose correct identification, as 

aforementioned, requires knowledge about the data at hand and the model being used. 
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They are, however, the key component for algorithm automation. As the name of the 

component suggests, the search method involves finding the best hyperparameters by 

testing several combinations and choosing the one that leads to the best results. According 

to Liashchynskyi & Liashchynskyi (2019), two types of search tecnhiques possible to 

implement in order to automate the search process are the grid search and the random 

search. Given a global set of hyperparameters, the grid search performs a cartesian 

product over the set, i.e., it tries all the possible combinations of hyperparameter subsets, 

whilst the random search randomly picks combinations of hyperparameter subsets up to 

a pre-specified maximum number of iterations. Hence, although the grid search method 

is guaranteed to lead to the optimal solution – from the provided hyperparameter space – 

it may be intractable in high dimensional spaces due to its high computational cost and, 

in such cases, random search comes as an efficient alternative that usually leads to good 

enough results (Liashchynskyi & Liashchynskyi, 2019; Bergstra & Bengio, 2012). In 

short, the rule of thumb would be to use grid search for low dimensional hyperparameter 

spaces and the random search otherwise.  

The next practical goal was to search for any already existing algorithms related to 

the proposed system and analyse their inner workings. Not surprisingly, given its huge 

popularity and the many years that have passed since its introduction, there are some 

algorithms addressing the the Box-Jenkins method automation. In fact, there has always 

been a significant interest in automating such method, as suggested by the existence of 

proposals to do so dated back as far as the early 80’s (Hopwood, 1980; Hill & 

Woodworth, 1980). Nonetheless, the state-of-art algorithm for automatic ARIMA 

forecasting is the one proposed by Hyndman & Khandakar (2008), implemented in the R 

programming language and adapted by some other languages and even by commercial 

packages. From the analysis of this algorithm in combination with the knowledge 

acquired through the literature review, it was possible to understand that the Box-Jenkins 

models could not be automated by blindly applying a search method to its 

hyperparameters without taking into account some theoretic aspects as, not doing so, 

would lead to results inconsistent with their theoretical underpinnings. More concretely, 

it is required to identify the correct number of necessary differences to make the time 

series stationary before proceeding to any hyperparameter search. This occurs because, 

as explained by Hyndman (2013), differencing involves the loss of a number of data 
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points equivalent to the order of the differencing and, as such, the AIC for models with a 

dissimilar number of differences is computed based on different sample sizes thus making 

its comparison invalid. In the original paper, Hyndman & Khandakar (2008) propose the 

use of successive unit root tests for determining the number of differences, more 

specifically, the CH test for seasonal differences and KPSS for trend related differences. 

Nevertheless, it was possible to find out, through careful inspection of the algorithm, that 

in its more recent versions, instead of the CH test, the index of seasonal strength, 𝐹𝑆 in 

Eq. (2), is the preferred measure to determine the required number of seasonal 

differences. Hence, every time the 𝐹𝑆 exceeds a threshold value, defined as 0.64 by the 

authors, it means that a seasonal difference is required. Finally, after the number of 

differences has been inferred it is, then, possible to employ a search method to find the 

orders of the AR and MA polynomials. Moreover, it is important to add that the choice 

between a seasonal or non-seasonal ARIMA is left up to the user. 

Conversely, there are not any specific authoritative algorithms for ANNs 

automation, which is explained by the already stated fact that these models learn patterns 

directly from the data without making many assumptions, thus allowing their 

hyperparameters to be automatically found through one of the abovementioned search 

methods, without compromising the validity of their results. There is, however, one 

additional issue, not exactly related to their automation but simply to their supervised 

learning nature and their general usage with time series data, which is the requirement for 

transforming the time series into a specific format before they are passed into the neural 

network models. More specifically, time series must be converted into windows of 

sequences and their corresponding labels. This can be achieved by means of a sliding 

window technique (Appendices 1 and 2).  

At this point, it was possible to already have a clearer idea of the practical 

requirements needed to achieve the proposed main goal of the project, especially in what 

concerned the ARIMA models. Regarding the ANNs there were still some unknowns but 

that were thought to be more easily cleared up during the actual development of the 

system. Hence, with the general aspects of algorithm automation outlined, the next step 

was to find the Python libraries that could be used to leverage the system development. 

