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Abstract. The quantum field theory in terms of
Fourier hyperfunctions 1is constructed. The test
function space for hyperfunctiofis does not contain
C*® functions with compact support. In spite of this
defect the support concept of H-valued Fourier
hyperfunctions allows to formulate the locality
axiom for hyperfunction quantum field theory.
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§ 1. Introduction

In the usual framework of quantum field theory,
founded by Wightman [1], one assumes fields to be operator-
valued tempered distributions. For nonrenormalizable
interactions, however, the fields seem no longer remain
tempered [2]. Several attempts have been made to extend
Wightman's axioms‘for the quantum field‘theory so as to
include a wider class of fields [2,3,4]. On the other
hand,'the recent development of the Euclidean field theory
reveils that the temperedness of fields shows some incon-
veninece in'coming back to the relativistic quantum field
theory [5].

From the mathematical point of view the extension of
Wightman's axioms starts with replacing the test function
space ,8 of tempered fields, the Schwartz space of rapidly
decreasing functions, by 1ts suitable dense subspace. In
carrying through this program the most obstructive ié the
axiom concerning the localizability of fields. The test
function spaces considered so far by several authors contain
C® functions with compact support in configuration and/or
momentum spaces. Hence the localizability of the field
has been preserved quite naturally in some way or other.

In the present paper we wish to formulate the quantum

field theory in terms of Fourier hyperfunctilions. The
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space of Fourier hyperfunctions 1s the dual of the space
of rapidly decreasing holomorphic functions [6]. One of
the characteristics of the latter space is that it is
topologically invariant under Fourier transformations as 1is
the case for the space ,X . But since our space contains
no functions of compact support, we are rict allowed to
state the locallty of the field in the usual sense. In
order to avoid this difficulty one of the present authors
(S.N.), in collaboration with Ito, has developed the theory
of vector-valued Fourier hyperfunctions [7]. Combining
with a remarkable notion of the "support of hyperfunctions"
we succeed to formulate the Iocality of hyperfunction
fields. We note that our test function space is the
smallest of all that have been proposed up to the present.
After some mathematical preliminaries we discuss in V
what follows the axioms for hyperfunction quantum field
theory, properties of Wightman Fourier hyperfunctions,
and the reconstruction theorem, wherein our principal
attention will be turned to the "locality" problem. In a
forthgoming paper we shall study the Euclidean field theory

for hyperfunction fields.
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§ 2. Test Function Spaces

- We adopt the standard notations for n-tuple of numbers.
Thus, let x ¢ R®, k = (kyseens k) and &= (&y,000, £))
k k

be n-tuples of nonnegatlve integers, then x" = xil -o-xnn

2 2 2 2 !
and D" = Bl i/axl1--- axnn. Here |2&] = R Feeet L3

n

more generally |z| = |z.| + -+ lz | if z ¢ C =

1

The inequallity k > & means that k'j > 23 for

The test function space for Jaffe's class of ultra-
distributions [2] 1s characterized by a real-valued
function w(s) on [0, ), called a Jaffe indicatrix,
which satisfies the following conditions [8]:

a) (Regularity) exp(w(s)) 1is a real entire function:

ev(s) _ ) aksk
k=0

and ao =1, a2 0 (k=1, 2, 3, f.; ).

b) (Subadditivity) wis +t) < w(s) + w(t) for all

s, t € [0, «).

¢) (Carleman's criterion)

ds < o,

°°w(sz)
1+s2
0
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d) (Nuclearity) 2w(s) £ w(As) + C  for some

constants A, C.

To avoid trivial cases we assume the Jaffe indicatrix

to satisfy one more condition [8]:

e) w(s) > log(l + s).’

Consider a set of seminorms for functions f(x) on R™

el {8) = sup *elllxl®)ptecy (2.1)

where A > 0, 2 1is an n-tuple of nonnegative integers and
[|x]] is the Euclidean norm in R®. The space M, is
defined by '

u¢£m = {f; llfuéwi < » for every i, A}, (2.2)

It 1s evident that A = 2D, the space of ¢® functions
with compact support. The copdition e) above assures that
JAN c:,f, the Schwartz space of rapidly decreasing functions.
Carleman's criterion <¢) implies that the Fourier transform
of M C w“=_ ?»'(,/{,{w), contains functions of compact

support.

2.2 4,

The space ’Xl ,  consists of those functions f(x) on

R" -which satisfy the inequalities
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|x*DPr(x)| < ¢, (A + 5) X lyex (2.3)

for any & > 0. It is known [9] that the space ,thA is

a countably normed space with an infinite set of norms

17l = 3o Db le/RI - 2mYixl o

where p =2, 3, ... and m = eA. The topology of xfl A
£

}

The space /fj- is

is given by the norms { leA,p ;=2.
a union of fyl,A and the inductive 1limit topology is
introduced in it.

