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Novas perspetivas na inibição das enzimas das redes extracelulares dos 

neutrófilos na edometrose equina 

 

Resumo 

Nas éguas, após inseminação natural ou artificial, é frequente ocorrer endometrite, 

caracterizada pela chamada de neutrófilos para o lúmen uterino. Os neutrófilos, além de 

libertarem grânulos de enzimas proteolíticas e citotóxicas, podem também libertar filamentos 

de DNA, histonas e várias enzimas para o meio extracelular originando as redes 

extracelulares dos neutrófilos (NETs). Embora a sua principal função seja o aprisionamento 

e o combate de agentes patogénicos, a persistência de NETs tem sido associada ao 

desenvolvimento de várias situações patológicas, de entre as quais fibrose. A elastase (ELA), 

catepsina G (CAT) e mieloperoxidase (MPO) são enzimas pró-fibróticas presentes nas NETs 

que induzem a produção de colagénio tipo I (COL1) na fibrose endometrial equina. As 

metalopeptidases da matriz (MMPs) são cruciais nesta remodelação da matriz extracelular. 

As prostaglandinas (PG)s E2 e F2α têm sido associadas a efeitos anti e pró-fibróticos. Neste 

trabalho foram utilizados explantes de endométrio equino tanto da fase folicular (FP) como 

da fase lútea-média (MLP) que foram tratados in vitro com as enzimas presentes nas NETs 

e seus inibidores durante 24 e 48h. Este trabalho teve como objetivos a avaliação da resposta 

dos explantes de endométrio equino: (i) à inibição da ELA pelo sal sivelestat de sódio (SIV) 

na transcrição de COL1A2 e secreção de PGE2 e PGF2α; (ii) ao efeito do tratamento com ELA 

e SIV na atividade das MMP-2/-9 e inibição pelo SIV no COL1 induzido pela ELA; (iii) ao efeito 

do tratamento com CAT e Inibidor I da Catepsina G (ácido β-acetofosfónico; INH) na atividade 

das MMP-2/9 e na inibição pelo INH no COL1 induzido pela CAT; e (iv) à inibição pela 

hidrazida de ácido 4-aminobenzóico (ABAH) no COL1 induzido pela MPO e os efeitos da 

MPO e ABAH na atividade da MMP-2/-9. Na FP, o tratamento com SIV  reduziu a transcrição 

de COL1A2 e a produção de  PGF2α pró-fibrótica mas aumentou a produção de PGE2 anti-

fibrótica. No tratamento com ELA e SIV, a expressão de MMPs variou com a fase do ciclo e 

a duração do tratamento. Na FP (24h) e MLP (24 e 48h), o SIV reduziu os transcriptos de 

COL1A2 induzidos pela ELA. O INH reduziu o COL1 induzido pela CAT nas duas fases, às 

48h. A MMP-2 parece estar envolvida numa resposta rápida à CAT, e a MMP-9 numa 

resposta tardia na FP. O ABAH diminuiu o COL1 induzido pela MPO na FP às 48h. A MMP-

2 parece estar envolvida numa resposta aguda à MPO, e a MMP-9 numa resposta longa na 

FP. O uso de inibidores específicos das enzimas das NETs pode constituir a base para o 

desenvolvimento de potenciais fármacos passiveis de serem utilizados numa abordagem 

profilática ou terapêutica na endometrose equina. 

Palavras-chave: elastase, catepsina G, myeloperoxidase, inibição, endometrose. 
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New insights on the inhibition of neutrophil extracellular traps enzymes in 

equine endometrium 

 

Abstract 

Mares physiologically develop a post-breeding endometritis characterized by a fast 

arrival of neutrophils into the uterine lumen. These neutrophils besides releasing granules of 

proteolytic and cytotoxic enzymes, may also deliver to the extracellular environment their DNA, 

histones and enzymes forming neutrophil extracellular traps (NETs). Besides trapping and 

fighting pathogens, NETs persistence has been also associated to the development of 

pathological conditions, such as fibrosis. The enzymes found in NETs, such as elastase (ELA), 

cathepsin G (CAT) and myeloperoxidase (MPO) act as pro-fibrotic factors in equine 

endometrial fibrosis, by inducing collagen type I (COL1) accumulation. Matrix 

metallopeptidases (MMPs) are crucial for this extracellular matrix remodeling. Prostaglandins 

(PG)s E2 and F2α have been described as possessing anti or pro-fibrotic effects.  Equine 

endometrial explants from follicular phase (FP) or mid-luteal phase (MLP) were treated in vitro 

with ELA, CAT or MPO and their specific inhibitors for 24 or 48h. This work aimed to evaluate 

the explants response to: (i) ELA inhibition by sivelestat sodium salt (SIV) on COL1A2 

transcription and PGE2 and PGF2α secretion; (ii) ELA and SIV treatment on MMP-2 and MMP-

9 activity, and the inhibitory effect of SIV on ELA-induced COL1; (iii) CAT and Cathepsin G 

inhibitor I (β-keto-phosphonic acid; INH) treatment on MMP-2 and MMP-9 activity, and the 

effect of INH on CAT-induced COL1 production; (iv)  the inhibitory effect of 4-aminobenzoic 

acid hydrazide (ABAH) on MPO-induced COL1 and the effect of MPO and ABAH on MMP-2 

and MMP-9 gelatinolytic activity. In FP, COL1A2 transcription decreased in SIV-treated group, 

simultaneously with reduced pro-fibrotic PGF2α and increased anti-fibrotic PGE2 production. 

In ELA- and SIV-treated explants, MMPs expression depended on estrous cycle phase and 

time of treatment. Sivelestat inhibited ELA-induced COL1A2 transcripts in FP (24 h) and MLP 

(24 h, 48 h).  The effect of INH was observed on CAT-induced COL1 in both phases at 48h.  

The MMP-2 might be involved in an earlier response to CAT, while MMP-9 in a later response 

in FP. The inhibitory effect of ABAH on MPO-induced COL1 was detected in FP at 48h. Matrix 

metallopeptidase-2 appears to be involved in an acute response to MPO treatment in MLP 

and MMP-9 in FP in a prolonged MPO treatment. The use of specific inhibitors of ELA, CAT 

or MPO, might be the grounds for future development of specific drugs to be used as 

prophylaxis or therapy of endometrosis in the mare. 

 

 

Keywords: elastase, cathepsin G, myeloperoxidase, inhibition, endometrosis  
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1. General Introduction 

Among the reproductive problems affecting mares that contribute to infertility, equine 

endometrial fibrosis is considered a major cause. In equine endometrial fibrosis, also known 

as endometrosis, fibroblasts differentiate into myofibroblasts responsible for collagen (COL) 

fibers synthesis in extracellular matrix (ECM) leading to periglandular and/or stromal 

endometrial fibrosis with alterations of endometrial glands (Hoffmann et al. 2009a). If 

endometritis becomes persistent, it might trigger endometrosis development. Neutrophils are 

the most abundant immune cells, which arrive fast into the uterine lumen contributing to 

breeding-induced endometritis (Katila 1995). These immune cells play an essential role 

defending the host against the invading pathogens by phagocytosis, degranulation and 

generation of neutrophil extracellular traps (NETs). The release of enzymes and nuclear 

constituents by neutrophils contributes for NETs formation. Among those enzymes are 

elastase (ELA), cathepsin G (CAT) and, myeloperoxidase (MPO) (Brinkmann et al. 2004). The 

ex vivo presence of NETs was detected in endometrial mucus from mares with endometritis 

(Rebordão et al. 2014). Moreover, it was also found that, in the presence of bacteria that cause 

endometritis, the equine neutrophils have the capacity to form NETs (Rebordão et al. 2014). 

Besides the antimicrobial action of NETs and their components, ELA, CAT and MPO were 

also proven to be capable of inducing collagen type I (COL1) production in vitro in equine 

endometrial explants, suggesting the dual effect of enzymes found in NETs,  since they also 

can also act as pro-fibrotic agents (Rebordão et al. 2018). 

Some specific inhibitors of enzymes found in NETs have been used, showing beneficial 

effects is many diseases. Sivelestat sodium salt (SIV) is a selective ELA inhibitor that has 

shown beneficial effects on hindering fibrosis development, both in in vitro studies and clinical 

trials (Takemasa et al. 2012; Polverino et al. 2017). Cathepsin G Inhibitor I (β-keto-phosphonic 

acid; INH) is a selective inhibitor of CAT. This inhibitor exhibited anti-inflammatory properties 

and favorable results in the treatment of acute and chronic airway diseases (de Garavilla et 

al. 2005; Maryanoff et al. 2010). To inhibit MPO, 4-aminobenzoic acid hydrazide (ABAH) has 

been the most used inhibitor tested, both in acute inflammation and in fibrotic conditions (Pulli 

et al. 2015; Hair et al. 2017). 

Matrix metallopeptidases (MMPs) are enzymes involved in ECM turnover. Some of the 

physiological actions of MMPs include cell proliferation, migration and differentiation, 

angiogenesis, apoptosis and tissue repair. Nevertheless, MMPs have also been associated to 

pathological conditions including fibrosis (Wang and Khalil 2018). The action of MMP-2 and 

MMP-9 in fibrogenesis has been controversial since they have been mentioned to either act 

as anti-fibrotic or as pro-fibrotic mediators. In equine endometrium, recent in vitro studies 

showed that MMP expression is affected by several mediators of inflammation (interleukins, 
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transforming growth factor β1 - TGFβ1 and prostaglandins - PGs) (Szóstek-Mioduchowska et 

al. 2019b, 2020a, 2020b), and differs among stages of endometrosis (Szóstek-Mioduchowska 

et al. 2020a).  

Prostaglandin E2 and PGF2α act in inflammatory responses and have several functions 

on regulation of estrous cycle phase, and pregnancy establishment in the mare (Douglas and 

Ginther 1976; Zavy et al. 1978; Vanderwall et al. 1994). The treatment of equine endometrial 

explants with enzymes found in NETs, such as ELA, CAT and MPO, showed a decrease in 

PGE2 concentration, suggesting a protective effect against endometrial fibrosis (endometrosis) 

by reduction of COL deposition in equine endometrium (Rebordão et al. 2019). When 

challenged with TGFβ1, a pro-fibrotic cytokine, equine epithelial cells reduced PGE2 secretion 

(Szóstek-Mioduchowska et al. 2020b). However, in fibroblasts treated with PGF2α, the MMPs 

and COL1 expression augmented, suggesting that prostaglandins may be involved in equine 

endometrial pathological remodeling (Szóstek-Mioduchowska et al. 2020b). 

These issues were the main focus of this work. We have investigated the effect of the 

in vitro selective inhibition of ELA, CAT and MPO on COL1-induced by these enzymes in 

equine endometrial explants to address the possibility of hinder equine endometrosis. The 

effect of ELA and SIV treatment on PGs secretion was also assessed to evaluate the pro- or 

anti-fibrotic performance of PGE2 and PGF2α in equine endometrial tissues. In order to 

investigate the role of MMP-2 and MMP-9 in equine endometrosis, endometrial explants were 

treated with ELA, CAT and MPO and their selective inhibitors, to evaluate MMPs expression 

and gelatinolytic activity. This work evaluated the involvement of PGs and MMPs in equine 

explants response to pro- and anti-fibrotic agents.  In addition, it was investigated if the use of 

NETs enzymes inhibitors would reduce COL1 output in endometrial tissues. In conclusion, 

data gathered in this work might contribute to develop a putative therapeutic approach to 

reduce endometrosis, responsible for large economical losses worldwide, due to mare 

infertility. 
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2. Objectives 

The major objectives of this work were: 

(1) To evaluate if the in vitro inhibition of ELA would affect COL1A2 transcription and 

PGs secretion by endometrium, in different estrous cycle phases.  

The developed work was published in Reproduction of Domestic Animals: Amaral A, 

Fernandes C, Lukasik K, Szóstek-Mioduchowska A, Baclawska A, Rebordão MR, Aguiar-Silva 

J, Pinto-Bravo P, Skarzynski DJ, Ferreira-Dias G. 2018. Elastase inhibition affects collagen 

transcription and prostaglandin secretion in mare endometrium during the estrous cycle. 

Reprod Dom Anim. 53:66–69. doi:10.1111/rda.13258. 

 

(2) To assess the in vitro effect of SIV on inhibition of ELA-induced COL1 protein 

relative abundance in equine endometrial explants, and the effect of ELA and SIV on the 

expression and activity of MMP-2 and MMP-9. 

The developed work was published in Animals: Amaral A, Fernandes C, Rebordão 

MR, Szóstek-Mioduchowska A, Lukasik K, Gawronska-Kozak B, Telo da Gama L, Skarzynski 

DJ, Ferreira-Dias G. 2020. The in vitro inhibitory effect of sivelestat on elastase induced 

collagen and metallopeptidase expression in equine endometrium. Animals. 10(5):863. 

doi:10.3390/ani10050863. 

 

(3) To evaluate the in vitro effect of INH on CAT-induced COL1 protein relative 

abundance in equine endometrial tissues, and the effect of CAT and INH on the expression 

and activity of MMP-2 and MMP-9. 

The developed work was published in Frontiers in Veterinary Science: Amaral A, 

Fernandes C, Morazzo S, Rebordão MR, Szóstek-Mioduchowska A, Lukasik K, Gawronska-

Kozak B, Telo da Gama L, Skarzynski DJ, Ferreira-Dias G. 2020. The Inhibition of Cathepsin 

G on Endometrial Explants With Endometrosis in the Mare. Front Vet Sci. 7:582211. 

doi:10.3389/fvets.2020.582211. 

 

(4) To investigate the in vitro capacity of ABAH to inhibit MPO-induced COL1 output in 

equine endometrial explants, and the effect of MPO and ABAH on the expression and 

gelatinolytic activity of MMP-2 and MMP-9. 

The developed work was published in Animals: Amaral A, Fernandes C, Rebordão 

MR, Szóstek-Mioduchowska A, Lukasik K, Pinto-Bravo P, Telo da Gama L, Skarzynski DJ, 

Ferreira-Dias G. 2020. Myeloperoxidase inhibition decreases the expression of collagen and 

metallopeptidase in mare endometria under in vitro conditions. Animals. 11(1):208. 

doi:10.3390/ani11010208.  
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1. Neutrophils 

Neutrophils are the most abundant immune cells constituting about 50-70% of all 

leukocytes in human blood (Selders et al. 2017; Mortaz et al. 2018; Peiseler and Kubes 2019). 

They play an essential role defending the host against invading pathogens, particularly 

bacteria and fungi (Kolaczkowska and Kubes 2013; Scapini et al. 2016; Hidalgo et al. 2019). 

Neutrophils kill microorganisms through phagocytosis, degranulation, and formation of 

neutrophil extracellular traps (NETs). The killing of pathogens in phagosomes occurs by the 

fusion of lysosomes granules that liberate cytotoxic proteins, peptides and enzymes into the 

phagolysosome (Cowland and Borregaard 2016), and activation of a membrane-bound 

nicotinamide adenine dinucleotide phosphate (NADPH)-oxidase producing superoxide anions 

(O2
-), which are metabolized into hydrogen peroxide (H2O2) and other reactive oxygen species 

(ROS) (Babior et al. 1973). In the latter process, the fusion of granules leads to degranulation 

and activation of NADPH-oxidase (Roos et al. 2003; Segal et al. 2005). 

The neutrophil interaction with platelets and endothelial cells plays a key role in 

neutrophil tissue recruitment, generation of ROS and phagocytosis. Neutrophils reach the 

infection or inflamed site from the bloodstream and are mediated by the interaction of adhesion 

molecules on the neutrophil surface with their respective ligands on the vascular endothelium 

(Schmidt et al. 2013). In order to cross the endothelial barrier, neutrophils develop membrane 

extensions that stabilize neutrophil rolling despite the flowing blood (Sundd et al. 2012). Then, 

neutrophil β2 integrins (lymphocyte function-associated antigen, LFA-1; and macrophage-1 

antigen, Mac-1) firmly adhere to endothelial cell intracellular adhesion molecule (ICAM)-1 and 

ICAM-2 and cross the endothelium barrier (Sundd et al. 2012; reviewed by Kazzaz et al. 2016). 

Platelets beyond acting on the blood loss also act as sentinels in infectious and inflammatory 

diseases (Rondina et al. 2013; Vieira-de-Abreu et al. 2012). This is fundamental for the 

recruitment of neutrophils to sites of inflammation. Examples of ligand/receptor pairs that 

mediate platelet/neutrophil interactions include P-selectin/ P-selectin glycoprotein ligand 1, 

ICAM-2)/LFA-1, and platelet glycoprotein Ib beta chain/Mac-1 (reviewed by Kazzaz et al. 

2016).  

The acute damaged tissue, releases a large variety of signals that are chemoatractive 

to neutrophils (Ley 2002; Gambardella and Vermeren 2013). The G protein-coupled receptors, 

Fc receptors, adhesion receptors, cytokine receptors, as well as pattern recognition receptors 

(PRRs) (Futosi et al. 2013) are some of the pro-inflammatory receptors expressed by 

neutrophils that can detect pro-inflammatory factors. The damaged cells and pathogens trigger 

the release of damage-associated molecular patterns (DAMPs) and pathogen-associated 

molecular patterns (PAMPs) respectively, which activate hydrogen peroxide (de Oliveira et al. 

2016; Peiseler and Kubes 2019). Neutrophils become activated by DAMPs stimulated 
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chemokines, such as motif chemokine ligand 8 (CXCL8) that binds G-protein-coupled 

receptors (Furze and Rankin 2008) leading the affinity for ICAM-1 expressed on the 

endothelium to promote neutrophils adherence (Mortaz et al. 2018). Other pro-inflammatory 

factors such as cytokines, interleukin (IL)-1β and lipid mediator leukotrienes (LTB4) are 

stimulated by DAMPs from the surrounding tissues to attract other neutrophils. In infections, 

the release of PAMPs, immune cell like tissue residents and recruited inflammatory 

macrophages, T cells and dendritic cells are responsible for neutrophils recruitment (de 

Oliveira et al. 2016). In order to amplify neutrophil recruitment, both CXCL8 (stimulated by IL-

1β and tumor necrosis factor α - TNFα), and LTB4 will continue to attract neutrophils from 

bloodstream (de Oliveira et al. 2016). When neutrophils cross the cell barrier, the neutrophil 

chemotaxis is inhibited (Wiemer et al. 2010), but shows other functions like oxidative burst 

(Nathan 1987), phagocytosis and degranulation (van der Poll et al. 1992). Degranulation 

consists in a rapid and precise neutrophil response to infection. They release molecules stored 

in intracellular granules, which regulate adhesion, transmigration, phagocytosis, and NETs 

formation (Ley et al. 2018).The matrix metallopeptidase (MMP)-9 is also produced by 

neutrophils and degrade DAMPs, reducing the additional recruitment of inflammatory cells 

(Cauwe et al. 2009). But, other studies report MMP-9 to enhance neutrophil chemotaxis by 

cleaving CXCL8 or by acting on collagen to release collagen-derived chemotactic peptides 

(Tester et al. 2007; Afonso et al. 2013). By the end of this process, neutrophils must be 

removed from the injured tissue. This can occur via apoptosis/necrosis and engulfment by 

machophages, through removal of neutrophil by reverse migration into the vascular vessels or 

by expulsion to the external environment (de Oliveira et al. 2016; Jorch and Kubes 2017; Wang 

et al. 2017; Peiseler and Kubes 2019). In mice, neutrophil elastase (ELA) promoted reverse 

transmigration from the extravascular tissue to the vascular lumen favors the dissemination of 

systemic inflammation (Colom et al. 2015), while cathepsin C deficient animals showed 

reduced reverse transmigration (Wang et al. 2017). It is evident that neutrophils contribute to 

healing, even though they are also associated to pathological conditions (Ley et al. 2018; 

Hidalgo et al. 2019). 

 

1.1 Neutrophil extracellular traps 

One of the mechanisms for neutrophils to fight pathogens is the capacity to form NETs. 

This process was firstly described in 2004 in response to infectious stimuli (Brinkmann 2004). 

These are complex networks of deoxyribonucleic acid (DNA) chromatin filaments coated with 

histones and enzymes released by neutrophils (Brinkmann 2004; Jorch and Kubes 2017; 

Papayannopoulos 2018, Neubert et al. 2020). Among these enzymes are elastase (ELA), 

cathepsin G (CAT), myeloperoxidase (MPO), leucocyte proteinase 3, lactoferrin, gelatinase, 

lysozyme C, calprotectin, neutrophil defensins and cathelicidins (Urban et al. 2009; Brinkmann 
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2018). The formation of NETs occurs as a response to a variety of stimuli like bacteria, virus, 

fungi, parasites, activated platelets, phorbol-myristate acetate (PMA), cytokines and mitogens 

(reviewed by Neubert et al. 2020). They have been described in many animal species such as 

mammalians, birds, fish, and invertebrates (reviewed by Brinkmann 2018). Neutrophil 

extracellular traps were already described in appendicitis in humans, endometritis in the mare, 

pyometra in the queen and bitch, peritoneal fluid of endometriosis human patients, mastitis in 

sheep, or skin infection in mice (Brinkmann 2004; Berkes et al. 2014; Rebordão et al. 2014, 

2017; Pisanu et al. 2015; Halverson et al. 2015). Interestingly, the composition of NETs may 

vary depending on the stimulus. Dwyer et al. (2014) reported that Pseudomonas aeruginosa 

induced NETs containing 33 common proteins and 50 variable proteins. The enzymes found 

in NETs such as ELA and MPO show antimicrobial properties (Brinkmann  2004; O’Donoghue 

et al. 2013; Hoeksema et al. 2016), but also NET-associated DNA mediates pathogen killing 

by induction of bacterial lysis (Halverson et al. 2015). The release of NETs, which results in 

cell death is called “suicide NETosis” (Fuchs et al. 2007; Steinberg and Grinstein 2007). This 

process can also occur by maintaining neutrophils structurally intact, and in this case it is called 

“vital NETosis” (Jorch and Kubes 2017). The NETs formation involves activation of protein 

kinase C (PKC) with subsequent mitogen-activated protein kinases (MAPK) / extracellular 

signal-regulated kinases (ERK) signaling pathway (Hakkim et al. 2011). In response to PMA, 

microorganisms and parasites, some ROS-inducing receptors and kinases, such as 

MAPK/ERK, IL-1 receptor-associated kinase, PKC, phosphoinositide 3-kinase (PI3K) and 

protein kinase B (Akt) have been associated to NETosis (reviewed by Papayannopoulos 

2018). Then NADPH-oxidase generated induces the production of ROS (Jorch and Kubes 

2017; Brinkmann 2018). This stimulates protein-arginine deiminase 4 (an enzyme that 

converts arginine to citrulline on histones) and stimulates MPO to activate and translocate ELA 

to the nucleus where ELA modifies histones and disrupts chromatin. Thus, the decondensing 

of chromatin starts with MPO binding synergy with ELA (Papayannopoulos 2018). After, the 

nuclear membrane breaks and chromatin is released to the cytosol mixing with granular and 

cytosolic proteins, such as CAT, proteinase 3 and lactoferrin (Urban et al. 2009; Jorch and 

Kubes 2017). The “suicide NETosis” is triggered by ROS generation and lasts for up to 4 hours. 

The “vital NETosis” is a faster process, which does not require ROS production, leading to a 

rapid release of NETs within minutes after activation (Rochael et al. 2015; Jorch and Kubes 

2017). It is proposed that in “vital NETosis”, neutrophils release part of the nucleus without 

breaking the cell membrane (Yipp and Kubes 2013). By the ELA action on unfolding chromatin, 

a dilation of the nucleus occurs and forms a vesicle containing DNA and proteins. These 

vesicles fuse with the cell membrane allowing the release of the contents without cell lysis. 

These “survival” neutrophils can still perform other functions as chemotaxis, phagocytosis and 

killing bacteria (Jorch and Kubes 2017). Another study found that “vital NETosis” uses 
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mitochondrial DNA allowing for cell survival (Yousefi et al. 2009). In “vital NETosis”, the 

activation can be mediated by complement receptors and Toll-like receptor (TLR)2 ligands 

(with Staphylococcus aureus), directly via TLR4 (with Escherichia coli) or indirectly via TLR4-

activated platelets (reviewed by Jorch and Kubes 2017). 

The primordial role of NETs is the antimicrobial activity. The size of microorganisms 

seems to influence the release of NETs, since small microorganisms are phagocytized and the 

largest ones are killed by NETs (Papayannopoulos 2018). The NETs structure entraps 

pathogens limiting their spread due to electrostatic interaction between the negatively charged 

DNA backbone and positively charged superficial bacterial compounds (Brinkmann and 

Zychlinsky 2007). The virulence factors of some pathogens are cleaved by ELA, CAT and 

proteinase 3 (Brinkmann 2004; Averhoff et al. 2008). The production of hypochlorous acid by 

MPO oxidizes the pathogen membrane (Klebanoff 2005; Parker and Winterbourn 2012). Other 

NETs constituents, such as lactoferrin and calprotectin, can restrict nutrient supply for 

microbes by chelating iron or sequestering zinc (Urban et al. 2009; Papayannopoulos and 

Zychlinsky 2009). However, microorganisms have already developed strategies to escape 

from NETs. They can inactivate NETs components, prevent NETs formation, or develop 

resistance to NETs components (reviewed by Zawrotniak et al. 2017; Papayannopoulos 2018). 

Besides the benefits of NETs, their uncontrolled release can injure tissues and be further 

associated to some autoimmune, thrombotic, metabolic and cancer diseases (Zawrotniak et 

al. 2017; Brinkmann 2018; Papayannopoulos 2018; He et al. 2018; Thålin et al. 2019; Snoderly 

et al. 2019; Bonaventura et al. 2020).  

 

2. Fibrosis 

The acute inflammatory responses are characterized by fast resolving vascular 

changes, edema, and neutrophil inflammation. When the inflammation lasts for months it 

becomes chronic, and tissue remodeling and repair processes occur simultaneously leading 

to fibrosis. Therefore, fibrosis results from a wound-healing that has gone out of control (Wynn 

2007, 2008). Some factors can damage tissues, such as acute or chronic stimuli, infections, 

autoimmune reactions, toxins, radiation and mechanic injury. The dying cells and pathogens 

produce DAMPs and PAMPs, which induces the inflammatory response (Wynn and Vannella 

2016). After an injury, the dead or damaged cells must be replaced. Neutrophils, macrophages, 

innate lymphoid cells, natural killer cells, B cells, T cells, fibroblasts, epithelial cells, endothelial 

cells and stem cells together drive the cellular response of tissue repair (Wynn 2008; Wynn 

and Vannella 2016). The regenerative phase occurs first, the injured cells are replaced by the 

same type cell leaving no traces, and fibrosis occurs when connective tissue replaces the 

normal parenchymal tissue. A persistent stimulus sustains the production of growth and 
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angiogenic factors, proteolytic enzymes and fibrogenic cytokines that stimulate the deposition 

of connective tissue. This process becomes pathological when persists, resulting in substantial 

remodeling and excessive deposition of the extracellular matrix (ECM) leading to formation of 

a permanent scar tissue. Depending on the localization and extension, it can lead to loss of 

organ architecture, organ failure or death (Wynn 2007, 2008; Zeisberg and Kalluri 2013). 

Neutrophils are recruited to damaged tissue by the injured endothelial and epithelial cells 

producing growth factors, cytokines and chemokines and by platelets aggregation. 

Consequently, neutrophils produce cytokines and chemokines that amplify the wound-healing 

response, stimulating the endothelial cells to surround the injury and form new vasculature 

(Wynn, 2007, 2008). Fibroblasts are cells that produce and secrete all the components of ECM 

like structural (collagen type I – COL1), adhesive proteins (fibronectin and laminin) and space 

filling ground substance (glycosaminoglycans and proteoglycans) (Kendall and Feghali-

Bostwick 2014). These cells have the ability to be activated into myofibroblasts which are 

involved in the pathogenesis of fibrosis (Wynn and Ramalingam 2012; Zeisberg and Kalluri 

2013; Wynn and Vannella 2016). In addition, fibroblasts exhibit phenotypic heterogeneity 

suggesting different origins, activation, localization and stage of fibrogenesis (Liu 2011). The 

COL1 is the most abundant protein in mammals and provides rigidity by its rope-shaped, triple-

stranded helical tertiary protein structure supplying tensile strength and preventing 

overstretching. Fibroblasts are also responsible for ECM maintenance and reabsorption 

(Kendall and Feghali-Bostwick 2014). 

In spite of the classical view that myofibroblasts derive from resident fibroblasts, more 

recent studies revealed that they can derive not only from fibroblasts but also from other cell 

types such as pericytes, adipocytes, epithelial, endothelial and mesenchymal cells (reviewed 

by Zent and Guo 2018). Myofibroblasts are the central cellular fibrosis mediators. These cells 

express α smooth muscle actin (α-SMA) that allows contractility, which differentiates them from 

fibroblasts. Myofibroblasts also produce ECM proteins, such as COL1 and MMPs (Zent and 

Guo 2018). Fibroblasts and platelets expresses TLRs, which recognize PAMPs leading to 

fibroblast differentiation into myofibroblasts. Activated-platelets also release (transforming 

growth factor (TGF)β1 and platelet-derived growth factor, which induces fibroblast paracrine 

activation. Even though, neutrophils, in order to kill the pathogens, release ROS during 

oxidative burst also contributing to fibrosis establishment (Van Linthout et al. 2014).  

Macrophages are other immune cells involved in tissue repair. But a disturbance in its 

function can lead to abnormal repair and fibrosis as well. In fact, they produce pro-fibrotic 

TGFβ1, are the main source of MMPs involved in ECM degradation, and are able to recruit 

myofibroblasts (Van Linthout et al. 2014; Wynn and Vannella 2016). 
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2.1 Physiophatological mechanisms of fibrosis 

The injured tissues release several pro-fibrotic mediator molecules that drive fibroblast 

activation. Between them, TGFβ1, and the altered secretion of MMPs and PGs are widely 

reported factors triggering fibrosis. 

 

2.1.1 Transforming growth factor β1 

Transforming growth factor β1 is produced by macrophages, neutrophils, platelets, as 

well as fibroblasts. Despite regulating tissue homeostasis and repair, immune and 

inflammatory responses, ECM deposition, cell differentiation and growth,  TGFβ1 is also 

considered one of the major pro-fibrotic signals for myofibroblast differentiation and inductor 

of genes expression for ECM components including COL1 (Yang et al. 2010; Ueha et al. 2012; 

Zeisberg and Kalluri 2013; Seki and Brenner 2015). The TGFβ1 is overexpressed in all fibrotic 

tissues, and induces COL production in cultured fibroblasts, irrespective of their origin 

(Zeisberg and Kalluri 2013). The MAPK and PI3K are signaling pathways that promote cell 

proliferation induced by TGFβ1 (Kim et al. 2018). 

In response to injury, COL1 and 3 are the major collagens whose expression is induced 

by TGFβ1 to reestablish the tensile strength and integrity of the tissue. Several proteins and 

micro ribonucleic acids (miRNAs) are highly regulated by TGFβ1 in the process of COL tissue 

deposition. These proteins acts in every stage of COL processing from expression, translation, 

secretion and deposition. Also, the control on miRNA expression by TGFβ1 tends to stabilize 

COL protein expression, and secretion in the ECM. The TGFβ1 activates MAPK/PI3K/Akt and 

Sma and Mad related family (Smad) 2/3 pathways, which induce collagen type 1 α1 (COL1A1) 

and collagen type 1 α2 (COL1A2) transcription. The COL is synthesized in the rough 

endoplasmic reticulum. It is secreted as procollagen that in turn is proteolytically processed as 

tropocollagen, which begins to self-associate into microfibrils. The final physical and stable 

form of COL also depends on TGFβ1-induced proteins, such as fibronectin, lysyl oxidases, 

and inhibitors of proteases: plasminogen activator inhibitor I and tissue inhibitor of 

metallopeptidase (TIMP) 1 and 3. These proteases inhibitors prevent the breakdown of recent 

and vulnerable deposited tropocollagen. In the end, collagen organization is controlled by 

biglycan and periostin proteins, also induced by TGFβ1 (Kim et al. 2018). The adhesive ECM 

protein fibronectin regulates the amount of active TGFβ, thus protecting tissue from 

overproduction of this growth factor (Kawelke et al. 2011). In addition, the proteoglycans of the 

ground ECM substance directly interact with TGFβ inhibiting or augmenting TGFβ (Kendall 

and Feghali-Bostwick 2014). 

Recent studies in humans have demonstrated that TGFβ1 induced renal fibrosis by 

activation of myofibroblasts, excessive production and inhibition of degradation of ECM 

(Walton et al. 2017). In idiopathic pulmonary fibrosis, the TGFβ1 pathway activation leads to 
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disease progression (Epstein Shochet et al. 2020). Also in the liver, TGFβ1 has been 

demonstrated to induce fibrosis (Gupta et al. 2019). 

In reproductive tract, TGFβ1 plays a role in preparation for implantation by promoting 

decidualization of endometrial stromal cells and for maternal support of embryo development 

in humans (Jones et al. 2006). There are also reports on TGFβ1 signaling that increase 

endometriotic lesions growth (Correa et al. 2016). The overexpression of TGFβ1 enhances the 

migration and invasive ability of ectopic endometrial cells (Liu, Yi, et al. 2019) and increases 

leiomyoma cell proliferation depending on estrous cycle phase (Arici and Sozen 2003). 

 

2.1.2 Matrix metallopeptidases 

Matrix metallopeptidases are endopeptidases, whose enzymatic activity is dependent 

on calcium and zinc. They are the major enzymes involved in ECM turnover. Collagen as one 

of the ECM components is highly involved in tissue remodeling and repair (Harvey et al. 2016; 

Wang and Khalil 2018). The MMP family includes at least 25 enzymes divided in four classes: 

collagenases, gelatinases, stromelysins and membrane type enzymes (Vandooren et al. 2013; 

Djuric and Zivkovic 2017). Among them, MMP-2 and MMP-9 are gelatinases that denature 

collagens (gelatins) and other ECM substrates (Vandooren et al. 2013; Djuric and Zivkovic 

2017).  

