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SOLENOIDS IN CGENERIC HAMILTONIAN DYNAMICS 1
Seeking sclenoids

elliptic orbits whirl fog

ne  Simm tori-i

1. Recurrence in Hamiltonian Dynamics. A Hemiltonian dynamical system is

2n . .
defined in R by the differential equations

i a
dx~ _ JH 75 _ _ oH f=1 .
dt  dy. > dt i T
yl 9%
or in matrix notation
X H
X
L =J >
y H
Yy
0 En\
where J = is a standard skew-symmetric 2n x2n matrix with blocks
-E 0
n
of unit matrices E , and the gradient dd = (Hx’ H ) has been transnosed as
< y

n
. . e . . n n . -
a column vactor. The given Hamiltonian function H : R SR -— R 1is sultably

- . 2n n 1 .
differentiable in the state space R which is written R & K to emphasize

. . 1 n
the use of the canonical coordinates (x, ...,x , Y1 ...,yn).

A change of local coordinates (x, y) —» (q, p) in Rn D & preserves

the form of the Hamiltomian system 1), with H(q, p) = H(x{(q, p), v(qa, p))

(4, P)

as Hamiltonian function,provided the Jacobian matrix T = 3, v)
(X

at each
point satisfies the identity TJT' = J. 1In this case T belongs to the real
symplectic group Sp(2u, R), (q, p) are called canonical coordinates in

f? < RP> and the map (%, y) —> (g, p) 1is symplectic, see [1’5 1.

o
(57

The recurrent trajectories of such dynamical systems have been studi

Y

intensively siunce the age of Lagrange and Hamilton. At first attention was
restricted to critical points and periodic orbits, but recent theory deals with

almost periodic orbits that are dense in minimal tori.
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In this paper we define mew types of recurrent trajectories that £ill

minimal solenoids. OQur approach to these solenoidal structures follows a

SZn—Z

. . .. 1
geometric path through a progression of massive torl—ll (Tl = XS ),

centered on elliptic orbits that wind ever higher. Furthermore, we shall show
that the existence of such minimal solenoids is a typical feature that occurs

for generic Hamiltonian dyramical systems.

We recall the technical definition of a solenoid Zza’ as specified by
a sequence of positive integers a = (aO, al,
Consider a sequence of circles S1 ={:z et : Yz} = l} , with maps of degree
aj, say z —»> zaj,

az, 33, ...), each aj.; 2.

Then the inverse or projective limit is the solenoid
- . 1
2, = 1%2_{8 s (aj)} .

In more explicit notation E:a is the subset of the countable Cartesian

product S x Slx Sl¥ e consisting of sequences (zO, Z1s Zys Zg3> ...) for

which zjil =2, 3=0,1,2,3 ... . It is known [347]dut each such
solenoid is a topological curve, that is, E:a is a compact, connected,
separable metric space of l-dimension; but z:a is not locally‘connected.
There are noncountably'many topological types of such solenoids, but we have

some choice in the comstruction of any particular solenoid ‘Z:a' In fact,

solenoids i:a and j:b are topologically homeomorphic provided:

. r
for every prime power p ;

-

p divides some product (aOal-"ak) if and only if

pr divides some product (b b _+--b

P17 By

We shall prove the existence of solenoidal minimal sets, for generic

1) See haiku above.
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T : 'y Srema A act g ric manifold M°© ’ N s L ey
Hamiltonlan systems on a compact gyapleciic manifold M7, by considering

a limit of long period elliptic orbits, as explained below. The space .

. . . v k+2 , 2n e
of Hamiltonians is the set of all real C ~functions on M (for any fixed
. ] k+2 k+2 ;
integer k > 0). We impose the C "—topology on % ~, consistent with a

complete metric, and consider generic (residual) subsets of L ~. We can

P82

now state our principal theorem, whose prooi appears later.

kt+2 - ; . ;
Theorem 1. Let be the space of Hamiltonians on a compact symplectic

2 bl 2n " 4 oo . s P B K : S
manlfqid M (n22 and any fixed integer kzg}fhen there exists a generic set
k+2 . ) = .,
@q C:Qi such that: for each Hamiltonian H & }{2:, and each solenoid
(s&& = ! JLrLalt na eaci
—

P -there is a minimal set of H that is homeomorphic to M o
gt oTET S i ! - f1omeon : P