We shall show that ’Xl.c‘ALw for any Jaffe'indioatrix

w. Let us begin by verifying the limit

In fact, if one assumes the contrary, there would be a
sequence of increasing positive numbers tending to infinity,
{am}, and € >0 such that w(am) > ea . By the condition
a) the indicatrix w(se) is monotone increasing and hence
we have w(sa) > ea for any s 2 a . Then it is easy to

see that for any o > 1

rojm

>

Jm w(sz_f) ds >
. 1 +s2 =
m

which'contradicts Carleman's criterion c¢). Therefore for
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any a > 0 we have w(sz) < als| for suffiéient1y4iarge
|s]. Combining with the conditions a) and b) this means
that

cuCllxl|2)

< C ealxl’
= a

which implies ,51 S J(m.s

2.3 41

The space /! i’i consists of those functions f(x) on
4 .
R® which satlisfy the 1ne§ualities

lesz(x>l < CGp(A + 6)!kl<B + p)lg"kkﬂ,g' (2.5)

for 8, p = 1/2, 1/3, ... [9]. The space )j i’i 1s a countably
?
normed space with an infinite set of norms

12l ,555,, = S0, 0Dt /s oM e lthent. o)

The space }8 i ls defined by )le_ = ind limji’i. This
A,B *

space can also be regarded as. an inductive limlt of Banach

spaces. Let us define the space 4Jri by

T a= s liell, <=, (2.7)

where
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el 5 = o0, 1% 00 /alklalFhiegt, (2.8)

From the obvious relations

Helly 5 2 HElly 5i6,0 2 HEN gur Be1e (2.9)

or B 1
we at once conclude that ing,%im T =4 1 [10].

The spaces *Yl and ,j i are both of type S. The
spaces of type S are studied in detail in a textbook
{

by Gel'fand and Shilov [9]. Among other properties of

the space ,X i, the followings are worthy to be noticed.
l .
1° /ch:,!l.A
2° /X i is a nuclear space [10].
°r 1 1
3 Fdh = 41
> P,

2 is the Banach space of those functions which are
holomorphic in |Im z| < 1/m .and continuous in |Im z|
< 1/m. The norm of this space 1s defined by

= sSu
”f”m | Im z"pél/m

The space of rapidly decreasing holomorphic functions 49*

is the inductive limit of the Banach spaces C}i& Py =

]f(z)|e|zl/m. (2.10)



ind 1lim & 2.
m (]

Proposition 2.1. The spaces @)* and J’i are

isomorphic.

Proof. It suffices to show that for any j'i (resp.

m

m m o B B
0’0) there exists O’c (resp. J A) such that 7Ac@-c

(resp. O I:: czji) and thereby the embedding is continuous.

In order to avoid the notational complication we prove
the proposition only in the case n = 1. The géneralizatioh
of the proof to an arbitrary n 1is straightforward.

Gel'fand and Shilov [9] state that IIfHA‘B =M < *® implies

ID*£(x)| < ¢ M exp(-|x|/ea)B*s* with c, = exp(e/2). This
in turn assures that f(x) can‘be analytically continued’
to |Im z| < 1/eB and therein thé estimaté [£(z)| <

C M exp(~|x|/eA)(1 - eB|Im z|)”! holds for some constant

C, independent of A and B. If we take m > max(eA, eB),
then f(z) 1is analytic in |Im z| < 1/m and satisfies

|£(z)] < CM exp(—lz[/m); where C_ 1is a constant depending

3 3
on B. Thus we have llme 2 Cy ]If”A,B’ which means that
j’i c:C}f with m > max(eA, eB) and the embedding is
continuous.

The remaining part of the proof is carried out on the

basis of Theorem 4 on p.223 of Gel'fand and Shilov's textbook
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[91. Let |[f]], =M <, then f(z) is analytic in |[Im z|
< a < 1/m and satisfies |[f(z)| < M exp(;a[z[). The
above-mentioned theorem states that there exists a constant
B > 1/a and the estimate [Dgf(x)l < ClM Yt exp(-a|x]|)
holds, where Cl is a constant depending on a. By means
of the inequality exp(-|g|/e) < igf kk/lalk, which also

is verified in [9], and by putting A = 1l/ae we finally

obtain ‘][fHA’B < ¢, llfll,. This means that O % cji

with A > m/e, B > m and the embedding is continuous.

The proof of Proposition 2.1 is thus completed.

In closing this section we summarize the test function

spaces. studled above In the following scheme:

The spaces on the lower line are the Fourier transform of
corresponding spaces on the upper line. The space ,fl

is such that each f(x) € /gl' has an analytic continuation
in a certain complex neighbourhood of R®. The spaces

that contain functilons of compact support are /X, JML,

C:w and ,fl.

- 10 -
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§ 3. H-valued Fourier Hyperfunctiohs

In this section we give the definition of H-valued
Fourler hyperfunctions and make mention of their main
properties, especially the concept of the "support of
Fourler hyperfunctions", which becomes important in
formulating the locality axilom of the gquantum field theory.

- We shall either omit or sketch only briefly the proof of
most of the;étatements. For more details we refer to papers
of Kawai [6],'Ito and Nagamachi [7].

Recently the theory of vector-valued hyperfunctions
has been presénted by Ion and Kawai [11]. In constructing
the theory they used the method of "soft analysis" in
parallel with Sato's theory of hyperfunctions. A similar
theory has also been developed by Ito and Nagamachi [7]
by the method analogous to Kawal's construction of the
Fourier hyperfunctions [6].

| Let D" denote the compactifiéation of R": D" =

Rn u Sn—l n-1
-] (-]

, where S is an (n-1)-dimensional sphere at

infinity. To each x € R® - {0} we assoclate a point. x

on Sz'l such that the point «x lies on the ray connecting

x_ and the origin. We identify s*°', an (n-1)-

dimensional sphere centered at the origin, with R" -{0}/R'.