First of all, it is worth to mention that the main reason that motivated the choice of Python 

as the programming language for this project was its huge diversity of libraries, that 



JOANA CLAUDINO INTELLIGENT SYSTEM FOR TIME SERIES 

PATTERN IDENTIFICATION AND PREDICTION 

 

29 

 

greatly extend its base functionalities, in combination with its simple syntax and multi-

paradigm support (Wu, 2019; Cass, 2019). After a thorough search, the libraries deemed 

as relevant for the project and from which some functionalities ended being used, as will 

be further explained, were: 

• Pandas, a very useful library for data analysis and manipulation that presents 

important functionalities regarding datetime objects (McKinney, 2010); 

• NumPy, which offers a very efficient data structure in the form of n-dimensional 

arrays, great for faster computations (Harris et al., 2020); 

• Matplotlib, a very flexible library for graphics generation capable of creating any 

relevant graph for the project (Hunter, 2007); 

• Scikit-learn, the most prominent python library for machine learning related 

functionalities (Pedregosa et al., 2011); 

• Statsmodels, that takes care of statistical computations, such as model estimation, and 

offers important statistical hypothesis tests (Seabold & Perktold, 2010); 

• Pytorch, which is a very powerful library for neural network architectures 

development. Its basic data structure in form of tensors, also n-dimensional, can 

leverage the power of Graphics Processing Unit (GPU) acceleration to perform 

computations even faster than those attained through Numpy’s arrays. Moreover, it 

has the capability of keeping track of all the performed tensor operations and 

automatically computing the correct partial derivatives for each of them, thus greatly 

simplifying the backpropagation process during training (Paszke et al., 2017). 

From here, the development stage could finally take place. The first concern was to 

implement the core functionality of the system, i.e., the ARIMA and RNN models. Since 

the mechanics of the ARIMA models were better understood, their implementation was 

the first step in the development process. Luckily, an already existing data structure in the 

Statsmodels library could be used as base for the model fitting and parameter estimation 

part which would require a heavy mathematical background otherwise. Nonetheless, all 

the logic underlying the application of the statistical tests and measures to determine the 

need of differencing as well as the search loop for an optimal model had to be 

independently developed. Some snippets of the code can be found in Appendices 3, 4, and 
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5 2. In short, the workflow of the algorithm is based on the one previously mentioned, and 

it also requires that the user decides if the model should be seasonal or non-seasonal, 

however, after all the components of the system were built, the choice between the two 

becomes a very easy process as it will be seen further ahead. If a non-seasonal model is 

chosen, the algorithm works by first determining if the inputted time series is stationary 

and, if it is not, it finds the necessary number of 𝑑 differences in order for it to become 

stationary. Then, it only needs to find the 𝑝 and 𝑞 orders of the AR and MA polynomials, 

respectively. It does so by maintaining 𝑑 fixed at the found number of differences and by 

trying all the possible combinations of the 𝑝 and 𝑞 hyperparameters up to a pre-defined 

limit, whose default value is set to 3, but that can be changed by the user. Finally, it 

chooses the combination of hyperparameters for which the AIC or the AICc is smaller. 

For a seasonal model, the procedure is very similar, except that the algorithm has also to 

determine the number of seasonal differences, 𝐷, and the 𝑃 and 𝑄 orders of the 

corresponding seasonal 𝐴𝑅 and 𝑀𝐴 polynomials (Appendix 6). It is worth to highlight 

that some theoretical aspects as, for instance, first finding the seasonal differences and 

only after finding the non-seasonal differences, in the case of seasonal models, were taken 

into account in order to ensure the correctness and validity of the found models.  