2. Local Theory of Hamiltonian Dynamical Systems. Consider a Hamiitonian

hal n k+2
function H: R @R — R in class C 2 (fixed integer k > 0), and the

corraesponding Hamiltounian differential system in the %, v) canonical co-
Yy s Yoo

/

ordinates

i
o
fust
b
aﬂ’/

1) =

&4.
jois
«
\

Let Py be a critical point (where dH = 0) of 1). Say Py = (0, 0), and
take H(0, 0) = 0, so that near the origin we have
X

1
H(x, y)=—2-(x,y)s + o
y

for a real symmetric matrix S = S'. The Hamiltonian differential system is

then

iy
~..
il
[
7]
.
+

y

where the Hamiltonian matrix A = JS, . in the Lie algebra sp{2n, R®) of



Sp(2n, R), has the eigenvalues (}11, k7,.., A s~ A

a l:")\

S e A )

Definition. The critical point Pg> and the Hamiltonian matrix A, are

elliptic in case all the eigenvalues are pure imaginary, that is, Re Aj =0
i =1, ...,n. Further P> and A, are generic elliptic in case /2 1 Az,
.’All (say with 1Im A“j > 0) are linearly independent over the raticnal

field.

Next let Y be a periodic orbit of the Hamiltonian differential system
1), and take a transversal (2n-1)-section D, through some point Py gy .

The Poincaré map P around )Y maps 2; (or some neighborhood of po e2)

into > by following the trajectories of 1) once aroﬁnd a tube encircling

Y . Choose local canonical coordinates (%, y) about P, in an<3 r"  so
— L1 -

that 2, is defined by x~ = 0, the energy levels H = h are ¥y = h,

and the Hamiltonian vector field is just Jéi near Py
3%
parameter—-symplectic coordinates (h, iz, vy in, §2, vy ?n) as a neighbor-

Then 2, admits the

1 o1

hood of the origin in the parameter-symplectic space R.X(BP‘ DR ), see

[2] for precise definitions and details.
In this situation the Poincaré map
P: % —Rx (anleERn—l) ,
- 1s a parameter-symplectic map, that is
§l-a'§l = h (each energy level h conserved)
and on each level §1 = h we have a symplectic map
h

P, : (7, 7j)-—» (X7, ?j), for j = 2,3,...,n .

. E 3 - . il
The map P gives all the information of the Poincaré map around ¥ , aud we

() o (1)
h

h

shall be interested in the k-jet at the origin Py Each such

specifies an element of Jk(Zn—l), which is the space of all k-jets of



1 . e P n-1 _  a-1 ]
parameter-symplectic maps around a fixed origin in R x (R AR ). In
particular the 1-jet Pél) at Py is specified by a symplectic matrix

s s X
A, 1) 2n-2
= Sp(2n-2, R) and a vector - ¢R™ 7. The eigeavalues
4% AE, ¥V € Sp( > R 2h 7 - &
of dPO are the (nontrivial) characteristic multipliers (;Lz,/43,...,/inj

-1 -1 -1
I

Definition. The periodic orbit Yy "is elliptic in case all characteristic

multipliers have modulus of one, that is, | u .} =1 ,3=2,...,n. In this
N}
27iw,
case each /Aj = e ' defines a real fregquency w, {(mod 1).
N}

A periodic orxbit y is non-degenerate in case all p, # 1 for j,2,3,...,0.

L

Then y lies in a geometric 2-cylinder or band of periodic orbits +v{(h), with

[}

n e2llintic orbit wich

least pexiod varying differentiably with h. If vy is
S

distinct frequencies WosseesW s then all y(h) are elliptic, and the distinct

frequencies wj(h) vary differentiably and none vanishes (provided +vy(h) i
sultably restricted). At this stage we do mot specify any further nortion

of genericity of periodic orhits.

3. Geéneric Hamiltonian Dynamics on Symplectic Manifolds. A symplectic manifold

2n . . . 0 .
M is a differentiable 2n-manifold (connected, separable, metrizable C -mani~

fold without boundary), together with a C*-atlas of symplectic charts or local
. . . 2n R . -
canonical coordinates (x, y) covering M~ , and having coordinate transfor-

mation Jacobians T 1lying pointwise in the symplectic grbup Sp(2n, R). For

each Hamiltonian function H : Mzn-“?sR in Ck+2 write the local vector
field or differential system

X H
1) o=l

y iy

in each canonical coordimate chart (x, y). Since T & Sp(2u, R) it is im-
mediate that any two such local vector fields coincide on the intersection of
symplectic charts, and thus a global Hamiltonian vector field XH’ or global

. . 2n
Hamiltonian differential system is defined on M .