The MMPs are secreted to the extracellular environment or linked to cell membrane, 

as inactive pro-enzymes or zymogens (Nissinen and Kähäri 2014; Harvey et al. 2016). Their 

activity is regulated by gene transcription, protein production, pro-enzyme activation and 

activity inhibition (Sternlicht and Werb 2001; Harvey et al. 2016). The MMPs gene expression 

is stimulated by growth factors, cytokines, hormones cell-extracellular matrix and cell-cell 

interactions (Harvey et al. 2016), and regulated by MAPKs signaling pathway (Vandooren et 

al. 2013). Posttranscriptional regulation includes mRNA stability, protein translational 

efficiency, and regulation by miRNAs (Pardo et al. 2016; Djuric and Zivkovic 2017). The first 

step of MMP activation is the replacement of thiol group of cysteine by water (Nagase 1997). 

This activation can be induced by plasmin, mast cell proteases, chymases and tryptases, but 

once activated, MMPs are able to activate other pro-MMPs in a positive feedback loop (Djuric 

and Zivkovic 2017). After activation, MMPs bind the cell membrane and target their catalytic 

activity to specific substrates in the pericellular space (Vandooren et al. 2013). The activity of 

MMPs can be inhibited by TIMPs (Harvey et al. 2016; Djuric and Zivkovic 2017; Wang and 

Khalil 2018). They bind the active site of the MMPs hindering the access to ECM substrates. 

Among the four types of TIMPs, TIMP-1 is a specific inhibitor for MMP-9 (Vandooren et al. 

2013), while TIMP-2 regulates MMP-2 activity (Giannandrea and Parks 2014). Despite the 

main action of TIMPs being the inhibitory effect on MMPs, they are also involved in cell growth-

promoting, anti-apoptotic, steroidogenic and antiangiogenic activities, which are in part 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5554737/#A022251C8
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independent of MMP inhibition. (Robert et al. 2016). Other natural inhibitors of MMPs have 

been reported: α 2-macroglobulin, cysteine-rich protein with Kazal motif and glycosyl 

phosphatidylinositol-anchored glycoprotein (Djuric and Zivkovic 2017; Wang and Khalil 2018). 

Some of the physiological actions of MMPs include cell proliferation, migration and 

differentiation, angiogenesis, apoptosis and tissue repair (Wang and Khalil 2018). However, 

for the last years, MMPs have been linked to pathological conditions including fibrosis (Robert 

et al. 2016; Djuric and Zivkovic 2017; Wang and Khalil 2018). They were associated to the 

migration of fibrocytes in idiopathic pulmonary fibrosis (Pardo et al. 2016), and to myofibroblast 

activation in vascular fibrosis (Harvey et al. 2016). Giannandrea and Parks (2014) reported 

that MMP-2 has an anti-fibrotic role and MMP-9 has a pro-fibrotic effect in liver and kidney. In 

early stages of fibrosis of hepatic tissue, MMP-9 is capable of activating the TGFβ1 pathway, 

while in the later stages MMP-2 reduced COL1 relative abundance (Duarte et al. 2015). In 

pulmonary fibrosis, MMP-9 is linked to inflammatory-induced tissue remodeling, while MMP-2 

may be associated with impaired tissue remodeling, leading to abnormal collagen deposition 

and interstitial fibrosis (Wang et al. 2011). While Churg et al. (2012) related MMP-2 and other 

MMPs to chronic obstructive pulmonary disease (COPD) pathogenesis, Tomaru et al. (2015) 

showed that MMP-2 had a protective effect in mice pulmonary fibrosis. Also, although cystic 

fibrosis patients exhibited increased serum levels of MMP-9 (Rath et al. 2014), MMP-9 was 

related to fibrosis resolution in mice liver (Feng et al. 2018). In addition, recent studies have 

linked both MMP-2 and -9 to fibrosis development, namely in bleomycin treated lungs of mice 

(Summer et al. 2019), and in human idiopathic pulmonary fibrosis (Todd et al. 2020). 

Additionally, the enzymes found in NETs were already described to alter MMPs 

expression in fibrosis studies. Elastase activated pro-MMP-9 in cystic fibrosis in the lung 

(Voynow et al. 2008). Both CAT and ELA activated pro-MMP-2 in human tumor cells invasion 

(Shamamian et al. 2001). In a tumor murine model, CAT enhanced TGFβ signaling together 

with MMP-9 (Wilson et al. 2009b).The concomitant increased levels of MPO and MMP-2/-9 

were also reported in rat temporomandibular joint inflammation (Nascimento et al. 2013), in 

inflamed human dental pulp tissue (Accorsi-Medonça et al. 2013) and in fat meal induced 

endothelial damage in humans (Spallarossa et al. 2008).  

 

2.1.3 Prostaglandins 

Prostaglandin E2 and PGF2α, besides their role on inflammatory responses (Ricciotti 

and FitzGerald 2011), have several functions on the regulation of estrous cycle phase and 

pregnancy establishment in the mare (Douglas and Ginther 1976; Zavy et al. 1978; Vanderwall 

et al. 1994). From mid to late luteal phase in mares, the concentrations of PGF2α increase 

because of its role in luteolysis (Douglas and Ginther 1976; Zavy et al. 1978). Also, the luteal 

cells treated with PGF2α upregulated TGFβ suggesting that TGFβ is also involved in luteolysis 
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in mares (Galvão et al. 2018). Otherwise, PGE2 is luteotropic, once prolonged the CL function 

in non-pregnant mares (Vanderwall et al. 1994). Prostaglandins are originate from arachidonic 

acid liberated from phospholipids, which is converted into PGH2 by the action of prostaglandin 

endoperoxidase synthases (PTGS2). In turn, PGH2 is converted into PGE2 by the action of 

PGE2 synthases (PGES), into PGF2α by PGF2α synthases (PGFS) and into PGI2 by PGI2 

synthases (PGIS) (Simmons et al. 2004). Despite the involvement of PGs in the development 

of signs of inflammation being well known, their contribution to inflammation resolution is 

controversial (Ricciotti and FitzGerald 2011). Immune responses regulation, blood pressure, 

gastrointestinal integrity and fertility are biological processes where PGE2 acts. It also acts in 

redness (by augmenting microvascular permeability), swelling and pain inflammatory signs 

(Funk 2001; Ricciotti and FitzGerald 2011). Four receptors have been described for PGE2, 

designated EP1, EP2, EP3 and EP4 (Ricciotti and FitzGerald 2011). Some of the actions of 

PGF2α occur in ovulation, luteolysis, uterine contraction, parturition, renal function, arteries 

contraction, myocardial dysfunction, brain injury and pain (reviewed by Ricciotti and FitzGerald 

2011). Prostaglandin F receptor is the receptor for PGF2α (Ricciotti and FitzGerald 2011). 

Despite the references of equine endometrial cells as the main source of uterine PGs (Szóstek 

et al. 2012; Galvão et al. 2013), also the equine myometrium was recently described as being 

able to produce PGE2 and PGF2α. This enables the myometrium, independently from the 

endometrium, to also regulate the uterine functions during estrous cycle (Piotrowska-Tomala 

et al. 2020). 

Besides the biological actions of prostaglandins, they are also linked to many diseases. 

For the last decades, both prostaglandins PGE2 and PGF2α have been linked to fibrosis 

establishment. For instance, many studies refer PGE2 to shown an anti-fibrotic effect. It was 

reported that PGE2 acts as an autocrine factor that controls cellular over-activation (Sokolova 

et al. 2005), can induce protective fibroblasts apoptosis (Huang et al. 2009), or decrease 

fibroblasts proliferation, migration and differentiation into myofibroblasts, thus reducing COL 

production (Kolodsick et al. 2003; Sokolova et al. 2005; White et al. 2005; Huang et al. 2007; 

Stratton and Shiwen 2010; Bozyk and Moore 2011; Ueha et al. 2012; Zhao et al. 2016). 

However, PGE2 may also inhibit myofibroblast differentiation induced by TGFβ (Bozyk and 

Moore 2011). In fact, lung fibroblasts obtained from pulmonary fibrosis patients and bleomycin-

induced pulmonary fibrosis in mice impaired the capacity to synthesize PGE2 (Wilborn et al. 

1995; Moore et al. 2000; Sokolova et al. 2005). Another study, reported that PGE2 was found 

increased in fibroblasts from patients with severe fibrosing systemic sclerosis (Startton and 

Shiwen 2010). The PGE2 have shown protective effects in bleomycin-induced pulmonary 

fibrosis (Dackor et al. 2011), by the use of anti-fibrotic noscapine mediated by EP2 (Kach et 

al. 2014). This prostaglandin also downregulated fibrosis in lungs via EP2 receptor (Kolodsick 

et al. 2003; Huang et al. 2007; White et al. 2005) and in skin (Zhao et al. 2016). The PGE2 
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suppressed the phagocytic activity of neutrophils in bovine sperm in the oviduct (Marey et al. 

2014), and inhibited NETosis in a mouse model (Shishikura et al. 2015) and also NETosis 

induced by a variety of stimuli (Domingo-Gonzalez et al. 2016). Recently, PGE2 was shown to 

inhibit the conversion of human fibroblasts from patients with pulmonary fibrosis into 

myofibroblasts (Mukherjee et al. 2019).   

The opposite pro-fibrotic effect is attributed to PGF2α, for example, in pulmonary fibrosis 

it was associated to disease severity and prognosis (Oga et al. 2009, 2013; Aihara et al. 2013). 

Also in cardiac fibrosis, increased COL1 and 3 through prostaglandin F receptor was 

associated to PGF2α effects in cardiac fibroblasts (Ding et al. 2012), but also in an animal model 

(Ding et al. 2014). The TGFβ was reported to be stimulated by PGF2α in bovine corpus luteum 

(Hou et al. 2008) and in skin fibrosis (Kanno et al. 2013). However, Oga et al. (2009) reported 

that the COL production in mice with pulmonary fibrosis was induced by PGF2α via 

prostaglandin F receptor, since the deficiency of prostaglandin F receptor decreased fibrosis, 

independently of TGFβ. Also in human patients with knee osteoarthritis PGF2α induced COL 

production, independently of TGFβ (Bastiaansen-Jenniskens et al. 2013).  

 

2.2 Mechanisms leading to fibrosis progression 

When fibrosis gets established, the mechanism which avoids tissue regeneration is 

fibroblast or myofibroblast persistence, rather than their activation. The persistence of 

fibroblasts is stimulated by continuous secretion of ECM components, growth factors and 

cytokines by activated fibroblasts self-perpetuating an autocrine stimulation of other fibroblasts 

(Kalluri and Zeisberg 2006). It seems that the combination of TGFβ1 and the contact with 

COL1 triggers an irreversible proximal tubular cells (a source of myofibroblasts) 

transdifferentiation (Yen et al. 2016). Fibroblast resistance was also promoted by TGFβ1 and 

enfothelin-1 via activation of focal adhesion kinase and PI3K/Akt pathways (Kulasekaran et al. 

2009). Therefore, the inhibition of these kinases was able to attenuate pulmonary fibrosis in 

animal models (Lagares et al. 2012; Ding et al. 2013).  

It was firstly described that when tissue repair is finished, the majority of myofibroblats 

undergo apoptosis (Hinz and Lagares 2020). In addition, TGFβ released by platelets or 

macrophages during inflammation may induce myofibroblast apoptosis by inducing cell death 

signaling pathways or inhibiting the pro survival-pathways (Zhang and Phan 1999). In fibrotic 

conditions, the persistence of myofibroblasts introduce the idea that these cells are apoptosis-

resistant (Thannickal and Horowitz 2006; Fattman 2008). The stiffening of affected tissues 

promotes the biomechanical activation of TGFβ1 perpetuating fibrosis progression (Hinz et al. 

2019). Additionally, in lung fibrosis, the ECM components deposition resulted in stiffness 

increase that leads to amplification of fibrosis (Liu et al. 2010; Booth et al. 2012). Myofibroblasts 

can also escape death by activating pro-survival mechanisms of autocrine production of 
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TGFβ1 that mediate resistance to apoptosis in lung fibroblasts (Lagares et al. 2010; Kulkarni 

et al. 2011). The PGE2 was also described to induce fibroblast apoptosis (Huang et al. 2009, 

Maher et al. 2010), and downregulation of this PG contributes to myofibroblast apoptosis 

resistance in fibrotic disorders (Huang et al. 2008). Liu et al. (2010) also associated the 

mechanical stiffness stimuli and fibroblast activation to the suppression of PGE2. Another 

mechanism of myofibroblasts to avoid apoptosis is the acquisition of a senescent phenotype 

(Hinz and Lagares 2020). Senescent myofibroblasts were identified in age-related idiopathic 

pulmonary fibrosis (Mora et al. 2017; Álvarez 2017; Cui et al. 2017), and upregulated TGFβ1 

(Barnes et al. 2019). This mechanism was firstly developed to prevent tumor establishment 

but also might be involved in the fibrosis loop. For the last years, epigenetics has been referred 

as contributing to myofibroblasts phenotype regulation (Zeisberg and Kalluri 2013; Duong and 

Hagood 2018). A large number of epigenetic modifications triggers myofibroblast activation 

and differentiation into pathologic myofibroblast phenotypes leading to the progression of 

fibrosis (Duong and Hagood 2018). Epigenetics have been related to fibrosis in many organs, 

such as heart, liver, lungs, kidney, eye and systemic sclerosis (Xu et al. 2016; Nwosu et al. 

2016; Tzouvelekis and Kaminski 2015; Chang et al. 2016; Kim, Park, et al. 2016; Bergmann 

and Distler 2017). 

Once fibrosis is established in many organs, fibrotic diseases have a large impact in 

human health. Mostly atherosclerosis, but also pulmonary, liver and renal fibrosis are 

fibroproliferative disorders that account for about 45% of all deaths in humans (Nanchahal and 

Hinz 2016). Some other fibrotic associated diseases, such as endometriosis and abdominal 

adhesions, also affect over 10% of human population causing morbidity (Nanchahal and Hinz 

2016). 

 

3. Neutrophil extracellular traps in disease and fibrosis 

Besides the benefits of NETs, they also drive the pathophysiologic development of 

many diseases, mainly fibrosis related ones. In thrombosis, NETs play a central role by 

promoting fibrin deposition and networks formation (Fuchs et al. 2010). In acute myocardial 

infarction, NETs show thrombogenic potential expressing functional tissue factor, and inducing 

platelet activation, which leads to thrombin generation (Stakos et al. 2015). Interestingly, NETs 

were found in a large amount in older coronary thrombi (Mangold et al. 2015) suggesting their 

involvement in an early thrombus dissolution process in coronary artery disease (de Boer et 

al. 2013). Also, NETs can be used to predict prognosis outcomes in patients with myocardial 

infarction, linking NETs to the occurrence of this disease and adverse cardiac events (Liu, 

Yang, et al. 2019).  
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In diabetes, neutrophils are able to infiltrate pancreas supporting the disease 

progression. In addition, high levels of glucose were reported to induce NETosis and also ELA 

was associated to diabetic retinopathy development (reviewed by Jorch and Kubes 2017; 

Bonaventura et al. 2020). 

In autoimmune diseases, there are also a number reports about NETs contribution. In 

systemic lupus erythematosus, NETs are the main source of autoantigens. The NETolytic 

activity was decreased, but increased cell free DNA and MPO activity were found together in 

systemic lupus erythematous patients (Jeremic et al. 2019). Neutrophils from rheumatoid 

arthritis produced more NETs than healthy donors and stimulated the secretion of inflammatory 

cytokines contributing to pathogenesis of this disease (Ribon et al. 2019). 

Rayes et al. (2019) demonstrated that circulating NET levels are increased in 

esophageal, gastric and lung cancer patients. Moreover, by inhibiting NETosis it was possible 

to reduce lung and liver metastasis.  

In respiratory diseases, the involvement of NETs was also widely related, both to acute 

and chronic conditions. In acute pneumonia, the large amount of NETs formation, besides 

being vital for microbial defense, also increased the clinical instability risk prolonging hospital 

stay and mortality (Ebrahimi et al. 2018).  

In an in vitro study, the treatment with fibrotic agents caused fibroblast differentiation 

into myofibroblasts, while the treatment with desoxirribonuclease (DNase), heparin or MPO 

inhibitor reduced this differentiation, indicating the involvement of NETs in the process of 

fibroblasts differentiation. The release of NETs may perpetuate tissue injury, and can be 

caused by either chronic or recurrent inflammation. Additionally, NETs components and the 

lack of NETs clearance by DNase or macrophages may perpetuate fibrosis progression 

(Chrysanthopoulou et al. 2014). It appears that in cystic fibrosis, the massive influx of 

neutrophils and NETs formation into the bronchioles increases mucus viscosity and provides 

a better environment for colonization of bacteria exacerbating the disease (Khan et al. 2019). 

Moreover, NETs contribute to inflammation and lung destruction, rather than their anti-

microbial action (Law and Gray 2017). The involvement of NETs in fibrosis has been described 

in many organs, such as in the liver (Mirea et al. 2019), heart (Martinod et al. 2017) and kidney 

(reviewed by Salazar-Gonzalez et al. 2019).  

Even though ELA might have the dominant proteolytic activity of NETs components, 

other enzymes rather than ELA, may also play this role on proteolysis (O’Donoghue et al. 

2013), such as CAT and MPO. In fact, liver injury have been attributed to ELA released by 

NETs, in at least 80% of the causes, and DNase treatment did not remove all enzymes from 

the vascular wall (Kolaczkowska et al. 2015). Elastase is derived from azurophilic neutrophils 

granules and has the ability to degrade ECM components, such as elastin, COL and fibronectin 

(Korkmaz et al. 2008). Since ELA acts on ECM proteolysis it has been assumed that it can 
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play a role in degenerative and inflammatory diseases (Kawabata et al. 2000). Likewise, ELA 

was increased in neutrophils retrieved from the sputum of cystic fibrosis patients (Dittrich et al. 

2018), and induced in vitro lung fibroblast proliferation and myofibroblast differentiation 

(Gregory et al. 2015).  

When ELA was immune depleted from NETs derived from healthy human neutrophils, 

the remaining activity was attributed to CAT (O’Donoghue et al. 2013). Cathepsin G can also 

trigger the recruitment of inflammatory cells, thus contributing to self-propagating chronic 

inflammation (Maryanoff et al. 2010). The conversion from angiotensin I into II can be mediated 

by CAT (Lindberg et al. 1997; Owen and Campbell 1998; Helske et al. 2006). Since angiotensin 

II is a strong proliferative agent that contributes to tissue hypertrophy, fibrosis, and remodeling 

in chronic inflammatory diseases of the lungs (Orito et al. 2004), kidneys (Huang et al. 2003), 

and cardiovascular system (Nishimoto et al. 2001), the long-term exposition to CAT may lead 

to fibrosis establishment in in vivo systems. Indeed, CAT contributes to a greater extent to 

inflammation and fibrosis establishment in COPD in humans (Brehm et al. 2014). Furthermore, 

CAT action was associated with aortic stenosis remodeling and fibrosis (reviewed by Helske 

et al. 2006), renal fibrosis after ischemia (Shimoda et al. 2007) glomerulonephritis and renal 

failure (Cohen-Mazor et al. 2014), lung cystic fibrosis (Sedor et al. 2007; reviewed by 

Kosikowska and Lesner 2013; and Twigg et al. 2015), and fibrotic Dupuytren’s disease in 

humans (Tan et al. 2018). In fact, in the pathophysiology of COPD, CAT may play a very 

important role (de Garavilla et al. 2005), justifying the recent development of diagnostic test 

that use CAT as a COPD marker (Gudmann et al. 2018).e  

Elastase and CAT derived from neutrophils are activators of MMP-9 (Vandooren et al. 

2013). Moreover, MMPs, especially MMP-2 and MMP-9, increase the release of TGFβ1 that 

stimulates TIMPs, leading to the inhibition of ECM degradation and accumulation, vascular 

remodeling and vascular fibrosis (Harvey et al. 2016). 

At the sites of inflammation, neutrophils, monocytes and macrophages release MPO 

that uses hydrogen peroxide to oxidase several substrates (Davies 2010) and interacts with 

ionic, atomic and molecular entities producing potent oxidants (Chapman et al. 2009). These 

oxidants are toxic to many microorganisms and play an important role on the immune defense 

(Hampton et al. 1998). However, the unregulated production of these oxidants can damage 

host cells and contribute to various diseases (Khan et al. 2018). Atherosclerosis, cancer, renal 

disease, lung injury, multiple sclerosis, Alzheimer’s and Parkinson’s disease have been linked 

to MPO oxidants (Klebanoff 2005; Khan et al. 2018). In addition, MPO is used as an oxidative 

stress marker in these diseases (Khan et al. 2018). In cystic fibrosis, lung damage is 

associated to MPO oxidation of methionine (Chandler et al. 2018). Moreover, mouse models 

have provided evidence that MPO can contribute to cardiac remodeling and myocardial fibrosis 

(Mollenhauer et al. 2017). 
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3.1 Enzymes signaling pathways 

Protease-activated receptors (PARs) and TLRs are distinct transmembrane receptors 

involved in innate immune response to pathogens. The PARs are a family of four G protein-

coupled receptors that detect host serine proteases and proteases derived from pathogens 

(Heuberger and Schuepbach 2019). These receptors are expressed by almost all cell types, 

thus controlling important physiological processes, including hemostasis, inflammation, pain, 

cellular proliferation and healing (Adams et al. 2011). Thrombin is able to activate PAR-1, PAR-

3 and PAR-4, while trypsin activates PAR-2 and PAR-4. These proteases are able to cleave 

PARs at established sites with the extracellular N-terminal domains, and expose tethered 

ligands that stabilize conformations of the cleaved receptors. This mechanism activates the 

canonical pathway of G protein and/or β-arrestin-dependent signaling. Other proteases, 

different from thrombin and trypsin can also cleave PARs, but mainly at divergent sites which 

activates distinct signaling pathways, referred as biased signaling. The biased signaling shows 

unique physiopathological outcomes (Zhao et al. 2014). Elastase has been referred as being 

a biased agonist of PAR-1 inducing stress fiber formation, and endothelial barrier permeability 

through MAPK pathway (Ramachandran et al. 2011; Mihara et al. 2013). Besides the 

physiological effects, PARs also control pathological processes, such as inflammation 

associated disorders, fibrosis and cancer (Ungefroren et al. 2018). The thrombin-induced 

effects are prevented by CAT that cleaves PAR-1 into non-functional parts (Molino et al. 1995), 

but also induces chemoattractant signaling via PAR-1 (Wilson et al. 2009a). Both ELA and 

CAT can activate PAR-2 by disarming the receptor (Ramachandran et al. 2011). The ELA 

activation of PAR-2 may contribute to inflammatory diseases in which the receptor is involved, 

such as in ulcerative colitis (Morohoshi et al. 2006; Lohman et al. 2012). In addition, the 

activation of PAR-2 by ELA mediated inflammatory edema and mechanical hyperalgesia (Zhao 

et al. 2015), and joint inflammation and pain in mice (Muley et al. 2016, 2017). The functional 

relevance of cleavage of PAR-2 by CAT remains unknown (Zhao et al. 2014). Moreover, 

agonists of PAR-2 enhanced MPO release, ROS production and reduction of viral influenza 

gene transcription (Feld et al. 2013). Otherwise, CAT causes platelet secretion and 

aggregation mediated by PAR-4, triggering calcium mobilization in PAR-4-transfected 

fibroblast, this supports the hypothesis that CAT mediates neutrophil-platelet interaction at 

sites of vascular injury or inflammation (Sambrano et al. 2000; Faraday et al. 2013). 

Additionally, CAT triggers colon inflammation activating PAR-4, thus associating CAT to 

ulcerative colitis development (Dabek et al. 2009).  

Some reports also associated PARs to the development of fibrosis. The mutual 

interaction between PAR-1/PAR-2 and TGFβ, forms a complex regulatory network that 

controls fibrosis and cancer (Ungefroren et al. 2018). Indeed, PAR-1 and PAR-2 activating 

proteases induce fibroblast migration, differentiation and ECM production in pulmonary fibrosis 
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(Lin et al. 2015a, 2015b). The involvement of ELA in fibroproliferative responses in pulmonary 

diseases occurs via proteinase-activated receptor PAR-1 (Suzuki et al. 2005). Elastase 

cleaves PAR-1 signaling through silencing PAR-1 calcium signaling and triggering MAPK  

pathways (Mihara et al. 2013). This signaling pathway seems to have the capacity of driving 

fibrotic responses by activating TGFβ1 and influencing myofibroblast differentiation (Scotton 

et al. 2009). Moreover, ELA binds to PAR-2 increasing mucus secretion in chronic 

inflammatory airway diseases (Zhou et al. 2012). The association of NETosis to PARs is now 

established. It was reported that NETs formation depended on the activation of PAR-2 by 

proteases derived from Porphyromonas gengivalis in human periodontitis. Also, NETs 

proteases as virulence factors antagonize the antibacterial activity of NETosis (Bryzek et al. 

2019).  

Another group of receptors involved in innate immune system are TLRs. They are a 

family of pattern recognition receptors that recognizes both PAMPs (Zang and Liang 2016) 

and DAMPs (Yu and Feng 2018). The TLRs are expressed in all innate immune cells like 

macrophages, neutrophils, dendritic cells, natural killer cells, mast cells, basophils and 

eosinophils (Delneste et al. 2007), as well as in non–immune cells such as fibroblasts and 

epithelial cells (Kawasaki and Kawai 2014). In response to their activation, TLRs stimulate 

signaling cascades of defense mechanisms to repair the damaged tissue (Wang et al. 2016) 

which in turns leads to the release of inflammatory cytokines and immune modulators (Wong 

et al. 2009). The presence of TLR2 and TLR4 were already confirmed in equine endometrial 

epithelial and stromal cells (Siemieniuch et al. 2016). Besides the regulatory effect in innate 

immune system, an imbalance in TLRs activation contributes to the development and 

progression of autoimmune, chronic inflammatory and infectious diseases and cancer (Huang 

and Pope 2009; Devaraj et al. 2011; Isaza-Correa et al. 2014; Jialal et al. 2014; Gao et al. 

2017). In fact, TLR2 and TLR4 gene expression were up-regulated in endometria from mares 

suffering from subacute suppurative endometritis (Siemieniuch et al. 2016). 

In 2016, Al-Khafaji and team (2016) demonstrated that neutrophil NADPH oxidase 

induces NETosis with the synergy action of TLR4. The association between ELA, TLR4 and 

inflammatory cytokines have been already established. Neutrophil ELA enhanced interleukins 

production via TLR4 in a study in human embryonic kidney cells (Devaney et al. 2003), and in 

a mice model of bacteria-induced pneumonia (Benabid et al. 2012; Domon et al. 2018). In 

addition, CAT was already linked to TLRs. In psoriatic lesions, the interferon production in 

plasmocytoid dendritic cells was stimulated by CAT, which activated TLR9 to sense free-cell 

DNA (Skrzeczynska-Moncznik et al. 2013). Likewise, in a mice model of induced 

glomerulonephritis, TLR2 and TLR9 enhanced MPO-induced autoimmunity (Summers et al. 

2011).  
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4. Inhibition of enzymes found in NETs 

The perfect enzyme inhibitor would be able to inhibit ELA, CAT and MPO with similar 

efficiency, controlling their proteolytic and oxidizing activities. It should also be resistant to 

oxidation and proteolysis, have small size to afford better access to enzymes when they are 

bound to ECM and to molecular or cellular components, be easily administered, and resist to 

in vivo degradation (Korkmaz et al. 2010; von Nussbaum and Li 2015).  

 

4.1 Elastase inhibition 

Because of the emerging evidences of the contribution of NETs components to fibrosis 

development, some proteases inhibitors have been tested for the last years. The first 

generation of ELA inhibitors are from endogenous source, namely, α1-proteinase inhibitor (α1-

PI), elafin, secretory leucocyte protease inhibitor (SLPI), α1-anti-chymiotrypsin (ACT), α2-

macroglobulin and monocyte neutrophil elastase inhibitor (Serpin) B1. The ELA activity is 

mainly regulated by α1-PI, SerpinB1 and SLPI (Korkmaz et al. 2010; Delgado-Rizo et al. 2017), 

but when the balance between protease and endogenous inhibitor fails it may lead to tissue 

damage. The endogenous inhibitors compromise the tertiary structure of not bounded ELA, 

contributing to inflammation resolution and preventing tissue damage (Bronze-da-Rocha and 

Santos-Silva 2018). However, these endogenous inhibitors has lack of stability under oxidative 

stress conditions in pathological conditions, and only ELA of non-adherent neutrophils remains 

sensitive to these inhibitors (Korkmaz et al. 2005; Dubois et al. 2012). Additionally, the host 

and microbial proteases can degrade these endogenous inhibitors (Guyot et al. 2008). The 

bounded-ELA and -CAT are catalytically active and resistant to inhibition by endogenous 

inhibitors, facilitating its exit from vasculature, tissues penetration and recruitment to 

inflammation sites. A dysregulation of the cell surface expression of these neutrophil enzymes 

has the potential to cause tissue destruction during inflammation (Owen et al. 1995). Moreover, 

ELA bounded to DNA released from neutrophils is insensitive to endogenous protease 

inhibitors (Belorgey and Bieth 1998). Although, some studies show the efficacy of these 

inhibitors. Inhalation of α1-PI by cystic fibrosis patients decreased ELA and pro-inflammatory 

neutrophil cytokine levels but had no effect on lung function (Griese et al. 2007). More recently, 

the intravenous administration of α1-PI to human patients showing severe α1-PI deficiency 

slows the progression of emphysema (Chapman et al. 2015). The imbalance between ELA 

and SLPI ratio in lugs is associated to tissue destruction. A novel administration strategy was 

recently proposed by entrapping SLPI inside albumin nanoparticles, as carriers, to avoid side 

effects (Tarhini et al. 2018).  

The second-generation of ELA inhibitors (sivelestat - SIV and freselestat) are 

mechanism-based suicide and inhibits the release and membrane-bound of ELA (von 
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Nussbaum and Li 2015; Bronze-da-Rocha and Santos-Silva 2018). Sivelestat is a selective 

inhibitor of ELA, which inhibits the enzymatic action of ELA directly by a reversible ‘acylation-

deacylation’ mechanism (Nakayama et al. 2002). However, the SIV mechanism of action is not 

fully understood. In bacterial infection in lung, it was proposed that SIV blocks ELA-induced 

disruption of pulmonary epithelial cells and prevents bacterial invasion into the bloodstream 

(Yanagihara et al. 2007; Domon et al. 2016). More recently, Domon et al. (2018) suggested 

that SIV abolishes the extracellular effect of ELA and subversion of host immune response, 

without impairing intracellular bacterial killing. The decreased levels of cytokines were 

associated with decreased bacteremia in SIV-treated mice, where ELA activity was reduced in 

broncho-alveolar fluid lavage (Domon et al. 2018). This inhibitor has shown beneficial effects 

on fibrosis impairment, either during in vitro studies or in clinical trials. Studies on the use of 

SIV have been focused on the responses to injury and inflammatory reactions, such as, acute 

inflammation in lungs (Tamakuma et al. 2004; Mikumo et al. 2017), liver (Soejima et al. 1999) 

and in pulmonary fibrosis where reduced COL deposition in mice was noted (Takemasa et al. 

2012). In fact, SIV inhibited inflammatory cell recruitment and TGFβ1 activation in lungs, which 

is the putative mechanism for SIV modulatory action (Takemasa et al. 2012). In addition, SIV 

was reported to suppress neutrophil activation of pro-inflammatory mediators in mice liver 

ischemia/reperfusion injury (Uchida et al. 2010). It also avoided organ failure by inhibiting 

vascular permeability and reducing cytokine production in a porcine hepatectomy model of 

ischemia/reperfusion injury (Shimoda et al. 2019). Some other studies reported the benefits of 

SIV in lipopolysaccharide-induced lung injury in rat lungs (Yuan et al. 2014), reducing portal 

pressure associated with chronic liver diseases in mice (Hilscher et al. 2019), in bleomycin-

induced pulmonary fibrosis in mice (Song et al. 2009; Takemasa et al. 2012), and to 

ameliorates sepsis-related kidney injury in rats (Li, Jia et al. 2016). Most recently, both SIV and 

SerpinB1 reduced lung neutrophil infiltration and pulmonary oxidative stress restoring 

pulmonary barrier function in a rats model (Yao et al. 2019). In humans, SIV is actually 

administered in acute lung diseases, to improve clinical condition and prognosis (Aikawa et al. 

2011; Kido et al. 2016; Polverino et al. 2017). The administration of ELA to mice induced acute 

inflammation and pain in knee joints via activation of p44/42 MAPK pathway PAR-2-

dependent, but the use of SIV reduced inflammation and pain (Muley et al. 2016). The same 

team performed another experiment and concluded that ELA and PAR-2 contributed to the 

development of joint inflammation and pain in induced osteoarthritis in mice, while SIV 

treatment reduced these signs (Muley et al. 2017). In a mice model of endotoxin-induced liver 

injury and partial hepatectomy, treatment with SIV improved the survival rate, liver function and 

reduced cytokine levels by nuclear factor kβ pathway through TLR4 (Kwon and Qiu et al. 2007). 

Even though TLR4 is involved in liver fibrosis and regeneration, SIV did not have any effect on 

TLR4 levels in an ischemia/reperfusion in liver of a porcine model, suggesting that SIV does 
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not act at cellular level (Shimoda et al. 2019). The comparison between the use of SIV and 

neutralization of TLR5 in pneumonia-induced mice revealed that both experiments reduced 

neutrophil recruitment, inflammation, mortality, and secretion of ELA into the airway (Jones-

Nelson et al. 2018). In a study of ELA-induced endotoxic shock in mice, the inhibition of ELA 

by administration of nanoparticles loaded with SIV hindered NETs formation, reduced NETs-

mediated vascular damage and alleviated the production of inflammatory cytokines, thus 

avoiding endotoxic shock. This study demonstrated a new way to improve SIV efficacy (Okeke 

et al. 2020). Althoug SIV may present some toxicity risks, the inhibition of the pro-fibrotic effects 

of ELA by SIV in several fibrotic diseases in a number species, altogether, substantiates the 

use of SIV as a potential therapeutic approach for equine endometrosis.  