A natural topology 1s given to the space p®: (1) 1If a

- 11 -



point x belongs to R® a fundamental system of neigh-
bourhoods of x 1s the set of all open balls containing
the point x. (11) If a point x belongs to Sz'l we
write x =y and let y Dbe the corresponding point on
Sn'l. A fundamental system of neighbourhoods of x 1is

given by {(C+a) UC_; C_3 y_}, where C 1is an open

cone generated by some open neighbourhood of y in Sn_1
with its vertex at the origin, a 1is some vector in Rn,
so that C + a 1s a cone with its vertex at "~ a,  and C
signifies the points at infinity of that cone. In what

follows we use the notation QP = D® x iRP.

Let us begin
with the description of (scalar-valued) Fourier hyper-

functions.

Definition 3.1. (The sheaf of slowly increasing
holomorphic functions) We denote by E§ the sheaf whose
section module é;(ﬁ)r over an open set Qr in Qn,iis
the set of all holomorphic functions f(z) (e (8 n c®))
such that sup  |f(z)] ezl ¢ o for any positive ¢

~ zekKn CR

and any compact set XK 1in Q. It is clear that the pre-

sheaf {(Q)} constitutes a sheaf over QO.

Definition 3.2. (The sheaf of rapidly decreasing
holomorphic functions) We denote by (& the sheaf whose

section module Q?(Q) over an open set £ in Q% 1is the

- 12 -
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set of all holomorphic functions f(z) (e (2 n Cc")) such
that for any compact set K in @ there exists some
. GKIZI
positive constant &, and the estimate sup | f£(z)|e
K : zeK  CP

< « holds.

Definition 3.3. (Topology of ( (K)) Let K be a
compact set in D®. We give & (K) the inductive limit

topology 1ind lim &?(Um), where {Um} is a fundamental
m

system of neighbourhoods of K in Q", satisfying U

' m
»)) Um+1’ and O'C(Um) is the Banach space of all holo-
morphic functions f(z) (e &(Umn c™)) that are continuous
in ﬁ—mncn and for which |[f(z)] < C e-lzl/m 1o1ds ror
some constant C (depending on f). The norm of 0—’:(Um)

ts defined by Iell, = sup . |e(2)] elzl/m,
m

With this topology G (K) becomes a DFS-space (a
dual Fréchet-Schwartz space). When D® itself is taken
as K, O (p") 1is evidently identical with (P , introduced

in § 2.4. Then we have
Proposition 3.4. Q (D®) 1is a nuclear space.

Proposition 3.5. (;;)Q(D) is dense in O (dD") and
O(p) = O (p").

5>

Proof. Mityagin [10] proved similar propositions for

/X i Because of the isomorphism between Q (Dn)", or P*,

- 13 -
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and i, Proposition 2.1, his argument does apply to
o).

Proposition 3.6. A separately continuous multilinear
form M on [Q’(D)]n uniquely defines an element of
(Q(Dn))', the dual space of & (D®), such that
M(yseens <bn) = F(cbl X ses X ¢n) for ¢3 e @(D), J§ =
1, 2, «.. 5, N

Proof. Since Q(Dk) is a DFS-space, Q(Dk) is a
strong dual of a reflexive Fré&chet space [6,12]. By a
multilinear version of Theorem 41.1 of Treves [13] we can
state that the separately continucus multilinear form
on [Q(D)]n is continuous. Since Q(Dk) is nuclear
and (;:) g(p) = O (D") by the preceding propositions, the
form M defines a continuous linear functional F on

Q’(Dn). The uniqueness of F 1is evident from the fact

that ® @ (D) 1is dense in ¢ (p™).
n "

Definition 3.7. Let Q@ Dbe an open set in D", We
choose an open set V 1in Q% which contains @ as a‘
relatively closed set and define (R (), the space of
Fourier hyperfunctions over §, by the cohomology -
Hg(v, & ). (By the excision theorem the space R () 1is

independent of the choice of V.)

Proposition 3.8. When K 1s a compact set in Dn,

- 14 -
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we have leé(V, G )
(G ("'

v (O (K))', especially R (p®) N

o=z ~

Proof. See Kawai [6].

Now we are in a position to generalize the above
definitions and propositions for Fourier hyperfunctions
to the case when Fourier hyperfunctions take on their

values in a separablé Hilbert space H.

Definition 3.1'. We denote by § the sheaf whose

section module I (Q) over an open set & in Q° is
the set of all H-valued hblomorphic functions f(z) - such
that for any positive ¢ and'any compact set K in 2,

sup -elz]|
the estimate sek pcn He(z) || e < «» holds, where
l

| stands for the norm in H.

Definition 3.2'. We denote by 3@- the sheaflf whose
section module HQ;(Q) over an open set § in Q" is the
set of all H-valued holomorphic functions f(z)‘ such that
for any compact set K 1In Q there exists some positive

8
constant &, and the estimate sup |l f(z)]] e x|l
. zeKfp CR

< « holds.