)

n - ,
. ; ) . L g . .
For the same reason, the symplectic 2-form SLo=fdx” A dy in each

o 3
3=t J
; . W , )
symplectic chart (x, y). 1s a globally defined C -form that is nonsingular
20 . .
(det J = +1), and closed (d{ = 0) everywhere on M, Using the symplectic
form 8L we introduce a duality between covariant and contravariant vectors
. 2o . . L. . ; .
at each point of M . 1In particular, a Hamiltonian function H has the
gradient l-form dH, and thus the contravariant or tangent vector XH {also
written dH#3 defined by <(Xﬁ, SL7 = dH. 1In each symplectic chart (%, V)
the Hamiltonian vector field dd” is expressed by the Hamiltonian differential
system 1) .
We assume known the basic theory [1,5 ] of global Hamiltonian differential
. 2n . -
systems au¥  on symplectic manifolds M, In particular, near each critical
point or periodic orbit of aa®  the local analysis of ssction 2 ahove is
valid, since those constructions were independent of the choice of local
2n

canonical coordinate chart. In the classical case of mechanics ! is the

cotangent bundle of the positional configuration manifold, but we shall restrict

. 2a - R
attention to the case when M (n =2 135 compact (For exampie T 3. Then exch

Hamiltonian differential system has trajectories (solution or integral cucves)

defined for all times t & R.

L k+2 ] , k+2
Definition. Let 74 be the set of all real functions of class C

2
(any fixed integer k 2 0) on a compact symplectic manifold M &

k+2
the Ck —-topology on ?*kfz.

We impose

k+ k+ . . .
The € 2—topology on W 2 can be defined by a complete metric, with

norm on F € }iF+Z

k+2 2 ‘
HWell=S 5>, IDF .
%? 12[=0 x

Here Dﬁ is any partial derivative of total order |} | : Further the local

2 —
NOoTrMms }D E{& are computed in Wd , Wwhere {wx} is a finite open covering




of M and each compact W, lies in one coordinate chart wherein the

derivatives are computed. ‘A change of the covering {wa(} introduces an
. .\ + . k+2
equivalent norm, and hence the Ck 2—*topology is well-defined on 7‘314 T4, Note
ny KF2 . . .
that g2 is a Baire space —— each countable intersection of open—dense

1
1 . . o k+2
subsets is dense in )&

o

+
Definition. A subset ?QC- ﬂ‘k 2 (or the logical property defining the set

70) is generic, or residual, in case 70 contains a countable intersection

k+2
of open-dense subsets of X .

In an earlier paper [ 5 | the authors prove that the following set /S'O
is generic in %k.!-z (for every k ;‘O):
/go: all He #,k+2 such that |
(i) H has a unique point at which it assumes its minimum on Mzn, and
(ii) at the unique minimum point H has a generic elliptic critical
point.

Takens [ 9 ] has given a procedure for constructing generic subsets

of gkt

We mnext paraphrase a particular result of his general theory.

in terms of the k-jets of the Poincaré maps around periodic orbits.

k
Proposition. Let Q be an intrinsic, analytic subset of the jet space J (2n-1)},
fixed integer k > O.
. . . k+2
If codim Q = 1, then there exists a generic set TQ C ?4, such that:
each H ¢ ’[:Q has at most a countable nuwmber of periodic orbits whose k-jats
have the property Q.

If codim Q > 2, then each H g ?Q has no periodic orbit whose k-jet

has the property Q.
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crzasmosie 1. Cousider Ql < JE{2n-1) defined by the discriminant of the

: ot . . o I . i A
characteristic polyanomial F(u) = det l(dPO)—glx of the Jacobian matrix 4P .

damely, Ql is tihe set specified by the coadition: discrim (F) = G. Then
K

coelim @, = 1 in J (2n~1), for every k

[\

1, and hence there exists a generic

N, K2 . : 1
set T ﬁf such that: H € T has only a countable number of periodic

Q.