The third and fourth generation of ELA inhibitors, alvelestat and BAY-678 respectively, 

are nonreactive, reversible inhibitors originated from pyridine and dihydropyrimidone structure 

(von Nussbaum and Li 2015; Bronze-da-Rocha and Santos-Silva 2018). They show a very 

high specificity and no significant pharmacological interactions (von Nussbaum and Li 2015). 

Avelestat, administered orally, reduced inflammation and lung injury, but had a small effect on 

ELA activity and lung function (Elborn et al. 2012). However, it has shown benefits in abdominal 

aortic aneurysm in rats, reducing MPO, ELA and cell free DNA (Delbosc et al. 2016). The fifth 

inhibitors generation is composed by Bay-85-8501, which has pre-adaptive pharmacophores 

derived from the fourth generation (von Nussbaum and Li 2015). The inhibitor Bay-85-8501 

shows excellent potency, selectivity and has improved the cardiac function in a rat model (von 

Nussbaum et al. 2016). Both avelestat and Bay-85-8501 are in clinical trials for the treatment 

of cystic fibrosis, COPD, bronquiectasia and pulmonary disease (von Nussbaum and Li 2015; 

Vergelli et al. 2017). Sirtinol is an inhibitor used in cancer and neurodegenerative diseases 

(Villalba and Alcain 2012) by acting on genes expression, metabolic regulation and cell 

apoptosis. Recently, in human neutrophils, sirtinol inhibited ELA without affecting neutrophil 

function showing potential application for inflammatory lung diseases treatment (Tsai et al. 

2015). However, since the development of fibrosis may not be always ascribed to ELA action 

in all pathological conditions, the use of single ELA inhibitors is not always effective (Piccioni 

et al. 1992; Hirche et al. 2005). Some studies reported that naturally occurring inhibitors in 

tissues, such as α1-PI, preferentially target ELA leaving CAT and proteinase 3 free in the 

extracellular space (Ohbayashi 2002; Korkmaz et al. 2005, 2010). This situation can explain 

why selective ELA inhibitors can be insufficient in controlling neutrophil mediated damage in 

the airways (Ohbayashi 2002). In the interstitial space can exist a compartmentalization of 

these NETs proteases and their natural inhibitors, thereby creating a microenvironment that 

excludes high molecular weight inhibitors, such as α1-PI, and also can contain high 

concentrations of proteases relative to their inhibitors (Owen et al. 1995). So, the inhibitors that 

naturally exist in the tissues seem to leave these proteases uncontrolled. Likewise, the use of 
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a single selective inhibitor may reveal itself ineffective knowing that other NETs components 

are involved in diseases development, as well. 

 

4.2 Cathepsin G inhibition 

The inhibitors α1-PI, elafin, α2-macroglobulin; Serpins and SLPI are capable of 

inhibiting not only ELA, but also CAT and proteinase 3 (Kosikowska and Lesner 2013; von 

Nussbaum and Li 2015). Although, the close association of ELA and CAT with plasma 

membrane may confer resistance to physiological inhibitors, such as α1-PI (Kosikowska and 

Lesner 2013). The first described CAT inhibitors are peptide base inhibitors. Bovine pancreatic 

trypsin inhibitor, ACT and exogenous salivary protein of Ixodes ricinus (a parasite responsible 

for transmission of Lyme disease) are examples of peptide inhibitors (Krowarsch et al. 2003; 

Schmidt and Winter 2006; Chmelar et al. 2011). Recently, in a mice model, CAT inhibition by 

endogenous SerpinB1 and SerpinB6 prevented monocyte and neutrophil death induced by 

CAT. These endogenous inhibitors also regulate systemic inflammation (Burgener et al. 2019). 

From the phosphonic inhibitors group, β-keto-phosphonic acid (Cathepsin G Inhibitor I - INH) 

offers a promising therapeutic tool for chronic inflammatory conditions, such as asthma, COPD 

and arthritis (Kosikowska and Lesner 2013). Cathepsin G Inhibitor I is a potent, selective, 

reversible, competitive, non-peptide and small-molecule inhibitor of CAT and chymase. The 

ligand 1 of INH occupies the S1 and S2 subsites of CAT and chymase, with the 2-naphtyl in 

S1, the 1-naphtyl in S2 and the phosphonate group in a complex network of hydrogen bonds. 

The carboxamido-N-(naphthalene-2-carboxyl)piperidine group occupies the hydrophobic 

S3/S4 subsites (Greco et al. 2002; de Garavilla et al. 2005). This inhibitor could be used for 

the treatment of COPD and asthma in humans (de Garavilla et al. 2005; Maryanoff et al. 2010; 

Brehm et al. 2014). Additionally, INH exhibits anti-inflammatory activity in rat models of 

glycogen-induced peritonitis and lipopolysaccharide-induced airway inflammation (de 

Garavilla et al. 2005), and in airway inflammatory diseases dependent on CAT in animal 

models (Maryanoff et al. 2010). In a photoaging study in mice, INH inhibited CAT-mediated 

MMP-1 increase and reduced mRNA encoding COL and TIMP1, ameliorating ECM damage 

and MMP upregulation (Son et al. 2012). This inhibitor blocks the increase of TNFα and 

monocyte chemoattractant protein 1, both linked to airway hyperactivity (de Garavilla et al. 

2005), and blocks neutrophilia (Abraham 2008). More recently, the inhibition of CAT by INH 

reduced myocyte death and improved cardiac remodeling after myocardial ischemia 

reperfusion injury by attenuating COL deposition (Hooshdaran et al. 2017), and decreases 

COL7 and MMP-13 levels and neutrophil infiltration in ultra-violet irradiation of mouse skin 

(Kusumaningrum et al. 2018) 

Another inhibitors, such as boswellic acids, (used in traditional medicine to treat 

arthritis, ulcerative colitis, asthma and peptic ulcers), heparin, (besides being anti-inflammatory 
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have strong anti-coagulant properties), thiazolidines and aptamers (single-stranded RNA or 

DNA molecules with high affinity to their targets) have also been reported to inhibit CAT 

(reviewed by Kosikowska and Lesner 2013).  

 

4.3 Myeloperoxidase inhibition 

Ceruloplasmin is an endogenous potent MPO inhibitor that showed reduction of MPO 

activity in plasma of mice, providing evidence that can be a protective inhibitor against MPO 

oxidant production during inflammation (Chapman et al. 2013). Within the group of suicide 

irreversible inhibitors, benzoic acid hydrazides and 2-thioxanthine are MPO inhibitors with high 

potency. Oxidation of these inhibitors by MPO promotes inactivation, either by destruction or 

covalent modification of the enzyme’s heme prosthetic groups (Forbes et al. 2013). The 

compound 2-thioxanthine reduced NETs activation, ROS production, and attenuated in vitro 

neutrophil-mediated endothelial cell damage production, and reduced in vivo kidney damage 

in glomerulonephritis in a murine model (Antonelou et al. 2020). In mouse models of vascular 

inflammation and atherosclerosis, oral administration of 2-thioxanthine improved endothelial 

function by reducing MPO activity (Cheng et al. 2019). Also, this inhibitor, showed positive 

effects attenuating obesity and liver damage, but had no direct effect improving cardiac 

function (Piek et al. 2019). However, the most common experimentally used inhibitor of MPO 

is 4-aminobenzoic acid hydrazide (ABAH) (Kettle 1997; Lazarević-Pasti et al. 2015). Recent 

studies show that ABAH reduced MPO-dependent hepatocyte death in a steatohepatitis mice 

model (Pulli et al. 2015), MPO activity in acute stroke in mice (Kim, Wei, et al. 2016), and 

inhibited MPO in pulmonary cystic fibrosis sputum (Hair et al. 2017). The ABAH mechanism of 

action is not well known yet. Some authors proposed a mechanism of action, where MPO 

oxidizes ABAH to a radical that reduces the enzyme to its ferrous intermediate by destroying 

the MPO heme group. Ferrous MPO reacts with hydrogen peroxide to give irreversible 

inactivation (Kettle et al. 1997, Burner et al. 1999). Engelmann et al. (2000) reported that ABAH 

inhibits hydrogen peroxide-induced apoptosis of leukemia cells, without altering catalase, 

glutathione oxidase activities, and superoxide production by neutrophils. Recent findings about 

ABAH mechanism of action proved that inhibition is due to hydrolysis of the ester bond 

between MPO and heavy chain glutamante 242 residue and the heme ring, freeing the heme 

linked light chain MPO subunit from the larger remaining heavy chain portion. So, the 

destruction of heme ring does not occur by tracking the heme prosthetic group (Huang et al. 

2015).  

The reversible inhibitors compete with MPO substrates by occupying the heme-binding 

pocket, blocking the enzyme’s oxidizing capacity, without permanent changes to the enzyme 

production (Forbes et al. 2013; Lazarević-Pasti et al. 2015). Salicylhydroxamic acid was 

identified as reversible MPO inhibitor (Forbes et al. 2013; Lazarević-Pasti et al. 2015), but 
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showed a poorer inhibition of MPO, than ABAH (Kettle et al. 1995). Also melatonin, tryptophan, 

serotonin, flavonoids and resveratrol are described as MPO inhibitors. Moreover, nonsteroidal 

anti-inflammatory drugs are being tested as inhibitors of MPO (Lazarević-Pasti et al. 2015; 

Galijasevic 2019).  

Another MPO inhibitors showed promising results. The inhibitor PF-1355, decreased 

MPO activity in mouse myocardial infarction model improving ventricular function and 

remodeling (Ali et al. 2016). Non-toxic N-acetyl lysyltyrosylcysteine amide restores blood-brain 

barrier integrity in autoimmune encephalomyelitis in mice, by inhibiting MPO (Zhang et al. 

2016). In cystic fibrosis sputum, peptide inhibitor of complement C1 showed similar inhibition 

of MPO comparing to ABAH (Hair et al. 2017). Another recent mechanism-based inhibitor, PF-

06282999, was found to alter the inflammatory tone of atherosclerotic lesions in mice, but did 

not affect the atherosclerotic plaque (Roth Flach et al. 2019).  

 

5. Estrous cycle in mares 

Mare is a polyestrous of long days breeder meaning that seasonal reproductive activity 

is regulated by a positive photoperiod, being stimulated by long days and short nights (Ginther 

1974; Kooistra and Ginther 1975; Palmer and Guillaume 1992). When daylight hours increase 

(in the spring and summer), the secretion of melatonin decreases, which in turn, stimulates the 

release of gonadotropin-releasing factor (GnRH) in the hypothalamus (Strauss et al. 1979; 

Grubaugh et al. 1982; Kilmer et al. 1982). The GnRH stimulates the adenohypophysis to 

synthesize follicle stimulating hormone (FSH) and luteinizing hormone (LH) (Johnson 1986; 

Cleaver et al. 1991; George et al. 2004). These gonadotropins are transported to the ovary 

where they specifically exert their function (Irvine and Alexander 1993; George et al. 2004).  

The FSH acts on the granulosa cells of the preovulatory follicle stimulating the growth, follicular 

maturation and estrogen (E2) biosynthesis. On the theca cells, LH is involved in oocyte 

maturation, ovulation, establishment and maintenance of corpus luteum (CL) and in the 

synthesis of progesterone (P4). The ratio of LH/FSH reaching the circulation is influenced by 

GnRH pulse frequency and by the physiologic feedback from both ovarian steroids released 

from the ovaries, these events determine the estrous cycle in the mare  (Sharp and Davies 

2011; Evans et al. 2011; Velez et al. 2012). The synthesis and release of FSH are stimulated 

by low-frequency GnRH pulses while the synthesis and release of LH are stimulated by GnRH 

high-frequency pulses (Irvine and Alexander 1993).  During diestrus, P4 suppresses the high 

frequency of GnRH release and during estrus, and E2 increases GnRH pulse frequency (Raz 

and Aharonson-Raz 2012). The increase of FSH in the spring transition period causes the 

development of small follicular waves, which lead to the development of multiple follicles from 

6 to 21 mm of diameter, that regress simultaneously in the absence of a dominant follicle 
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(Freedman et al. 1979; Ginther et al. 2004a; 2004b). However, in the end of spring period, 

larger follicular waves occurs and a set of follicles develops. Most of the follicles will reach 

atresia but one of them reaches a larger size than the others – the preovulatory follicle 

(Driancourt et al. 1982; Michael Lacker et al. 1987; Aurich 2011). The increasing E2 

concentrations by this follicle induce LH synthesis, which leads to the first ovulation, indicating 

the onset of the ovulatory season at which fertile cyclical activity begins (Aurich 2011).  

The breeding season runs approximately from April to October in the northern 

hemisphere (Ginther 1974). The spring transitional period ranges from 30 to 90 days. A 

dominant follicle between 20 mm and 30 mm develops simultaneously with smaller follicles 

greater than 15mm (Aurich 2011). Before ovulation, 1-3 anovulatory follicular waves develop 

(Donadeu and Watson 2007). The occurrence of surges in circulating LH is the most important 

factor to end the transitional phase and re-iniciate the ovulatory activity (Aurich 2011). The 

estrous cycle is longer at the beginning of spring (April or May), than at the end of the breeding 

season. The decreased influence of photoperiod and elevated temperatures in late summer 

promote the onset of autumn transition period from October to December (Sharp and Ginther 

1975). In the seasonal anestrus, the FSH concentration reaches the prolonged nadir value 

causing a poor LH surge resulting in anovulation (Irvine et al. 2000). A dominant follicle does 

not develop and only a few follicles have a diameter bigger than 15 mm (Aurich 2011). During 

winter, the release of high concentrations of melatonin reduce GnRH release that is not enough 

to stimulate the secretion of gonadotropins FSH and LH (Garcia and Ginther 1976; Alexander 

and Irvine 1991; revised by Aurich 2011).  

Some exogenous factors such as age, reproductive state, nutrition, body condition 

(leptin) or environmental temperature also affect the seasonal reproductive activity in mares 

(Ferreira-Dias et al. 2005; Aurich 2011). So, in a large horse population, a proportion of mares 

continue to cycle throughout the year (Hafez and Hafez 2000; Ferreira-Dias et al. 2005; Davies 

Morel et al. 2010; Aurich 2011).  

The repetitive sequence of events that prepare the mare for conception is the equine 

estrous cycle, which lasts an average of 21 days. There are four stages of mare’s estrous 

cycle, classified according to the changes in steroid hormones concentration and endometrial 

structural and functional events. The follicular phase (FP) also called estrous or ovulatory 

phase (day 16-17 to 21 – ovulation day, the latter usually being called day 0), early luteal phase 

(day 1 to 4), mid luteal phase (MLP, around day 8) and late luteal phase (day 12 to 15) (Aurich 

2011).  

 

5.1 Estrus 

The FP is identified by the presence of different stages of the development of follicles 

and the increase of E2 secretion. During estrus, which corresponds to the FP, the mare is 
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sexually receptive to the stallion, and the genital tract is prepared to accept and transport 

sperm and an oocyte to the site of fertilization (Crowel-Davies 2007; Ginther et al. 2008; Raz 

and Aharonson-Raz 2012). The E2 is the main steroid in this phase and commands the 

physiological events that occurs in female body and uterus. The uterine wall thickens, muscular 

tone increases and vascularity becomes greater. The cervix is relaxed and open (Aurich 2011). 

Kenney (1978) described endometrial histological changes during the FP, when the 

endometrial glands proliferate and become active and the lamina propria is highly edematous 

with reduced gland density and a loosely woven appearance of the stroma. The presence of 

neutrophils in the stroma reveals inflammation, even though they can also be found in 

marginate venules and capillaries, physiologically.  

One or two follicular waves develop during estrus and are associated with a FSH surge 

that reaches a peak when the largest follicle attains 13 mm in diameter (Gastal et al. 1997). 

The FSH concentration diminishes enabling the dominant follicle to grow. The pre-ovulatory 

follicle grows and reaches approximately 40 mm, or even more (Ginther et al. 2008). 

In the mare, the LH levels increase during estrus, by the positive feedback exerted by 

the pre-ovulatory follicle E2 and reach the peak one day after ovulation (Hafez and Hafez 

2000), but it is preceded by biological LH activity shortly before ovulation (Alexander and Irvine 

1982).  

Estrogen receptors (ESR) consist of two predominant isoforms of nuclear receptors, 

ER1 and ER2. In mare endometrium, they are upregulated by E2 as well as the P4 receptors 

(PGR) (Hartt et al. 2005). The dominant E2 receptor is ESR1 playing a major role in 

uterotrophic effects of E2 (Weihua et al. 2000). The ESR2 has also been described in the mare 

(Honnens et al. 2011) and suggested to modulate the uterotrophic effects of ESR1 (Weihua et 

al. 2000) and to attenuate the transcriptional activity of ESR1 in the uterus (Large and DeMayo 

2012). High endometrial levels of ESR1, ESR2 and PGR messenger ribonucleic acid (mRNA) 

and proteins detected in luminal and glandular epithelia and stromal cells have been reported 

in mares during estrus (Watson et al. 1992; Hartt et al. 2005; Honnens et al. 2011; Gebhardt 

et al. 2012; Silva et al. 2014).  

 

5.2 Diestrus 

During diestrus, when a CL is presented in the ovary (luteal phase) the mare is not 

receptive to the stallion. The ruptured ovulatory follicle develops into a CL that secretes P4 

and, in the nonpregnant mare, it regresses 14-15 days after ovulation. The P4 is the main 

steroid influencing this phase. Its actions leads to a decrease in uterine wall thickness, 

myometrial tone and endometrial gland activity. The cervix becomes firmer and is tightly closed 

(Aurich 2011). The endometrial gland density increases due to decreased stromal edema and 

the increased tortuosity of glands (Kenney 1978). After ovulation, the concentration of P4 
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increases (Ferreira-Dias and Mateus 2003; Roberto da Costa et al. 2005) from early to mid-

luteal phase (Van Niekerk et al. 1975; Aguilar et al. 2006). In the absence of pregnancy, the 

luteal phase culminates with the lysis of CL induced by endometrial prostaglandin (PG)F2α and 

decreased concentrations of P4 (Crowell-Davis 2007; Ginther et al. 2008). 

In mice, there are two PGR iso-forms, the PGR-A plays a major role mediating the 

actions of P4 in the uterus and ovaries, while PGR-B is more important in the development of 

the mammary gland (Mulac-Jericevic 2000; Mulac-Jericevi et al. 2003). When circulating P4 

levels are high, endometrial expression of ESR and PGR are inhibited. In mare’s endometrium, 

from mid to late diestrus, the concentration of ESR and PGR receptor protein decreases 

(Watson et al. 1992).  Also, abundance of ESR1 and PGR mRNA decreases from days 0 to 

11 of estrous cycle and increases by late diestrus (McDowell et al. 1999; Honnens et al. 2011; 

Gebhardt et al. 2012; Silva et al. 2014).  On day 11 and 14 of mare estrous cycle, ESR and 

PGR expression decreased in stroma and in deeper glandular epithelia and they were not 

detected in luminal epithelium (Hartt et al. 2005). On days 14 to 16 of mare estrous cycle 

luteolysis occurs (Ginther et al. 2007).  

During pregnancy, gene transcription for ESR and PGR receptors decreases with 

increasing days of gestation and sustained P4 concentration (Watson et al. 1992; McDowell 

et al. 1999) controlled by a negative feedback mechanism. More recently, during diestrus, Nelis 

et al. (2015) described a high P4 concentration in oviductal tissue and fluid ipsilateral to the 

ovary when ovulation occurred. Although,  a downregulation of PGR occurred possibly due to 

negative feedback mechanism (Hai et al. 1977; Nelis et al. 2015). 

 

6. Equine endometrial fibrosis 

6.1 Endometritis contributes to chronic endometrial changes 

Endometritis is an acute or chronic inflammation of the endometrium and considered 

as a major cause of subfertility/infertility in mares. Air, urine, semen, bacteria, fungi or yeasts 

are capable of inducing an endometrium reaction. After breeding, mares develop a 

physiological transient breeding-induced endometritis. The semen-induced uterine 

inflammation is characterized by a fast arrival of neutrophils into the uterine lumen (Kotilainen 

et al. 1994; Katila 1995). The influx of inflammatory cells in the mare’s uterus empowers the 

inflammatory reaction, resulting in the removal of unnecessary spermatozoa, contaminating 

bacteria, and debris introduced in the uterus (Troedsson et al. 1993; Troedsson 2006). This 

response starts about 30 minutes after natural mating or artificial insemination (Katila 1995), 

and is limited to the endometrium, without hematological changes detected (Tuppits et al. 

2014). The breeding-induced endometritis resolves within 24-48h in healthy mares, that are 

considered “resistant” mares, i.e. not prone to endometritis. Likewise, the mares more prone 
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to endometritis are considered “susceptible” (LeBlanc et al. 1994; Troedsson et al. 1993). 

Other factors may be present in susceptible mares contributing to the difficulty in cleaning 

inflammation. The older mares and parity are predisposing factors to persistent endometritis 

(Woodward et al. 2012). Also, poor vulvar conformation, pneumovagina, pendulous uterus, 

cervical fibrosis secondary to a traumatic birth are considered other risk factors that limit uterine 

clearance (Ricketts 1999; LeBlanc et al. 1995, 1998; LeBlanc and Causey 2009; Pycock 2009, 

Scoggin 2015). Degenerative changes, as abnormal myometrium, periglanular fibrosis, 

vascular degeneration, lymphangiectasia, scarring and atrophy of endometrial folds also 

triggers the delayed bacteria clearance (LeBlanc and Causey 2009). 

The etiology, diagnosis and pathogenesis of acute and chronic mare endometritis have 

been largely studied (Ferreira-Dias et al. 1994; Nielsen 2005; Hoffmann et al. 2009a; Szóstek 

et al. 2013, Woodward et al. 2013). In the infectious endometritis, pathogenic or opportunistic 

bacteria and fungi access to the uterus during breeding. Streptococcus equi subspecies 

zooepidemicus, Escherichia coli, Pseudomonas aeruoginosa, Klebsiella spp., Proteus and 

Corynebacterium among others are major causes of equine endometritis, (LeBlanc et al. 2007; 

Wittenbrink et al. 2008).  

In the presence of Escherichia coli and Streptococcus equi subspecies zooepidemicus 

(Rebordão et al. 2014), or in contact with equine semen (Alghamdi and Foster 2005; Alghamdi 

et al. 2009), the equine neutrophils produced NETs in the mare endometrium. The induced 

NETs trap spermatozoa, but the DNase present in seminal plasma can degrade these NETs 

and free entagled sperm cells. Interestingly, seminal plasma proteins are highly selective 

suppressing spermatozoa-induced NETs, but not those bacteria-induced NETs (Alghamdi and 

Foster 2005). The mechanism of neutrophils to fight bacteria causing endometritis include not 

only phagocytosis but also the entrapment of bacteria by NETs. 

If the inflammation/infection becomes chronic, it leads to severe, progressive and 

irreversible fibrosis of equine endometrium (endometrosis). The long-standing influx of 

neutrophils into the endometrium may contribute to chronic degenerative changes, culminating 

in fibrosis. This condition impairs endometrial function and future pregnancies, causing 

infertility (Hoffmann et al. 2009a).  Indeed, the treatment of equine endometrial explants with 

enzymes found in NETs (ELA, CAT and MPO) act as pro-fibrotic factors, by inducing COL 

production (Rebordão et al. 2018). 

 

6.2 Equine endometrosis 

Kenney (1992) introduced the term endometrosis, meaning occurrence of fibrotic and 

degenerative changes in mare endometrium. Nowadays, endometrosis might be described as 

an active or inactive periglandular and/or stromal endometrial fibrosis with alterations of glands 

within the fibrotic foci (Hoffmann et al. 2009a). Single glands and/or glandular nests can be 
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affected (Kenney 1978). It has been referred that the degree of endometrosis increases with 

age, but without connection with the number of foalings (Ricketts and Alonso 1991). In fact, 

according to Doig et al. (1981), Ricketts and Alonso (1991) and Hoffmann et al. (2009a) 

endometrosis is more associated to age than parity because aged maiden mares can also 

develop endometrosis without being exposed to semen or pregnancy. In our laboratory, we 

observed that young maiden mares may also present endometrosis. The genetic 

predisposition can justify this finding, causing disruption in endometrial inflammation and repair 

mechanisms, which results in permanent activation of COL synthesis by mediators released 

by local and infiltrating immune cells (Oddsdóttir 2007). So, age, repeated pregnancies, 

parturition, chronic inflammation and endocrine problems seem to drive endometrosis severity 

(Hoffmann et al. 2009a). In endometrosis, the endometrium undergoes structural changes. 

There are progressive focal proliferation of the endometrial glands that gather in nests 

surrounded by numerous fibrous layers, as the process goes on. Inside the nests, there are 

cysts with decreasing number of normal endometrial glands (Katkiewicz et al. 2007).  

Lymphatic lacunae and reduction in the number of uterine glands and atrophy can also be 

observed (Kenney 1978).  Impaired uterine clearance (LeBlanc and Causey 2009), repeated 

endometritis (Doig et al. 1981), aging and multiple pregnancies (Ricketts and Alonso 1991) 

have been described as triggering factors of endometrosis. In order to predict the capacity of 

mares to conceive, Kenney (1978) developed an endometrium classification, later modified by 

Kenney and Doig (1986), based on the quality of glands and lymphatic vessels, fibrotic 

changes and inflammatory cells. The mares can be classified in four categories that are listed 

in Table 1.  

 

Table 1: Standard score classification system for histologic changes in equine 

endometrium, according to Kenney and Doig (1986). 

Category Structural changes in endometrium 
% of altered 

glands 
Expecting 

foaling rate (%) 

I 
Normal and healthy, active and well distributed glands, little 
to no inflammatory cells 

- 80-90% 

IIA 

Mild, scatted inflammation and fibrosis around individual 
branches, lack of glandular nests, slight to moderate 
inflammatory changes, lymphatic lacunae, partial 
endometrial atrophy 

10-35% 50-80% 

IIB 
Moderate scattered inflammation and fibrosis, 2-4 fibrotic 
nests of gland, inflammatory and lymphatic changes are 
widespread, diffuse and moderately severe 

35-60% 10-50% 

III 
Dilated glands surrounded by layers of fibrotic cells, 5 or 
more fibrotic nests, diffuse and severe inflammatory 
changes, severe lymphatic lacunae 

>60% 10% 

 

At the initial stage of endometrosis, fibroblasts differentiate into myofibroblasts 

responsible for the synthesis of collagen fibers, ECM deposition, and ultimately leading to 
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endometrial periglandular fibrosis (Hoffmann et al. 2009b; Szóstek-Mioduchowska et al. 

2019a). When endometrosis gets established, it is characterized by abundant fibrosis, lack 

cilia and cell boundaries, and present more degenerative cell structures and few organelles 

(Ferreira-Dias et al. 1994, 1999). Thus, these histological changes are the culprit of a decrease 

in pregnancy rates in the mare (Kenney 1978; Liepina and Antane 2010). 

More recently, Hoffmann et al. (2009a, 2009b) graded endometrosis as active, 

destructive or non-destructive fibrosis. The differences can be observed by the morphology of 

stromal cells involved in fibrotic foci (Hoffmann et al. 2009b). Excessive ECM accumulation, 

dilated glands with extensive epithelial degeneration, large number of α-SMA myofibroblasts, 

loss of normal architecture and invasion of the glandular lumen by stromal cells are 

characteristics of destructive endometrosis (Hoffmann et al. 2009b). Active stromal cells with 

active synthesis of COL and ECM deposition occur in active endometrosis, whereas inactive 

endometrosis shows metabolically inactive stromal cells. The cycle-associated 

endocrinological changes do not determine the activity of stromal cells (Hoffmann et al. 2009a).  

The predominance of COL type has been controversial. According to Lunelli et al. 

(2013), the endometrial samples examined of category I and II, from estrus and diestrus, had 

a predominance of COL3. However, COL1 predominates relative to COL3 in endometrial 

periglandular fibrosis (Porto 2006). More recently, a study revealed that the COL1 fibers were 

prevalent in inactive and/or destructive endometrosis, while COL3 fibers were predominant in 

active and/or non-destructive endometrosis with the concomitant presence of periglandular 

myofibroblasts (Costa 2015). In a healthy endometrium, the first collagen to be synthesized is 

COL3, which in turn is gradually replaced by COL1 following the development of fibrotic lesions 

,(Masseno 2009; Costa 2015). Moreover, in severe endometrosis COL1 predominates, in 

contrast to the dominance of COL3 in healthy endometria with little alterations (Pinto-Bravo et 

al. 2018). 

The expression of ESR and PGR receptors in fibrotic tissues has been controversial. 

Aupperle et al. (2000) reported that their expression in fibrotic glands were lower than in 

healthy areas. Also, the fibrotic areas appear to be independent of the endocrine uterine control 

mechanisms because a cycle-asynchronous staining for ESR and PGR in the stromal cells of 

periglandular fibrosis was noted by Hoffmann et al. (2009a) and Lehmann et al. (2011). The 

stromal cells are maldifferentiated in endometrosis allowing them to release paracrine signals 

that are unable to reflect the actual estrous cycle state (Hoffmann et al. 2009a). Although, a 

mild increase of the epithelial ESR and PGR was observed in active non-destructive fibrotic 

foci, whereas a decreased expression of these receptors was seen in all other types of 

endometria, mainly in severe destructive fibrosis (Hoffmann et al. 2009a). On the contrary, 

Lunelli et al. (2013) found no differences in both receptors expression in fibrotic endometrium.  
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The degenerative changes may favor the thickening of vessel walls in a phenomenon 

called angiosclerosis. This situation is associated to lower perfusion in older mares with 

increasing parturition rates (Grüninger et al. 1998). In one study, two thirds of the mares with 

endometrosis have angiosclerosis (Hoffmann et al. 2006), but in another report, no correlation 

between endometrosis and angiosclerosis was found (Lehmann et al. 2011). Moreover, the 

elastofibrosis of vessels increase with age and are closely related to progression of 

endometrial fibrosis (Hanada et al. 2014). The mares presenting elastofibrosis during both 

estrus and diestrus showed lower levels of uterine perfusion, and could impair endometrial 

glands development, decrease uterine clearance, induce post-breeding endometritis, and 

hinder the development of the conceptus and overall fertility (Esteller-Vico et al. 2015). 

Endometrosis also affects the uterine secretion pattern within the fibrotic loci reducing 

fertility. In barren mares, there was lower expression of uteroglobin and uterocalin. These 

proteins were detected in the fibrotic areas, especially in mares suffered from moderate 

destructive endometrosis (Lehmann et al. 2011). Deficiency of uterocalin contributes to early 

embryonic death, once it supplies proteins to the embryo (Crossett et al. 1998). Uteroglobin 

protects the embryo from mare’s immune system and its deficiency leads to embryonic loss 

(Zhang et al. 2000). In destructive endometrosis, both protein levels are decreased (Hoffmann 

et al. 2009b).  

Endometrosis has a wide range of reproductive implications. Mares suffering from 

destructive endometrosis, have a higher frequency of endometritis, which are associated to 

impaired function of endometrial glands in the physiological clearance of the endometrium 

(Hoffmann et al.,2009a). In addition, mares with a higher category grade more frequently retain 

fluid inside the uterine lumen after insemination (Woodward et al. 2012). The loss of epithelium 

and uterine mucus blanket in chronic inflamed endometria predisposes to persistent uterine 

infection (LeBlanc and Causey 2009; LeBlanc 2010). Fibrosis reduces the number of healthy 

glands, which in turn decrease the exchange of nutrients and metabolic products via placenta, 

reducing the chance of a viable conceptus (Kenney 1978). In fact, endometrial alterations due 

to fibrosis development lead to insufficient secretory activity and pregnancy failure, delayed 

placental development, retarded fetal growth or abortion (Kenney 1978; Hoffmann et al. 2009a; 

Lehmann et al. 2011). 

 

6.3 Physiopathological mechanisms of endometrosis 

Regardless of the extensive research on mare endometritis and endometrosis, the 

physiopathological mechanism involved in fibrosis establishment in equine endometrium is not 

fully understood. It is dependent on many factors, which may lead to ECM components 

deposition. Some pathways have been studied in equine endometrial fibrosis pathogenesis, 

such as prostaglandins (Rebordão et al. 2019; Szóstek-Mioduchowska et al. 2020b), TGFβ1 
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(Szóstek-Mioduchowska et al. 2019a), interleukins, such as IL-1α, IL-1β, IL-6, IL-10 (Szóstek 

et al. 2013; de Holanda et al. 2019; Szóstek-Mioduchowska et al. 2019b) and enzymes found 

in NETs (Rebordão et al. 2018). 

 

6.3.1 Transforming growth factor β1 

In spite of regulation of cell growth, development and tissue remodeling, TGFβ1 is also 

involved in the pathogenesis of fibrosis in many organs, as well as in equine endometrosis. 

The role of TGFβ1 in the pathogenesis of equine endometrosis has not been widely 

investigated. Though, an older study found no differences in the expression of TGFβ1 mRNA 

levels between endometrial categories (Cadario et al. 2002). However, the concentration of 

TGFβ1 increased with the score of endometrial fibrosis, suggesting its involvement in fibroblast 

activation into α-SMA myofibroblasts (Ganjam and Evans 2006). Nonetheless, Kiesow et al. 

(2011) found the expression of both isoforms of TGFβ to be reduced in stromal cells within 

fibrotic foci, possibly due to disturbed hormonal stimulation or stromal synthesis disorders. 

Recently, in order to determine TGFβ1 involvement in equine endometrosis, Szóstek-

Mioduchowska and collaborators (2019a) treated equine explants with TGFβ1 and found 

increased α –SMA, COL1, COL3 and fibronectin protein relative abundance. The growth factor 

TGFβ1 induced myofibroblast differentiation, increased ECM component secretion from 

fibroblasts and stimulated fibroblast proliferation, suggesting its involvement in equine 

endometrosis (Szóstek-Mioduchowska et al. 2019a). Also in equine fibroblasts and epithelial 

cells, TGFβ1 affects MMPs and TIMPs expression, suggesting that TGFβ1 is a regulator of 

equine endometrial remodeling (Szóstek-Mioduchowska et al. 2020a). 