Definition 3.7'. Let Q ©be an open set in D%. We
choose an open set V in Q" which contains Q as a

relatively closed set and define Hﬁ{(Q), the space of

s -



H-valued Fourier hyperfunctions over , by the cohomology -

H (V, i3y,

Theofem 3.8'. When X 1is a compact set of D" we
have HE(V, 55 v L(Q (K), H), especially Hﬁ_ (p™) A
L(Q(Dn), H), where L(G(K), H) 1s the space of all
continuous linear operators from @ (K) to H equipped

with the topology of bounded convergence.

The following corollary 1s evident from this theorem

and Proposition 3.8.

Corollary 3.9. If F 1s an H-valued Fourier hyper-
function, then (¢, F) for every ¢ € H 1is a scalar-
valued Fourier hyperfunction, where (¢, +) 1is the inner

product in the Hilbert space H.

We now outline the argument leading to Theorem 3.8'.
First let us show that an element ¢ of L(Q?(Dn), H)
defines a slowly increasing H-valued holomorphlc function
¢ on (€ - R™ and ¢ can be considered as its boundary

value.

Proposition 3.10. Let
ﬁ (£) = (271)™" 7 exp{-(t, -2,)°}/(t, -z ) © (3.1)
z gop PRI TE 372 '

and ¢(z) = ¢(hz) for ¢ € L(f?(Dn), H), then ¢(z) 1is

- 16 -~
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a slowly increasing H-valued holomorphic function.

Proof. If |Im z| > 6' > 8§ > 0 we have

sup —(t, -z.)2 -z )letltl
1o &< I'];rexp{r(tJ zy) }/('c‘j zj)le

_ 2 elz’-l-u] el z|
= sup T -
!Im(z+u)‘|<5 | 3 exp (uJ) }/u.j’e ' s Ce €

~ for all positive €. Thus it is found that hz(t) belongs

to & (D) and ¢(z) = @(hz) i1s well defined as a slowly

increasing H-valued holomorphic function on (c - rR)".

Proposition 3.11. Let ¢(z) be as in the preceding

proposition. Then for any g ¢ Q (Dn) we have

f s(2)g(z)dz = o(g), (3.2)
I‘lx .00 xrn ‘ -

where dz = dzl...dzn and PJ i1s a path in the j-th
complex plane consisting of two straight lines parallel to
the real axis, one of which runs to the left below the real

axis, the other to the right above the real axis.

Proof.

2(g) = o n g(2)dz)
I“lx s e xrn

f ¢(h_)g(z)dz
I’lx e o s xrn

- 17 -



- f 6(2)g(z)dz.
]"lx PR xrn
Let V_ = 0" and VJ = {z e Q"; ImzJ # 0}. Further-
_ .n ¥ = ' .
more we put V = nJ=l VJ and VJ ni#J Vi’ Propositions

3.10 and 3.11 provide a mapping « from L(® (p%), H)
to H@(V) and a mapping 1 from H5(V) to
L( Q(Dn), H), respectively. However, since the integral

(3.2) vanishes for any ¢ € E?=11H§(§J)g namely for any

¢ = 1j., ¢, such that ¢, € "&(¥,), the mapping 1 1is

J
considered as a mapping from H@'(V)/XJ H§ (\,}J) to

I&gz(Dn), H). Correspondingly « 1is naturally considered
as a mapping from L(Q(Dn), H) to H@:(V)/}:‘j H7(9'(V'j).
The following proposition impllies the isomorphism between

L(Q (™), B and P&/, FEE)).

Proposition 3.12. The mapping 1 1is injective, so

1 and «k are bijective.

Proof. For simplicity we assume n = 1. Using the
function hz(t), (3.1), for n =1 we consider integrals
along the paths I and T' in the complex t plane.
These paths are similar to T in (3.2), but subject to

‘ J
the condition that T goes round the point t = z to the

- 18 -
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same side as the real axis, whereas T' to the side
oppesite to the real axls. By Cauchy's integral formula

we have

~

o(z) = [ ¢(t)hz(t)dt - f£'¢(t)hz(t)dt. (3.3)

r
Suppose 1(¢) = 0, then frl¢(t)hz(t)dt =0 and ¢(2z)

= - [6(t)h ()t 1is an element of & (@) = ¥ (V).

H

That is ¢ = 0 as an element of vy /B (Gl)' Hence

1 is injective. Since 1 o k = identity, 1 and Kk are
bijective.

a

=07 w' o= {v,© It can be

Jri=1"
shown [7] that H;n(Qn, g ~ B (W, W', Eg) N

Remark. Let W = {Vj}

Hg(V)/ZJ H@(\'}J), where HY(W, W'; H®) 1is the relative

cohomology of covering. Therefore, combining with Propo-

sition 3.12 we have the isomorphism Hgn(Qn, B8 ) o

L( QKDn), H), which provides Theorem 3.8'.

Proposition 3.13. Let K = Kl X soe X Kn, each K

being a compact subset of D. «k(®) for every ¢ ¢

J

L(G(K), H) 1is an element of. 'ZJ H@(X:j), where X,j =
\("j n {zj £ KJ}.

