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0.Introduction. In 1954 F. Hirzebruch [8] obtained an
interesting formula which makes it possible to determine the
alternating sum Zq(—i)qdim Hq(V,Qp(Lk)) for aﬁy complete
intersection V of hypersurfaces in a complex projective space
and for any k € 2 where L ié the analytic line bundle over
V  induced by hyperplanesection. He further determined
dim Hq(V,ij by using.some vanishing theorem. In the author's
knowledge, however, the general dim Hq(V,Qp(Lk)) seem not to
have been determined yet. In this note we shall give a formula
which determines directly dim Hq(V,Qp(Lk)) in case d<q<dim v,
by using the theory of isolated singularity. (See Theorem 2.3.1,
Corollary 2.3.1;)

Part I is concerned with the general theory of isolated
éingularity and is of preparatory nature. The readers who have
known the standard of the theory (e.g. Greuel [4]) may bypass it
after they become familiér with the terminology and notations.
Part II begins with the study of C¥-actions over isolated

singularities. The main theme there is to compute the characters
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of the representations of C¥ over various cohomology groups
attached to the singularities, We apply it to the cones associated
with algebraic manifolds and prove the required formula finally.

The almost all results obtained in this paper have already

been announced in [11], [12].

Part I: General Theory

1.1.Preliminaries. We shall often denote by (X,x) the pair
of an analytic space X with a point x € X such}%hat X X
is smooth and pﬁre dimensional. We call such a pair an isolated
singularity (even in case X 1is smooth). For an analytic space
X, Q§ denotes the sheaf of analytic p-forms on X; but we write
often Ok for Qg. Suppose (X,x) 1is given and let 1 be the
Iinclusion X \ x ¢<»X. Then, fOr a sheaf G over X, the shea?es
RY141%G (g>0), Eﬁ?z(G) are concenfrated into the point x, so we
shall often idéntify them with their stalks over X. Whether these
' notations mean sheaves or stalks should be understood from the

context. Now let us begin with the Serre type duality for (X,x).

Lemma 1.1.1. Let (X,x) 1t be as above and set n = dim X.

—q-1 -
Then qu*t*ﬂg, R4 71*1*Q§ P are finite dimensional (over C)

and are naturally dual each other provided 0 < q < n-1.

We can prove this easily by using Serre [14] and Andreotti-
Grauert [1]. TFor the explicit pairing which gives the duality,

see Section 2.1. Note that it can also be proved that there is a
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natural pairing between (1*1*Q§)X and Rn‘11*1*9§"P which is
compatible with the structures of the complexes 1*1*Qi,

Rn—-l

1*1*Qi and induces the duality between Hp(1*1*9i) and
n- n-1 .
RTP (R 1 1%00)

The next lemma is concerning the coherency of local cohomology.

Lemma 1.1.2. Let G Dbe a coherent 0y-Module such that

X . q ' ,
SlX‘\x is locally free. Then :}(é)x(G) is coherent for g<dim X.

Proof. Siu [15].

We shall now introduce a condition for an isolated singularity
which will turn out to be convenient later.

P

Definition. We say (X,x) satisfies condition (L) if

:76%(9)%) =0 for p,q such that p+q < dim X.

Lemma 1.1.3. (Partial Poincare Lemma) If (X,x) satisfies

the condition (L), then ;ﬁ?i(c)=o, HP(ay )=0 for O<p<dim X,
3

where Q. denotes the Poincare complex of X, and @ its

X,x
stalk over x.

This can be proved as follows: Consider the E2—term of the
' D,d_ Arq * \ L
spectral sequence '32: j%?i(g%)(gx)). These are zero_excgpt
0 : 0 0, 0 . . '
'Eg’ iﬁ?ﬁ(c), 'E2’q=H (QX’X) (gq>0). But, since there is a‘complete
neighborhood system at x consisting of contractible ones only,

it can be shown by Bloom-Herrera [2] that Hr—l(Qi X)='Eg’r_1 —>
B . . . 3

.._3‘_.
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_r, 'E;’Oﬁ%?i(c) is zero-map for every r>0 (See the proof

of Lemma 1.2.2 appearing later). Comparing this with El—terms
nepP,d_~Pd 4P : s »
El’ {%?X(QX) of the other spectral sequence having the same

limit, we obtain the conclusion of the lemma.