 

6.3.2 Matrix metallopeptidases 

Matrix metallopeptidases are involved in fibrosis development, but their regulation and 

involvement in equine endometrosis is still relatively unknown. A study in equine endometrium 

reported that the active form of MMP-2 was increased in mare fibrotic endometrium in diestrus 

(Walter et al. 2005). During bacterial and breeding-induced acute equine endometritis, MMP-

2 and -9 are involved in inflammatory response and COL remodeling and subsequent 

establishment of endometrial fibrosis (Oddsdóttir et al. 2008).  In stromal cells of endometrial 

foci, MMP-2 increased possibly due to the progressive destruction of the glandular basal 

lamina (Kiesow et al. 2011). Although, Aresu et al. 2012 reported that there were no changes 

in MMP-2 or -9 expression between normal and fibrotic equine endometrium, another study 

found out that MMP2 transcription was upregulated in endometrial fibrosis (Centeno et al. 

2018). The most recent in vitro studies in equine endometrium showed that MMP expression 

is affected by several mediators of inflammation (interleukins, TGFβ1 and prostaglandins) 

(Szóstek-Mioduchowska et al. 2019b, 2020a, 2020b), and differs among stages of 
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endometrosis (Szóstek-Mioduchowska et al. 2020a). The equine endometrial explants treated 

with cytokines linked inflammation to endometrosis development by cytokines modulation on 

ECM components expression, MMPs and TIMPs (Szóstek-Mioduchowska et al. 2019b). In 

equine fibroblasts and epithelial cells treated with TGFβ1, the expression of MMPs and TIMPs 

are altered during endometrosis, being TGFβ1 a regulator of endometrial ECM remodeling via 

MMPs and TIMPs in equine endometrial cells (Szóstek-Mioduchowska et al. 2020a).  

 

6.3.3 Prostaglandins 

An increasing number of studies have shown that PGs have multiple regulatory actions 

in tissue remodeling and fibrosis.  Equine endometrial samples of different endometrial fibrosis 

categories were evaluated revealing changes in mRNA of PG synthases and in PG secretion 

in the development of fibrosis during the estrous cycle. These changes cause disorders on 

estrous cycle and early embryo losses (Szóstek et al. 2012). Also, the endometrial explants 

treated with interleukins regulated PG secretion during the progression of endometrosis and 

may affect embryo implantation (Szóstek et al. 2013). Nevertheless, another study found no 

differences on PG secretion during the development of fibrosis, while PGE2 production was 

up-regulated in mares with subclinical endometritis and fibrosis (Gajos et al. 2015). In equine 

endometrium explants, challenged with enzymes found in NETs, such as ELA, CAT and MPO, 

PGE2 showed a protective effect against endometrosis, mediated mainly by EP2 receptor. This 

can lead to a reduction of COL deposition in equine endometrium (Rebordão et al. 2019). In 

response to TGFβ1, both luteal cells (Galvão et al. 2018) and equine epithelial cells reduced 

PGE2 secretion (Szóstek-Mioduchowska et al. 2020b). However, PGF2α treatment increased 

MMPs and COL1 expression by fibroblasts, suggesting that PGs may be involved in equine 

endometrial pathological remodeling (Szóstek-Mioduchowska et al. 2020b). 

 

6.3.4 Neutrophil extracellular traps 

Currently, it is well established that NETs play a role in many fibrotic diseases in several 

species and organs. Recently, it was described the capacity of equine neutrophils to release 

NETs when in contact with equine spermatozoa (Alghamdi and Foster 2005; Alghamdi et al. 

2009). For the first time, Rebordão et al. (2014) showed that NETs were present ex vivo in 

endometrial mucus from mares with bacterial endometritis. Moreover, it was also showed that 

equine neutrophils have the capacity to form NETs in vitro in the presence of bacteria that 

causes endometritis (Streptococcus equi subspecies zooepidemicus, Escherichia coli  or 

Staphylococcus capitis), or even in the absence of bacteria, when stimulated by PMA. The 

expression of ELA and MPO in ex vivo NETs was also confirmed in this study. The authors 

concluded that NETs formation, an alternative to phagocytosis mechanism of neutrophils, is 

an important way to fight bacteria in endometritis, and may be considered for future therapeutic 
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targets (Rebordão et al. 2014). Additionally, increased MPO levels were detected in uterine 

lumen of cycling mares with endometritis (Parrilla-Hernandez et al. 2015). More recently, the 

involvement of NETs enzymes, ELA, CAT and MPO, in the development of endometrosis was 

the grounds for being considered as pro-fibrotic factors (Rebordão et al. 2018). The equine 

endometrial explants increased COL1 relative protein abundance and COL3A1 transcription 

after treatment with ELA, CAT or MPO. The protease ELA increased COL1 protein relative 

abundance independently of fibrotic category and estrous cycle phase. The effect of CAT was 

dependent of endometrium category, as well as estrous cycle phase since it enhanced COL1 

protein relative abundance in category IIB/III of FP endometria. The response to MPO 

treatment appears to be also hormone-dependent because it induced COL1 in I/IIA FP 

explants, while in type IIB/III the effects were noticed in both estrous cycle phases. Follicular 

phase might be more susceptible to these pro-fibrotic effects, although MLP may also be 

susceptible to fibrogenic mediators present in NETs (Rebordão et al. 2018). 

 

6.4 Endometrosis treatment 

There is no currently available effective therapy to treat endometrosis in mares. 

However, for the last three decades, a number of therapies have been proposed. Some 

treatments, such as mechanical curettage has shown to improve the degree of chronic 

degenerative endometritis in 80% of the treated mares. In addition, 60% of the mares 

increased pregnancy rates. Although, the prognosis was worse in older mares, where 

curettage had no effect (Ricketts 1985). 

Dimethyl sulfoxide (DMSO) due to its anti-inflammatory properties was proposed to 

reduce fibrosis. In fact, an intrauterine administration of 10-30% DMSO reduced chronic 

inflammatory cell infiltrates and periglandular fibrosis in 30% of tested mares, with no harmful 

histological changes. However, the treatment did not improve the pregnancy rates comparing 

to saline-treated mares (Ley et al. 1989).  

Kerosene was also used to treat endometrosis (Bracher et al. 1991). The uterine 

irrigation with 250-500 mL of kerosene caused uterine edema lasting for 1-2 days and after 

results in expulsion of retained excretions, improving fertility rates. The application of this 

therapy brings rather a short-term effect, as half of the mares which were pregnant after 

treatment with kerosene miscarried later (Allen 1993). Otherwise, in a recent study, the 

treatment using kerosene showed no effect on endometrial histopathology grade (Podico et al. 

2020). 

One of the first inhibitors of NETs described was DNase and is currently clinically 

available for the treatment of cystic fibrosis in humans (Fuchs et al. 1994; Papayannopoulos 

et al. 2011). It is known that DNase fails to clear all the components of NETs, as histones, ELA 

or CAT, and they can still induce tissue injury (Kolaczkowska et al. 2015). However, DNase 
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was approved for the treatment of cystic fibrosis showing improving lung function (Jones and 

Wallis 2003). In a recent study, the use of DNase in bacterial meningitis reduced the bacterial 

load, confirming that NETs reduced bacterial clearance in central nervous system (Mohanty et 

al. 2019).  

Another approach to treat endometrosis was the use of stem cells. Mesenchymal stem 

cells (MSCs) have been used because of their immunomodulation activity and capacity to 

regenerate tissues. The equine adipose tissue-derived MSCs were successfully incorporated 

by a method similar to artificial insemination, and were widely distributed in the uterus of mares 

with endometrosis. At 7 and 21 days, the MSCc were detected by fluorescence in the uterine 

body and horns, but not after 60 days. This can be explained by the fast division of these cells. 

Likewise, the MSCs were incorporated in clusters in periglandular and glandular tissue, 

suggesting that MCSc proliferate within the endometrium (Mambelli et al. 2013). In another 

study, the intrauterine transplantation of equine adipose tissue-derived MSCs induced a 

positive remodeling of the endometrial tissue in mares with endometrosis until day 60. The 

MSCs modulated the expression of α-SMA, which was no longer observed at day 7 in uterine 

glands, suggesting the use of MSCs as therapy in endometrosis (Mambelli et al. 2014). In 

contrast, despite of adipose-derived stem cells ability to be incorporated in endometrial 

periglandular tissue and single glands, there were an increase in pro-inflammatory interleukins. 

The balance between pro- and anti-inflammatory, lytic and fibrotic environment was very subtle 

(Falomo et al. 2015). Alvarenga et al. (2016) successfully administered by endometrial 

injection, autologous bone marrow MSCs, opening the clinical trials for the use of these stem 

cells, as well. In 2017, the presence of MSCs were firstly identified in equine endometrium, 

offering a promising new therapeutically approach not only for endometrial regeneration but 

also for other tissues (Rink et al. 2017). The same cells were autologously infused in healthy 

uterine horns of early diestrus mares and were identified after 6, 12 and 24h in the uterine 

lumen but not in endometrial tissue, limiting the promising results (Rink et al. 2018). Interesting, 

in a recent study of intra-ovarian injection of MSCs from donors, besides being well tolerated, 

only altered the gene expression, but did not improved ovarian function in aged mares. These 

findings do not support the use of MSCs as treatment for age-related ovarian dysfunction in 

mares (Grady et al. 2019). 
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Chapter III 
Experimental Work 
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1. Elastase inhibition affects collagen transcription and prostaglandin 
secretion in mare endometrium during the estrous cycle 

 

Adapted from: 

 

Amaral A, Fernandes C, Lukasik K, Szóstek-Mioduchowska A, Baclawska A, Rebordão 

MR, Aguiar-Silva J, Pinto-Bravo P, Skarzynski DJ, Ferreira-Dias G. 2018. Elastase inhibition 

affects collagen transcription and prostaglandin secretion in mare endometrium during the 

estrous cycle. Reprod Dom Anim. 53:66–69. doi:10.1111/rda.13258. 

 

1.1 Abstract 

We have shown that bacteria induce neutrophil extracellular traps (NETs) in mare 

endometrium. Besides killing pathogens, NETs may contribute for endometrosis (chronic 

endometrium fibrosis). Since elastase (ELA) is a NETs component that regulates fibrosis and 

prostaglandin (PG) output, the aim was to evaluate if inhibition of ELA would affect collagen 1 

(COL1A2) transcription and PGs secretion by endometrium explants, in different estrous cycle 

phases. Follicular-FP (n=8) and mid luteal–MLP (n=7) phases explants were cultured for 24 or 

48h with medium alone (Control), ELA (0.5µg/mL, 1µg/mL), sivelestat - ELA inhibitor (SIV, 

10µg/mL), or ELA (0.5µg/mL, 1µg/mL) + SIV (10µg/mL). COL1A2 gene transcription was done 

by qPCR and PGE2 and PGF2α determination in culture medium by ELISA. In FP, at 24h, 

ELA0.5 increased COL1A2 transcription (P < 0.001) but its inhibition (ELA0.5 + SIV) decreased 

COL1A2 transcription (P < 0.01) and PGF2α production (P < 0.05). Also, ELA0.5 + SIV or ELA1 

+ SIV raised PGE2 production (P < 0.01). At 48h, ELA1 increased COL1A2 transcription (P < 

0.01) and PGF2α production (P < 0.001), but its inhibition (ELA1 + SIV) decreased these 

actions (P < 0.01; P < 0.05, respectively). Besides, ELA1 + SIV incubation increased PGE2 (P 

< 0.05). PGF2α also augmented with ELA0.5 (P < 0.001), but lowered with ELA0.5 + SIV (P < 

0.01). In MLP, ELA0.5 up-regulated COL1A2 transcription (24h, P < 0.01; 48h, P < 0.001), but 

ELA0.5 + SIV decreased it (24h, P < 0.05; 48h, P < 0.001). At 48h, incubation with ELA1 also 

increased COL1A2 transcription and PGF2α production (P < 0.05), but PGF2α production 

decreased with ELA1 + SIV incubation (P < 0.05). PGE2 production was higher in ELA1 + SIV 

incubation (P < 0.05). Therefore, ELA inhibition may reduce the establishment of mare 

endometrial fibrosis by stimulating the production of anti-fibrotic PGE2 and inhibiting pro-fibrotic 

PGF2α. 

 

 

Keywords: elastase, mare, endometrium, fibrosis, elastase inhibitor 
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1.2 Introduction 

We have shown that in mares with bacterial endometritis, neutrophils are able to induce 

neutrophil extracellular traps (NETs) locally in endometrium (Rebordão et al. 2014). At the 

infection site, NETs components (histones, elastase, cathepsin G, myeloperoxidase), besides 

binding and killing microorganisms (Brinkmann 2004; von Nussbaum and Li 2015), may also 

contribute for mare endometrial fibrosis. This pathology, known as endometrosis, is 

characterized by chronic deposition of collagen in the endometrium and is ascribed to mare 

infertility (Kenney and Doig 1986, Lehmann et al. 2011). Indeed, enhanced collagen type I 

(COL1) production after in vitro exposure of mare endometrial explants to NETs components 

has been observed (Rebordão et al. 2018). Actually, ELA was the NETs component that 

enhanced in vitro COL 1 production the most in mare endometrial explants (Rebordão et al. 

2018).  

Besides NETS and pro-fibrotic cytokines, prostaglandin (PG) E2 and PGF2α may 

provide additional pathways in fibrogenesis. While PGE2 triggers anti-fibrotic actions, PGF2α 

can induce fibrosis in lungs (Olman 2009). Since NETs persistence has been related to 

fibrogenesis (Korkmaz et al. 2010), inhibition of NETs enzymes might be a therapeutic 

approach. In fact, sivelestat sodium salt, an elastase (ELA) inhibitor (SIV), has prevented 

bleomycin-induced pulmonary fibrosis in mice (Takemasa et al. 2012). Thus, we hypothesized 

that by inhibiting ELA in mare endometrium, COL1 development would reduce and contribute 

for fibrosis impairment.  Therefore, the aim of this study was to evaluate if inhibition of ELA 

would affect: (i) collagen type I α1 (COL1A2) transcription; and (ii) PGs secretion by 

endometrium, in different estrous cycle phases.  

 

1.3 Materials and Methods 

Uteri and blood were collected post-mortem from cyclic mares, euthanized according 

to European Legislation (EFSA, AHAW/04–027). Mare’s estrous cycle phase determination 

was based on plasma progesterone concentration and macroscopic assessment of ovarian 

structures (Roberto da Costa et al. 2007). Endometria explants, obtained from follicular (FP; n 

= 8) and mid luteal phases (MLP; n =7), were incubated for 24h or 48h (Rebordão et al. 2018), 

as follows: (i) Control – culture medium alone; (ii) Elastase (ELA; 0.5, 1µg/mL; A6959, 

Applichem GmbH, Germany); (iii) ELA inhibitor: sivelestat sodium salt (SIV; 10µg/mL; sc-

361359; Santa Cruz Biotechnology, USA); or with (iv) ELA(0.5, 1µg/mL) + SIV (10µg/mL). After 

incubation, explants and culture medium were kept frozen. 

After RNA isolation and cDNA synthesis from incubated explants, COL1A2 and 

ribosomal protein (RPL32; as reference gene), were used for qPCR studies. Primers 

sequences are shown (Table 2). qPCR data were analyzed as described (Rebordão et al. 

2018).  
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Table 2: Primers used in quantitative polymerase chain reaction (qPCR) in experimental 

work 1. 

Gene  

(Accession number) 
Sequence 5’-3’ Amplicon 

COL1A2 

(XM_001492939.3) 

Forward: CAAGGGCATTAGGGGACACA 
196 

Reverse: ACCCACACTTCCATCGCTTC 

RPL32  

(XM_001492042.6) 

Forward: AGCCATCTACTCGGCGTCA 
144 

Reverse: GTCAATGCCTCTGGGTTTCC 

COL1A2 – collagen type 1 alpha2; RPL32 - ribosomal protein L32. 

 

Prostaglandins in culture medium were determined by Enzyme Immunoassay Kits 

(PGE2 ELISA kit, ADI-901-001, Enzo, USA; PGF2α ELISA kit, ADI-901-069, Enzo). The 

standard curve for PGE2 ranged from 39-2,500 pg/mL and the intra- and inter-assay 

coefficients of variation (CV) were 7.4 and 4.1 %, respectively. For PGF2α, the standard curve 

ranged from 3-50,000 pg/mL and the intra- and inter-assay CV were 5.9 and 4.3 %, 

respectively. 

Explants viability was assessed by lactate dehydrogenase (LDH) activity by a 

colorimetric assay kit (ab102526, Abcam, UK). Tissue viability was calculated as described 

(Schäfer et al. 2010). 

Data analysis was performed using GraphPAD PRISM (Version 6.00, 253 GraphPAD 

Software, San Diego, CA, USA). One-way analysis of variance followed by Tukey’s multiple 

comparisons test was used to compare endometrial explants viability, COL1A2, PGE2 and 

PGF2α results. Significance was defined as P < 0.05. 

 

1.4 Results 

Viability of explants after 1h, 24h and 48h incubation was 95.19±0.7%, 92.64±1.2% and 

88.17±2.75, respectively. Differences were found between 1h-48h and 24h-48h incubation (P 

< 0.0001). 

In FP, at 24h, ELA0.5 increased COL1A2 transcription (P < 0.001) comparing to control, 

while its inhibition (ELA0.5 + SIV) decreased it (P < 0.01). Also, SIV lowered COL1A2 

transcription with respect to ELA0.5 (P < 0.001; Fig. 1A). At 48h, ELA1 increased COL1A2 

transcription (P < 0.01) regarding control, which decreased when ELA1 was inhibited (ELA1 + 

SIV; P < 0.01). Again, sivelestat alone decreased gene transcription comparing to ELA1 (P < 

0.05; Fig. 1B). 

In MLP, ELA0.5 upregulated COL1A2 transcripts compared to control at 24h and 48h 

(P < 0.01), but ELA0.5 + SIV decreased them (P < 0.05). At 48h, incubation with ELA1 also 

increased COL1 transcription relative to control (P < 0.05; Fig. 1C, 1D). 
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Figure 1: Transcription of COL1A2 in mare endometrium in follicular-FP (n=8) and mid 

luteal–MLP (n=7) phases explants cultured for 24 or 48h with medium alone (Control), ELA 

(0.5µg/mL, 1µg/mL), sivelestat - ELA inhibitor (SIV, 10µg/mL), or ELA (0.5µg/mL, 1µg/mL) + SIV 

(10µg/mL). FP: A–24h; B–48h; MLP: C–24h; D–48h. All values are expressed as percentage of 

change from control (non-treated tissues). Bars represent mean ± SD. Significant differences 

relative to control are depicted by different superscripts (A: a-b, P < 0.001; B and C: a-b, P < 0.01; 

D: a-b, P < 0.001; a-c, P < 0.05). Asterisks indicate significant differences between treatments (*P 

< 0.05; **P < 0.01; ***P < 0.001).  

 

In FP, ELA0.5 increased PGF2α production comparing to control (P < 0.001) at 48h, but 

its inhibition (ELA0.5 + SIV) decreased it at 24 and 48h (P < 0.05). At 48h, ELA1 also increased 

PGF2α production (P < 0.001), with respect to control, but decreased with ELA1 + SIV 

incubation (P < 0.05). At 24h, PGE2 production raised with ELA0.5 + SIV related to control, to 

ELA0.5 (P < 0.01) and to SIV (P < 0.05). At 48h, ELA1 + SIV up-regulated PGE2 production 

versus control (P < 0.05; Fig. 2A, 2B, 3A, 3B). In MLP, while no differences were detected at 
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24h for PGE2 and PGF2α production, at 48h, ELA1 increased PGF2α comparing to control (P 

< 0.05), and a decrease in PGF2α was found when sivelestat was added (ELA1 + SIV; P < 

0.05). Also, at 48h, PGE2 dropped with ELA1 and SIV in respect to control (P < 0.05), but 

increased with ELA1 + SIV compared to ELA1 and SIV (P < 0.05; Fig. 2C, 2D, 3C, 3D). 

 

Figure 2: Production of PGF2α by mare endometrium in follicular-FP (n=8) and mid luteal–

MLP (n=7) phases explants cultured for 24 or 48h with medium alone (Control), ELA (0.5µg/mL, 

1µg/mL), sivelestat - ELA inhibitor (SIV, 10µg/mL), or ELA (0.5µg/mL,1µg/mL)+SIV (10µg/mL). FP: 

A–24h; B–48h; MLP: C–24h; D–48h. All values are expressed as percentage of change from 

control (non-treated tissues). Bars represent mean ± SD. Significant differences relative to 

control are depicted by different superscripts (B: a-b and a-c, P < 0.001; D: a-b, P < 0.05). 

Asterisks indicate significant differences between treatments (*P < 0.05; **P < 0.01; ***P < 0.001). 
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Figure 3: Production of PGE2 by mare endometrium in follicular-FP (n=8) and mid luteal–

MLP (n=7) phases explants cultured for 24 or 48h with medium alone (Control), ELA (0.5µg/mL, 

1µg/mL), sivelestat - ELA inhibitor (SIV, 10µg/mL), or ELA (0.5µg/mL, 1µg/mL)+SIV (10µg/mL). FP: 

A–24h; B–48h; MLP: C–24h; D–48h. All values are expressed as percentage of change from 

control (non-treated tissues). Bars represent mean ± SD. Significant differences relative to 

control are depicted by different superscripts (A: a-b and a-c, P < 0.01; B: a-b, P < 0.05; D: a-b 

and a-c  P < 0.05). Asterisks indicate significant differences between treatments (*P < 0.05; **P < 

0.01; ***P < 0.001).  
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1.5 Discussion 

In injured tissue, NETs persistence may lead to chronic inflammation, and ultimately to 

fibrosis by activation of myofibroblasts (Chrysanthopoulou et al. 2014). In mare endometrium, 

we have shown that ELA increased COL1 in vitro production (Rebordão et al. 2018), as 

referred in other studies in humans (O’Donoghue et al. 2013). In our present and previous 

studies, endometrial explants challenged with ELA, showed increased COL1A2 transcription, 

both in FP and MLP. Also in lung fibrosis in humans, ELA promoted myofibroblast 

differentiation (Gregory et al. 2015). Our present data suggest that inhibition of ELA resulted 

in a reduction of COL1A2 transcripts in both phases of the estrous cycle. Likewise, in a 

bleomycin-induced pulmonary fibrosis model in mice, with increased neutrophil ELA levels, 

sivelestat also inhibited fibrotic changes and inflammatory cell count including neutrophils 

(Takemasa et al. 2012). 

The pro-fibrotic role ascribed to PGF2α in lung (Olman et al. 2009), and in mare 

endometrium (Rebordão et al. 2016) was also detected in the present work. In FP, this effect 

was reduced by sivelestat, which was able to inhibit both COL1A2 transcription and pro-fibrotic 

PGF2α production.  However, in MLP a similar result was only detected at 48h incubation. 

 In lungs, an anti-fibrotic effect of PGE2 has been described (Bozyk and Moore 2011), 

as well as in mare endometrium (Rebordão et al. 2016). Sivelestat increased PGE2 and 

lowered COL1A2 transcripts in FP endometrium. Our results suggest that by inhibiting ELA, 

mare endometrial fibrosis may be impaired, likely mediated by PG production. Actually, it is in 

the FP, when the mare is in estrus and breeding occurs that the endometrium is more prone 

for neutrophil infiltration, endometritis establishment and subsequent NETs formation. 

Therefore, the action of sivelestat might be a putative therapeutic means to fight 

endometritis/endometrosis. However, further studies should be carried out to better elucidate 

the role of sivelestat on fibrosis treatment. 
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2. The in vitro inhibitory effect of sivelestat on elastase induced 
collagen and metallopeptidase expression in equine endometrium 

 

Adapted from: 

 

Amaral A, Fernandes C, Rebordão MR, Szóstek-Mioduchowska A, Lukasik K, 

Gawronska-Kozak B, Telo da Gama L, Skarzynski DJ, Ferreira-Dias G. 2020. The In Vitro 

Inhibitory Effect of Sivelestat on Elastase Induced Collagen and Metallopeptidase Expression 

in Equine Endometrium. Animals. 10(5):863. doi:10.3390/ani10050863. 

 

2.1 Abstract 

Neutrophil extracellular traps (NETs) fight endometritis, and elastase (ELA), a protease 

found in NETs, might induce collagen type I (COL1) accumulation in equine endometrium. 

Metallopeptidases (MMPs) are involved in extracellular matrix balance. The aim was to 

evaluate the effects of ELA and sivelestat (selective elastase inhibitor) on MMP-2 and MMP-9 

expression and gelatinolytic activity, as well as the potential inhibitory effect of sivelestat on 

ELA-induced COL1 in equine endometrium. Endometrial explants from follicular (FP) and mid-

luteal (MLP) phases were treated for 24 or 48 h with ELA, sivelestat, and their combination. 

Transcripts of COL1A2, MMP2, and MMP9 were evaluated by qPCR; COL1 protein relative 

abundance by Western blot, and MMP-2 and MMP-9 gelatinolytic activity by zymography. In 

response to ELA treatment, there was an increase in MMP2 mRNA transcription (24 h) in 

active MMP-2 (48 h), both in FP, and in MMP9 transcripts in FP (48 h) and MLP (24 h) (P < 

0.05). Sivelestat inhibited ELA-induced COL1A2 transcripts in FP (24 h) and MLP (24 h, 48 h) 

(P < 0.05). The sivelestat inhibitory effect was detected in MMP9 transcripts in FP at 48 h (P < 

0.05), but protease activity was unchanged. Thus, MMP-2 and MMP-9 might be implicated in 

endometrium fibrotic response to ELA. In mare endometrium, sivelestat may decrease ELA-

induced COL1 deposition and hinder endometrosis development. 

 

 

 

Keywords: endometrosis, mare, elastase, sivelestat, collagen, metallopeptidases, 

endometrium, neutrophil extracellular traps (NETs) 
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2.2 Introduction 

After breeding, mares develop a transient physiological endometritis, which resolves 

shortly in healthy uteri. The semen-induced uterine inflammation is characterized by a fast 

arrival of neutrophils into the uterine lumen (Kotilainen et al. 1994; Katila 1995). The influx of 

inflammatory cells in the mare’s uterus empowers the inflammatory reaction, resulting in the 

removal of unnecessary spermatozoa, contaminating bacteria, and debris (Troedsson et al. 

1993; Troedsson 2006). In addition, active neutrophils at the inflammation site also release 

their DNA and cytoplasm proteins to the extracellular environment, such as histones, and 

enzymes as elastase (ELA), cathepsin G (CAT), and myeloperoxidase (MPO), forming 

neutrophil extracellular traps (NETs) (Brinkmann 2004; Jorch and Kubes 2017). Equine 

neutrophils produce NETs in the mare endometrium in the presence of Escherichia coli and 

Streptococcus equi subspecies zooepidemicus (Rebordão et al. 2014), or in contact with 

equine semen (Alghamdi and Foster 2005; Alghamdi et al. 2009). However, the enzymes 

found in NETs might also induce a pro-fibrotic response in the endometrium of mares 

susceptible to chronic endometritis (endometrosis), characterized by the accumulation of 

collagen type I (COL1), which may link these enzymes to endometrosis pathogenesis 

(Rebordão et al. 2018; Amaral et al. 2018). 

After tissue injury, for extracellular matrix (ECM) reorganization, and especially in the 

presence of continuous stimuli, the parenchymal tissue is replaced by connective tissue 

components, such as interstitial COL1 (Wynn 2007). If the balance between ECM synthesis 

and degradation fails, it leads to fibrosis and to an increase in ECM components deposition 

and/or a reduction of its degradation. Metallopeptidases (MMPs) are proteases involved in 

ECM balance maintenance. Among them, MMP-2 and MMP-9 are enzymes that denature 

collagens (gelatins) and other ECM substrates (Vandooren et al. 2013). However, it has been 

documented that MMPs can have both stimulatory or inhibitory effects in fibrosis and can act 

differently among organs (Giannandrea and Parks 2014). MMP-2 and MMP-9 are also related 

to the migration of fibrocytes in idiopathic pulmonary fibrosis (Pardo et al. 2016), as well as to 

myofibroblast activation in vascular fibrosis (Harvey et al. 2016). In the liver and kidney, MMP-

2 appears to have an anti-fibrotic effect and MMP-9 has a pro-fibrotic role (Giannandrea and 

Parks 2014). In fact, in the early stages of fibrosis in hepatic tissue, MMP-9 is capable of 

activating the TGFβ1 pathway, while in the later stages of established fibrosis MMP-2 reduced 

COL1 relative abundance (Duarte et al. 2015). It has also been suggested that, in pulmonary 

fibrosis, MMP-9 is linked to inflammatory-induced tissue remodeling, while MMP-2 may be 

associated with impaired tissue remodeling, leading to abnormal collagen deposition and 

interstitial fibrosis (Wang et al. 2011). Our studies showed that the endometrial expression of 

MMPs and their tissue inhibitors (TIMPs) is altered at the different stages of endometrosis, and 

in response to interleukins (Szóstek-Mioduchowska et al. 2019b, 2020a). 
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Elastase is a serine protease that has been reported to be increased in neutrophils 

retrieved from the sputum of cystic fibrosis patients (Dittrich et al. 2018), and to induce in vitro 

lung fibroblast proliferation and myofibroblast differentiation (Gregory et al. 2015). Recently, 

we have found that ELA induced COL1A2 mRNA transcripts (Rebordão et al. 2018; Amaral et 

al. 2018) and COL1 relative abundance (Rebordão et al. 2018) in equine endometrium 

explants, suggesting ELA´s involvement in the development of equine endometrosis. 

The use of sivelestat sodium salt (SIV), which is a selective inhibitor of ELA retrieved 

from neutrophils, has shown beneficial effects on fibrosis impairment, either during in vitro 

studies or in clinical trials. Sivelestat has been reported to reduce pulmonary deposition of COL 

and fibrosis in mice (Takemasa et al. 2012), and to diminish the in vitro COL1A2 transcription 

in equine endometrium (Amaral et al. 2018). In addition, SIV administration in human patients 

with acute lung injury has improved their clinical condition and prognosis (Aikawa et al. 2011; 

Kido et al. 2016). Altogether, the inhibition of the pro-fibrotic effects of ELA by SIV in several 

fibrotic diseases in a number species substantiate the use of SIV as a potential therapeutic 

approach for equine endometrosis. Therefore, the rationale for this study was to evaluate 

whether COL1 production could be restrained when mare endometrium was challenged by the 

protease ELA found in NETs. Thus, the aim of this in vitro study was to evaluate the inhibitory 

effect of SIV on ELA induced COL1 protein relative abundance in equine endometrial explants, 

and the effect of ELA and SIV on the expression and activity of MMP-2 and MMP-9. 

 

2.3 Materials and Methods 

2.3.1 Animals and Tissue Collection 

The mares used in the present study were healthy, as determined by official veterinary 

inspection, and presented ovarian cyclicity. These mares were used for meat production for 

human consumption. They were handled and euthanized at horse abattoirs in Poland, 

according to the European (EFSA, AHAW/04–027) mandates. From April 2017 to September 

2018, uteri were retrieved post-mortem from follicular phase (FP; n = 8) and mid-luteal phase 

(MLP; n = 7) mares. Prior to euthanasia, peripheral blood samples from the jugular vein were 

collected into heparinized tubes (Monovettes, Sardtedt, Numbrecht, Germany). Progesterone 

(P4) plasma concentrations were further determined to confirm the phase of the estrous cycle, 

firstly based on ovarian structures evaluation immediately after slaughter, as previously 

described (Roberto da Costa et al. 2007). Briefly, presence of a follicle >35 mm diameter, 

absence of an active corpus luteum (CL), and plasma P4 concentration <1 ng/mL were 

characteristic of mares in the FP. In contrast, in the MLP, a well-developed CL was associated 

with follicles between 15 and 20 mm diameter and a plasma P4 concentration >6 ng/mL 

(Roberto da Costa et al. 2007). The uteri were immersed in ice-cold Dulbecco’s modified 

Eagle’s medium (DMEM) F-12 Ham medium (D/F medium; 1:1 (v/v); D-2960; Sigma, St Louis, 
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MO, USA), supplemented with 100 µg/mL streptomycin (S9137; Sigma), 100 IU/mL penicillin 

(P3032; Sigma), and 2 µg /mL amphotericin (A2942; Sigma). After collection, uteri and blood 

were transported on ice to the laboratory, within 1 h. All the collected uteri were confirmed for 

the absence of endometritis, as previously described Rebordão et al. 2018, 2019). 

 

2.3.2 In Vitro Endometrial Explant Culture 

The uteri were washed in phosphate-buffered saline (PBS) with 100 µg/mL 

streptomycin (S9137; Sigma) and 100 IU/mL penicillin (P3032; Sigma), and the ipsilateral horn 

to the active ovary was open and strips of endometrium were detached from myometrium using 

scissors. Two endometrial samples were immersed in 4% buffered formaldehyde for 

histological evaluation and endometrial classification. Endometria were histologically graded 

according to Kenney and Doig´s classification (Kenney and Doig 1986), based on the extent 

of inflammation and/or fibrosis, as category I, IIA, IIB, or III, corresponding to minimum, mild, 

moderate, or severe lesions of endometrial fibrosis, respectively. In order to group and 

normalize the samples, only mare endometria classified as grade IIA or IIB were considered 

in this study. Thereby, the variation due to endometrium category was excluded from this 

experiment. 

The endometrial strips were placed in phosphate-buffered saline (PBS) with 100 µg/mL 

streptomycin (S9137; Sigma) and 100 IU/mL penicillin (P3032; Sigma) in a petri dish on ice. 