Proof. ¢(z) = @(hz) is analytic if zy £ K'j for all

- 19 -
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If U 41is an open set in Qn we denote by»,pU the
. H o~ Ha &y H _
restriction map from (}(V)/ZJ G(Vj) to "R (U) =
H@(VﬂU)/}:J H@'(\A/"j NU). By means of the map p, we ean

define the support of an element ¢ of H@(V)/Z‘j H5(VJ)
as the smallest closed set S such that pU(¢) =0 for

any open subset U <35°¢,

13)

Pyt the restriction

If U> U' we further denote by

map from LR (U) to TR (U'). It is easy to see the

U U

following properties of »p gt P is identity, and if

U
'

9) U = U H U
U= U'> U", then »p g" © Pyt = p yn. Hence "R Uy, p U'}

forms a presheaf (over o%). Ito and Nagamachi [7] have
verified that {"R(U), e’ 1} really is a flabby sheaf,
that is '

(1) If for any z € U there exists a neighbourhood
V(z) of z such that pUV(Z)(¢) =0, then ¢ = 0.

(ii) Let {Vc} be an open covering of U. If

Ve

(¢ ) for
Vaﬂ Ve ¢T

H _ Vo -
¢, € "R(V,) satisfies o von VT(¢0) =p

v.onv, # @, then there exists ¢ € HR(U) such that

Y =
P Va(¢) = ¢,-

(iii) (Flabbiness) Py is surjective.
H H U n
We denote by ~ R the sheaf {*R(U), p 1} over D",

H

We call the sheaf of H-valued Fourier hyperfunctions.

- 20 -
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Proposition 3.14. Let K be a compact set of p”
and ¢ an element of L(O(K), H), thenthe support of

k(®) 1is contained in K.
For the proof of this proposition we need

Lemma 3.15. Let X be a compact set in D" and
let {Kc} be a finite compact covering of K. Then every

element ¢ of L(@(K), H) can be decomposed into ¢ =

1, ¢, with ¢ e L(G(K)), H).

[

Proof. PFirst we prove the lemma for the scalar-
valued case. Since the natural injection @ (K) -
(-'4-)(J Q(KﬂKo) is of closed range, the dual map @U (Q(KnKo))'
+ (C(K))' 1is surjective. In the vector-valued case the
lemma follows from the isomorphisms, L(Q(K), H) ~
(O(K))' @ H and L(O(K ), H) & (Q(KG))' ® H, which
are obtained by Proposition 50.6 .of Treves [13], because
@ (K) and 'Q(Ko) are both DFS-spaces and so they are
complete and barreled [7]. | '

IWe now return to the proof of Proposition 3.14, If
z £ K there exist an open neighbourhood U of 'z and "
a finite compact covering {K_ } of K such that K, nU
= g, KG = Kol X eee X Kcn and U = Ul X oo X Un. Then
we have ¢ = 2& o, 0 € L(QZ(KU), H),‘ by the lemma and
pU(K(éc)) = 0 by Proposition 3.13. The proof of Propo-

sition 3.14 is thus completed.

_ 21 -
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Remark. Lemma 3.15 1s a direct consequence of the

flabbiness of the sheaf °R .

Definition 3.16. For ¢ e L(Q(D"), H) we define
its Fourier transform F ¢ by the formula (F ¢)(F L) =

$(f), where
(F £)(p) = f e1(Ps®) pryyax (3.1)

for f e Q(Dn).

Since % ylelds a topological isomorphism of & (p™)
(see §8 2.3 and 2.4), the definition ébove is ﬁell defined.
The sheaf H B of H-valued hyperfunétions over R% coin-
cides with the restriction of the sheaf SR to RO .
Hence, because of the flabbiness of the sheaf Hk, any
H-valued Fourier hyperfunction on R® can be extended to‘

~an H=valued hyperfunction on D® and we can consider its

Fourier transformation.

Proposition 3.17. (Paley-Wiener theorem) Let T .be
a closed and strictly convex cone in R® with its vertex
at the origin such that T = {x; (x, e)‘> 0} U {0} for
a unit vector e in R®. We denote by K the closure of

' in Dn, and by r° the polar set of T, namely r°

= {x; (x, £€) >0, £ e T}. Then ¢ 1is an element of

L( @(kK), H) 4if and only if f(x) = @(ei("x)) is holomorphic

- 22 -
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in R® x 1(r°)Y, where (r°)* 1is the set of interior
points of TI°, and satisfies the condition that for every

I'ce I° and e >0

[!@(ei("c))“ < CE’P.exp(e[Rec} +xr’€(Im z)),

1

where ¢ ¢ R® x 1T’ and x. (n) = SYP  (_(x,n) +elx]|).
Thye xe(r-ce)

Proof. See Ito and Nagamachi [7].

At the end of this section we mention the sheaf C
and Sato's fundamental principle. Let M be an oriented
real analytic manifold of dimension n, and let T*M be
the cotangential bundle over M, and finally let S*M
be the cosphere bundle S*M = (T*M - M)/R*, where R' =
{x e R; x > 0}. When M = R®, the cosphere bundle S*M
is represented by R® x st _

We can construct a sheaf € over S*M and a sheaf
homomorphism B8 from the sheaf (3 of germs of hyper-
functions over M to the direct image my,( of the sheaf

C by the projection m: S¥M + M in such a way that the

following proposition is true.

Proposition 3.18. The sequence of sheaves over M

0o — 4 = B o 1yC — 0



is exact. Here /4 l1s the sheaf of germs of real analytic
functions over M and a:,& — (A is the canonical

injection.