1 1
orbits possessing repeated (nontrivial) multipliers. Io particular, H has only

a countable number of degenerate periodic orbits. Since this result was obtained

earlier by Robimson [8], we shall denote the generic set TQ by 6?.
1

Sexpied In this same spirit define a set Q2 c Jl(2nwl) by the condition F(1) = O,
F'(1) =0, F'"(1) =0, F'"(1) = 0. Then M =+l is a characteristic multi~
plier of multiplicity 4, that is, +1 is a nontrivial characteristic multi-

plier of multiplicity > 2. In this case codim Q, » 2 and so each H & T

2

QZ
has no periodic orbit of this higher degeneracy. In particular, among the
elliptic orbits of H no two frequencies w -«., w_are simultaneously zero.

22 >

4. Generic Constructions for Minimal Solenoids. Fix a compact symplectic

- 2 ‘
manifold M°™ (n 2 2) and consider the Baire space ?#k+2 (any fixed integer

N . . . 2n
k > 0) of Hamiltonian functions on M ', We shall construct the requirad generic
set GZ% within @fn ,80 (so, k 2 1). Racall that the intersection of a finite

or countable number of generic sets is still generic.

- . . k+2
Lemma 1. Each Hamiltonian H € Ge,ngtcﬁ‘ (for k 2 1) has an elliptic patiodic

orbit v, with distinct frequencizs W2"°"wn’ and Y lies within any prescribad

neighborhood of the point whers H achieves its minimum.

Prookf

Since H € )go the minimum, say H(po) = 0, occurs at a generic elliptic
critical point. By the theorem of Liapunov, as modified for the differentiable
case [1], there are n families of periodic orbits concentric about - Take Yy

to o= any such Liapunov orbit with small energy H = h . The further details
0

0f tne proof will apnear in the complated paper in a later publication,



Hote that v is a nondegenerate elliptic p2riodir . orbit, and so lies
in a geometric 2-cylinder or band of elliptic orbits y(h), with Y(ho) = v,
Furthermore, the corresponding frequencies wz(h),...,wn(h) are distinct

" for each h near ho’ and these vary differentiably. These properties will

. R . . . 9 N o}
be relevant when we impose . the further generic restrictions ‘él and _4j 5

K 2
ijl? T (k > 2), by means of Takens polynomials in J (2n-1).
(*), . reristic T ja1 7 £ the r-ti
1 The characteristic polynomial ¥ (1) of the r-th power
1
(dPO)r satisfies the conditions F(r)(l) = 0, F(r) (1) = 0,
a0 3T £ - (iR ]

Py =0, 5@ = 0.

31 } 6‘1 El(r).

r

Than i € /%l.has no elliptic periodic orbit that has two rational

characteristic frequencisas.
d (1),
- PR T = A o =
}%2 : an (Trace Ph ) 0.

Then each elliptic orbit Y of H ¢ ;&2, with distinct characteristic
frequencies WoyseeesW s has a rational frequency — or else Y can be arbitrarily
closely approximated within the band y(h) by some y' with a rational fraquency.

. o q Ay kF2 N . .
Lemma 2. Let H ¢ }%i ﬂ,éz < 3# ® (for k¥ 2 2) have an elliptic orbit v with

distinct characteristic frequencies Woaeee,W o Then ¥, or some arbitrarily
n

nearby Y' within the band y(h), has exactly one frequency, say w,, that is
. L

rational and all the other wq,..,,wp are irrational.
s et e e - ]

1
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e . . q sy k¥2 L .

The last generic condition «53 < f% (for k = 4) is imposed by a
S . b { )
Takens polynomial in J (2n-1). In order to understand 3 consider the
e e - o ’ s R
Birkhoff normal form [2] of tne Poincare map P around an elliptic periodic
orbit vy of H. Assume that the fraquencies w.,,...,w of Yy are distinct, and

Z 1

furthermore they are "linearly independent over small integers', see [2,3,6].

- . . . o i . .
Then there exist real canonical coordinates (x ,yi) i=2,,..,0 in terms of

which P : (xl,y ) ~> (xl,Yi) has the form:

i
€ 1 B} e e A
X" = x cos 27 Ql - y; sin 2% v + X (x,y)
i ~ s
Y, = x% in 2m w, + vy, cos 2m w, + Y (x .
5 s ; Py ; (%57)
n
Here ;i =W, + Cii uj + ... are real polynomials in the symplectic polar Tadj/
j=2
GRS ~
Lii = —~—l——*zt— . The degree of wi(u) can bz pre=-selected, and if

L . . 1%
we reguire w, to bz polynomials of degree 2, then the remainder terus X, Yi
are of order 5 as |x| + |y| ~ 0. The determinant A = det (Ci3> is a symplectic

invariant of the orbit vy in H.