Endometrial explants (20–30 mg/well) from FP or MLP were placed in 1 mL of DMEM culture 

medium supplemented with 0.1% (w/v) bovine serum albumin (BSA; 735078; Roche 

Diagnostics, Mannheim, Germany), 100 µg/mL streptomycin (S9137; Sigma), 100 IU/mL 

penicillin (P3032; Sigma), and 2 µg /mL amphotericin (A2942; Sigma), in a single well in a 24-

well sterile cell culture plate (Eppendorf, #0030 722.116) for 1 h, at 37 °C, 5% CO2 in a 

humidified atmosphere (Biosafe Eco-Integra Biosciences, Chur, Switzerland) with gentle 

shaking (150 rpm), as described (Rebordão et al. 2018). After 1 h treatment, the culture 

medium was replaced, and explants were further treated for 24 h or 48 h, as follows: (i) vehicle 

(control)—culture medium alone; (ii) elastase (ELA; 0.5 µg/mL; A6959, Applichem GmbH, 

Germany); (iii) ELA inhibitor: sivelestat sodium salt (SIV; 10 µg/mL; sc-361359; Santa Cruz 

Biotechnology, USA); (iv) ELA (0.5 µg/mL) + SIV (10 µg/mL); (v) transforming growth factor 

beta β1 (TGFβ1; 10 ng/mL; GF111; Merck, Darmstadt, Germany), used as a positive control 

for the assessment of fibrogenic capacity on endometrial explants, as established before 

(Rebordão et al. 2018; Szóstek-Mioduchowska et al. 2019a); or (vi) oxytocin (OXT; 10−7 M), a 

positive control for prostaglandin (PG) secretion - validation of proper secretory function of 

endometrial explants in long-term culture (Nash et al. 2008; Szóstek et al. 2013). The ELA 

inhibitor (SIV) was added at the time of culture medium replacement, while proteases present 

in NETs were only added 1 h later, to give the inhibitor time to bind. Each treatment was applied 
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in quadruplicate. After incubation, explants were placed in RNAlater® (R901, Sigma) at 4 °C, 

overnight. Explants and conditioned culture media were stored at −80 °C. The culture media 

for PG determination was collected into a 1% stabilizer solution of 0.3 M 

ethylenediaminetetraacetic acid (EDTA; E5134, Sigma) and 1% aspirin (A2093; Sigma) to 

prevent PG degradation. 

The ELA dose-response assessment was based on a previous study where 0.5 µg/mL 

proved to induce the release of TGFβ1, a fibrotic marker, and production of COL1 in equine 

endometrial explants (Rebordão et al. 2018). In addition, the concentration of ELA used is 

within the range of the concentrations found in physiological and inflammatory processes and 

has been used in other in vitro assays (Voynow et al. 2008). In order to determine the most 

adequate concentration of SIV, a dose-response trial was carried out based on previous in 

vitro studies that used SIV (0.01, 0.1, 1, 10, and 100 µg/mL) (Misumi et al. 2006; Amaral et al. 

2018). In the preliminary work, 10 µg/mL was the optimal concentration of SIV, which was able 

to inhibit ELA by reducing COL1A2 transcripts in mare endometrium (Amaral et al. 2018). This 

SIV concentration provoked an inhibitory effect on COL1A2 transcription that remained for 24 

h, but after the 48 h treatment, this effect was reduced. Therefore, 10 µg/mL of SIV was added 

again to the culture medium at the end of the 24 h treatment, with explants undergoing a total 

of 48 h of treatment. 

 

2.3.3 Viability of Endometrial Explants 

The viability of endometrial samples was determined based on PG secretion in 

conditioned culture medium and on lactate dehydrogenase (LDH) activity. Prostaglandin F2α in 

culture medium was determined by an enzyme immunoassay kit (PGF2α ELISA kit - ADI-901-

069, Enzo), according to the manufacturer’s instructions. The standard curve ranged from 3 to 

50,000 pg/mL and the intra-and inter-assay coefficients of variance (CVs) were 5.9% and 

4.3%, respectively. The outputs of PGF2α were used to check the secretory capacity of the 

non-treated and OXT-treated tissues, suggesting that the endometrial explants contain 

functional cells (Nash et al. 2008; Szóstek et al. 2013). The LDH activity was assessed by a 

colorimetric assay kit (ab102526, Abcam, UK) according to the manufacturer’s procedures. 

The enzyme LDH converts pyruvate into lactate with concomitant inter-conversion of NADH, 

whose concentration was measured. Extracellular LDH activity was measured in explant 

conditioned culture media (1 h, 24 h, and 48 h incubation) after a 1:100 dilution in the kit assay 

buffer. For the measurement of intracellular LDH, 10 mg of the incubated explants (1 h, 24 h, 

and 48 h) was homogenized using a disruptor (TissueLyser II; Qiagen, Madrid, Spain) in 250 

µL kit assay buffer and diluted 1:200 times in the same buffer. The LDH activity was read 

spectrophotometrically (FLUOstar OPTIMA Microplate Reader; BMG Labtech; Ortenberg; 

Germany) in a kinetic mode at 450 nm wavelength, at 37 °C, for 1 h. Since the point at which 
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the cell membrane is damaged, and LDH is released to the extracellular environment, explant 

viability was calculated from the quotient of the intracellular LDH activity and the total activity 

(extracellular plus intracellular LDH) (Schäfer et al. 2010). 

 

2.3.4 Quantitative Real-Time Polymerase Chain Reaction (qPCR) 

Total RNA was extracted using TRI Reagent® (T9424; Sigma) according to the 

manufacturer’s instructions. The quantification of RNA was performed using the Nanodrop 

system (ND 200C; Fisher Scientific, Hamton, PA, USA) and its quality was assessed by 

visualization of 28S and 18S rRNA bands after electrophoresis through a 1.5% agarose gel 

and red staining (41,003; Biotium, Hayward, CA, USA). Reverse transcription was carried out 

with M-MLV reverse transcriptase enzyme (M5313; Promega; Madison, USA) from 1000 ng 

total RNA in a 20 µL reaction volume using oligo(dT) primer (C1101; Promega). 

Specific primers for COL1A2, MMP2, MMP9, and the reference gene ribosomal protein 

L32 (RPL32) were previously designed by us using Primer3 Software and Primer Express 

(Applied Biosystems, Foster City, CA, USA) (Rebordão et al. 2018). The primers used are 

listed in Table 3. The genes glyceraldehyde 3-phosphate dehydrogenase (GAPDH), succinate 

dehydrogenase A complex, subunit A, flavoprotein (SDHA), beta-2-microglobulin (B2M), and 

RPL32 were tested to determine which should be used as reference gene. In PCRs with 

efficiencies approaching 100%, the amount of internal reference gene relative to a calibrator 

(fold change between two Ct values) is given by the following equation: Fold difference = 2−ΔCt. 

At a reaction efficiency of 100%, one cycle (expressed as Ct in qPCR) corresponds to a twofold 

change (Dheda et al. 2004). As RPL32 was the most stable internal control gene in our 

experimental conditions (less than twofold changes between different biological conditions) 

(Dheda et al. 2004), it was used as the reference gene throughout the study. 

After primer concentrations optimization in a StepOnePlus™ Real-Time PCR System 

(Applied Biosystems, Warrington, UK), target and reference genes were run simultaneously, 

and all the reactions were performed in duplicate on a 96-well plate (4306737; Applied 

Biosystems). Products of PCR were run on a 2.5% agarose gel to confirm specificity, and 

relative mRNA data were quantified as described (Zhao and Fernald 2005; Rebordão et al. 

2018).  
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Table 3: Primers used in quantitative real-time polymerase chain reaction (qPCR) in 

experimental work 2. 

Gene 

(Accession Number) 
Sequence 5′-3′ Amplicon 

COL1A2 

(XM_001492939.3) 

Forward: CAAGGGCATTAGGGGACACA 
196 

Reverse: ACCCACACTTCCATCGCTTC 

MMP2 

(XM_001493281.2) 

Forward: TCCCACTTTGATGACGACGA 
115 

Reverse: TTGCCGTTGAAGAGGAAAGG 

MMP9 

(NM_001111302.1) 

Forward: GCGGTAAGGTGCTGCTGTTC 
177 

Reverse: GAAGCGGTCCTGGGAGAAGT 

RPL32 

(XM_001492042.6) 

Forward: AGCCATCTACTCGGCGTCA 
144 

Reverse: GTCAATGCCTCTGGGTTTCC 

COL1A2—collagen type 1 α2; MMP2—matrix metallopeptidase 2; MMP9—matrix metallopeptidase 9; 

RPL32—ribosomal protein L32. 

 

2.3.5 Western Blot Analysis 

Relative protein abundance of COL1 was assessed by Western blot using a stain-free 

total protein loading control. The tryptophan present in proteins produces an ultraviolet (UV) 

reaction with trihalo compounds present in 2,2,2-trichloroethanol (TCE; 808610; Merck) used 

to stain acrylamide gels, which can be visualized as a fluorescent signal in a transilluminator 

(Ladner et al. 2004; Gilda and Gomes 2013). Endometrial explants were minced and placed 

on ice-cold RIPA buffer (50 mM Tris-HCl, pH 7.4, 50 mM EDTA, 150 mM NaCl, and 1% Triton 

X-100) supplemented with a protease inhibitor (cOmplete Mini Protease Inhibitor Cocktail 

Tablets, 1 tablet per 10 mL of buffer; Roche, Basel, Switzerland) and briefly disrupted 

(TissueLyser II, Qiagen). After protein extraction, Bradford reagent (500-0006; Bio-Rad, 

Hercules, CA, USA) was used for determination of protein concentration. Afterwards, 30 µg of 

protein in 2× Laemmli Loading Buffer (62.5 mM Tris-HCl, pH 6.8 containing 2% SDS, 25% 

glycerol, 0.01% bromophenol blue) was prepared. Then, the reducing agent dithiothreitol 

(DTT) was added fresh to obtain a final concentration of 50 mM. Denaturation of proteins was 

accomplished by heating at 95 °C for 5 min and then cooling on ice for 10 min. The samples 

were loaded on an 8% acrylamide gel (MB04501; Nzytech, Lisbon, Portugal) with 0.5% (v/v) 

TCE incorporated in gel (Ladner et al. 2004) using a Mini-PROTEAN® Vertical Tetra Cell 

system (Bio-Rad). Just before transfer to a nitrocellulose membrane (GE10600001; 

Amersham™ Protran® Western blotting membranes, nitrocellulose pore size 0.2 μm, roll W × 

L 300 mm × 4 m; GE Healthcare; Chicago, IL, USA), the gels were exposed for 1 min to UV 

light at ChemiDoc XRS + System (Bio-Rad). After transfer (Mini-Trans® Blot, Bio-Rad), the 

membranes were also exposed for 1 min to UV light to obtain the final image to use in the 

normalization channel. An image of gels after transfer was also kept, ensuring that the transfer 
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occurred effectively. The membranes were incubated overnight, at 4 °C with the primary 

antibody against COL1 (1:1000 diluted; 20121; Novotec, Lyon, France), as previously 

described and validated (Rebordão et al. 2018). Afterwards, the membranes were incubated 

with the secondary antibody horseradish peroxidase (HRP)-conjugated anti-rabbit (1:20,000 

diluted; P0448; DakoCytomation, Carpinteria, CA, USA) for 1.5 h at room temperature. The 

COL1 protein relative abundance was visualized using luminol enhanced chemiluminescence 

(Super Signal West Pico, 34077; Thermo Scientific, Waltham, MA, USA) and image acquisition 

was performed by ChemiDoc XRS + System (Bio-Rad). A standard sample (30 µg) of mixed 

endometrial explants was loaded in all gels in a single lane, in order to normalize all bands in 

the same membrane and to compare bands between membranes. Relative abundance of 

COL1 protein was analyzed using Image Lab 6.0 (Bio-Rad) software and by creating a 

multichannel protocol, which allowed the lanes’ detection in stain-free total protein membrane 

image and bands’ detection on chemiluminescence image after incubation with the antibodies. 

The software calculated the normalization factor and volume of target protein, and the values 

were adjusted for variation in the protein load (Posch et al. 2013). The use of a protein loading 

control has been questioned owing to its possible instability in certain samples (Gilda and 

Gomes 2013), variations ascribed to experimental conditions, and the saturation of the 

chemiluminescent signal from the loading control proteins (Comajoan et al. 2018). Some 

studies refer to these proteins as not being suitable as a loading control (Gilda and Gomes 

2013; Comajoan et al. 2018). Therefore, a better solution is to use a stain-free total protein 

loading control as it measures the real amount of protein loaded and considers the real 

differences among samples (Posch et al. 2013). In our preliminary studies, using equine 

endometrial tissue, this blot normalization technique was shown to produce cleaner images 

providing an improving normalization (data not shown). 

 

2.3.6 Zymography 

The most simple, sensitive, and effective method to analyze MMPs is zymography. It 

allows the proteins to separate by electrophoresis under denaturing and non-reducing 

conditions in a polyacrylamide gel containing gelatin to detect proteases, namely gelatinases 

MMP-2 and MMP-9, which degrade gelatin. As in Western blot analysis, zymography 

normalization was done using a stain-free total protein loading control. The protein content of 

culture medium supernatant from the explants cultured was measured using the Bradford 

method. The general protocol followed was previously described (Manuel and Gawronska-

Kozak 2006). Thus, 40 µg of protein in 2× sample buffer (62.5 mM Tris-HCl pH 6.8, 25% 

glycerol, 4% SDS, and 0.01% bromophenol blue) was loaded, without heating or reduction, to 

an 8% polyacrylamide gel (MB04501; Nzytech) containing 0.1% gelatin and 0.1% SDS. To 

verify MMPs’ molecular weight, MMP-2 and MMP-9 standards were loaded (Recombinant 
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Human MMP2 Protein, CF -902-MP-010 and Recombinant Human MMP-9 Western Blot 

Standard Protein—WBC018; R&D Systems, Minneapolis, MN, USA) in all gels. SDS-PAGE 

electrophoresis was conducted in Mini-PROTEAN® Vertical Tetra Cell system (Bio-Rad). The 

gels were then washed with 2.5% Triton X-100 for 40 min and incubated in the development 

solution (50 mM Tris–HCl buffer pH 7.5, 200 mM NaCl, 0.02% Triton X-100, and 5 mM CaCl2) 

for 16 h at 37°C. After that, gels were incubated in 10% (v/v) TCE in a 1:1 methanol/water 

mixture for 10 min. As TCE can inhibit gelatinases activity, it should not be incorporated in gels 

(Raykin et al. 2017). Thus, gels were exposed for 5 min to UV light at ChemiDoc XRS + System 

(Bio-Rad), and then washed in distilled water to remove the TCE solution before staining (50% 

methanol, 10% acetic acid, and 0.1% Coomassie brilliant blue) for 30 min, and destained in 

the same solution in the absence of dye, until clear bands were visible. In a way to normalize 

all lanes and bands in the same gel and compare each gel with all the gels obtained in the 

experiment, a standard sample (40 µg) of mixed culture medium was loaded in all gels in a 

single lane. Image Lab 6.0 (Bio-Rad) software was used to analyze MMP-2 and MMP-9 by 

creating a multichannel protocol, which enabled lane detection in stain-free total protein gel 

image, and band detection on Coomassie staining image. The software calculated the 

normalization factor and volume of target protein, and the values were adjusted for variation in 

the protein load. The use of a stain-free total protein normalization and Coomassie staining is 

a better way to normalize and overcome variations on the protein loaded in each sample. 

Besides, this normalization method avoids variations between different experimental 

conditions and between gels (Raykin et al. 2017).  

 

2.3.7 Statistical Analysis 

Statistical analysis of the viability data and TGFβ1 fibrogenic assay was performed 

using GraphPAD PRISM (Version 6.00, 253 GraphPAD Software, San Diego, CA, USA). One-

way analysis of variance (ANOVA) followed by Tukey’s multiple comparisons test was used to 

compare endometrial explants viability (PGF2α concentration and LDH activity assay), and the 

effect of TGFβ1 treatment. These data are shown as mean ± SEM and the results were 

considered significant at P < 0.05. 

The response variables evaluated in the experimental work were COL1A2, MMP2, and 

MMP9 transcription measured by qPCR; COL1 protein relative abundance by Western blot; as 

well as MMP-2 and MMP-9 activity evaluated by zymography in both pro- and active forms. 

Compliance with normality after various transformations was assessed visually and using the 

Kolmogorov–Smirnov test in Proc Univariate function of SAS v. 9.4 (SAS Institute Inc., Cary, 

NC, USA). As many of these variables did not have a normal distribution, the square root and 

logarithmic transformation were tested, and the best transformation for a given variable was 

chosen for further analysis. In a preliminary analysis, each transformed response variable was 
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analyzed with the PROC GLM of SAS, as a function of the various treatments that resulted 

from the combination of the use of ELA, use of SIV, estrous cycle phase, and time of treatment, 

for a total of 16 treatment combinations. The least squares means for the various treatment 

combinations were compared with the PDIFF option of PROC GLM, assuming P < 0.05 as the 

threshold of significance, and the means were back transformed to the original scale for 

graphical presentation. In a second analysis, the factorial nature of the treatment combinations 

was evaluated, by considering the main effects of the factors above plus their two-, three-, and 

four-way interactions, allowing the comparison of specific treatment combinations. The results 

of COL1 relative abundance protein, COL1A2, MMP2, and MMP9 mRNA are shown as median 

with interquartile range. The MMP-2 and MMP-9 gelatinolytic activity results are shown as least 

square means ± SEM. The graphs were performed using GraphPAD PRISM. Back-

transformed SEM are presented as 95% confidence interval. 

 

2.4 Results 

2.4.1 Validation of the Viability of Long-Term Endometrial Explant 
Culture 

A preliminary experiment aimed to verify whether COL1 increases when the 

endometrial explants are exposed to TGFβ1, a fibrogenic agent. Treatment with TGFβ1 

increased COL1A2 transcription at both phases and times of treatment (FP: 24 h - P < 0.0001, 

48 h - P < 0.001; MLP: 24 h - P < 0.05, 48 h - P < 0.01; Table 4), and augmented COL1 protein 

relative abundance in FP at 24 h (P < 0.001) and MLP at 24 and 48 h (P < 0.001; Table 4). 

 

Table 4: The effect of transforming growth factor beta β1 (TGFβ1) (10 ng/mL) on COL1A2 

mRNA transcription and COL1 protein relative abundance in follicular phase (FP) and mid-luteal 

phase (MLP) equine endometrial explants treated for 24 h or 48 h, relative to control (non-treated 

explants). Results are presented as fold-change means ± SEM. Different superscript letters 

indicate statistical differences between respective columns (within estrous cycle phases and 

times of treatment). 

Estrous Cycle 
Phase 

FP MLP 

Time of 
Treatment  

24 h 48 h 24 h 48 h 

Treatment Control 
TGFβ1 

(10 
ng/mL) 

Control 
TGFβ1 

(10 
ng/mL) 

Control 
TGFβ1 

(10 
ng/mL) 

Control 
TGFβ1 

(10 
ng/mL) 

COL1A2 
transcription 
(fold increase) 

0.66 ± 
0.06 a 

0.97 ± 
0.04 b 

1.02 ± 
0.86 a 

1.82 ± 
0.25 b 

1.00 ± 
0.24 a 

2.75 ± 
0.47 b 

1.00 ± 
0.24 a 

3.86 ± 
0.48 b 

COL1 protein 
(fold increase) 

1.34 ± 
0.05 a 

1.93 ± 
0.12 b 

1.37 ± 
0.05 a 

1.33 ± 
0.05 a 

0.71 ± 
0.54 a 

1.06 ± 
0.01 b 

0.58 ± 
0.02 a 

0.87 ± 
0.004 b 
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The viability of endometrial explants determined by LDH activity after 1 h, 24 h, or 48 h 

incubation is listed in Table 3. Differences were found between 1 h and 48 h, and between 24 

h and 48 h incubation (P < 0.001; Table 5). The results were independent of estrous cycle 

phase. 

 

Table 5: Lactate dehydrogenase (LDH) activity measured in conditioned culture medium 

of equine endometrial explants after 1 h, 24 h, or 48 h incubation. Explants’ viability was 

calculated from the quotient of the intracellular LDH activity and the total activity (extracellular 

plus intracellular LDH). Results are presented as means ± SEM. Different superscript letters 

indicate statistical differences within time of incubation. 

Time of Incubation LDH Activity (%) 

1 h 94.3 ± 0.9 a 

24 h 92.6 ± 0.5 a 

48 h 89.0 ± 0.6 b 

 

In addition, PGF2α secretion by endometrial explants after treatment with OXT 

increased compared with non-treated tissues at 24 h (p > 0.01) and 48 h (p > 0.05; Table 6). 

These results were independent of estrous cycle phase. 

 

Table 6: The effect of oxytocin (OXT) on prostaglandin (PG) F2α secretion in equine 

endometrial explants after 24 h or 48 h. Results are presented as means ± SEM. Different 

superscript letters indicate statistical differences within the different time of treatment. 

Time of Treatment  24 h 48 h 

Treatment Control OXT (10−7 M) Control OXT (10−7 M) 

PGF2α secretion (ng/mg) 7.3 ± 0.8 a 16.0 ± 1.3 b 7.6 ± 0.9 a 14.0 ± 3.2 b 

 

There were significant interactions between treatments, time of treatment, and estrous 

cycle phase. All data are shown in Table 7. 
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Table 7: Levels of significance (P values) for 2- and 3-way interactions between estrous 

cycle phases, treatment time, and elastase (ELA) or sivelestat (SIV) treatments in the analyses 

of relative transcript of target genes, COL1 protein relative abundance and gelatinolytic activity 

of MMP-2 and -9. The results were considered significant at P < 0.05 and are highlighted in yellow 

color. 

Interaction COL1A2 COL1 MMP2 
Pro-

MMP-2 
Active 
MMP-2 

MMP9 
Pro-

MMP-9 
Active 
MMP-9 

ELA x SIV <0.0001 0.4035 0.1016 0.735 0.7368 0.0002 0.544 0.0728 

ELA x treatment 
time 

0.2078 0.6172 0.6266 0.0345 0.6855 0.8901 0.5405  

ELA x estrous 
cycle phase 

0.9161 0.5926 0.1627 0.1991 0.4638 0.0342 0.8451 0.7948 

SIV x treatment 
time 

0.9928 0.2083 0.7208 0.449 0.7423 0.1817 0.4907  

SIV x estrous 
cycle phase 

0.1506 0.2031 0.8992 0.0967 0.4069 0.0063 0.6047 0.1537 

Time of 
treatment x 
estrous cycle 
phase 

0.037 0.0121 0.0144 0.0646 0.0005 0.1068 0.891  

ELA x SIV x 
treatment time 

0.2803 0.1868 0.8579 0.1713 0.5834 0.4412 0.9695  

ELA x SIV x 
estrous cycle 
phase 

0.0056 0.7039 0.7636 0.7116 0.4531 0.225 0.3224 0.5971 

ELA x treatment 
time x estrous 
cycle phase 

0.2111 0.8787 0.3928 0.1144 0.072 0.1472 0.7899  

SIV x treatment 
time x estrous 
cycle phase 

0.4026 0.02 0.0998 0.1949 0.8512 0.6236 0.9003  

COL1A2 - collagen type 1 α2; COL1 – collagen type I protein; MMP2 - matrix metallopeptidase 2; MMP9 

- matrix metallopeptidase 9. 

 

The differences found between estrous cycle phases (FP vs. MLP) within each 

treatment and treatment time are listed in Table 8.  
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Table 8: Listed significant differences of the same treatments between the follicular 

phase (FP) and mid-luteal phase (MLP) of the estrous cycle, within each treatment time. 

Evaluated Variables Treatment Comparisons P Value Figures 

COL1A2 transcription ELA 48h FP vs ELA 48 h MLP P < 0.001 4A, 4B 

COL1 protein relative 
abundance  

SIV 48h FP vs SIV 48 h MLP P < 0.05 

4C, 4D ELA + SIV 48 h FP vs ELA + SIV 48 h 
MLP 

P < 0.001 

MMP2 transcription  
ELA + SIV 24 h FP vs ELA + SIV 24 h 
MLP 

P < 0.05 6A, 6B 

MMP9 transcription 

SIV 24 h FP vs SIV 24 h MLP P < 0.01 

6C, 6D 

SIV 48 h FP vs SIV 48 h MLP P < 0.01 

ELA 24 h FP vs ELA 24 h MLP P < 0.0001 

ELA + SIV 24 h FP vs ELA + SIV 24 h 
MLP 

P < 0.0001 

ELA + SIV 48 h FP vs ELA + SIV 48 h 
MLP 

P < 0.01 

Pro-MMP-2 activity 

ELA 48 h FP vs ELA 48 h MLP P < 0.001 

7A, 7B ELA + SIV 48 h FP vs ELA + SIV 48 h 
MLP 

P < 0.05 

Active MMP-2 activity ELA 48 h FP vs ELA 48 h MLP P < 0.001 7A, 7B 

COL1A2 - collagen type 1 α2; COL 1 – collagen type I; MMP2 - matrix metallopeptidase 2; MMP9 - matrix 

metallopeptidase 9; ELA – elastase; SIV – sivelestat sodium salt; FP – follicular phase; MLP – mid-luteal phase. 

 

2.4.2 Inhibitory Effect of Sivelestat on ELA-Induced COL1 

Endometrial explants treated with ELA increased COL1A2 mRNA transcription in FP 

after 24 h (P < 0.0001; Figure 4A), and in MLP after 24 h (P < 0.01; Figure 4B) and 48 h (P < 

0.0001; Figure 4B), compared with the respective control group. However, the combination of 

ELA and SIV reduced COL1A2 mRNA, when related to the respective ELA-treated group (FP 

24 h: P < 0.01; MLP 24 h: P < 0.05; MLP 48 h: P < 0.001; Figure 4A, B). In ELA-treated 

explants, COL1A2 transcripts also increased when compared with the SIV-treated group in FP 

at 24 h (P < 0.0001, Figure 4A), and in MLP at 48 h (P < 0.01; Figure 4B). In addition, in FP 

endometrium treated with ELA for 48 h, COL1 protein relative abundance increased when 

compared with the SIV-treated group and ELA + SIV-treated group (P < 0.01; Figure 4C; 5).  



 
 

59 
 

 

Figure 4: Relative collagen type I (COL1A2) mRNA transcription (A, B) and protein (COL1) 

relative abundance (C, D) in follicular phase (FP) and mid-luteal phase (MLP) mare endometrial 

explants treated for 24 or 48 h with medium alone (control), elastase (ELA: 0.5 μg/mL), sivelestat 

(SIV: 10 μg/mL), or ELA (0.5 μg/mL) + SIV (10 μg/mL). Data are shown as median with interquartile 

range. Results were considered significant at P < 0.05. Different superscript letters indicate 

significant differences between treatments within each treatment time (a,b—24 h; x,y—48 h). 

Asterisks indicate statistical differences between times of treatment for the same treatment (*P 

< 0.05; ***P < 0.001). 

 

In addition, ELA highly stimulated COL1A2 transcripts at 24 h of treatment in FP mare 

endometria, when compared with the 48 h treatment (Figure 4A). In addition, at 48 h, the 

inhibitory effect of SIV on ELA induced-COL1 protein relative abundance in FP explants was 

higher compared with 24 h treatment (Figure 4C; 5). 
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A –24h FP endometrium explants  B – 48h FP endometrium explants  

  

C – 24h MLP endometrium explants D – 48h MLP endometrium explants  

Figure 5: Representative panels of type I collagen (COL1) western blotting and pro- and 

active form of MMP-2 and MMP-9 zymograms in mare endometrium in follicular phase (FP) or 

mid-luteal phase (MLP) treated for 24h or 48h with elastase (ELA; 0.5 μg/mL), ELA inhibitor: 

sivelestat sodium salt (SIV; 10µg/mL) or ELA (0.5 µg/mL) + SIV (10µg/mL). A - 24h treatment of 

FP endometrium explants; B – 48h treatment of FP endometrium explants, C – 24h treatment of 

MLP endometrium explants; and D – 48h treatment of MLP endometrium explants. 

 

2.4.3 The Effect of ELA and SIV on MMP expression 

Transcription levels of MMP2 mRNA in endometrial explants were augmented in FP at 

24 h with ELA and ELA + SIV- treated group compared with control (P < 0.01; P < 0.05 

respectively; Figure 6A). 

The transcripts of MMP9 were upregulated in FP explants treated with ELA for 48 h, 

when compared with control (P < 0.05; Figure 6C). However, treatment with the combination 

of ELA + SIV reduced MMP9, when compared with the respective ELA-treated group (P < 

0.05; Figure 6C). In MLP endometria, all treatments upregulated MMP9 mRNA at 24 h (P < 
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0.01; Figure 6D). The transcripts of MMP9 in ELA-treated explants were increased at 24 h in 

MLP with respect to 48 h in the same estrous cycle phase (Figure 6D). 

 

Figure 6: Relative mRNA transcription of matrix metallopeptidase 2 (MMP2) (A, B) and 

MMP9 (C, D) in follicular phase (FP) and mid-luteal phase (MLP) mare endometrial explants 

treated for 24 or 48 h with medium alone (control), elastase (ELA: 0.5 μg/mL), sivelestat (SIV: 10 

μg/mL), or ELA (0.5 μg/mL) + SIV (10 μg/mL). Data are shown as median with interquartile range. 

Results were considered significant at P < 0.05. Different superscript letters indicate significant 

differences between treatments within each treatment time (a,b—24 h; x,y—48 h). Asterisks 

indicate statistical differences between times of treatment for the same treatment (*P < 0.05). 

 

The activity of pro-MMP-2 increased in MLP endometrial tissue treated for 24 h with 

ELA, when compared with SIV alone, while after 48 h, the activity subsided in explants treated 

with ELA compared with control (P < 0.05; Figure 7B). However, ELA increased the 

gelatinolytic activity of MMP-2 active form in FP endometrium after 48 h of treatment when 

compared with control (P < 0.05; Figure 5; 7A). 

Differences between 24 and 48 h of treatment were found regarding the activity of pro- 

and active form of MMP-2 in MLP tissues. Thus, the 24 h treatment of endometrial explants 

with ELA induced the highest activity (Figure 7B). Nevertheless, it was after a 48 h treatment 

with ELA that the active form of MMP-2 in FP endometrial explants showed the highest activity 
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(Figure 5; 7C, 7D). In the active form of MMP-9, only FP explants treated for 48 h showed 

gelatinolytic activity (Figure 5; 7A). 

 

Figure 7: Relative gelatinolytic activities of MMP-2 (A, B) and MMP-9 (C, D) in follicular 

phase (FP) and mid-luteal phase (MLP) mare endometrial explants treated for 24 or 48 h with 

medium alone (control), elastase (ELA: 0.5 μg/mL), sivelestat (SIV: 10 μg/mL), or ELA (0.5 μg/mL) 

+ SIV (10 μg/mL). All values are expressed as percentage of change from control (non-treated 

tissues). Bars represent least square means ± SEM and results were considered significant at P 

< 0.05. Different superscript letters indicate significant differences between treatments within 

each treatment time. Asterisks indicate statistical differences between different treatment times 

for the same treatment, and for the same form of MMP (*P < 0.05; **P < 0.01; ***P < 0.001). 

 

2.5 Discussion 

The present study showed that ELA is capable of inducing COL1A2 mRNA transcription 

by mare endometrial tissue in vitro, in both FP and MLP. This work, reinforced by our previous 

experiments, strengthens the hypothesis that ELA, as a pro-fibrotic protease, may play a role 

in the pathogenesis of endometrosis (Rebordão et al. 2018; Amaral et al. 2018). These data 

are in agreement with our previous study by Rebordão et al. (2018) on endometria with 

moderate to severe lesions (Kenney and Doig IIB/III category) characteristics of endometrosis, 

where ELA was also capable of stimulating COL1 protein relative abundance. As a follow-up 

of those results, SIV was tested here as a specific ELA inhibitor. 
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In a porcine hepatectomy model of ischemia/reperfusion injury, SIV was reported to 

avoid organ failure by inhibiting vascular permeability and reducing cytokine production 

(Shimoda et al. 2019). Studies on the use of SIV have been focused on the response to injury 

and inflammatory reactions, such as lipopolysaccharide-induced lung injury in rat lungs (Yuan 

et al. 2014), reduced portal pressure associated with chronic liver diseases in mice (Hilscher 

et al. 2019), and bleomycin-induced pulmonary fibrosis in mice (Song et al. 2009; Takemasa 

et al. 2012). One should bear in mind that SIV has been largely reported as being administered 

to humans, mainly in acute lung diseases, to improve their clinical condition (Polverino et al. 

2017). In fact, SIV acts by inhibiting the inflammatory cell recruitment and TGFβ1 activation in 

lungs, which is the putative mechanism for SIV modulatory action (Takemasa et al. 2012). 

Therefore, we hypothesized that, inhibiting ELA, it would be possible to reduce COL1 

deposition, and thus preventing fibrosis establishment at the course of endometrosis in mares. 

In fact, the inhibitory effect of SIV on ELA-induced COL1A2 transcripts was observed in FP 

and MLP equine endometrium, reinforcing our preliminary results (Amaral et al. 2018). Thus, 

SIV might be a helpful inhibitor of ELA induced COL1 production in equine endometrium by 

reducing COL1A2 gene transcription, and its use in fighting fibrosis may be considered as a 

putative therapeutic approach. 

In the present work, the protein COL1 relative abundance did not follow the gene 

transcription pattern. The SIV inhibitory effect on ELA-induced COL1 protein relative 

abundance was only detected in FP explants treated for 48 h with ELA. Thus, it is likely that 

endometrium from FP, which is endogenously primed with estrogens, is more responsive to 

SIV treatment to impair COL production than the endometrium under the endogenous 

influence of progesterone in the MLP. It has been common to use mRNA transcription to 

predict the relative abundance of corresponding proteins, but the relative abundance of protein 

may not occur in proportion to their mRNA. Post-transcriptional, translational, and degradation 

regulation contributes to protein relative abundance at least as much as the transcription itself. 