Next, the implementation of the ANN models was fairly more challenging, and it 

was done in an iterative fashion. First, the models decided to be implemented were the 

traditional RNN, the LSTM and the GRU. Once again, in this case the existing python 

libraries were very helpful, more specifically Pytorch, which had already available an 

implementation of each of the memory units, thus, avoiding the cumbersome process of 

coding them from scratch. It was, however, necessary to define several architectural 

aspects of the ANNs, as well as to define the forward pass of the data through each of 

them. Given the fact that the data that flows through neural networks is arranged in the 

form of tensors, time series data must be converted to 3D tensors before being passed to 

any of them. This could be achieved through the combination of the referred sliding 

window technique plus some additional functions of Numpy and Pytorch. These 3D 

tensors are subject to several transformations throughout the forward pass of each ANN 

until the output layer is reached. Such transformations had to be carefully defined, in 

 
2 Due to its extension, it is not possible to reproduce the entire code in the Appendices section. The full  

  code can be found at: https://github.com/joana94/intelligent-ts-predictor 

https://github.com/joana94/intelligent-ts-predictor
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order to guarantee that the ANNs would produce consistent results. Furthermore, it was 

needed to understand the correct way of initializing the hidden states for all the ANNs, 

and the cell state in the case of LSTMs, and to decide which parts of their information 

should be passed to the output layer. The final decision was to use the information from 

all hidden states in the output layer as the default option since it demonstrated better 

results, but also to offer the alternative of allowing the user to choose to only use the 

information from the most recent hidden state.   

At the end, all the ANNs ended up being implemented with a similar architecture, 

i.e., with an input layer, two stacked recurrent layers, a linear output layer and a dropout 

layer between the recurrent layers (Appendices 7 and 8). The reason behind the decision 

of using two fixed recurrent layers and a dropout layer in between instead of giving the 

option of these factors being part of the searchable hyperparameter grid, was to guarantee 

that after the models were trained, they could generate prediction intervals along with the 

point forecasts at inference time.  The implementation of the prediction intervals was 

inspired by the method presented in section 2.3.4, being the variability associated with 

the dropout technique used to generate several simulations of the future values and their 

corresponding mean and standard deviation used to compute the intervals’ upper and 

lower bounds, whose coverage probabilities were assumed to follow a normal distribution 

(Appendix 9). Thus, the only searchable hyperparameter regarding the neural networks’ 

architecture ended being the size of the hidden dimension of the recurrent layers, i.e., the 

number of hidden neurons that they possess and which greatly influence the 

representational power of the neural networks and their capability of learning patterns.   

The main hyperparameters to be searched in the neural networks are related to their 

training. The training process is what enables a neural network to progressively capture 

the patterns contained in the data and, as such, is a key part in their use for time series 

forecast generation. It is during training that many decisions have to be made, namely, 

how many samples of sequences and labels, known as the batch size, should be 

simultaneously passed to the network at each iteration for computing the gradients and 

updating the networks’ weights.  There is also the decision of whether to shuffle these 

samples or not. For independent and identically distributed random variables, shuffling is 

basically a pre-requisite as it prevents the neural networks from incorrectly learning 

patterns that simply resulted from the way that the samples were ordered when they were 
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passed to them. In the case of time series, although the order of the observations is 

extremely important and, in principle, should not be changed, doing so sometimes 

improves pattern learning, especially in the case of long time series as has been 

empirically asserted by some researchers (Peralta et al., 2009). In addition, other very 

important hyperparameter to be searched, that highly impacts the learning process, is the 

learning rate of the optimizer when performing gradient descent. The learning rate 

controls how fast the weights are updated by gradient descent towards the minimum of 

the loss function and it really has a huge impact in the ability of the ANNs to learn 

patterns. So, in sum, the resulting hyperparameters to be automatically optimized in the 

implemented RNNs, ended being the hidden dimension, the batch size, the shuffling and 

the learning rate (Appendix 10). The selected decision criterion for finding the best set of 

hyperparameters was the validation loss with the minimum MSE. The creation of the 

validation set was decided to be computed as a fraction of the training set, with the default 

value of 10% but with the possibility of being controlled by the user. This splitting logic 

was incorporated as the first step of the training loop. Finally, both grid and random search 

methods were implemented and it is up to the user to choose which one to use to find the 

best set of hyperparameters depending on the dataset at hand (Appendix 11).  