2 A=0and & -0
3° dh '

Then each appropriate elliptic orbit v of H € ,83 will have a nonzero

"twist coefficient', as explained later. A proof that the conditions defining

9 , . . o . 4 Lo , .
A ., are described by intrinsic analytic subsets of J (2n-1) will be given in

3

the final complete paper.

i S A et



11

{I;k-l'z

Definition. In (each fixed integer k 2 4) define the generic set

n,l‘?.l n/Qaz ng3.

The proof df our. principle theorem 1, as statéd in section 1 abové;
will now follow from a lemma concerning the existence of a periodic orbit Yi
with a high encircling multiplicity ¢ around a given periodic orbit y. That
is Yl is a closed curve homotopic to q times 7y, within a tubular neighborhood

about 7.

Lemma 3. Let H ¢ 9%% c;y kt2 (any fixed integer k 2 4) have an elliptic

periodic orbit Y with distinct characteristic frequencies wz,...,wﬂ. Let
il

2n~2
S

154

x s* be a tori-i through which passes a tubular neighborhood of v,

and let q0 S, be primes 2 2.

Then there exists a periodic orbit Yl of H such that:

i) Y lies inside Il and encircles this tube exactly g times befor

2

completing its least pericd.

a

Here g can be required to have the factorization g = 9, &y

for soma

suitably large integer a = 1, and a = 1 is permissible if A is suitably

large.

ii) Yl is an elliptic orbit with distinct characteristic frequencies.

Proof

Since Yy is nondegenerate, it is embedded in a 2-band of periodic orbits

i

Y{(h), and we choose the energy constant so Yy = yY{0). From lemma 2 we can

assume that v, is rationalvandVWS,b..,wn are all irrational. In fact, usiag
diw

E:: (0) 750, we can assume that W, = P/q for any integers p,q provided that

p/q lies in a svitabis prescribad real interval. But then it is easy to choose

(p,q) = 1 with q of the required form. (For instance, suppose q, = 2, g =3



12

and ?;/2“03 lies within the allowed real interval, for some large a z 1,

Take 12 odd and choose p = 18 if 3 does not divide P otherwise, choose

cles Il exactly g times before closing.
As a preliminary step we must rule out the possibility of periodic orbits
~din Il with encircling multiplicity 1 < £ < g. We give here only a sketch
of the full argument; the details will appear later.
34 4 s '. i ‘i P = h
Consider the Poincare maps P: (x ,yi) + (X, Yi) i=2,...,n for the
trajectories of H upon encircling once around Il (or Il suitably narrowed).
T 1 . : G e . :
We seek to solve the functional equation P° = Id for some nontrivial g-periodic
. 2 .
point of P, and also to show that P = Id has no nontrivial solution for
1 £ & < ¢g. Since all frequencies w,,...,w_ o0f Y are distinct, there exist
2 >"n ?
. . L i . . .
real canonical coordinates (still denoted (x ,yi)) diagonalizing the linear
terms of P as a product of 2-dimensional rotations. - Thus, for each & = 1,2,...,q
2 [ A N . . S s -
the map P~ (denoted (x,y) + (X", ¥')) has fixed points that are solutions of

the (2n~-2) equations-gg = Id, or:

2 oot 2 ; 2 = x*
X cos Zgi - sin 2w + vee =%
LIS q
2 . P D
% sin 2 + vy, cos 2¢ =~ + ... =
i q 9 s q Lj .
P cos gt~ sin2glw, + z %
% cos 1fw3 ¥4Sit g Fees . =
3 . .. , -
A 81n2¢ﬁw3+y3coszm£w3fo.. =Y

n . , -
X cos2filw ~y sinZmiw +... =%
n°n n

n . , ,
x sin2aiw +y cosZelw_ ‘...
n n n

Here the omitted terms are of order [In] + -22(3 ) -+ (Yi) 1
l:

pear the point h = 0, x =y = 0 on Y.
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a) Absence of small periodic orbits. For each & = 1,2,3,...,q~1 the matrix

of the linear terms im (x,y) is nonsiagular. In this case the implicit
function theorem guarantees the uniqueness of the solution x = y = 0, whic
corresponds to the known periodic orbit y(h). Thus the tube II (suitably
narrowed) contains no periodic orbits of H of encircling multiplicity less
than q —— excepting v(h) which have encircling multiplicity of ome.

b) Existence of g-periodic orbits ¢ reduction to 2-surface S(h).