The protein relative abundance should focus on the rates of protein production and turnover, 

and how this can change among different cellular conditions (Vogel and Marcotte 2012). This 

model can fit in COL deposition in fibrosis, which is a chronic, progressive, and irreversible 

process. Possibly, the endometrium tries to prevent fibrosis establishment by increasing COL 

degradation as much as possible. Furthermore, as the high level of COL production needs 

5000 times more mRNA than for the average protein, this process can take several days to 

induce an abundant level of COL protein, in contrast to the minutes needed to induce the 

synthesis of an average protein (Schwarz 2015). Despite high levels of transcription or 

translation, the most abundant proteins are often related to a slow translation, but very stable 

at a high final concentration (Vogel and Marcotte 2012). Therefore, our experimental time 

window can be too short for the resultant COL protein production to be detected. 
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The turnover of COL and remodeling of ECM are regulated by MMPs, which are 

involved in protein degradation and in regulatory functions in inflammation and immunity 

(Giannandrea and Parks 2014). The knowledge on MMP-2 and MMP-9 regulatory 

mechanisms facing a fibrotic stimulus is an important way to understand the pathogenesis of 

endometrosis. As a matter of fact, depending on the severity of endometrosis, the response to 

cytokine stimulation on MMP-2 and MMP-9 secretion by equine endometrial explants differed, 

which may associate them with endometrial microenvironment modifications that favor fibrosis 

establishment (Szóstek-Mioduchowska et al. 2019b). In the present study, endometria with 

mild/moderate endometrosis lesions (category IIA/IIB) showed different MMP2 and MMP9 

mRNA levels and protein activity in response to ELA or SIV treatments, either alone or 

combined, depending on the treatment length. Those previous results (Szóstek-

Mioduchowska et al. 2019b) are consistent with ours, where MMPs’ expression seems to be 

different depending on estrous cycle phase and time of treatment. These findings suggest that 

hormonal changes and duration of the stimulus can affect the endometrial response. The 

protease ELA was capable of inducing MMP9 mRNA transcription in FP endometrium at 48 h, 

and in MLP explants at 24 h. It has been reported that ELA activates pro-MMP-9 in cystic 

fibrosis in the lung (Voynow et al. 2008). In fact, the gelatinolytic activity of MMP-9 pro-enzyme 

was detected in equine endometrial explants, even though unchanged, while the active form 

was only observed in FP after a 48 h treatment, also unaltered. Regarding MMP2 transcription, 

ELA treatment was also capable to induce a positive response in FP endometrium at 24 h, and 

in MMP-2 enzyme activity only at 48 h treatment time. It is worth mentioning that these 

enzymes are secreted to the extracellular environment or linked to cell membrane as inactive 

proenzymes (Nissinen and Kähäri 2014), and their activity is regulated by transcription, protein 

production, and activation of latent enzymes (Sternlicht and Werb 2001). This might explain 

the fact that the enzyme activity did not follow the gene transcription pattern. Nothnick (2008) 

noted that MMP9 transcripts may be present in high levels in the uterus of mice, but translation 

may be repressed, preventing protein and subsequent MMP-9 activity, with MMP-9 expression 

also being regulated by ovarian steroids. Taking our results into account, as the estrous cycle 

phase influenced the endometrial explant response to ELA and SIV treatment, it may be 

suggested that ovarian steroids in the mare can be implicated in MMPs’ secretion, as shown 

for mice (Nothnick 2008). Metallopeptidases, independent of their proteolytic function, seem 

to be associated with TGFβ1 activation (Yu and Stamenkovic 2000; D’Angelo et al. 2001; Iida 

and McCarthy 2007; Kobayashi et al. 2014), activation of other MMPs (Overall 2002), 

myofibroblast differentiation (Dayer and Stamenkovic 2015), and cell proliferation (D’Angelo et 

al. 2001; Hattori et al. 2009; Overall 2002; Kobayashi et al. 2014; Dayer and Stamenkovic 

2015), thus enhancing fibrosis. However, further studies are needed to confirm their action in 

the development of endometrial fibrosis in mare. 
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Despite decades of research on the treatment of endometrosis, no efficient therapy has 

been found. Even though claims have been made on the anecdotal use of intrauterine infusion 

of kerosene to treat endometrosis (Bracher et al. 1991), no effect on the endometrium 

histopathology grade was noted (Podico et al. 2020). In humans, for the treatment of 

pulmonary fibrotic conditions, SIV has been administered intravenously (Aikawa et al. 2011; 

Polverino et al. 2017). Likewise, knowledge transfer from the use of this ELA´s specific inhibitor 

for the treatment of fibrosis in humans could be applied to the horse. Thus, the novel findings 

from the present in vitro study might pave the way for testing the in vivo use of SIV in mares 

to prevent or hinder COL deposition in the endometrium. Specifically, in mares susceptible to 

post-breeding endometritis, associated with a prolonged inflammatory reaction and neutrophil 

influx into the uterus, SIV might be a potential therapeutic means to be tested in vivo against 

ELA induced fibrosis establishment. Therefore, this drug may be also beneficial to use in 

mares, either at the initial stages of fibrosis development, as well as in those showing full-

fledged severe endometrosis. However, close caution should be taken, as SIV´s mechanisms 

of action, doses, as well pharmacokinetics (absorption, distribution, metabolism, excretion, and 

bioavailability) in horses are unknown. Moreover, different routes of administration, either 

intravenously or locally by uterine lavage, should be considered. NETs induced fibrosis 

development in mare endometrium is a complex process wherein many different enzymes are 

involved (Rebordão et al. 2014, 2018). Rather than ELA, we have shown that other enzymes 

found in NETs, such as CAT and MPO, also induce COL1 protein relative abundance in equine 

endometrial explants (Rebordão et al. 2018). As such, because COL deposition in mare 

endometrium exposed to NETs may result from the effect of many of their enzymes, the use 

of a combination of different inhibitors of ELA, CAT, and MPO is a promising therapeutic 

approach to be considered. 

 

2.6 Conclusions 

The present data support the hypothesis that the protease ELA present in NETs is 

capable of inducing COL1 mRNA transcription in equine endometrium and might be an 

important player in the regulatory cascade of the pathogenesis of endometrosis in mares. This 

fibrogenic action is inhibited by ELA selective inhibitor SIV, which may provoke a reduction in 

COL1 production by the mare endometrium. Moreover, further studies are needed to 

understand the cellular mechanisms and pathways leading to endometrosis, and the process 

in which MMP-2 and MMP-9 are involved. The complexity of equine endometrosis suggests 

that effective therapeutic interventions may require the administration of more than one agent, 

capable of inhibiting fibrosis in a nonspecific way. The promising results of the present work 

might be the basis for future development of putative therapeutic means to impair 

endometrosis.  
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3. The inhibition of cathepsin G on endometrial explants with 
endometrosis in the mare 

 

Adapted from: 

 

Amaral A, Fernandes C, Morazzo S, Rebordão MR, Szóstek-Mioduchowska A, Lukasik 

K, Gawronska-Kozak B, Telo da Gama L, Skarzynski DJ, Ferreira-Dias G. 2020. The Inhibition 

of Cathepsin G on Endometrial Explants With Endometrosis in the Mare. Front Vet Sci. 

7:582211. doi:10.3389/fvets.2020.582211. 

 

3.1 Abstract 

Although enzymes found in neutrophil extracellular traps (NETs) have antimicrobial 

properties, they also stimulate collagen 1 (COL1) production by the mare endometrium, 

contributing for the development of endometrosis. Cathepsin G (CAT), a protease present in 

NETs, is inhibited by specific inhibitors, such as Cathepsin G Inhibitor I (β-keto-phosphonic 

acid; INH). Metallopeptidases (MMPs) are proteases involved in the equilibrium of the 

extracellular matrix. The objective of this study was to investigate the effect of CAT and INH (a 

selective CAT inhibitor) on the expression of MMP-2 and MMP-9 and on gelatinolytic activity. 

In addition, the putative inhibitory effect of INH on CAT-induced COL1 production in mare 

endometrium was assessed. Endometrial explants retrieved from mares in follicular phase 

(FP) or mid-luteal phase (MLP) were treated for 24 or 48h with CAT, inhibitor alone, or both 

treatments. In explants, transcripts (qPCR) of COL1A2, MMP2 and MMP9, as well as the 

relative abundance of COL1 protein (western blot), and activity of MMP-2 and MMP-9 

(zymography) were evaluated. The protease CAT induced COL1 expression in explants, at 

both estrous cycle phases and treatment times. The inhibitory effect of INH was observed on 

COL1A2 transcripts in FP at 24h treatment, and in MLP at 48h (P < 0.05), and on the relative 

abundance of COL protein in FP and MLP explants, at 48h (P < 0.001). Our study suggests 

that MMP-2 might also be involved in an earlier response to CAT, and MMP-9 in a later 

response, mainly in FP. While the use of INH reduced CAT-induced COL1 endometrial 

expression, MMPs might be involved in the fibrogenic response to CAT. Therefore, in mare 

endometrium, the use of INH may be a future potential therapeutic means to reduce CAT 

induced COL1 formation, and to hamper endometrosis establishment. 

 

Keywords: endometrosis, cathepsin G, cathepsin G inhibitor, fibrosis, 

metallopeptidases  
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3.2  Introduction 

In the endometrium, the innate and adaptive immune mechanisms, which rely on a 

complex network of key components (mainly growth factors/cytokines, immune cells and 

epithelial and stromal cells), modulate integrated interactions between the endocrine system 

and the immune system. As such, they regulate uterine physiological function, and provide 

protection against pathogens (Skarzynski et al. 2020; Hickey et al. 2011; Sheldon et al 2017). 

Disruption of those immune-endocrine mediated mechanisms may lead to endometrial 

dysfunction, and ultimately to fibrogenesis and infertility (Hickey et al. 2011; Sheldon et al 

2017). 

A transient breeding-induced endometritis is a normal process to remove bacteria and 

the excess of spermatozoa from the uterus, causing an increase of neutrophils influx to the 

uterine lumen, which in turn increases the uterine inflammatory reaction (Katila 1995; 

Troedsson 2006; LeBlanc and Causey 2009). If the inflammation becomes chronic, the 

persistent influx of neutrophils towards the endometrium prompts to chronic degenerative 

alterations, ending in endometrosis (endometrial fibrosis) (Hoffmann et al. 2009a). However, 

impaired uterine clearance (LeBlanc and Causey 2009), repeated endometritis (Doig et al. 

1981), aging and multiple pregnancies (Ricketts and Alonso 1991) have been described as 

triggering factors of equine endometrosis. Equine endometrial fibrosis is a progressive and 

irreversible severe fibrotic disorder in the endometrium (Hoffmann et al. 2009a; Kenney 1978, 

1992), causing subfertility/infertility. At the initial stage of endometrosis, fibroblasts differentiate 

into myofibroblasts responsible for the synthesis of collagen fibers, extracellular matrix (ECM) 

deposition, and ultimately leading to endometrial periglandular fibrosis (Hoffmann et al. 2009a; 

Szóstek-Mioduchowska et al. 2020b). Thus, these histological changes are the culprit of a 

decrease in pregnancy rates in the mare (Kenney 1978; Liepina and Antane 2010). 

The presence of bacteria or semen in the equine endometrium (Alghamdi and Foster 

2005; Alghamdi et al. 2009; Rebordão et al. 2014) induces neutrophil migration from blood to 

the uterus to fight the infection. These neutrophils release proteins and components from the 

nucleus that form “neutrophil extracellular traps” (NETs) extracellularly (Brinkmann 2004; 

Alghamdi and Foster 2005; Rebordão et al. 2014). Enzymes present in NETs, namely 

cathepsin G (CAT), elastase (ELA) or myeloperoxidase (MPO), possess strong antimicrobial 

properties, aiding on killing bacteria in the extracellular environment. However, their 

persistence may lead to chronic inflammation and degenerative changes in equine 

endometrium (Rebordão et al. 2018). Increased collagen type I (COL1) in mare endometrial 

explants challenged with NETs components have been described previously (Rebordão et al. 

2018; Amaral et al. 2018, 2020a).  

Cathepsin participates to a greater extent to inflammation and fibrosis establishment in 

chronic obstructive pulmonary disease (COPD) in humans (Brehm et al. 2014). Also, CAT 
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action was associated with aortic stenosis remodeling and fibrosis (Helske et al. 2006), renal 

fibrosis after ischemia (Shimoda et al. 2007) glomerulonephritis and renal failure (Cohen-

Mazor et al. 2014), lung cystic fibrosis (Sedor et al. 2007, reviewed by Kosikowska and Lesner 

2013; Twigg et al.2015), and fibrotic Dupuytren’s disease in humans (Tan et al. 2018). 

Cathepsin G Inhibitor I (β-keto-phosphonic acid; INH) is a small non-peptide molecule that in 

a selective, potent, and reversible manner inhibits CAT. This inhibitor could be used for the 

treatment of COPD and asthma in humans (Brehm et al. 2014; de Garavilla et al. 2005; 

Maryanoff et al. 2010). Additionally, INH exhibits an anti-inflammatory action in rats with 

glycogen-induced peritonitis and lipopolysaccharide-induced inflammation of the airways (de 

Garavilla et al. 2005), and in airway inflammatory diseases dependent on CAT in animal 

models (Maryanoff et al. 2010). 

Matrix metallopeptidases (MMPs) are involved in ECM balance and in endometrial 

tissue remodeling (Wang and Khalil 2018). These enzymes have the capability to degrade 

ECM structural components, such as collagen (Salamonsen 2003). In the equine 

endometrium, during bacterial and breeding-induced acute endometritis, MMP-2 and -9 are 

engaged in the inflammatory reaction and COL modification (Oddsdóttir et al. 2008). But, if an 

alteration in the regulation of these MMPs or a prolonged exposure to inflammation occurs, it 

leads to deposition of COL and subsequent establishment of endometrial fibrosis (Oddsdóttir 

et al. 2008). In our recent in vitro studies on equine endometrium, MMP expression was 

affected by mediators of inflammation, such as interleukins, transforming growth factor 

(TGF)β1 and prostaglandins (PG) (Szóstek-Mioduchowska et al. 2019b, 2020a, 2020b), differs 

among stages of endometrosis (Szóstek-Mioduchowska et al. 2020a) and might be implicated 

in fibrotic response to ELA (Amaral et al. 2020a). 

It has been known that ELA and CAT enzymes released by neutrophils are capable to 

destroy the ECM, stimulating leukocyte migration and inducing tissue remodeling (Owen and 

Campbell 1999; de Garavilla et al. 2005).  Our previous studies reported them as being also 

associated with endometrial fibrosis establishment (Rebordão et al. 2018; Amaral et al. 2018, 

2020a). In fact, ELA, CAT and MPO appear to act as pro-fibrotic factors in mare endometrosis 

(Rebordão et al. 2018). The inhibition of ELA using sivelestat, a specific ELA inhibitor, 

provoked a downregulation of COL1A2 mRNA transcription (Amaral et al. 2018, 2020a). 

Among enzymes present in NETs, the one that shows the predominant proteolytic activity is 

ELA. Nevertheless, when ELA is immune depleted from NETs derived from healthy human 

neutrophils, the remaining activity was attributed to CAT (O’Donoghue et al. 2013). Moreover, 

in the pathophysiology of chronic obstructive pulmonary disease in humans, CAT seems to 

play a particularly important role (de Garavilla et al. 2005), justifying the recent development 

of diagnostic test that use CAT as COPD marker (Gudmann et al. 2018). Thus, the importance 
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of studying inhibitors of other enzymes present in NETs, such as CAT, is imperative for the 

development of putative therapeutic measures for the control of fibrosis. 

Since CAT (present in NETs) and MMPs appear to be involved in the development of 

equine endometrosis (Rebordão et al. 2018; Amaral et al. 2020a), we have decided to 

investigate putative potential ways of fighting this condition by impairing fibrosis formation. The 

rationale of this work was to assess if COL1 output was diminished when equine endometrium 

was exposed to specific inhibitors of CAT. Therefore, the objective of this in vitro study was to 

investigate the INH inhibitory action on the relative abundance of CAT-induced COL1 protein 

in explants of mare endometrium. In addition, the influence of CAT and INH on MMP-2 and 

MMP-9 expression and gelatinolytic activity was assessed. 

 

3.3 Materials and Methods 

3.3.1 Animals 

From April to September, at an abattoir in Poland (Rawicz), uteri and jugular venous 

blood were randomly retrieved post-mortem from cyclic mares destined for meat production, 

according to the European (EFSA, AHAW/04–027) legislation. Mare’s average age was 12 

years old. The official veterinary inspection certified that those mares were healthy, and their 

meat was safe for human consumption. Estrous cycle phase of each mare was determined 

based on ovarian and uterine features, and on progesterone plasma concentration, as 

previously described (Rebordão et al. 2018; Roberto da Costa et al. 2007). Thus, mares which 

presented a follicle >35 mm diameter, absence of an active corpus luteum, and plasma 

progesterone concentration <1 ng/mL were classified as being in the follicular phase. In 

contrast, the existence of a well-developed corpus luteum associated with the presence of 

follicles with a diameter between 15 and 20 mm, and plasma progesterone concentration >6 

ng/mL were the grounds for considering those mares in the mid-luteal phase. For the present 

study, follicular phase (FP; n = 8), and mid-luteal phase (MLP; n = 7) endometria were used.  

After collection, uteri, and jugular venous blood in ethylenediaminetetraacetic acid (EDTA) tube 

were transported on ice to the laboratory. The uteri were placed in ice-cold Dulbecco’s modified 

Eagle’s medium (DMEM) F-12 Ham medium (D/F medium; 1:1 (v/v); D-2960; Sigma-Aldrich, 

St Louis, MO, USA), supplemented with antibiotics, such as penicillin (100 IU/mL; P3032; 

Sigma-Aldrich) and streptomycin (100 µg/mL; S9137; Sigma-Aldrich), and an antimycotic drug 

- amphotericin (2 µg /mL;  A2942; Sigma-Aldrich). All the mares´ uteri used were examined for 

the absence of endometritis, both macroscopically and microscopically. The macroscopic 

exam enabled the visualization of increased mucus production or altered endometrial surface 

color in the presence of endometritis. The microscopic evaluation of the eventual presence of 

bacteria and/or neutrophils in the endometrium was accomplished by collecting the cells with 

a sterile swab, rolled on a glass slide, and colored with Diff-Quick stain (Rebordão et al. 2018, 
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2019). To perform the histological and endometrial classification (Kenney and Doig 1986) two 

endometrial samples from each uterus were immersed in 4% buffered paraformaldehyde.  

Changes in mare endometrium were assessed as described by Kenney and Doig (Kenney and 

Doig 1986). Regarding the amount of endometrial inflammation and/or fibrosis, endometria 

were classified as I, IIA, IIB or III categories, according to Kenney and Doig (Kenney and Doig 

1986). Slight to scattered inflammation (endometritis), or mild fibrosis (endometrosis) or mild 

lymphatic lacunae can be found in Kenney and Doig´s category IIA.  In category IIB there might 

be moderate inflammation, but mostly moderate fibrosis that can be multifocal or diffuse, or 

moderate lymphatic lacunae (Kenney and Doig 1986; Schöniger and Schoon 2020). Although, 

in this study, only endometria with mild to moderate fibrotic lesions (IIA or IIB category) were 

used, avoiding endometria with inflammation (endometritis). Besides, no category III 

endometria were used to exclude possible variations due to increased endometrial fibrotic 

lesions. 

 

3.3.2 In vitro endometrial explant culture 

Strips (around 0.5 cm width by 2-3 cm length) of endometrium from the ipsilateral horn 

to the active ovary were detached from the myometrium after the uterus was washed in PBS 

with streptomycin (100 µg /mL; S9137; Sigma-Aldrich) and penicillin (100 IU/mL; P3032; 

Sigma-Aldrich) added. 

For explant culture experiments, strips of endometrium were put in ice-cold PBS 

supplemented with antibiotics (as above) in a Petri dish. Then, the endometrium strips were 

washed with PBS supplemented with antibiotics and endometrial explants, cut, and blotted 

with a filter paper. The explants weighting 20-30 mg each were placed in a single well of a 

sterile 24-well cell culture plate (Eppendorf, #0030 722.116) with 1mL of DMEM culture 

medium with bovine serum albumin (0.1% (w/v BSA; 735078; Roche Diagnostics, Mannheim, 

Germany), streptomycin (100 µg/mL; S9137; Sigma-Aldrich), penicillin (100 IU/mL; P3032; 

Sigma-Aldrich) and amphotericin (2 µg/mL; A2942; Sigma-Aldrich). The endometrial explants 

were pre-incubated at 38ºC, in a 5% CO2 humidified atmosphere (Biosafe Eco-Integra 

Biosciences, Chur, Switzerland), for 1h, and submitted to 150 rpm gentle shaking, as described 

previously (Rebordão et al. 2018). Afterwards, culture medium was replaced, and equine 

endometrial explants were treated for 24h or 48h, as follows: (i) vehicle (negative control) – 

culture medium alone; (ii) cathepsin G (CAT; 1 µg/mL; A6942, Applichem GmbH, Germany); 

(iii) cathepsin G inhibitor I (INH; 1 µg/mL; β-keto-phosphonic acid; C36H33N2O6P, sc-221399; 

Santa Cruz Biotechnology, USA); and (iv) CAT (1µg/mL) + INH (1µg/mL). Each treatment was 

performed in quadruplicate. The INH was added after 1h of pre-incubation, at the time of 

culture medium replacement, to allow time for the inhibitor to bind.  Protease CAT was added 

1h later.  In studies undergoing a total of 48h, after 24h treatment, 1 µg/mL of IHN was added 
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once again to the culture medium, since in the pre-trial its inhibitory effect only remained for 

24h and waned at 48h treatment. At the end of each treatment time, explants were collected 

and placed in RNAlater (R901, Sigma-Aldrich), while conditioned media were collected and 

stored at -80ºC. In a previous study, as a positive control for COL expression, endometrial 

tissue response to a fibrotic stimulus was assessed by adding TGFβ1 (a pro-fibrotic cytokine) 

to tissue culture medium (Amaral et al. 2020a). To assess viability, the explants were also 

incubated with oxytocin (OXT), as described before (Amaral et al. 2020a). 

As shown by our previous work, when dose assessment was determined (Rebordão et 

al. 2018), the use of 1 µg/mL of CAT proved to induce the expression of fibrotic marker - 

TGFβ1. A dose-response pilot experiment was performed to assess the most suitable 

concentration of INH, based in other previous in vitro studies (Reich et al. 2009). The INH was 

tested using 0.01, 0.1, 1, 10 and 100 µg/mL and the optimal concentration that inhibited 

COL1A2 transcription was 1 µg/mL (data not shown).  

 

3.3.3 Assessment of endometrial explants viability 

The assessment of endometrial explant viability was based on lactate dehydrogenase 

(LDH) activity as described before (Amaral et al. 2020a) and on OXT-induced PGF2α secretion 

in conditioned culture medium. The PGF2α secretion was determined by using an enzyme 

immunoassay kit (ADI-901-069, Enzo), according to the manufacturer’s instructions. 

 

3.3.4 Quantitative Real-Time polymerase chain reaction (qPCR) 

Total RNA from equine endometrial treated explants was extracted using TRI 

Reagent® (T9424; Sigma-Aldrich), as indicated by the manufacturer. After, RNA quantification 

and quality evaluation were performed, as described previously (Amaral et al. 2020a). Specific 

primers for the reference gene ribosomal protein L32 (RPL32) and for COL1A2, MMP2 and 

MMP9 were earlier referred (Amaral et al. 2020a). The reference gene RPL32 was the most 

stable internal control, already determined in a previous study (Dheda et al. 2004; Amaral et 

al. 2020a). All the reactions for target and reference genes were performed in duplicate, on a 

96 well plate (4306737; Applied Biosystems) and run in a StepOnePlus™ Real-Time PCR 

System (Applied Biosystems, Warrington, UK). To confirm specificity, the PCR products were 

run on a 2.5% agarose gel, and relative mRNA data were quantified, using the qPCR miner 

algorithm. Briefly, the average of the cyclic threshold (Cq) and the primer efficiency level (E) 

for each sample were related using the [1/(1þE)Cq] equation. Afterwards the expression levels 

of the target genes were normalized against the reference gene (Zhao and Fernald 2005).   
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3.3.5 Western blot analysis 

Protein relative abundance of COL1 was determined by western blot technique using 

a non-staining total protein loading control as previously described (Ladner et al. 2004; Amaral 

et al. 2020a). The membranes were incubated overnight, at 4ºC with the primary antibody 

against COL1 (1:1,000 diluted; 20121; Novotec, Lyon, France), as previously defined 

(Rebordão et al. 2018). The secondary antibody used was Horseradish peroxidase (HRP)-

conjugated anti-rabbit (1:20,000; P0448; DakoCytomation, Carpinteria, CA, USA) incubated at 

room temperature for 1.5h. Visualization of the relative abundance of COL1 protein was 

accomplished by luminol enhanced chemiluminescence (Super Signal West Pico, 34077; 

Thermo Scientific, Waltham, MA, USA). For band normalization in each membrane, and to 

allow band comparison between membranes, a standard sample of a blend of endometrial 

explants (30 µg) was loaded in a single lane, in all gels. Image acquisition and band 

normalization were performed, as described (Amaral et al. 2020a; Posch et al. 2013). 

 

3.3.6 Zymography 

The activity of MMP-2 and MMP-9 on gelatin gel was assessed by zymography, through 

a non-staining total protein loading control, as previously described (Manuel and Gawronska-

Kozak 2006; Raykin et al. 2017; Amaral et al. 2020a).  Gels and samples of culture medium 

supernatant were handled, as referred by Amaral et al. (2020a). In all gels, molecular weight 

determination was made using Recombinant Human MMP-2 Protein, CF (902-MP-010; R&D 

Systems, Minneapolis, USA), and Recombinant Human MMP-9 Western Blot Standard Protein 

(WBC018; R&D Systems). In order to normalize and compare gels, a standard sample (40 µg) 

of mixed culture medium was also loaded. The images detection and MMPs gelatinolytic 

activity were determined as already reported (Amaral et al. 2020a). Briefly, using Image Lab 

6.0 (Bio- Rad) software, the lanes were detected in a non-staining total protein gel image and 

the bands corresponding to MMP-2 and MMP-9 activity were detected on the Coomassie 

staining image. The normalization factor and volume of target protein were calculated by the 

software and then the values were adjusted for variation in the protein load. 

 

3.3.7 Statistical analysis 

The variables assessed in this study were COL1A2, MMP2 and MMP9 transcription, 

COL1 protein relative abundance and gelatinolytic activity of both pro- and active forms of 

MMP-2 and MMP-9. The Kolmogorov-Smirnov test in Proc Univariate function of SAS v. 9.4 

(SAS Institute Inc.) and visual examination were used to check data normality. The square root 

and logarithmic transformations were achieved because some of the variables did not show a 

normal distribution, and the best transformation method was chosen. At first, the response 

variables were analyzed by PROC GLM of SAS, as a function of the different treatments: 



 
 

73 
 

combination of the use of CAT, use of INH, estrous cycle phase, and incubation time, in a total 

of 16 treatment combinations. Using the PDIFF option of PROC GLM the least square means 

of the treatments combinations were compared, and the results were considered significant as 

P < 0.05. For data plotting, the means were back transformed to the original scale. Afterwards, 

the two-, three- and four-way interactions of the treatment combinations were also performed. 

In Figures 8 and 10, the results of relative abundance of COL1 protein, COL1A2, MMP2 and 

MMP9 transcripts are depicted as median with interquartile range. In Figure 11, gelatinolytic 

activity data for MMP-2 and MMP-9 are shown as least square means ± SEM. The graphs 

presented were built using GraphPAD PRISM. 

 

3.4 Results 

3.4.1 Long-term viability of explants from equine endometrium  

As shown before by Amaral et al. (2020a), COL1A2 transcription and protein relative 

abundance of COL1 were up regulated in response to TGFβ1 treatment. About viability data, 

no difference was found in LDH activity between 1h and 24h treatment times, but a slight 

decrease was shown at 48h, regardless of estrous cycle phase. Besides, mare endometrial 

tissues treated with OXT augmented PGF2α secretion at both estrous cycle phases and 

treatment times (Table 9).   

 

Table 9: The effect of oxytocin (OXT, 10−7 M) on prostaglandin (PG) F2α secretion from 

equine endometrial explants in follicular phase (FP) and mid-luteal phase (MLP) treated for 24 h 

or 48 h, relative to control (non-treated explants). Results are presented as means ± SEM. 

Different superscript letters indicate statistical differences between respective columns (within 

estrous cycle phases and times of treatment). The results were considered significant at P < 

0.05. 

Estrous 
Cycle 
Phase 

FP MLP 

Time of 
Treatment  

24 h 48 h 24 h 48 h 

Treatment Control 
OXT  

(10−7 M) 
Control 

OXT  
(10−7 M) 

Control 
OXT 

(10−7M) 
Control 

OXT 
(10−7 M) 

PGF2α 

secretion 
(ng/mg) 

4.43 ± 
1.3 a 

7.71 ±  
2.8 b 

6.30 ± 
1.3 a 

13.9 ±  
6.2 b 

8.50 ± 
1.6 a 

13.2 ±  
2.3 b 

6.4 ±  
0.9 a 

11.0 ± 
1.5 b 

 

 

3.4.2 The effect of INH on CAT-induced COL1 

The Table 10 lists the interactions among treatments, time of treatment and estrous 

cycle phase.   



 
 

74 
 

Table 10: Levels of significance (P values) for 2-, 3- and 4-way interactions between 

estrous cycle phases, treatment time, and cathepsin G (CAT) or Cathepsin G Inhibitor I (INH) 

treatments in the analyses of relative transcript of target genes, COL1 protein relative abundance 

and gelatinolytic activity of MMP-2 and -9. The results were considered significant at P < 0.05 

and are highlighted in yellow color. 

Interaction COL1A2 COL1 MMP2 
Pro-
MMP-2 

Active 
MMP-2 

MMP9 
Pro-
MMP-9 

Active 
MMP-9 

CAT x INH 0.0002 0.0237 0.0002 0.0989 0.2229 0.0246 0.522 0.0484 

CAT x 
treatment time 

0.8625 0.0247 0.0034 0.5608 0.0029 0.583 0.9213 . 

CAT  x estrous 
cycle phase 

0.0282 0.9823 0.887 0.2488 0.4438 0.417 0.6549 0.7101 

INH x 
treatment time 

0.5519 <.0001 0.4835 0.2351 0.5119 0.0525 0.7105 . 

INH x estrous 
cycle phase 

0.5877 0.2437 0.0438 0.3968 0.0987 0.409 0.8159 0.5089 

Time of 
treatment x 
estrous cycle 
phase 

0.0002 0.0711 0.2474 0.2057 0.7389 0.0079 0.2558 . 

CAT x INH x 
treatment time 

0.5701 0.0161 0.4812 0.4717 0.0141 0.6212 0.3652 . 

CAT x INH x 
estrous cycle 
phase 

0.1657 0.1039 0.1516 0.3425 0.2843 0.8317 0.755 0.1491 

CAT x 
treatment time 
x estrous 
cycle phase 

0.0085 0.6088 0.4743 0.8015 0.0926 0.291 0.7341 . 

INH x 
treatment time 
x estrous 
cycle phase 

0.9312 0.2582 0.694 0.7429 0.0478 0.611 0.2875 . 

CAT x INH x 
treatment time 
x estrous 
cycle phase 

0.0365 0.944 0.3722 0.4534 0.645 0.4925 0.7734 . 

Abbreviations: COL1A2 - collagen type 1 α2; COL1 – collagen type I protein; MMP2 - matrix 

metallopeptidase 2; MMP9 - matrix metallopeptidase 9 

 

The differences found between estrous cycle phases (FP vs. MLP) within each 

treatment and treatment times are listed in Table 11. 
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Table 11: Listed significant differences of the same treatments between the follicular 

phase (FP) and mid-luteal phase (MLP) of the estrous cycle, within each treatment time. 

COL1A2 - collagen type 1 α2; COL 1 – collagen type I; MMP2 - matrix metallopeptidase 2; MMP9 - matrix 

metallopeptidase 9; CAT – cathepsin G; INH – Cathepsin Inhibitor I; FP – follicular phase; MLP – mid-luteal phase. 

 

The treatment with CAT elevated COL1A2 transcripts in FP endometrial explants at 

24h (P < 0.01; Fig. 8A), and in MLP tissue at 48h (P < 0.0001; Fig. 8B) relative to the respective 

control group. Nevertheless, the combination of CAT and INH downregulated COL1A2 

transcripts compared to the corresponding CAT-treated groups (FP 24h: P < 0.01; MLP 48h: 

P < 0.001; Fig 8A and 8B). In MLP, at 48h, the transcription also increased in CAT-treated 

explants regarding INH-treated group (P < 0.001; Fig. 8B). 

Evaluated variables Treatment comparison p value Figures 

COL1A2 transcription 

CAT 48h FP vs CAT 48h MLP P < 0.0001 

8A, 8B CAT + INH 48h FP vs CAT + INH 48h 
MLP 

P < 0.05 

COL1 protein relative 
abundance 

CAT + INH 48h FP vs CAT + INH 48h 
MLP 

P < 0.05 8C, 8D 

MMP9 transcription 
CAT + INH 48h FP vs CAT + INH 48h 
MLP 

P < 0.05 10C, 10D 

Pro-MMP-2 activity CAT 24h FP vs CAT 24h MLP P < 0.05 11A, 11B 

Active MMP-2 activity CAT 48h FP vs CAT 48h MLP P < 0.01 11A, 11B 
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Figure 8: Relative collagen type I (COL1A2) mRNA transcription (A, B) and protein (COL1) 

relative abundance (C, D) in follicular phase (FP) and mid-luteal phase (MLP) mare endometrial 

explants treated for 24 or 48h with culture medium alone (Control), cathepsin G inhibitor I (INH: 

1 μg/mL), cathepsin G (CAT: 1 μg/mL) or CAT (1 μg/mL) + INH (1 μg/mL). Data are shown as 

median with interquartile range. Results were considered significant at P < 0.05. Different 

superscript letters indicate significant differences between treatments within each treatment 

time (a,b- 24h; x,y- 48h). Asterisks indicate statistical differences between times of treatment for 

the same treatment (*P < 0.05; **P < 0.01; ***P < 0.001).  

 

In CAT-treated tissues, COL1 protein relative abundance increased in the longest 

period of treatment both in FP (P < 0.01; Fig 8C) and MLP explants (P < 0.001; Fig. 8D, 9) 

relative to control group. The association of CAT and INH reduced protein relative abundance 

after 48h treatment both in FP (P < 0.01; Fig. 8C) and MLP explants (P < 0.001; Fig. 8D; 9) 

compared to respective CAT-treated groups. Explants treated with CAT, also elevated COL 

protein relative abundance at 48h, both in FP (P < 0.01; Fig. 8C), and in MLP endometria (P < 

0.001; Fig. 8D, 9), when compared to respective INH-treated group.  
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A – 24h FP endometrium explant 

 

B – 48h FP endometrium explant 

 

  

C – 24h MLP endometrium explant D – 48h MLP endometrium explant 

Figure 9: Representative panels of type I collagen (COL1) western blotting and pro and 

active form of MMP-2 and MMP-9 zymograms in mare endometrium in follicular phase (FP) or 

mid-luteal phase (MLP) treated for 24h  or 48h with cathepsin G (CAT 1 μg/mL), CAT inhibitor I 

(INH; 1µg/mL) and CAT (1µg/mL) + INH (1µg/mL). A - 24h treatment of FP endometrium explants; 

B – 48h treatment of FP endometrium explants, C – 24h treatment of MLP endometrium explants; 

and D – 48h treatment of MLP endometrium explants. 