Two additional remarks about the ANNs were the fact that when testing their 

functioning, it was concluded that the time series data had to mandatorily go through an 

extra pre-processing step of normalization, before being passed to the ANNs or otherwise 

the models would not work properly, and the fact that in some cases the gradients would 

become very unstable during training which led to the inclusion of the gradient clipping 

technique in the training loop. The chosen normalization technique was the min-max 

scaling, which rescales the values of the time series to values between 0 and 1, whereas 

the defined threshold value for gradient clipping was 1 and it significantly aided to 

overcome the exploding gradients problem.  

Finally, after the automation of the forecasting models had been achieved, they 

could be now used as foundation to build a support system able to guide the user through 

the entire forecasting process while abstracting its inherent complexity. As depicted in 

Figure 2, this would include the process of ingesting time series data, splitting them into 

training and testing sets, comparing the performance of competing models in the testing 

set and, lastly, choosing the best performing model to produce real forecasts into the 
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future. To accomplish this, a modular system, whose overall functionality and outputs are 

summarized in Figure 7, was developed.  

In more detail, this system is comprised by the following components: 

• The data loading module, which takes care of the time series data reading and the 

checking of their values. The reading function expects a csv file containing a date 

column in a valid format, which is automatically detected, and, evidently, a column 

containing the respective values for each timestamp. Given the fact that any missing 

dates negatively impact the performance of the models, especially that of ARIMA 

models as ANNs are more robust to such scenario, it automatically checks for any 

missing dates and, if any are detected, it adds them to the original time series and also 

the corresponding missing values, through linear interpolation.  The great flexibility 

of the python Pandas library to handle datetime objects was a valuable aspect that 

aided in the development of this module. Additionally, it produces two extra csv files, 

one containing the training set and the other containing the test set, which are used by 

the subsequent modules, and two reports. The first report provides some descriptive 

statistics of the time series including the trend and seasonal strength measures which 

give the user an hint about the possible presence of trend and seasonal patterns, and 

the other report contains the results of the KPSS test thus providing a prior indication 

of the stationarity of the time series. These are accompanied by the time plot, which 

also allows to visually detect any patterns, along with the ACF and PACF plots that 

help to assess the existence of any significant autocorrelations (Appendix 12). All the 

plots are generated through the Matplotlib library. 

Figure 7. Overview of the system modules and their outputs 
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• The model fitting module, which is the one that makes most use of the previously 

developed automatic algorithms. It fits a model, chosen by the user through a 

configuration file, to the time series training set and then the automatic algorithms do 

all the work of finding the best hyperparameters and estimating the parameters for the 

inputted time series data. If a statistical model is chosen, it is fitted to the data after 

computing the required differences. Its optimal hyperparameters are found by 

minimizing the AIC or AICc, whilst the associated parameters are then estimated by 

Maximum Likelihood. On the other hand, if an ANN model is chosen, the dataset is 

first normalized through the min-max scaling functionality offered by the Scikit-learn 

library, and transformed into windows of sequences and their corresponding labels, 

prior to the model training. Its deemed optimal hyperparameters are those which 

produce the lowest MSE in the validation set, whereas the corresponding parameters 

are estimated by gradient descent also towards the minimum MSE but on the training 

set. The outputs of this module are very important and consist of reports and csv files 

containing  the summary of the fitted/trained models, the set of the found optimal 

hyperparameters, the predictions of the models for the test set and the predictive 

performance metrics – the MSE, RMSE, MAE and MdAE – computed for those 

predictions, which are the key element to compare different models. It also produces 

graphics of the predicted values compared against the real values. Finally, for ARIMA 

models an additional set of plots, intended to address the diagnostics step of the Box-

Jenkins method, is generated for the residuals of the model and comprise their ACF 

and PACF plots, that allow to check the existence of any remaining autocorrelations, 

and their density plot, which enables to verify if they follow a normal distribution. 

For the ANNs, a plot showing the training and validation set losses is provided and 

its usefulness lies on the fact that it provides an indication of how many iterations 

should be used when training the model on the entire time series (Appendix 13).  