For the construction of € we refer to a paper of
Sato, Kawai and Kashiwara [14].

For a hyperfunction ¢ ¢ B(Q) on an open set Q« Rn,
Bo defines a section of the sheaf € over i) =

n-1

Q x 8 and we can consider the support of B8¢. We call

it the singularity spectrum of ¢ and denote it by S.S5.¢.

Proposition 3.19. Let ¢ be a hyperfunction of B ()
and {rk}§=1 be open convex cones. Then the following
two conditions are equivalent: |
(i) ¢ can be represented by boundary values of

holomorphic functions fk(z) defined on each Q x irk,

1 < k < m.

. m o
(1i) S.S.¢§: Uk=l Fk.

Proof. See Morimoto [15].

Proposition 3.20. (Sato's fundamental principle) Let
P(x, D) be a linear’partial differential operator of order
m whose coefficients are real analytic on an open set
Q = rR® and let Pm(x, £) be its principal symbol: Write

P(x, D) = [ a (x)D%+ ] be(x)DB, then the
fof=n |B|sm-~1
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principal symbol is defined by Pm(x, £) = 2 ad(x)ga
la|=n
If ¢ ¢ B(Q) satisfies P(x, D)¢ = 0, then S.S.¢ =

{(x, €) e @ x s"7%; P_(x, £) = 0}.

Proof. See Sato [16].

§ 4. Axioms for Hyperfunction Quantum Field Theory

In extending the usual Wightman framework of the
axiomatic quantum fleld theory our greatest concern is how
to formulate the locality axiom for extended theory. The
strict localizability of fields A(f): conneété mathemati-
cally with the fact that f(x) belongs to a function
space which contains c” functions with compact support.

This requirement 1s satisfied by Wightman fields and Jaffe

fields, because these fields are constructed on a basis of

the Spaces, /J and Cmﬁ respectively. The advantage of
the symmetry between configuration and momentum spaces is
given to Wightman tempered fields, while it is lost 1n the
Jaffe field theory, since the space /3 1s topologically
invariant under the Fouriler transformatio;, but the space
C’w is not. Constantinescu [3] used the space /Xl to

construct local but nonsrtictly localizable fields. He

- 25 -
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proved that the theory can be formulated so that Wightman
functions in configuration space are still boﬁndary Vélues
of analytic functions in the forward tube, but can grow
arbitrarilyfastnear the light cone in contrast to the case
of tempered fields where they are only of polynomial
growth.

Here we wish to formulate axioms for Fourier hyper-
function fields. Since the test function space & (D)
of Fourier hyperfunctions no longer contains any function
of compact support, we are obliged tb modify the axiom
of locality in an appropriate way. Instead, it should be
- remarked that the symmetry between configuration and
momentum spaces 1is recovered in‘the hyperfunction quantum
field theory. Most of the axioms can be stated in parallel
with Wightman's axioms for tempered fields, but for
cdmpleteness we write them down mutatis mutandiS~following
Jost [17]‘(see also [1]). |

The Lorentz-invériant inner product ;s introduced in

Rh‘ by writing x-y = x°y° - Xx-y for two four-vectors x

= (x°, x) and y = (y°, y), where x and y are three—
dimensional spatial vectors. Write also x2 = x+x for
short. With the same aim we shall use the notation: X
to signify a set of n four-vectors (xl, s+ 5 X_) and

write dx ~ instead of dx, e++dx_ .
-n 1. n
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Zeroth axiom. The space of states is a separable
Hilbert space H over the complex number C. For &, V¥

e H the inner product in H will be denoted by (&, ¥).

First axiom. Q’(Dh) is mapped into linear operators.
{A(f)} over H. A(f) 1is defined on a dense subset D
of H, independent of f ¢ C?(Dh). (¢, A(f)Y) for
®, ¥ ¢ D 1is a Fourier hyperfunction and (&, A(f)¥) =
(A(T)®, ¥). We require that A(f)D = D.

Second axiom. A unitary representation U(a, A) of
the restricted Poincaré group exists and satisfies

Ula, MAEU™ (a, A) = A(f, )

and U(a, A)D = D, where f{a,A}(x) = (A" (x-2)).

Third axiom. The spectrum of the energy-momentum
operator P 1s contained in V+ and there is an invariant
state Q, corresponding to the vacuum, guch that U(a,A)f
= Q. Here V_= {p=(p°, p); p° > 0, p% > 0} and v; is

the closure of V+ in Dh.

By the first axiom (&, A(f,) «++ A(f )¥) for o, ¥ e
D 1is a separately continuous,mulﬁilinear form on K?(Dh)]n.
Proposition 3.6 says that (¢, A(fl) ---A(fn)w) uniquely

determines a Fourier hyperfunction belonging to (Q?(Dhn))'
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which we denote by (o, A(x"l) A(xn)‘?) in the sense

that formally

(0, A(£)) +++ A(£)¥)
- [ Gos A e AW () s xDax, (3.5)

‘More generally we write
r(e) = | Flx)r(x, )08, (3.6)

for Fe R(D*) and f e Q(Dhn).