 

At 24h, in FP, in CAT-treated group COL1A2 mRNA transcription was higher when 

compared to 48h (Fig. 8A), although the protein relative abundance was higher at 48h (Fig. 

8C). But, in MLP tissues, CAT treatment up-regulated COL1A2 transcripts (Fig. 8B), and COL1 

protein relative abundance (Fig. 8D) at 48h when compared to 24h. Also, in MLP at 48h, the 

COL1 protein relative abundance was reduced in INH-treated and CAT+INH-treated groups 

when compared to 24h treatment (Fig. 8D, 9). 
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3.4.3 Evaluation of CAT and INH effect on MMP expression 

The MMP2 transcript levels increased in CAT-treated explants in FP at 24h compared 

to its respective control group (P < 0.001) and INH-group (P < 0.05; Fig. 10A). But, when those 

explants were submitted to the combination of CAT and INH, there was a reduction in MMP2 

mRNA, comparing to the respective CAT-treated tissues (P < 0.01; Fig. 10A). In the same 

estrous cycle phase, but after 48h treatment, CAT+INH treatment reduced MMP2 transcripts 

in relation to CAT-treated group (P < 0.01; Fig. 10A), which was not increased when compared 

to control. In MLP explants, at 24h, CAT treatment augmented MMP2 mRNA when related to 

respective control (P < 0.05; Fig. 10B).  

 

 

Figure 10: Relative mRNA transcription of MMP2 (A, B) and MMP9 (C, D) in follicular 

phase (FP) and mid-luteal phase (MLP) mare endometrial explants treated for 24 or 48h with 

culture medium alone (Control), cathepsin G inhibitor I (INH: 1 μg/mL), cathepsin G (CAT: 1 

μg/mL), or CAT (1 μg/mL) + INH (1 μg/mL). Data are shown as median with interquartile range. 

Results were considered significant at P < 0.05. Different superscript letters indicate significant 

differences between treatments within each treatment time (a,b- 24h; x,y- 48h). Asterisks indicate 

statistical differences between times of treatment for the same treatment (*P < 0.05; **P < 0.01; 

***P < 0.001).  
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In the FP, at 24h, the CAT treatment was able to increase MMP9 mRNA levels in 

endometrial explants with respect to the respective control group (P < 0.01; Fig. 10C), and 

INH-treated group (P < 0.05; Fig. 10C). However, the CAT+INH-treated explants reduced 

MMP9 transcripts compared to CAT-treated group (P < 0.05; Fig. 10C).  At 48h, MLP 

endometrium treated with CAT up-regulated MMP9 transcription (P < 0.05), which further 

increased with CAT + INH treatment (P < 0.01; Fig. 10D) compared to non-treated group.  

In FP, the treatments of CAT and CAT + INH increased MMP2 transcripts at 24h in 

comparison to 48h (Fig. 10A). In contrast, in MLP endometrium, in explants treated for 48h, 

the combination of CAT and INH augmented MMP9 transcripts with respect to 24h treatment 

(P < 0.05; Fig. 10D). 

The analysis of the pro-form of MMP-2 gelatinolytic activity has shown that INH-treated 

and CAT-treated groups decreased its activity in FP at 24h (P < 0.05; Fig. 9, 11A). 

Nevertheless, in FP endometrial explants treated for 24h with CAT and combination of 

CAT+INH, the gelatinolytic activity of MMP-2 active form was up-regulated with respect to 

control group (P < 0.001; P < 0.05 respectively; Fig 9, 11A). The active MMP-2 gelatinolytic 

activity was augmented in MLP tissues treated for 24h with CAT compared to control group (P 

< 0.05; Fig. 11B). At 48h, in MLP, CAT treatment increased active MMP-2 gelatinolytic activity 

comparing to INH-treated group (P < 0.05; Fig. 9, 11B).  
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Figure 11: Relative gelatinolytic activities of MMP-2 (A, B) and MMP-9 (C, D) in follicular 

phase (FP) and mid-luteal phase (MLP) mare endometrial explants treated for 24 or 48h with 

culture medium alone (Control), cathepsin G inhibitor I (INH: 1 μg/mL), cathepsin G (CAT: 1 

μg/mL), or CAT (1 μg/mL) + INH (1 μg/mL). All values are expressed as percentage of change 

from control (non-treated tissues). Bars represent least square means ± SEM and results were 

considered significant at P < 0.05. Different superscript letters indicate significant differences 

between treatments within each treatment time. Asterisks indicate statistical differences 

between different treatment times for the same treatment, and for the same form of MMP (*P < 

0.05; **P < 0.01; ****P < 0.0001).  

 

The gelatinolytic activity of MMP-9 active form was detected in both estrous cycle 

phases, but only at 48h treatment (Fig. 11C, 11D). In FP explants, treated with CAT, the active 

MMP-9 gelatinolytic activity increased comparing to control group (P < 0.05; Fig. 11C), and 

was reduced in CAT+INH-treated tissues, in comparison to the respective group treated with 

CAT (P < 0.05; Fig. 9, 11C). 

The gelatinolytic activity of pro-MMP-2 enzyme in INH-treated group was 

downregulated at 24h in FP explants (Fig. 9, 11A). The stimulatory effect of CAT was higher 

in FP at 24h than at 48h on active MMP-2 gelatinolytic activity (Fig. 11A), and the combination 

of CAT and INH reduced the gelatinolytic activity at 48h comparing to 24h treatment (Fig. 9, 
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11A). In MLP endometrium, all treatments up-regulated the active gelatinolytic activity of MMP-

2 at 24h, compared to 48h (Fig. 9, 11B). 

 

3.5 Discussion 

In the present study, CAT induced COL1 expression in explants of mare endometrium, 

at FP and MLP in a time dependent manner. The COL1A2 mRNA results show that CAT acts 

as a pro-fibrotic protease, mainly in FP, as a response to a shorter stimulus, and in MLP as a 

response to a longer stimulus. During the FP, endogenous estrogen thickens the uterine wall 

and increases uterine muscular tone and vascularization. The cervix is relaxed and opens 

(Aurich 2011). The endometrial glands also proliferate and the lamina propria becomes highly 

edematous (Kenney 1978). The mare endometrium is more prone to inflammation and more 

reactive at estrus, which might explain why the explants obtained at the FP, under the influence 

of estrogens, were reactive to CAT after a short time of stimulation. Moreover, a longer time of 

CAT exposition was needed to increase expression of COL1 at the protein level. The COL1 

protein relative abundance was increased by CAT only at 48h in both estrous cycle phases. 

One of the aims of this study was to evaluate if by inhibiting CAT using a specific 

inhibitor (IHN) it would be possible to reduce CAT-induced COL1 relative abundance in equine 

endometrium. This inhibitor blocks the increase of monocyte chemoattractant protein 1 (MCP1) 

and tumor necrosis factor α (TNFα), both linked to airway hyperactivity (de Garavilla et al. 

2005), and blocks neutrophilia (Abraham 2008). We showed in our study that the inhibitory 

effects of IHN was detected in the longest treatment time, corresponding to the increased 

COL1 relative abundance induced by CAT treatment. To the best of our knowledge, this is the 

first study describing that by inhibiting CAT, it is possible to reduce COL1 relative abundance 

in equine endometrium in vitro. Therefore, we suggest that this treatment could be a possible 

approach to prevent the formation of endometrosis. In fact, INH offers a promising therapeutic 

strategy in chronic inflammatory conditions, such as asthma or COPD (Kosikowska and Lesner 

2013). Future in vivo studies are crucial to test this hypothesis. Currently, despite the therapies 

proposed to treat equine endometrosis, there is no routinely available effective treatment 

(Buczkowska et al. 2014; Schöniger and Schoon 2020). Several therapeutic approaches, as 

mechanical curettage or intrauterine application of chemical agents (kerosene, DMSO, isotonic 

salt) or mesenchymal stem cells have been studied (Ley et al. 1989; Keller et al. 2006; 

Mambelli et al., 2014). Nevertheless, they caused rather short-term beneficial effects, and/or 

did not improve pregnancy rates (Ley et al. 1989; Keller et al. 2006; Mambelli et al., 

2014).Thus, the need for evaluating the in vivo efficacy of INH in the treatment of equine 

endometrosis associated to NETs is imperative. Indeed, our findings may be the grounds for 

further in vivo trials for INH testing. 
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Fibrosis is the result of a disruption of the balance of the ECM, with increased synthesis 

and deposition of ECM components, and decreased degradation of those ECM products 

(Harvey et al. 2016). The MMPs have been considered as being part of the highly regulated 

systems that control this ECM turnover (Vandooren et al. 2013). An increase in the active form 

of MMP-2 has been reported in mare endometrosis (Walter et al. 2005), although other works 

showed no changes in MMP-2 or -9 expression between normal and fibrotic equine 

endometrium (Aresu et al. 2012). Another study done by Centeno et al. (2018) found that 

MMP2 transcription was upregulated in endometrial fibrosis. Moreover, we have recently 

reported an upregulation of MMP-2 and MMP-9 levels in mare endometrial tissue with mild to 

moderate lesions, as well as an increase of MMP-9 levels in fibroblasts and epithelial cells 

challenged by TGFβ1 (Szóstek-Mioduchowska et al. 2020a). In other tissues, CAT has 

previously been capable to activate pro-MMP-2 in human tumor cells invasion (Shamamian et 

al. 2001), and together with MMP-9 may enhance TGFβ signaling in a tumor murine model 

(Wilson et al. 2009a, 2009b). The inconsistency between MMP expression found in normal 

and fibrotic equine endometrium may be explained by the fact that fibrotic changes, as in other 

tissues e.g lungs (Vukmirovic and Kaminski 2018), are diffuse. The collected tissue may not 

always reflect the entire condition of the fibrotic organ and thus, might not fully address the 

cellular and spatial heterogeneity of fibrosis. Additionally, since endometria at different stages 

of fibrosis were obtained post mortem from different mares, it was not feasible to evaluate the 

evolution of the fibrogenic process individually. This may have affected the results, and thus 

could also explain the inconsistent pattern found. However, despite these limitations, also 

observed in other tissues, understanding of the molecular pathways and the expression of 

various factors involved in equine endometrosis, is rather important, by unravelling changes 

associated with this pathological condition.  

In our study, the gelatinolytic activity of MMP-2 active form in endometrial explants 

increased in response to CAT treatment after the shortest treatment time (24h), at both estrous 

cycle phases. Nevertheless, this pro-fibrotic effect of CAT was diminished with INH addition in 

FP tissue treated for 24h. Apparently, MMP-2 appears to be involved in an immediate 

response, perturbing ECM balance. So, MMP-2 can mediate an acute response to a CAT 

induced inflammation, regardless of the estrous cycle phase.  

In FP endometrial explants, the gelatinolytic activity of MMP-9 active form increased 

with CAT treatment and was inhibited by INH at 48h. This suggests MMP-9 involvement, 

especially in FP equine endometrium, remodeling the fibrogenic response to a prolonged 

exposition to CAT.  

Elevated levels of MMPs in the endometrium may also indicate a cellular response to 

an altered ECM balance, as part of the normal regulation of MMP expression. In fact, the main 

role attributed to MMPs is their action on the turnover and degradation of ECM substrates. 
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Regulation of MMPs activity takes place at the stages of gene transcription, protein production, 

activation of pro-enzymes, and inhibition of the active enzymes by tissue inhibitor of matrix 

metallopeptidases (TIMPs) or α2-macroglobulin (Sternlicht and Werb 2001). Many of these 

factors can contribute to the differences found between gene transcription, pro-enzyme and 

active form of MMP-2 and MMP-9. In addition, MMP-9 may be regulated by ovarian steroids, 

which can explain why this enzyme activity differed according to various estrous cycle phases 

(Nothnick 2008). Many mechanisms are involved in the response to CAT pro-fibrotic stimulus, 

and more studies are necessary to unravel the role of MMPs, either in healthy or fibrotic 

endometrium.  

 

3.6 Conclusions 

Even though our previous (Amaral et al. 2018, 2020a) and present results suggest that 

ELA and CAT are pro-fibrotic factors, and are involved in equine endometrial fibrosis 

establishment, the study of other causes, including the role of other enzymes found in NETs 

is vital to fully understand the mechanisms of endometrosis pathogenesis. The use of a 

selective CAT inhibitor was effective on the reduction of COL1 expression. Therefore, these 

novel data may contribute to the development of a new prophylactic or therapeutic approach 

for endometrosis. Although, the use of a broad-spectrum enzyme inhibitor or specific selective 

inhibitors combined may be needed to obtain a strong and more effective inhibitory effect. 

MMP-2 might be involved in an earlier response to CAT, independent of estrous cycle phase, 

and MMP-9 in a later response, mainly in the FP.  
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4. Myeloperoxidase inhibition decreases the expression of collagen and 
metallopeptidase in mare endometrium under in vitro conditions 

 

Adapted from: 

Amaral A, Fernandes C, Rebordão MR, Szóstek-Mioduchowska A, Lukasik K, Pinto-

Bravo P, Telo da Gama L, Skarzynski DJ, Ferreira-Dias G. 2020. Myeloperoxidase inhibition 

decreases the expression of collagen and metallopeptidase in mare endometria under in vitro 

conditions. Animals. 11(1):208. doi: 10.3390/ani11010208. 

 

4.1 Abstract 

Neutrophils can originate neutrophil extracellular traps (NETs). Myeloperoxidase 

(MPO) is a peroxidase found in NETs associated to equine endometrosis and can be inhibited 

by 4-aminobenzoic acid hydrazide (ABAH). Metallopeptidases (MMPs) participate in 

extracellular matrix stability and fibrosis development. The objectives of this in vitro work were 

to investigate in explants of mare’s endometrium, (i) the ABAH capacity to inhibit MPO-induced 

collagen type I (COL1) expression; and (ii) the action of MPO and ABAH on the expression 

and gelatinolytic activity of MMP-2/-9. Explants retrieved from the endometrium of mares in 

follicular or mid-luteal phases were treated with MPO, ABAH, or their combination, for 24 or 

48h. The qPCR analysis measured the transcription of COL1A2, MMP2, and MMP9. Western 

blot and zymography were performed to evaluate COL1 protein relative abundance and 

gelatinolytic activity of MMP-2/-9, respectively. Myeloperoxidase elevated COL1 relative 

protein abundance at both treatment times in follicular phase (P < 0.05). The capacity of ABAH 

to inhibit MPO-induced COL1 was detected in follicular phase at 48h (P < 0.05). The 

gelatinolytic activity of activated MMP-2 augmented in mid-luteal phase at 24h after MPO 

treatment, but it was reduced with MPO+ABAH treatment. The activity of MMP-9 active form 

augmented in MPO-treated explants. However, this effect was inhibited by ABAH in the 

follicular phase at 48h (P < 0.05). By inhibiting the pro-fibrotic effects of MPO it might be 

possible means to reduce the development of endometrosis. Metallopeptidase-2 might be 

involved in an acute response to MPO in the mid-luteal phase, while MMP-9 might be 

implicated in a prolonged exposition to MPO in the follicular phase. 

 

Keywords: endometrosis, myeloperoxidase, 4-aminobenzoic acid hydrazide, fibrosis, 

metallopeptidases. 
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4.2 Introduction 

Myeloperoxidase (MPO) is an enzyme that is expressed by several immune cells, as 

neutrophils, monocytes, and macrophages (Nicholls and Hazen 2005; Liu et al. 2015). 

Neutrophils are the first leucocytes acting on the defense against microbial attacks (Klebanoff 

2005; Teng et al. 2017) and are able to degranulate, and release their DNA and some enzymes 

that possess antimicrobial properties. Thus, they form neutrophil extracellular traps (NETs). 

Some proteases, such as cathepsin G and elastase, and the peroxidase MPO are released by 

NETs to fight bacteria (Brinkman 2004). Among these enzymes, MPO has been described to 

be the most abundant one in neutrophils (Segal 2005). It uses the bacteria-induced hydrogen 

peroxide to produce chloramine and hypochlorite, which are toxic products for bacteria 

(Klebanoff 2005; Nauseef 2014).  

After mating or artificial insemination, the sperm induces inflammation with a rapid influx 

of neutrophils into the uterus, which in turn leads to a physiological transient breeding-induced 

endometritis (Kotilainen et al. 1994; Katila 1995). This inflammatory response results in the 

elimination of needless spermatozoa, contaminating bacteria, and debris introduced in the 

uterus (Troedsson et al. 1993; Troedsson 2006). The process of NETs formation in equine 

endometrium has already been demonstrated by the contact of equine neutrophils with semen 

(Alghamdi and Foster, 2005; Alghamdi et al. 2009) or with bacteria associated to endometritis 

(Rebordão et al. 2014). But, besides the antimicrobial properties of NETs components, they 

may also contribute to the development of some pathological conditions (Manda et al. 2014). 

High concentrations of MPO in uterine lavage of mares was already related with endometritis 

(Parrilla-Hernandez et al. 2014), even though this was not demonstrated in cows with 

endometritis (Nazhat et al. 2018). In our previous studies, we have also identified the 

involvement of NETs enzymes in the establishment of endometrosis (Rebordão et al. 2018; 

Amaral et al. 2018, 2020a, 2020b). Endometrosis is a fibrotic, progressive, and degenerative 

condition, mainly diagnosed on the grounds of the paramount deposition of extracellular matrix 

(ECM) components, such as collagen, in mare endometrium (Kenney 1992; Hoffmann et al. 

2009). In fact, the treatment of equine endometrial explants with NETs enzymes induced 

collagen type I (COL1) expression (Rebordão et al. 2018; Amaral et al. 2018, 2020a, 2020b). 

In humans, elevated levels of MPO in cystic fibrosis sputum have been associated with the 

severity of lung disease (Sagel et al. 2012; Sly et al. 2013). Moreover, this enzyme has also 

been associated to liver fibrosis (Beard et al. 2006; Pulli et al. 2015).  

The 4-aminobenzoic acid hydrazide (ABAH), among many MPO inhibitors tested, has 

been the most investigated (Kettle 1997; Lazarević-Pasti et al. 2015). Recent studies have 

shown that ABAH reduced MPO-dependent mice hepatocyte death (Pulli et al. 2015), 

decreased the activity of MPO in acute stroke in mice (Kim, Wei et al. 2016) and inhibited MPO 

in cystic fibrosis sputum (Hair et al. 2017). 
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Metallopeptidases (MMPs) are a group of enzymes that mediate ECM turnover. 

Metallopeptidase-2 and -9 are endopeptidases which denature ECM substrates, such as 

collagens (gelatins) (Vandooren et al. 2013). In addition, the expression and activity of MMPs 

are affected by ovarian hormones in human endometrial tissue remodeling during the estrous 

cycle phases (Wang and Khalil 2018), but their role in fibrosis establishment is still uncertain. 

Comparing the normal and fibrotic equine endometrium, Aresu et al. (2012) found no alteration 

in MMP-2/-9 expression. However, MMP-2 transcription (Centeno et al. 2018) and its active 

form (Walter et al. 2005) were up-regulated in mare endometrosis. Our latest in vitro studies 

in equine endometrium revealed that MMP expression is altered by mediators of inflammation 

(interleukins, transforming growth factor (TGF)β1 and prostaglandins (Szóstek-Mioduchowska 

et al. 2019b, 2020a, 2020b), and could contribute for the fibrotic response to elastase (Amaral 

et al. 2020a) and cathepsin G (Amaral et al. 2020b). 

Taking in consideration that equine endometrial explants treated with enzymes found 

in NETs induced COL1, it could be proposed that NETs enzymes play a role in equine 

endometrial fibrosis establishment. Thus, the rationale was to investigate if by inhibiting NETs 

enzymes it would reduce the MPO induced COL1. This way, we proposed to evaluate if a 

selective inhibitor of NETs enzyme MPO would be effective in reducing MPO pro-fibrotic effect, 

as it has been shown in other organs and species. Our previous in vitro findings in mare 

endometrial explants, showed that COL1 induced by elastase and cathepsin G was reduced 

by the use of their selective inhibitors (Amaral et al. 2020a, 2020b). We have hypothesized 

that by inhibiting MPO, the in vitro production of COL1 by mare endometrial explants would be 

reduced. Thus, the objectives of this in vitro work were to investigate in explants of mare’s 

endometrium, (i) the ABAH capacity to inhibit MPO-induced collagen type I (COL1) expression; 

and (ii) the action of MPO and ABAH on the expression and gelatinolytic activity of MMP-2/-9. 

 

4.3 Materials and Methods 

4.3.1 Mares and tissue retrieval 

Uteri from cyclic mares (n=14) intended for meat production were collected post-

mortem at an abattoir (Rawicz, Poland) within 10–15 min of mares´ euthanasia, in agreement 

to the European (EFSA, AHAW/04–027) legislation. As confirmed by the official veterinary 

inspection carried out by the official veterinary, the mares used in this study showed no signs 

of illness. For further progesterone (P4) analysis, blood from the jugular vein was withdrawn 

into ethylenediaminetetraacetic acid (EDTA) tubes. For each mare, estrous cycle phase was 

determined according to uterine and ovarian evaluation, and confirmed by P4 concentration in 

plasma (Roberto da Costa et al. 2007; Rebordão et al. 2018). For this study, mid-luteal phase 

(MLP; n = 6) and follicular phase (FP; n = 8) endometria were immediately transported to the 

laboratory, on ice. As previously reported, mare uteri were placed in ice-cold Dulbecco’s 



 
 

87 
 

modified Eagle’s medium (DMEM) F-12 Ham medium (D/F medium; 1:1 (v/v); D-2960; Sigma-

Aldrich, St Louis, MO, USA), supplemented with100 IU/mL penicillin (P3032; Sigma-Aldrich), 

2 µg /mL amphotericin (A2942; Sigma-Aldrich) and 100 µg/mL streptomycin (S9137; Sigma-

Aldrich). Only endometria without endometritis were included in the study, as previously 

referred (Rebordão et al. 2018, 2019). After samples were collected, two pieces of 

endometrium were immersed in 4% buffered paraformaldehyde for the histopathological 

classification of the endometrium (Kenney and Doig 1986). The endometrial samples were 

classified as I, IIA, IIB or III categories based on the extent of inflammation and/or fibrosis, 

according to Kenney and Doig (1986). Only endometria presenting mild to moderate 

histopathological lesions (IIA or IIB category) were used in this experiment, in order to exclude 

the variation due to endometrial fibrotic grade.  

 

4.3.2 In vitro culture of endometrial explants 

Endometrial tissue preparation and culture were performed as reported before (Amaral 

et al. 2020a). The explants were pre-incubated for 1h, at 38ºC, 5% CO2 in a humidified 

atmosphere chamber (Biosafe Eco-Integra Biosciences, Chur, Switzerland) in 24-well cell 

culture sterile plates (Eppendorf, #0030 722.116) with 1mL of DMEM culture medium 

supplemented with 0.1% (w/v) bovine serum albumin (BSA; 735078; Roche Diagnostics, 

Mannheim, Germany), 100 µg/mL streptomycin (S9137; Sigma-Aldrich), 100 IU/mL penicillin 

(P3032; Sigma-Aldrich)  and 2 µg/mL amphotericin (A2942; Sigma-Aldrich),.with gentle 

shaking (150 rpm). Afterwards, endometrial explants were further treated in new culture 

medium for 24h or 48h, as follows: (i) vehicle (negative control) – culture medium alone; (ii) 

myeloperoxidase (MPO; 0.5 µg/mL; orb81997; Biorbyt, Cambridge, UK); (iii) 4-aminobenzoic 

hydrazide, an MPO inhibitor (ABAH; 10 µg/mL; C7H9N3O, sc-204107; Santa Cruz 

Biotechnology, USA); (iv) MPO (0.5 µg/mL) + ABAH (10 µg/mL); or (v) oxytocin (OXT; 10-7 M), 

a prostaglandin (PG) secretion positive control (Nash et al. 2008; Szóstek et al. 2013). Thus, 

in the present study, OXT treatment was a means to determine explant viability by assessing 

endometrium in vitro capacity to secrete PGF2α throughout the incubation time. A fibrogenic 

assay using TGFβ1 was previously carried out as a positive control for COL expression 

(Amaral et al. 2020a). Each treatment was carried out in quadruplicate. The ABAH was added 

1h later of pre-incubation, when the culture media were replaced, while MPO was added 1h 

later to allow binding of the inhibitor. In studies lasting for 48h, 10 µg/mL of ABAH were 

furthered added after the first 24h of treatment, since in the pre-trial its inhibitory effect 

persisted only for 24h and subsided afterwards. In the end, explants (in RNAlater, R901, 

Sigma-Aldrich) and conditioned culture media were stored at -80°C. For PG analysis a 1% 

stabilizer solution of 0.3M EDTA (E5134, Sigma-Aldrich) and 1% aspirin (A2093; Sigma-

Aldrich) was added to the culture medium to prevent degradation before storage at -80°C. 
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The expression of TGFβ1, as a fibrotic indicator (Rebordão et al. 2018), was induced 

by 0.5 µg/mL of MPO in a dose assessment assay. In addition, a dose-response trial, found in 

other in vitro studies (Kettle et al. 1997; Forbes et al. 2013), using 0.01, 0.1, 1, 10 and 100 

µg/mL ABAH, showed that the optimum concentration that inhibited COL1A2 mRNA MPO-

induced was 10 µg/mL (data not shown). 

 

4.3.3 Endometrial explants Viability assay 

The endometrial explant viability was evaluated by lactate dehydrogenase (LDH) 

activity and by PGF2α secretion in conditioned culture medium, as described (Amaral et al. 

2020a). The data of viability of endometrial explants are presented in Supplementary material, 

Figure S1 and S2. 

 

4.3.4 Total RNA extraction, synthesis of cDNA and qPCR 

TRI Reagent® (T9424; Sigma-Aldrich) was used to perform the extraction of total RNA, 

following to the guidelines provided by the manufacturer. The evaluation of both RNA quality 

and quantity, as well as cDNA synthesis was done as already reported (Amaral et al. 2020a). 

The primer sequences for COL1A2, MMP2, MMP9 and for the reference gene ribosomal 

protein L32 (RPL32) were previously determined, as well as the reference gene validation 

(Dheda et al. 2004; Amaral et al. 2020a). The target and reference gene reactions were run 

simultaneously, in duplicate, on a 96 well plate (4306737; Applied Biosystems) and run in a 

StepOnePlus™ Real-Time PCR System (Applied Biosystems, Warrington, UK). The specificity 

of the qPCR products was performed, as described (Zhao and Fernald 2005; Amaral et al. 

2020a). 

 

4.3.5 Western blot analysis 

Equine endometrial explants were processed as described before (Amaral et al. 

2020a). Collagen type I protein relative abundance was determined by the non-staining total 

protein loading control as reported before (Amaral et al. 2020a). The primary against COL1 

antibody (1:1,000 diluted; 20121; Novotec, Lyon, France) was incubated overnight, at 4ºC as 

previously described and validated (Rebordão et al. 2018). The secondary antibody utilized 

was Horseradish peroxidase (HRP)-conjugated anti-rabbit (1:20,000; P0448; 

DakoCytomation, Carpinteria, CA, USA) incubated at room temperature for 1.5h. Imaging of 

COL1 protein relative abundance was achieved by luminol enhanced chemiluminescence 

(Super Signal West Pico, 34077; Thermo Scientific, Waltham, MA, USA). For band 

normalization and comparison between membranes, a standard sample (30 µg) of a mix of 

explants was loaded in all gels in a single lane. Image Lab 6.0 (Bio-Rad) software and a 

multichannel protocol were used to analyze COL1 relative abundance in lanes in non-staining 
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total protein membrane image. After antibodies incubation, the band was detected on 

chemiluminescence image. The target protein volume was software-calculated using a 

normalization factor allowing the adjustment of variability of the protein loaded (Posch et al. 

2013; Amaral et al. 2020a).  

 

4.3.6 Zymography 

The MMP-2 and MMP-9 gelatinolytic activity was assessed by zymography, as 

described before (Manuel and Gawronska-Kozak 2006).  Normalization of zymograms was 

accomplished using a non-staining total protein loading control (Raykin et al. 2017). The 

explant culture supernatant was processed as described (Amaral et al. 2020a). The molecular 

weight determination was made using Recombinant Human MMP-2 Protein, CF (902-MP-010; 

R&D Systems, Minneapolis, USA), and Recombinant Human MMP-9 Western Blot Standard 

Protein (WBC018; R&D Systems). To relate all the gels, a single lane of a standard sample 

(40 µg) of mixed culture medium was loaded. A multichannel protocol in Image Lab 6.0 (Bio-

Rad) software was used for the detection of lanes in non-staining total protein gel image and 

bands on Coomassie staining image. Volume of target protein, as well as the normalization 

factor, were calculated, and the values adjusted for protein load variation (Raykin et al. 2017; 

Amaral et al. 2020a). 

 

4.3.7 Statistical analysis 

Data normality was evaluated visually and by the test of Kolmogorov-Smirnov in Proc 

Univariate of SAS v. 9.4 (SAS Institute Inc.). The viability data were assessed by one-way 

analysis of variance (ANOVA) followed by Tukey’s multiple comparisons test (GraphPAD 

PRISM, Version 6.00, 253 GraphPad Software, San Diego, CA, USA). These results are 

displayed as mean ± SEM and determined significant at P < 0.05. The evaluated variables 

consisted of COL1A2, MMP2 and MMP9 transcription, relative COL1 protein abundance and 

gelatinolytic activity of MMP-2/-9. Since some variables did not present a normal distribution, 

the square root and logarithmic transformation were used to transform these data for further 

analysis. In the first analysis, the PROC GLM of SAS was used to analyze each response 

variable to different treatments: combination of the effect of MPO, the use of ABAH, estrous 

cycle phase, and time of treatment, resulting in 16 treatment combinations in total. The least 

square means of the treatment combinations were compared (using the PDIFF of PROC GLM), 

and results were significant at P < 0.05. To perform the graphical presentation, the means 

were back transformed. After, the two-, three- and four-way interactions, were also analyzed. 
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4.4 Results 

4.4.1 Viability of endometrial explants 

The data of viability of endometrial explants are presented in Figure 12 and 13. 

 

Figure 12: Lactate dehydrogenase (LDH) activity measured in conditioned culture 

medium of equine endometrial explants after 1h, 24h or 48h incubation. Explants viability was 

calculated from the quotient of the intracellular LDH activity and the total activity (extracellular 

plus intracellular LDH) (Amaral et al. 2020a). Results are presented as means ± SEM. Asterisks 

indicate statistical differences within time of incubation. Statistical differences were found 

between 1h - 48 h, and 24h - 48h (P < 0.01). The results were independent of estrous cycle phase. 

 

 

Figure 13: The effect of oxytocin (OXT) on prostaglandin (PG)F2α secretion in equine 

endometrial explants after 24h or 48h. Results are presented as means ± SEM. Asterisks indicate 

statistical differences within the different time of treatment. Endometrial explants treatment with 

OXT increased PGF2α secretion at 24h and 48h (p > 0.001) comparing to control (non-treated 

tissues). These results were independent of estrous cycle phase. 

 

4.4.2 The effect of ABAH on the inhibition of COL1 induced by MPO  

The interactions found between treatments, estrous cycle phase and time of treatment 

are listed in Table 12.   
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Table 12: Levels of significance (P values) for 2-, 3- and 4-way interactions between 

estrous cycle phases, treatment time, and myeloperoxidase (MPO) or 4-aminobenzoic hydrazide 

(ABAH) treatments in the analyses of relative transcript of target genes, COL1 protein relative 

abundance and gelatinolytic activity of MMP-2 and -9. The results were considered significant at 

P < 0.05 and are highlighted in yellow. 

Interaction COL1A2 COL1 MMP2 Pro-MMP-2 
Active 
MMP-2 

MMP9 
Pro-

MMP-9 

MPO x ABAH 0.0982 0.1554 0.2915 0.216 0.0187 0.0013 0.5735 

MPO x 
treatment 
time 

0.9082 0.1717 0.6797 0.5799 0.7226 0.0245 0.4546 

MPO  x 
estrous cycle 
phase 

0.0292 0.0331 0.4127 0.6731 0.6847 0.0011 0.5019 

ABAH x 
treatment 
time 

0.5321 0.3425 0.9631 0.2552 0.1017 0.3115 0.423 

ABAH x 
estrous cycle 
phase 

0.0284 0.0611 0.2415 0.3873 0.8572 <.0001 0.6101 

Time of 
treatment x 
estrous cycle 
phase 

0.0006 0.1814 0.6529 0.007 0.044 0.0572 0.0131 

MPO x ABAH 
x treatment 
time 

0.4935 0.497 0.8888 0.4357 0.9494 0.3593 0.0926 

MPO x ABAH 
x estrous 
cycle phase 

0.0034 0.0245 0.8832 0.153 0.1756 0.4073 0.8236 

MPO x 
treatment 
time x 
estrous cycle 
phase 

0.0079 0.491 0.7107 0.5299 0.2599 0.0875 0.8082 

ABAH x 
treatment 
time x 
estrous cycle 
phase 

0.8928 0.0689 0.655 0.1988 0.1769 0.3967 0.7737 

MPO x ABAH 
x treatment 
time x 
estrous cycle 
phase 

0.1748 0.8249 0.6073 0.0065 0.0199 0.0856 0.0309 

Abreviations: COL1A2 - collagen type 1 α2; COL1 – collagen type I protein; MMP2 - matrix 

metallopeptidase 2; MMP9 - matrix metallopeptidase 9 
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In Table 13 are shown the differences of the same treatments between the FP and MLP 

within each treatment time. 

 

Table 13: Listed significant differences of the same treatments between the follicular 

phase (FP) and mid-luteal phase (MLP) of the estrous cycle, within each treatment time. 