• The model comparison module, which is just a utility and is not an essential part for 

the correct functioning of the system. It simply grabs the predictive performance 

results of each of the fitted competing models, and produces a report and a csv file 

indicating which one made the lowest error accompanied by a bar plot that displays 

the same information but in a more intuitive way. By using this module, the user 

avoids the need to manually check the outputted reports of each model and can 
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quickly and easily compare all the different types of models, in order to decide which 

one is really the best for the time series at hand (Appendix 14).  

• The forecasting module, which, as expected, produces point forecasts 

accompanied by their prediction intervals. It refits the chosen model to the entire 

dataset with the found optimal set of hyperparameters and produces forecasts for the 

number of periods along with the predictions’ confidence level, pre-specified by the 

user in the configuration file. Forecasts of both ARIMA and ANN models are 

produced using the recursive method, where each of the predicted values are reused 

as inputs for the subsequent predictions. The forecasts are outputted in the form of 

report and a csv file, which can be used for further analysis. These are accompanied 

by a time plot that allows to visualize how the values are expected to change in the 

future, and how confident the models are on their predictions (Appendix 15).  

In addition, before any of the referred modules can be used, an initial script 

responsible for creating the directory structure for each forecasting project, must be 

executed so that every module output is placed in the correct folder (Appendix 16).  

 

5. RESULTS 

The designed artifact was evaluated through experimentation, a process that was 

carried out in several steps. First, the automated algorithms were iteratively assessed 

during their development in order to assure their correct implementation. The goal was to 

verify that both ARIMA and ANNs could select the best hyperparameter set from the 

available hyperparameter grid and, simultaneously, to confirm if the ANNs were able to 

actually learn any patterns from the data. Therefore, to perform this evaluation an artificial 

dataset was used, more concretely, a sine wave which due to its simplicity would allow 

to test the algorithms in several occasions in a short amount of time and, due to its periodic 

pattern, would also allow to check the ability of the ANNs to learn its pattern3. This initial 

experiment lead to very positive results as shown by the low errors that any of the models 

made on the artificial dataset in Table III. Note that only the seasonal ARIMA error is 

reported, as fitting a non-seasonal ARIMA model to a dataset of a periodic nature like 

 
3 Furthermore, the used artificial dataset has also the advantage of being easily reproducible, thus 

  facilitating the replication of the experiment by other researchers.   
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this one would be nonsensical4.  Moreover, the extremely low error reported for the 

SARIMA model is explained by the fact that, in some circumstances, its forecasting 

function can be obtained as a mixture of sines and cosines, hence, originating this almost 

perfect prediction for the test data (Box et al., 2016). 

TABLE III. SINE WAVE PREDICTION RESULTS 

 SARIMA Traditional RNN LSTM GRU 

MSE 1.373644e-07 0.030167 0.007415 0.020094 

RMSE 3.706270e-04 0.173688 0.086109 0.141754 

MAE 2.768829e-04 0.150737 0.077472 0.123896 

MdAE 2.425354e-04 0.135817 0.085139 0.120943 

 

An additional experiment, with another artificial dataset, was carried out to further 

assess the capacity of the neural networks to learn patterns. This dataset comprised, once 

again, a sine wave but this time with some gaussian noise added to it. As expected, the 

error increased slightly but the results were still pretty remarkable as shown in Table IV, 

meaning that the relevant patterns were still captured.   

TABLE IV. SINE WAVE WITH GAUSSIAN NOISE PREDICTION RESULTS 

 SARIMA Traditional RNN LSTM GRU 

MSE 0.046699 0.131497 0.064780 0.071001 

RMSE 0.216100 0.362624 0.254519 0.266461 

MAE 0.177564 0.284824 0.208243 0.214373 

MdAE 0.136900 0.258987 0.202693 0.185101 

 

The use of these two artificial datasets was very important as it not only made clear 

that both algorithms were choosing the best set of hyperparameters, but it also showed 

that, even in the presence of noise distorting the target signal, the RNNs were able to 

approximate the data generating function, thus capturing the relevant patterns and 

achieving very competitive results when compared to the SARIMA model, with the 

 
4 In addition, the correct functioning of the SARIMA model implies the also correct functioning of 

  ARIMA, as both rely on the same automatic algorithm. 
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LSTM being the best performing ANN for both datasets. Furthermore, as previously 

explained, this experiment also allowed to conclude the necessity of further tweaking the 

ANN algorithms by incorporating the min-max normalization as a pre-processing step 

and by clipping the gradients in the training loop to avoid exploding gradients.  