- ' L
Next for g(x ) = £ (x)) e f (x), fJLQ @ (™),

and ¢ ¢ D we define an H-valued functional &(g) =
A(fl) e A(fn)<1> and extend this definition to ® @ (Dh) by
n

- linearity. By Proposition 3.5, for any f ¢ @ (D"m)

there
: exists a net {gv; g € gb Q(Db')} such that g + f as

v - ». Therefore ~”®n(gv)"q"ﬁ(8u)”2 +0 as v, u .
Thus @n(gv) converges and tends to a vector <I>n(f) and
evidently @n(f) is a continuous linear mapping from
Q(Dhn) to H, 1i.e., @n(f) € L(Q—(Dhn), H). By Theorem
3.8 <I>n(f') is an H-valued Fourier hyperfunction. We
denote it symbolically by A(xl) see A(xn)<I>. Oﬁ the other

hand, @n(f) defines a linear operator on D which maps

® to o (f). That operator will be denoted by <A®, f£>
n
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rated to each other, namely let (xl-x

and written formally as
n = o e
< AR, £> = J A(x;) Alx )f(x )dx . ‘ (3.7)

. The axiom 6f local commutativity then is formulated

as follows:

Fourth axiom. If X and X, are spacelike separated,

then A(xl)A(x2)¢ = A(xe)A(xl)Q for every ¢ ¢ D.

By Theorem 3.8' we can restate this axiom by saying
that A(xl)A(x2)<1> - A(xe)A(xl)Q e L(Q (K), H) for every

¢ ¢ D, where K is the closure of {(x;, x,) ¢ RB;

(xl-x2)2 > 0} in D8. More precisely we should formulate

the locality axiom by means of the support concept of
H-valued PFourier hyperfunctions. Thus, let Ul and U2

be arbitrary open sets in Rh which are spacelike sepa-
2)2 < 0 for |

every X, € Ul and X, € U2. Consider Qz(f) =

ACE)A(E,)0 € L(Q‘(DB), H). The locality axiom should read
Py, , (K(¢)) =_pU21(K(¢2)), (3.8)

12 13 the mapping «

and the restriction p are defined in the previous section.

where U = Ul x U2 and U21 = U2 x U

Fifth axiom. Let P(A) be an algebra of polynomials
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in the operators A(f), f € QQ(Dh), then P(A)Q is

dense in H.

§ 5. Properties of Vacuum Expectation Values

Let & be the vacuum vector. The vacuum expectation
value (Q, A(x;) =+« A(x_ )Q) 1is a Fourier hyperfunction
which we denote by W (% ), where x = (X, X,,..., X )

as before. The notation  x will also be used to denote

(xn, X 17 xl).

Proposition 5.1. (Positive definiteness) For any
sequence {¢k} of test functions ¢, ¢ §2(th) with
¢k = 0 except for a finite number of k's, the vacuum

expectation values satisfy the inequality

I [T Wy, G 1,00, (s daxay, 2 0. (5.1)
k,2=0

n

Proof. Let nnwn) = <A", ¢ >Q. The inequality (5.1)

is equivalent to IIZ:#O.Qn(¢n)H2 > 0, which follows from

the zeroth axiom.

Proposition 5.2. (Hermiticity)
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1”;(§n) = 1U;(n§).
Proposition 5.3. (Relativistic invariance)
W, g, +2) = Wix),

+a = +a ,..., +a).
where AX a (Axl a , > AX a)

These two propositions are direct consequences of

the first and the second axioms, respectively.

Proposition 5.4. (Spectral condition) There are
Fourier hyperfunctions Wn_l(gn_l) depending on the

relative coordinates 5: = - X

Xy41 5
which are related W by W (x)) =W (g ). The

Fourier transforms of'uf; and Wn_ are Fourier hyper-

1
functions defined by

~ - n
g = 0™ [t on 500,

and

=~ -4(n-1) J

- n-1 ' _
Wn_i(gn_l) = (2m) exp{;“zz qJ-EJ}wn_l(gn_l)dgn_l

1
These are related by

- n .
W, (p,) =7G(lepj)wn_l(p2+"+pn,p3+-'+pn,---, P,)

- 31 -
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a1

is contained in V°~1.

and the support of wn-l(gn-l) +

Proof. We make a linear transformation x =~

(£,> E,_q) with & = x, and define

W (x) yq;(go,go+gl,..., g°+..+5n_l)

n. —n

]

W (g, & ;).

~Since vﬂ; is translation-~invariant it obeys the equation
(3/388)W (&, &£ ;) =0, u=0,1,2, 3. By Sato's

fundamental principle on the singularity spectrum of
hyperfunctions (Proposition 3.20), yV‘;(go, én—l) is real
analytic in Eo [14]. Let us define a Fourier hyperfunction

with n-1 arguments

wn—l(g-n’-l) =W;'1(O’ -‘c’;n..l) = W;(gcs -E-;-n-l)’ (5.7)

then W (x) =W _,(§ ;) as required.