Evaluated variables Treatment comparison P value Figures 

COL1A2 transcription MPO 24h FP vs 24h MLP P < 0.0001 14A, 14B 

COL1 protein relative 
abundance 

MPO 24h FP vs 24h MLP P < 0.01 
14C, 14D 

MPO 48h FP vs 48h MLP P < 0.01 

MMP9 transcription 

ABAH 24h FP vs 24h MLP P < 0.001 

16C, 16D 

ABAH 48h FP vs 48h MLP P < 0.05 

MPO 24h FP vs 24h MLP P < 0.01 

MPO + ABAH 24h FP vs 24h 
MLP 

P < 0.0001 

MPO + ABAH 48h FP vs 48h 
MLP 

P < 0.0001 

Pro-MMP-2 activity MPO 24h FP vs 24h MLP P < 0.001 17A, 17B 

Active MMP-2 MPO 24h FP vs 24h MLP P < 0.01 17A, 17B 

COL1A2 - collagen type 1 α2; COL 1 – collagen type I; MMP2 - matrix metallopeptidase 2; MMP9 - matrix 

metallopeptidase 9; MPO – myeloperoxidase; ABAH – 4-aminobenzoic hydrazide; FP – follicular phase; MLP – 

mid-luteal phase. 

 

In figure 14, the relative mRNA transcription and protein abundance of COL1 results 

are presented as median with interquartile range. Likewise, in figure 16, the transcription of 

MMP2/9 is shown as median with interquartile range. However, in figure 17, the results of 

MMP-2/-9 gelatinolytic activities are presented as least square means ± SEM. These figures 

were drawn in GraphPAD PRISM. 

The COL1A2 transcripts increased in MPO treated explants in FP at 24h and 48h when 

compared to control group (P < 0.0001; P < 0.05 respectively; Fig. 14A) and to ABAH-treated 

group (P < 0.0001; P < 0.05 respectively; Fig. 14A). However, the use of MPO and ABAH 

treatments, when combined, impaired COL1A2 mRNA levels comparing to the corresponding 

MPO-treated tissues (FP: 24h – P < 0.001; 48h – P < 0.01; Fig. 14A). In MLP endometrial 

explants treated for 24h, the MPO treatment lowered the transcription regarding the control 

group (P < 0.05; Fig. 14B). In FP endometrial explants treated with MPO, COL1A2 transcription 

was higher at 24h than at 48h (Fig. 14A).  Nevertheless, in MLP explants the transcription was 

higher at 48h comparing to 24h (Fig. 14B) and was also increased with MPO + ABAH treatment 

(Fig 14B). 



 
 

93 
 

 

Figure 14: Relative mRNA transcription of type I collagen (COL1A2) (A, B) and relative 

abundance of COL1 protein (C, D) in mare endometrial explants from follicular phase (FP) and 

mid-luteal phase (MLP) treated with culture medium only (Control), myeloperoxidase (MPO: 0.5 

μg/mL), 4-aminobenzoic hydrazide (ABAH: 10 μg/mL), or MPO (0.5 μg/mL) + ABAH (10 μg/mL) 

for 24 or 48h. Results are presented as median with interquartile range. Significance was 

determined at P < 0.05. The differences among treatments with the same treatment time are 

signaled by distinct superscript letters (a, b- 24h; x,y- 48h). The differences among times of 

treatment for the identical treatment are shown by asterisks (*P < 0.05; **P < 0.01). 

 

In MPO-treated explants, COL1 protein increased in the FP, both at 24h (P < 0.01; Fig. 

14C) and 48h (P < 0.001; Fig. 14C), with respect to control group and ABAH group, but only 

in the longest treatment time (P < 0.0001; Fig. 14C). The inhibitory effect of ABAH was detected 

in FP at 48h regarding the group treated with MPO (P < 0.01; Fig. 14C, 15). In the FP, COL1 

protein relative abundance was greater in ABAH-treated explants at 24h when compared to 

48h treatment (Fig. 14C, 15). There were no differences in COL1 protein between treatments 

or treatment times in the MLP explants (Fig. 14D). 
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A – 24h FP endometrium explant B – 48h FP endometrium explant 

  

C – 24h MLP endometrium explant D – 48h MLP endometrium explant 

  

Figure 15: Representative panels of type I collagen (COL1) western blotting and pro and 

active form of MMP-2 and MMP-9 zymograms in mare endometrium in follicular phase (FP) or 

mid-luteal phase (MLP) treated for 24h  or 48h with myeloperoxidase (MPO 0.5 μg/mL), 4-

aminobenzoic hydrazide (ABAH; 10 µg/mL) or MPO (0.5µg/mL) + ABAH (10µg/mL). A - 24h 

treatment of FP endometrium explants; B – 48h treatment of FP endometrium explants, C – 24h 

treatment of MLP endometrium explants; and D – 48h treatment of MLP endometrium explants. 

 

4.4.3 The effect of MPO and ABAH on MMP expression 

The transcription of MMP2 was unchanged at both treatment times and estrous cycle 

phase (Fig. 16A and 16B). In FP endometrial explants, at both treatment times, the transcript 

levels of MMP9 increased in MPO treated groups relative to the respective non-treated 

explants (P < 0.01; Fig. 16C) and to the ABAH-treated set (24h - P < 0.0001; 48h - P < 0.01; 

Fig. 16C). However, the MPO + ABAH combined treatment reduced MMP9 mRNA compared 

to MPO-treated groups (FP: 24h – P < 0.01; 48h - P < 0.0001; Fig. 16C). The ABAH treatment 

decreased MMP-9 mRNA regarding non-treated group at 24h in FP endometria (P < 0.05; Fig. 



 
 

95 
 

16C). In MLP tissues treated for 24h, all the treatments up-regulated MMP9 transcription 

relative to control (ABAH – P < 0.05; MPO and MPO + ABAH – P < 0.001; Fig. 16D). Also, the 

MPO and MPO + ABAH treatments increased MMP9 mRNA comparing to ABAH-treated group 

(P < 0.001; Fig. 16D). At 48h, in MLP equine explants, all the treatments increased MMP9 

transcript levels as well, compared to control tissues (ABAH – P < 0.01; MPO – P < 0.05; MPO 

+ ABAH– P < 0.0001; Fig. 16D). The MMP9 transcription was higher in MLP tissues MPO-

treated at 24h than at 48h (Fig. 16D).  

 

Figure 16: Transcription of MMP2 (A, B) and MMP9 (C, D) relative mRNA in mare 

endometrial explants from follicular phase (FP) and mid-luteal phase (MLP) treated with culture 

medium only (Control), myeloperoxidase (MPO: 0.5 μg/mL), 4-aminobenzoic hydrazide (ABAH: 

10 μg/mL), or MPO (0.5 μg/mL) + ABAH (10 μg/mL) for 24 or 48h. Results are presented as median 

with interquartile range. Significance was determined at P < 0.05. The differences among 

treatments with the same treatment time are signaled by distinct superscript letters (a,b,c- 24h; 

x,y- 48h). The differences among times of treatment for the identical treatment are depicted by 

asterisks (***P < 0.001). 
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In FP explants at 48h, the MPO + ABAH treatment reduced gelatinolytic activity of 

active MMP-2 comparing to MPO-treated group (P < 0.05; Fig. 15, 17A), which did not increase 

compared to control. The gelatinolytic activity of pro- (P < 0.05; Fig. 17B) and active (P < 0.01; 

Fig. 17B) MMP-2 increased in MLP explants at 24h with MPO treatment comparing to control. 

However, the combined treatment of MPO + ABAH reduced in comparison to MPO-treated 

group (pro-MMP-2: P < 0.01; active MMP-2: P < 0.05; Fig. 15, 17B).  

The pro-MMP-2 gelatinolytic activity increased at 48h in FP with MPO treatment with 

respect to 24h (Fig. 17A), while in MLP both pro- and active MMP-2 gelatinolytic activities 

increased at 24h relative to 48h (Fig. 15, 17B). 

The MMP-9 active form gelatinolytic activity was only identified in FP at 48h treatment 

and MPO treatment up-regulated it comparing to control group (P < 0.01; Fig. 17C).  

Nevertheless, MPO + ABAH combination reduced the activity of active MMP-9, with respect to 

MPO-treated explants (P < 0.01; Fig. 15, 17C). The analysis of pro-MMP-9 gelatinolytic activity 

showed its decrease after MPO + ABAH of MLP explant treatment for 24h, comparing to MPO-

treated group (P < 0.05; Fig. 17D), which did not differ from its respective control.   
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Figure 17: Relative MMP-2 (A, B) and MMP-9 (C, D) gelatinolytic activities in mare 

endometrial explants from follicular phase (FP) and mid-luteal phase (MLP) treated with culture 

medium only (Control), myeloperoxidase (MPO: 0.5 μg/mL), 4-aminobenzoic hydrazide (ABAH: 

10 μg/mL), or MPO (0.5 μg/mL) + ABAH (10 μg/mL) for 24 or 48h. Data of the least square means 

± SEM are shown in bars as percentage of change from control. Significance was determined at 

P < 0.05. The differences among treatments with the same treatment time are signaled by distinct 

superscript letters. The differences among times of treatment for the identical treatment and 

MMP form are presented by asterisks (*P < 0.05; **P < 0.01). 

 

4.5 Discussion 

Since the discovery that neutrophils release NETs secondary to the contact with 

bacteria (Rebordão et al. 2014), and semen (Alghamdi and Foster, 2005; Alghamdi et al. 2009) 

in mare endometrium and that the enzymes found in NETs act as prof-fibrotic factors in mare 

endometrosis (Rebordão et al. 2018), we aimed to investigate if it would be feasible to reduce 

in vitro COL production induced by these enzymes, by specifically inhibiting them (Amaral et 

al. 2018, 2020a). In our study, MPO treatment elevated the transcripts of COL1A2 mRNA and 

COL1 relative protein abundance at both times of incubation only in FP equine endometria. It 

is in the FP, under the influence of estrogens, the mare endometrium is more exposed to the 

invading bacteria, since the cervix is relaxed and open (Aurich 2011). Nevertheless, it appears 

that mares with healthy endometria are capable of defeating bacteria during this phase of the 

estrous cycle. As such, after induced endometritis with Escherichia coli infusion, mares 
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presented lower positive bacteriological cultures and neutrophil counts in endometrial swabs 

when infused at estrus, rather than at diestrus (Marth et al. 2016). But, it is worth noting that it 

is in the FP, that Streptococcus equi subspecies zooepidemicus (bacteria which cause 

endometritis in the mare), attach the most to mare endometria with endometrosis (Ferreira-

Dias et al. 1994). Nevertheless, in spite of the mechanisms for defeating bacteria during estrus, 

a study on gene expression in biopsies from healthy equine endometrium at different times of 

the estrous cycle showed that in the FP the transcription of COL1A1 increases until the 

ovulation day (Gebhardt et al. 2012). In contrast, in the luteal phase, gene expression of 

COL1A1 is lowered (Gebhardt et al. 2012). Similarly, in women stromal endometrial cells 

treated in vitro with estrogen, showed an increase in the deposition of collagen, while 

progesterone stimulation resulted in an increase in the breakdown of collagen (Stenbäck 

1989). These studies might explain why the MPO induced collagen response is only observed 

in the FP. These findings agree with Rebordão et al. work (2018), where MPO elevated COL1 

production in FP type I/IIA endometria. Some studies in other tissues also linked MPO to tissue 

damage. Human cystic fibrosis (Chandler et al. 2018) and atrial fibrosis (Friedrichs et al. 2012), 

as well as liver fibrosis in a mice model (Pulli et al. 2015) have been associated to MPO-

induced tissue injury.  In addition, stellate cells from liver were activated by MPO leading to an 

in vitro up-regulation of COL1 via the fibrogenic factor TGFβ1 (Pulli et al. 2015). In equine 

endometrial explants (Rebordão et al. 2018; Amaral et al. 2020a) and fibroblasts (Szóstek-

Mioduchowska et al. 2019a), TGFβ1 was linked to endometrosis by increasing COL1 

production. We postulated that MPO may act via TGFβ1 also in the equine endometrium.  

The inhibitory action of ABAH on MPO-induced COL1 was detected in FP on mRNA 

expression at both times of treatment, and on protein relative abundance at the longest 

treatment time. To date, we have shown for the fisrt time that by inhibiting MPO in vitro, it is 

possible to reduce COL1 relative abundance in equine endometrium. Although, the ABAH 

mechanism of action is not well known yet. Some authors proposed a mechanism of action 

where ABAH is oxidized by MPO to a radical that reduces MPO to its ferrous intermediate by 

destroying the MPO heme group. Ferrous MPO reacts with hydrogen peroxide originating an 

irreversible inactivation (Kettle et al. 1997; Burner et al. 1999). However, data from in vitro 

studies cannot be directly extrapolated to in vivo treatments (Fabian et al. 2019). Nevertheless, 

in vitro systems are a faster approach to predict fibrogenic potential by monitoring the response 

to pro-fibrotic modulators (Clippinger et al. 2016). Thus, the usage of ABAH as a prophylactic 

and/or therapeutic means for equine endometrial fibrosis, needs further evaluation for its in 

vivo use. 

The proteolysis of the ECM appears to be a crucial occurence on the inflammatory 

process, and therefore the fibrotic process, as well. Increased synthesis/deposition and 

decreased degradation of ECM components leads to fibrosis (Harvey et al. 2016). The MMPs 
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are enzymes involved in this ECM turnover (Vandooren et al. 2013). In equine explants, MMP-

2 and MMP-9 secretion differed when challenged with cytokines, depending on the severity of 

endometrosis, which may link them to modifications in the endometrium that predispose to 

fibrosis development (Szóstek-Mioduchowska et al. 2019b).  It was demonstrated  that TGFβ1 

treatment increased MMP-9 secretion in mare endometrial fibroblasts and epithelial cells and 

that the endometrial MMP expression changes at different categories of endometrosis 

(Szóstek- Mioduchowska et al. 2020a). In other tissues, the concomitant increased levels of 

MPO and MMP-2/-9 were also reported in rat temporomandibular joint inflammation 

(Nascimento et al. 2013), in inflamed human dental pulp tissue (Accorsi-Medonça et al. 2013) 

and in fat meal induced endothelial damage in humans (Spallarossa et al. 2008). 

In our study, the activated MMP-2 gelatinolytic activity increased in MLP explants at 

24h in response to MPO treatment, and was reduced with the treatment combination of MPO 

+ ABAH. This may suggest that MMP-2 seems to be implicated in an in vivo acute reaction to 

a MPO-induced inflammation, in MLP endometria. In addition, MMP-9 active form gelatinolytic 

activity augmented with MPO treatment but was inhibited by ABAH at 48h in FP endometrial 

explants. This could suggest MMP-9 participation, particularly, in FP, in a reaction to a 

continued exposure to MPO.  

In our previous works, in response to elastase treatment, MMPs expression also 

differed according to the estrous cycle phase and treatment time, suggesting that the 

endometrial response is affected by hormonal variations and by the length of the stimulus 

(Amaral et al. 2020a). Moreover, cathepsin G treatment increased MMPs gelatinolytic activity 

mainly in follicular phase endometrial explants and reduced with additon of a cathepsin G 

inibitor (Amaral et al. 2020b). The MMPs output differs is dependent on the stimulus, phase of 

estrous cycle and duration of the treatment. So, further in vitro and in vivo studies are crucial 

to understand the role of MMPs either in healthy or fibrotic endometrium. 

Therefore, future works should consider to test in vivo a combination of elastase, 

cathepsin G and MPO inhibitors or the use of a single inhibitor capable of hindering all the pro-

fibrotic effects of those enzymes found in NETs, in mare endometrium. Based on this study, 

MMP-2 appears to be involved in a fast in vitro response to MPO treatment in MLP endometrial 

explants. In contrast, MMP-9 seems to be released by FP equine endometrial explants after a 

prolonged exposure to MPO. 
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4.6 Conclusions 

 Our findings reinforced the knowledge about MPO pro-fibrotic effects in equine 

endometrium. Myeloperoxidase induced COL1 and MMP-2/-9 activity in vitro in equine 

endometrium, and ABAH was shown to inhibit MPO-induced COL1 expression, as well as the 

activity of MMP-2/-9 induced by MPO. These data should be considered when studying 

endometrosis development and the attempt to fight this disease by inhibiting pro-fibrotic 

enzymes found in NETs. However, cautious should be taken by not extrapolating these in vitro 

study results on the use of ABAH as an in vivo therapeutic approach to prevent endometrosis.   
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Chapter IV 
General Discussion and Conclusions 
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1. General Discussion 

The complete physiopathological mechanisms involved in equine endometrosis are not 

well known yet. However, some pathways have been studied and associated to the 

pathogenesis of equine endometrial fibrosis. Indeed, some authors already reported the effect 

of PGs, cytokines, TGFβ1, interleukins or enzymes found in NETs on endometrosis 

development (Szóstek et al. 2013; Rebordão et al. 2018, 2019; Szóstek-Mioduchowska et al. 

2019a, 2019b; de Holanda et al. 2019). 

The present work has focused on the effect of enzymes found in NETs on COL1 

expression in equine endometrial explants, with further inhibition of this effect. Moreover, the 

involvement of PGs and MMPs in this process was also studied.  

In a previous study, the equine endometrial explants increased COL1 relative protein 

abundance and COL3A1 transcription in response to treatment with ELA, CAT or MPO 

(Rebordão et al. 2018). In the present work, all the enzymes studied induced COL1 expression 

by endometrial explants (Figure 18). The treatment with ELA induced COL1A2 mRNA 

transcription, but did not affect COL1 protein relative abundance by endometrial tissue in both 

estrous cycle phases. In spite of high levels of transcription or translation, some proteins are 

related to a slow translation, but very stable at a high final concentration (Vogel and Marcotte 

2012), which might explain the absence of COL1 protein relative abundance increase in 

response to ELA treatment. In turn, COL1A2 mRNA results demonstrate that CAT acts as a 

pro-fibrotic protease, mainly in the follicular phase, as a response to a shorter stimulus, and in 

mid-luteal phase as a response to a longer stimulus. The COL1 protein relative abundance 

was increased by CAT only at 48h, in both estrous cycle phases, suggesting that COL1 protein 

production needs a longer time of CAT exposition. The treatment with MPO augmented 

COL1A2 mRNA transcription and COL1 relative protein abundance at both times of incubation, 

but only in equine endometria retrieved in the follicular phase. 

In the follicular phase the uterine wall thickens, muscular tone increases and vascularity 

becomes greater, the cervix is relaxed and opens (Aurich 2011). Thus, the estrogen influence 

makes the mare endometrium more reactive at estrus and more prone to inflammation. These 

physiological characteristics of the follicular phase, might explain why the explants were more 

reactive to CAT after a short time stimulation and why the MPO induced collagen response 

was only observed in the follicular phase. Nonetheless, in mid-luteal phase explants treated 

for 24h with MPO, there was a decrease in COL1A2 transcription, suggesting that 

progesterone might control the reduction of MPO pro-fibrotic effects in mid-luteal phase. Some 

studies have demonstrated that there is a loss of estradiol and progesterone receptors in 

fibrotic endometrium turning it independent of uterine physiological endocrine control 

(Hoffmann et al. 2009a; Lehmann et al. 2011). However, progesterone has also shown 
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protective effects by reducing MPO activity in inflammatory or ischemic disorders (Aksoy et al. 

2014; Keshavarzi et al. 2018). Early administration of progesterone inhibited lesion growth and 

conserved the estradiol and progesterone receptors expression in an endometriosis mouse 

model (Li, Adur et al. 2016). The least effect of pro-fibrotic enzymes found in NETs in mid-

luteal phase in comparison with follicular phase may also be explained by the progesterone 

protective effect, through the preservation of estradiol and progesterone receptors. 

Our results are in agreement with those reported by Rebordão et al. (2018), where the 

equine endometrial explants response to ELA treatment was also independent of estrous cycle 

phase. Although, the response to CAT and MPO might depended on estrous cycle phase, 

since these enzymes enhanced COL1 protein relative abundance in follicular phase, in I/IIA 

and IIB/III categories, after MPO and CAT treatment, respectively. Follicular phase might 

predispose to increase susceptibility to ELA, CAT and MPO pro-fibrotic effects, although mid-

luteal phase may also be susceptible to fibrogenic mediators present in NETs (Rebordão et al. 

2018). 

Both PARs and TLRs are distinct transmembrane receptors involved in innate immune 

response to pathogens. The NETs enzymes were already reported to trigger physiological 

actions, but also to contribute to pathological conditions by cleaving PARs receptors 

(Morohoshi et al. 2006; Lohman et al. 2012; Mihara et al. 2013; Feld et al. 2013; Faraday et 

al. 2013; Muley et al. 2017). The PARs receptors may also drive fibrotic responses through the 

TGFβ pathway, influencing myofibroblast differentiation (Scotton et al. 2009; Lin et al. 2015a, 

2015b; Ungefroren et al. 2018). Additionally, also the TLRs showed an involvement in 

autoimmune, chronic inflammatory and cancer diseases, beyond the physiological effect in the 

immune system (Huang and Pope 2009; Devaraj et al. 2011; Isaza-Correa et al. 2014; Jialal 

et al. 2014; Gao et al. 2017). Thus, the enzymes found in NETs were already reported to drive 

pathological responses by cleaving TLRs (Summers et al. 2011; Benabid et al. 2012; 

Skrzeczynska-Moncznik et al. 2013; Domon et al. 2018; Shimoda et al. 2019). It seems that 

NETs enzymes bind and exert their functions in various receptors, such as PARs and TLRs, 

triggering a complex combination of signaling pathways. More studies are needed to 

investigate and confirm which pathways mediate enzyme’s pro-fibrotic effects. A complete 

knowledge on how enzymes trigger fibrotic responses is essential to develop an ideal inhibitor. 

Elastase is the neutrophil protease most investigated and that shows the dominant 

proteolytic activity. Indeed, we have shown its involvement in equine endometrosis, and its 

pathological importance. Although, when ELA was immune depleted from NETs derived from 

human neutrophils, the remaining activity was attributed to CAT (O’Donoghue et al. 2013). In 

the present work, also CAT and MPO showed pro-fibrotic effects, by inducing COL1 protein 

relative abundance production by endometrial tissues. Many factors contribute to protein 

production, such as transcription, post-transcription, translation and degradation. Likewise, 
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protein production and turnover balance can change among different cellular conditions (Vogel 

and Marcotte 2012). This can justify how quickly COL1 production can be induced and may 

vary among stimuli from different enzymes. It may be proposed that other pro-fibrotic factors, 

such as TGFβ1, may be induced quickly or may act in synergy with some enzymes, rather 

than with others. Those findings suggest that other enzymes than ELA may be involved in a 

faster fibrotic response and provide further information to be considered, when studying the 

NETs contribution to endometrosis, as well as an attempt to fight this disease. 

One of the main objectives of this experimental work was to evaluate the capacity of 

specific inhibitors on NETs enzymes inhibition in a perspective of equine endometrosis 

treatment (Figure 18).  Animals already possess naturally occurring endogenous inhibitors of 

enzymes. But, clearly, these inhibitors are inefficient controllers of enzymes. In addition, these 

inhibitors are poorly stable under oxidative stress conditions, only the non-adherent enzymes 

are sensitive to them and they can be degraded by pathogens (Owen et al. 1995; Korkmaz et 

al. 2005; Guyot et al. 2008; Dubois et al. 2012; Kosikowska and Lesner 2013). The inhibitors 

used in this study were chosen based on previous promising reports (Kettle 1997; de Garavilla 

et al. 2005; Takemasa et al. 2012). 

The inhibitory effect of SIV on ELA-induced COL1A2 transcripts was observed in both 

estrous cycle phases. The inhibitory effect of INH was detected at 48h, corresponding to the 

increased COL1 relative abundance induced by CAT treatment. The effect of ABAH on the 

inhibition of MPO-induced COL1 was detected in follicular phase on COL1A2 mRNA 

expression, at both times of treatment, and on protein relative abundance at the longest 

treatment time. To the best of our knowledge, this is the first study showing that by inhibiting 

ELA, CAT and MPO using specific inhibitors, namely, SIV, INH and ABAH, it is possible to 

reduce COL1A2 transcription and COL1 relative protein abundance in equine endometrium. 

These inhibitors must be considered in future studies to be tested as preventive and 

therapeutic tools to defeat equine endometrosis. In addition, SIV is actually administered in 

acute lung diseases in humans, to improve clinical condition and prognosis (Aikawa et al. 2011; 

Kido et al. 2016; Polverino et al. 2017). Sivelestat is a selective inhibitor of ELA which inhibits 

the enzymatic action of ELA directly by a reversible ‘acylation-deacylation’ mechanism 

(Nakayama et al. 2002). This inhibitior did not have any effect on TLR4 levels in an 

ischemia/reperfusion in liver of a porcine model, suggesting that SIV does not act at cellular 

level (Shimoda et al. 2019). The CAT inhibitor INH acts by binding to CAT reversibly (Greco et 

al. 2002; de Garavilla et al. 2005) its use showed promising clinical results for the treatment of 

COPD and asthma (de Garavilla et al. 2005; Maryanoff et al. 2010; Brehm et al. 2014). The 

ABAH has also shown promising results in acute diseases, such as steatohepatitis, acute 

stroke in mice, and in pulmonary cystic fibrosis (Pulli et al. 2015; Kim, Wei et al. 2016; Hair et 
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al. 2017). The most acceptable ABAH mechanism of action is that ABAH is oxidized by MPO, 

destroying MPO (Kettle et al. 1997).  

 

 

Figure 18: The pro-fibrotic effect of neutrophil extracellular traps (NETs) enzymes 

(elastase, cathepsin G and myeloperoxidase) promoting fibroblasts collagen secretion and 

further deposition in lamina propria in equine endometrium (A). Our in vitro results showed that 

by inhibiting elastase, cathepsin G or myeloperoxidase by the action of sivelestat sodium salt, 

β-ketophosphonic acid or 4-aminobenzoic acid hydrazide, respectively, it was possible to reduce 

collagen secretion and deposition in the equine endometrium, thus hindering endometrosis 

development (B). 

 

Knowing that there are other specific NETs enzymes inhibitors, it will be interesting to 

investigate and compare their ability to inhibit ELA, CAT and MPO in the equine endometrium. 

Moreover, assuming that these enzymes may act by activating TGFβ pathway, it will be also 

interesting to unravel the effect of a TGFβ inhibitor on COL1-induced by NETs enzymes. This 

inhibitor could even inhibit all the pro-fibrotic enzymes effect in a combined approach.  

Actually, some molecules are being tested for the treatment of fibrosis. Noscapine is 

an alkaloid used as an antitussive in humans for decades, presenting low toxicity (Karlsson et 

al. 1990). Because its action on microtubules and myofibroblast differentiation, noscapine 



 
 

106 
 

effects have been investigated in cancer (Quisbert-Valenzuela and Calaf 2016) and fibrosis. 

Indeed, noscapine proved to be an effective anti-fibrotic agent both in vitro and in vivo in 

bleomycin-induced pulmonary fibrosis in mice, acting through EP2 in pulmonary fibroblasts 

(Kach et al. 2014). In equine endometrium explants, noscapine has also shown the capacity 

to inhibit NET enzyme-induced COL1, suggesting its putative potential to be used in 

endometrosis treatment (Amaral et al. 2019). 

Other aim of this study was to evaluate the MMPs response when endometria were 

challenged with NETs enzymes, and their respective inhibitors. In a response to ELA and SIV 

treatment, endometrial tissues showed different MMP2 and MMP9 mRNA levels and protein 

gelatinolytic activity, either alone or combined, depending on the treatment length. These 

findings suggest that endogenous hormonal changes and duration of the stimulus can affect 

the endometrial response. The gelatinolytic activity of MMP-2 active form in endometrial 

explants increased in response to CAT treatment at 24h, in both estrous cycle phases but 

decreased with INH addition in follicular phase tissue. Apparently, MMP-2 appears to be 

involved in an immediate response, perturbing ECM balance. Therefore, MMP-2 can mediate 

an acute response to a CAT induced inflammation, regardless of the estrous cycle phase. In 

follicular phase endometrial explants, the gelatinolytic activity of MMP-9 active form increased 

with CAT treatment, and was inhibited by INH at 48h. This suggests MMP-9 involvement, 

especially in follicular phase equine endometrium, remodeling the fibrogenic response to a 

prolonged exposition to CAT. In mid-luteal phase explants treated for 24h with MPO, the 

gelatinolytic activity of MMP-2 active form increased, and was reduced with the treatment 

combination of MPO + ABAH. This suggests that MMP-2 can be involved in an acute response 

to a MPO-induced inflammation, in mid-luteal phase endometria. The gelatinolytic activity of 

MMP-9 active form increased with MPO treatment and was inhibited by ABAH at 48h in 

follicular phase endometrial explants. This suggests the MMP-9 involvement in follicular phase 

equine endometrium remodeling in a response to a prolonged exposition to MPO. The MMPs 

response to CAT and MPO treatment show some similarities. The MMPs activity is dependent 

on transcription, protein production, and activation of latent enzymes (Sternlicht and Werb 

2001). This fact justifies the different MMPs outputs in response to NETs enzymes and their 

inhibitors, and that MMPs expression can be influenced by many factors. In fact, MMPs appear 

to be associated with TGFβ1 activation (Yu and Stamenkovic 2000; D’Angelo et al. 2001; Iida 

and McCarthy 2007; Kobayashi et al. 2014), myofibroblast differentiation (Dayer and 

Stamenkovic 2015), and cell proliferation (Hattori et al. 2009; Kobayashi et al. 2014), thus 

enhancing fibrosis. Additionally, in a recent report in equine endometrial cells, TGFβ1 is a 

regulator of endometrial ECM remodeling via MMPs and TIMPs (Szóstek-Mioduchowska et al. 

2020a). Also in equine endometrial explants, cytokines modulate MMPs and TIMPs, making a 
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connection between inflammation and endometrosis development (Szóstek- Mioduchowska et 

al. 2019b). 

Our study also demonstrated the putative pro-fibrotic effect of PGF2α and anti-fibrotic 

effect of PGE2. Indeed, the concentration of PGF2α in culture medium reduced with SIV 

treatment in follicular phase at both treatment times and in mid-luteal phase only at 48h. In 

contrast, the concentration of PGE2 secreted by endometrial explants augmented with SIV 

treatment comparing to ELA-treated group in follicular phase at 24h and in mid-luteal phase at 

48h. Although, this study only contemplated the use of ELA or SIV, on endometrial tissues 

PGs secretion on the culture medium. It would be useful to study the effect of other NETs 

enzymes and their inhibitors as well as gene transcription of PG receptors and synthases to 

investigate the PG pathways potentially involved in fibrosis. The anti-fibrotic action of PGE2 

was also demonstrated by other studies. In a previous study carried out in our laboratory, the 

PGE2 output by equine endometrial explants treated with NETs enzymes showed a protective 

effect against endometrosis, suggesting that it can lead to reduction of COL deposition in 

equine endometrium (Rebordão et al. 2019). Moreover, the treatment with PGE2 increased 

MMPs and COL1 expression by fibroblasts, suggesting that prostaglandins may be involved 

in equine endometrial pathological remodeling (Szóstek-Mioduchowska et al. 2020b). 

The major limitation of an in vitro study is the extrapolation to an in vivo organism. We 

are looking forward to carry out in vivo studies and confirm the obtained promising results. Our 

results show that by inhibiting enzymes found in NETs it will be possible to reduce COL1 output 

in equine endometrium with further reduction of endometrosis development. Despite the 

physiopathological mechanism of fibrosis establishment being not fully understood yet, the 

present work contributes to broaden the knowledge about endometrosis etiology and 

therapeutics. Although fibrosis is considered an irreversible condition, some authors have also 

reported the possibility of reversal of fibrosis (Rangarajan et al. 2018; Itaba et al. 2019), 

introducing a new opportunity to revert fibrotic alterations. 

  



 
 

108 
 

2. Conclusions 

The results reached with this work contribute for a better understanding of the 

mechanisms involved in equine endometrosis.  The enzymes found in NETs, PGs and MMPs 

play a role on equine endometrial fibrosis development. However, the use of enzymes 

inhibitors revealed to be capable of reducing the pro-fibrotic effects of these poteases found in 

NETs. Considering the obtained results of this work, it is possible to achieve the following 

conclusions: 

1) The protease ELA present in NETs is capable of inducing COL1A2 mRNA in 

equine endometrium in vitro, while SIV showed inhibitory effects of this pro-fibrotic action of 

ELA.  

2) The COL1 relative protein abundance was induced by NETs protease CAT in 

equine endometrial explants. However, when the explants were treated with INH, a CAT 

inhibitor, this effect was reduced.  

3) The treatment of endometrial tissues with MPO induced COL1 relative protein 

abundance, suggesting that this peroxidase acts as pro-fibrotic factor. Nevertheless, the use 

of its specific inhibitor, ABAH, reduced MPO-induced COL1. 

4) Endometria from the follicular phase showed to be more susceptible to pro-fibrotic 

effects of enzymes found in NETs, such as CAT and MPO. 

5) Metallopeptidases may be implicated in tissue response to ELA and SIV treatment. 

Although, the MMPs transcription and gelatinolytic activity depended on estrous cycle phase 

and length of treatment. 

6) In response to CAT and INH treatments of equine endometrial tissue, MMP-2 might 

be involved in an earlier response, independent from estrous cycle phase, and MMP-9 in a 

later response, mainly in the follicular phase. 

7) The MMP-2 might be implicated in an acute response to MPO and ABAH 

treatments in mid-luteal phase endometrial tissues, whereas MMP-9 seems be involved in 

follicular phase in a prolonged treatment time.  

8) Prostaglandin F2α shows an in vitro pro-fibrotic effect and PGE2 an anti-fibrotic in 

equine endometrial explants when challenged with ELA and SIV treatments. 
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3. Future perspectives 

1) By inhibiting ELA with SIV, it will be possible to reduce endometrosis 

establishment. 

2) The INH inhibitor, by inhibiting pro-fibrotic effects of CAT, showed that would be 

possible to hinder endometrosis. 

3) The MPO inhibitor, ABAH, impaired the MPO pro-fibrotic effect, showing that by 

inhibiting MPO it will be possible to decrease endometrosis development. 

 

In conclusion, the use of specific inhibitors of ELA, CAT or MPO, might be the grounds 

for future development of specific drugs to be used as prophylaxis or therapy of endometrosis 

in the mare. 
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