The next experiment intended to check if the entire system built on top of the 

automated algorithms also worked as expected. In order to do so, two publicly available 

real datasets5, with diverging characteristics regarding length and frequency, were used 

in an end-to-end time series forecasting task. This allowed to demonstrate and assess the 

correct functioning of each of the modules and the performance of the system as a whole.  

The dataset 1 comprised a short time series with less than two hundred observations 

and monthly frequency, encompassing a clear seasonal pattern, and did not have any 

missing dates or values. Each module of the system was able to produce the expected 

outputs for this dataset, and the automatic algorithms were able to effortlessly find the 

best hyperparameters for each model. The best performing model on this dataset was the 

GRU, followed by the LSTM, SARIMA and traditional RNN. The MSE computed in the 

test set, as well as the found best hyperparameter set for each model is reported in Table 

V. Furthermore, the time plots outputted by the model fitting and the forecasting module 

for the two best performing models, GRU and LSTM, are shown in Figure 8. 

The dataset 2 consisted of a long time series, with more than three thousand 

observations and daily frequency, also encompassing a seasonal pattern, and with some 

missing dates and values. Once again, each module of the system worked as expected, 

namely by detecting the missing data and filling it appropriately, and by producing the 

correct outputs. For this dataset the automatic algorithms, however, required a much 

longer fitting/training time and were slower to converge to a solution, with SARIMA 

being the model that struggled the most, which was an expected outcome since this type 

of model does not scale well for  big time series datasets with a high frequency. In fact, 

SARIMA simply cannot model data with higher than daily frequency, which has 

prevented the assessment of the system in a more complex hourly dataset. Anyway, at the 

end all models were able to fit dataset 2 and actually produced similar results as can be 

seen in Table V, with the LSTM being the best performing one. 

 
5 Dataset 1: https://www.kaggle.com/chirag19/air-passengers 

  Dataset 2: https://github.com/jbrownlee/Datasets/blob/master/daily-max-temperatures.csv 

https://www.kaggle.com/chirag19/air-passengers
https://github.com/jbrownlee/Datasets/blob/master/daily-max-temperatures.csv
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TABLE V. SUMMARY OF THE OPTIMAL HYPERPARAMETERS FOUND FOR EACH MODEL 

AND THE CORRESPONDING PREDICTIVE PERFORMANCE FOR EACH DATASET 

 Models Optimal Hyperparameters MSE 

Dataset 1 

SARIMA 
𝑝 = 2, 𝑑 = 0, 𝑞 = 0, 𝑃 = 1, 𝐷 = 1 and 

𝑄 = 2 
2693.78 

Traditional 

RNN 

Batch size = 10, learning rate = 0.001, 

Hidden dimension = 512, Shuffle = True 
3315.31 

LSTM 
Batch size = 10, learning rate = 0.001, 

Hidden dimension = 512, Shuffle = True 
2540.68 

GRU 
Batch size = 10, learning rate = 0.01, 

Hidden dimension = 256, Shuffle = True 
2231.89 

Dataset 2 

SARIMA 
𝑝 = 3, 𝑑 = 0, 𝑞 = 2, 𝑃 = 0, 𝐷 = 0 and 

𝑄 = 2 
43.28 

Traditional 

RNN 

Batch size = 60, learning rate = 0.001, 

Hidden dimension = 256, Shuffle = True 
53.10 

LSTM 
Batch size = 60, learning rate = 0.001, 

Hidden dimension = 512, Shuffle = True 
42.83 

GRU 
Batch size = 60, learning rate = 0.001, 

Hidden dimension = 512, Shuffle = True 
43.63 

 