Next it 1s easy to see (5.6): we have

n
(2w)'hn Iexp{-»%lej.xj}VVn(gn)dzn

W, (2,)

(217" [exp{-20(pytre+p,) o8y +oe + 008, )

n
X exP{'i(jzlpi)'Eo}wn-l(gn-l)dgodénal
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n ~ .
= §( 2 pj)wn_l(P2+"+pn>P3+"+pn,--~, pn)'
J=1

The last statement of Proposition 5.4 can be proved
as follows: Qn(¢) = <An,¢> 8 1is an H-valued Fourier
hyperfunction. When the translation U(a, 1) is applied

to @ (¢) we have py the second axiom

Ula, 1),(6) = 2 (67, 1)

~ ~ n .
a (¢ exp{i( ) pj)~a}),
3=1

where 5 is the Fourier transform of ¢. Consider the
speétral resolution

Ua, 1) = f elP % gr(p)
and the integral

[ xprasma (o) = &, 0pyr oo 0B)  (5.8)

for any x(p) ¢ O(D*). The mapping x ~ 2, (x(py+ «« +p)8)
defined by the integral (5.8) is an element of N
L(Q(Dh), H), but since supp(dE) ¢f[-+ by the third
axiom it really belongs to L(Qf(v+), H). Let S, be the

closure of {p_; p, *+-**+ D € V+} in . Dhn, then what
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we have just ascertained shows that ﬁn(pn) € L((?(SO), H).

Tt is readily seen that <A y> én_k(Zs) = s’zn(?p ®3) and
C<a% s [x(e)EmE, L (3) = & (D @ x(py,, +r+ pE)

for 1< k < n-1. Let us define likewise S_ as the closure

'k
- s o0 v ’ S n_l
Of {py3 Pyyy*ro P, eV, Then Q.(p,) e LGNy S), H).
To put this in another way we let Q= Pryq + oo+ P>

0 <k < n-1 and write

n - nf-l

Ta(pp) = 8,(95-a55 93 = Qseee 5 py)

(m

ey ¢ 3 .
then we obtain E (q_, g, ;) € L(Q(V+), H). Since

[1312

W (p)=(a, a(p)) =(2, E (a, q,_;))

),

’ G(QO)Wn—l(gn-l

%n—l(qn;l) is a Fourier hyperfunction whose support is
Tn-1

contained in. V+ Thisbcompletes the proof of Propo—

sition 5.4,
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§ 6. Reconstruction

Theorem 6.1. To a given set pf Fourier hyperfunctions
satisfying the conditions expressed in Propositions 5.1 -
5.4 in § 5, there corresponds uniquely a neutral scalar
field A(f) which obeys all the axiomé of hyperfunction
fields and has the Fourler hyperfunctions as vacuum

expectation values.

Proof. We can construct a Hilbert space H, the field
operator A(f) and the unitary representation U(a, A)
of the restricted Poincaré group in the same way as tempered
fields. Therefore we discuss only causality and spectral

condition.

(a) Causality
(A(x )A(x)A(u;) -+« Alu )@ - A(xa)A(xl)A(ul)o-o ACu )Q,

A(yl)A(ye)A(vl)--- A(vn)ﬂ - A(yz)A(yl)ﬁ(vl)--o A(vn)Q)

)q;nfz(ng’xz’xl’yl’yz’!h) - vuén+2(n3’x1’x2’31’yz’Kn)

W aa (G Xp s Xy s¥p0¥15,) - Wonaa (s Xy 5%p5855915¥,)

)2

2
if (xl-x?_) < 0 or (yl-yz.

<0, t.e., if (X,X5,¥,,Y,)
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e (K¢ x p*) u (D% «x K®), where K is the closure of

8

{(x, %03 (xl--xz)2 > 0} in D° and K¢ 1is its

complement. Thus the support of the Fourier hyperfunction

T

above is contained in (X® xD xK®)® = K x K;_ Thére—
fore, if ¢ 1is a linear combination of vectors of the
form A(¢l)--- A(¢n)Q, then A(xl)A(x2)¢ - A(xe)A(xl)Q
€ L(Q(K), H), that is A(xl)A(xz)Q = A(xz)A(xl)<I> if

X, “and x2 are spacelike separated.

(b) Spectral condition

Once H-valued Fourler hyperfunctions 5n(pn) have

been constructed, it follows from the relations

(G, (0,05 8,(a,)) = (@ (), &_(p_))

n -=n

= ivén(ng’ gn) = “}Zn(ng’ gn)

and the support property of Wightman Fourier hyperfunctions
that the support of ﬂVén(nB, ) is contained in Sy % Sy

kn

c—l.n [

where So is the closed subset of D defined in the
preceding section. Therefore 5n(gn) is an element of

L(Q(So), H). For any x(p) e Q'(\7+) n )8 we have

[ x(p)AE(p)Q (¢) = & (x(p, +++++ D )§),, where E(p) 1is
the resolution of unity associated with the energy-momentum

operator P and if supp(x) f V; = @ the right hand side
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of this equality vanishes. This fggt shows that the spectrum
of the eﬁergY—mdmentum operatbr P is contained in V;;r

Lastly we want to make mention of the cluster decom-

position. If we add to the third axiom the statement that

{p‘=_0} is an isolated eigenvalue of the energy-momentum
operator and the corresponding»eigenspacé is one-dimensional,
then the cluster property holds: For a spacelike vector a
we have
JW (x

n+m —n?

Yo tAa)e(x )y(y)ax ay + W ()W (v)

as A - é. The proof 1s carried out in the same way as in
Jost [17]. The converse proposition that the cluster
property implies the'uniqunéss of the-yacuum»is‘also

proved in a way exactly similar to tempered fields [1].
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