Next consider the existence of a nontrivial solution (nmot y(h)) of
the equations Iﬂ = Id. Here the first pair of equations reduce to
+4 2 2 q _ e 1 .
Xt=x +... =&, Y= Yo T e = ¥, SO the implicit fuoction theovem
is not applicable to the set of (2n-2) equations.

.. 5 . 2 ,
However, consider the last (2n-4) equations and treat {(x ,y?,n) as

parameters near zero. Then solve for differentiable functions

. - .o . ’
XJ = OJ(X ’yzah), y., = TJ(X :yzuh)" 1= 3,‘—':,.,.,'[1.
<
. . . . J2n~1
For each small ln[ this locus in the hHall B = 1% {transversal to Y
2n-2

within the tori-i S x Si} is a 2-surface S{h), covering a neighborhood

i 2
of the origin in the (x ,y2)~plane. Each point of S(h) is moved by fs s0
2 ' , .
that only the (x ,yz) coordinates are changed, and the other coordinates

are unchanged.

c) Existence of g-periodic orbits: fized points on S(h)

i, 2
Introduce the symplectic polar coordinates u, = ~L§—lggﬂilw~

Si = arctan yi/xi and write the g-th itterate zﬂ- (u,8) - ({}q,gjq).

Restrict‘gs to the surface S(h), use the polar coordinates u = u 6 =8

2! Z)

and then compute

Ul=u+ .., ® = 8+ Zpprq(ah-Bu) + ....

. . - L. 2 2
where the omitted terms are of order (h + u’).



-

e . W . - o‘:":‘)

fne constants o = —=* and 8 = - — (at h = 0, u = 0) are assumed nonzero
L u

{4 # 0 since H = QEZ and the twist coafficient B # O since H € % 3). Wa

assume o > 0, 5§ > 0 and the other cases involve similar arguments.
Thus we saek a solution (u,8) with u > O for the pair of equations
gahr -fu)+e.. =0, u +... = u.
Clearly, for n < O there is no solution with uv > O.
However, for each h > 0, the implicit function theorem applied to the first

equation yields

.- .- A . .
wihich specifies a curve {, (h) on the surface S(h).

L . . - ,q( . g . . e . ..

dach point of £'(h) is moved by P’ so that (at most) the radial

£
coordinate u changes. If Xs mapped S(h) into itself, then areaconservation
T . 5 . . q . o
would yield a fixed point on {(h). But, in any case, P is a symplactic
s L, R .
map and so the differantial 1-form = (UJ.' d&* - u.df.) is closed.
. 3 .

J
ey . 2n-1 . - . .. e 4 s
Within the simply-~connected ball B this 1-form is the differential 4w

of a real function W. But on {(h) we have éy? = Sj for j = 2,3,...n and

%
3
{j’? = uj for j = 3,...,0 so we obtain dW = (Zj'q - u)dd.

Since W must have criticyl points at its maximum and minimum on the

({7

compact set (:(h), w2 obtain at least two fixed points of ES on each such

curve (:(h). Each of these points produces a nontrivial g-periodic orpjt

Yil)(h) and Yiz)(h).

. e . » ) -
d) Existence of elliptic orbit Yi- Since H €7, we can select h > 0 so

that all ¢-periodic orbits of H in I are nondeganerate, with distinct

characteristic multipliers.
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The method for this part of the proof is to show that the nondegeneracy
of the g-periodic orbits implies the mondegeneracy of the critical points
of W on {:(h). Then there are only a finite number of such critical points
of W and classical index~theoretic arguments show that at least one of
these is elliptic, and so yields the required elliptic periodic orbit Yl

with distinct characteristic frequencies.

We defer the details of the above proofs, and the application of the
three lemmas to the principal theorem, to the completed paper that will

appear in a later publication.

L. Markus

Universities of Minnésota, U.S5.A, and

Warwick, U.X.

K. Meyer

University of Cincimnati, U.S.A.
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