Figure 8. Forecasting module output for dataset 1. In the upper row of the image, we find 

the time plots outputted by the model fitting module for both GRU and LSTM models for 

dataset 1, where the predictions for the test set are plotted against the real values. In the 

bottom row, we find the time plots outputted by the forecasting model which show the 

forecasted values along with their prediction intervals.   
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As shown in Figure 8, the implemented RNNs are able to quantify the uncertainty 

of their predictions. The wide prediction intervals produced by the GRU imply a high 

uncertainty of the model about its predicted future values, in contrast with the very narrow 

prediction intervals produced by the LSTM which indicate a high confidence of the model 

regarding its predicted future values. Furthermore, from Table V it is possible to conclude 

that for both datasets, the automatic algorithm found that shuffling the time series data 

before feeding it to any of the ANNs would lead to the best results.  

In sum, from the obtained results the RNN models revealed to be a competitive 

alternative to classical ARIMA models. Moreover, it should be noted that the optimal set 

of hyperparameters for the RNNs is chosen conditioned on the hyperparameter grid 

provided by the user. In the carried experiments the provided grid was considerably small, 

due to computational resources limitations, meaning that there is some probability that a 

potentially better performing model could be found if a larger grid was provided.  

 

6. CONCLUSIONS, CONTRIBUTIONS, LIMITATIONS AND FUTURE WORK 

For this project, a design science research approach was used to develop a 

purposeful artifact that addresses the identified problem of the need for more advanced 

automated data-driven forecasting algorithms, and their usage to reduce the underlying 

complexity of the time series forecasting process. In global terms, all the established 

objectives towards the development of the proposed artifact were successfully achieved. 

The final designed artifact can be considered an instantiation as it combines constructs, 

models and methods into a fully working system. From the models included in the system, 

the statistical ARIMA models are a well-studied subject in the context of time series 

forecasting, whereas the application of RNNs to time series forecasting is a fairly recent 

subject and remains an open topic requiring further research. 

Regarding the contributions of the project, the experiments carried out to test the 

system suggested that RNNs are indeed capable of learning patterns from time series data 

and to extrapolate them into the future, actually leading to competitive results when 

compared to classical models, thus supporting the recent interest in using these models 

for time series forecasting. Moreover, in accordance with recent research, they also 

suggested a better performance of the gated RNNs, the LSTM and GRU, over the 
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traditional RNN. The system also hinted at the possible suitability of shuffling time series 

data during the ANN training phase. Nevertheless, the main contribution of the project is 

the artifact itself and it is two-folded. First, it offers a unique fully automated tool capable 

of performing time series forecasting while including the most well-known statistical 

models, as well as some of the most recent and promising models for such task. This is 

useful either for the expert and non-expert user, as it provides a way of quick and easily 

fitting competing models and compare their performance while obtaining insightful 

reports and graphical representations. It also mitigates the burden of dealing with the most 

complex technical issues linked with timestamped data and of having to implement the 

models or to manually tune their hyperparameters, which are far from trivial tasks. On 

the other hand, given the fact that the system’s code was made publicly available along 

with the fact that it was developed in an object oriented fashion, with its main 

functionalities being abstracted and encapsulated into classes, more experienced 

programmers can take advantage of this factor and break down the system into its core 

components, in order to use them as in a regular python package. This could lead to a 

great gain of flexibility and control over the model building process, especially for the 

neural networks, and would allow to further extend the offered capabilities. 

The limitations faced in the project, were mainly related to computational 

performance constraints which precluded the use of bigger time series datasets with the 

system. The use of such datasets would possibly grant the system’s evaluation in more 

representative conditions of the real-world time series forecasting scenario. Nevertheless, 

the performed experiments still indicate an overall good performance of the system, as 

long as the required computational resources are available.  

Finally, some possible future work directions regarding the system’s usability and 

performance improvements are provided. Concerning the usability aspect of the system, 

a clear enhancement would be to provide it with a more user-friendly interface in 

opposition to its current interface which relies on the operating system’s command line.  

Concerning the performance aspect, the main factors to consider would be the assessment 

of more advanced methods for hyperparameter search, such as Genetic Algorithms, and 

the implementation of more complex recurrent neural network architectures capable of 

taking into the account the influence of other predictors in the target time series other than 

its own current and past values.   
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