Definition. Let f be an analytic function on X such that
f(x)=0, and that dfz, which is not the germ but the value at x
of the differential form d4f, is not zero for any z € Xﬁ\x;

Then (f_l(o),x) is a new isolated singularity, and is called the

hypersurfacesection of (X,x) defined by f.

The hypersurfacesection is'a usefull device for the study of
complete intersections since they are obtained from non?singular
ones by iterated hypersurfacesections. See Hamm [51].

Now the method to prove Lemma 1.1.3 shows also

Lemma 1.1.4. Let (X,x) satisfy the conditlon (L) and

fe F(X(,O'X) be such that df,#0 for every =z eX\x. Then the

sequence 0—— 52» ar . Q% df , - —an».ﬂgim X is exact,

where Q§ —af, Q§+1 denotes the exterior muptiplication by df.

Another usefull Way.to formulate this lemma is the exactness
of the sequences
daf

(1.1.1) 0 — b1 > oF — 5 g
8 X

o

— 0 p < dim X

where we have put as in Brieskorn [3]

OB = oP , am D=1
o = aP / ar.oP

- -
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Lemma 1.1.5. Let (X,x), £ be as in Lemma 1.1.4. Then,

(X,x) satisfles the condition (L) if and only if P I(aR)=0

for any p,q such that p+g<dim X.

Proof. Suppose (X,x) satisfies (L). Using the long .exact
sequence of the local cohomology associated with (1.1.1) we obtain
monomorphisms %3_1(9?"'1) (N %%(Q?) for p,q such that p+g

< dim X. Combining these, we have monomorphisms aa?g(ﬂg)~ —>

54?§+Q+129;1)=o when p+q < dim X. This proves the "only if" part.
Next, we note that aﬂ?g(ﬂg)=0 (p< dim X) implies the exactness
of (1.1.1). Thus the long exact sequence used above, again proves
the "if" part.

We end this section by indicating briefly the topological
meaning of the cohomology groups Hp(Q;’X). (Note the exterior

differentiation d naturally induces the maps Q? —£L~9 Q?+l

by which the complex Qé

Lemma 1.1.4 and let f(x)=0. Let further (Y,y) be the hyper-

is defined.) Let (X,x), f be as in

surfacesection by f, that is, Y=f_1(0), y=x. Then we can always

assume by Milnor [10]

a) (X,x) is a closed analytic set in some open ball with
-0 s+ N .
center x=0 in € : (Zy, Zy, -+ , Zy).

b) The restricted functions r|
N 2
1=11251%

have no critical

x\x Tlyny
point, where r(z) = %

Theorem A. Under the above assumptions, there is a neighbor-

- 5 -
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‘hood S of 0 in € ‘such that (1) £ : £71(8) \Y —— S\0

is a ¢ fibre bundle (ii) RPf*(Q;)ls are coherent Os—Modules

(1ii) there is a natural isomorphism

HP(Q;’X)'Q RPr.(2.),.

To Milnor [10], Hamm [5], the (i) is due. The assertion (ii)
can be proved as follows: Take a smaller open ball B' and set
X' = X n B. Then the argument of Brieskorn [3] shows the
restriction map r(f'l(T),Q') — () A X',Q;) is quasi-
isomorphic for any open subset of T provided S is -sufficiently
small. But this map is also quasi-nuclear P(T,OS)—homomorphism;
in the sense of Kiehl—Verdiér [9]; From the fundamental theorem
of [9] it follows immediately (ii). The quasi-isomorphicity above
proves (iii) also.
| Note that this method éan prove the finite-dimensionality
of Hp(Qi’X) of Bloom-Herrera [2]; (To prove this, one may
only replace f by the map (X,x) ——> (point,point) in the above
argument.)

l.2. Conservation of (L) under hypersurfacesection and some

consequences of (L). Throughout this section we fix (X,x) and

f e T(X,0,) such that (Y,y) = (f_l(O),x) is a hypersurface-

section of (X,x).

Lemma 1.2.1. If (X,x) satisfies the condition (L), then

(Y,y) also satisfies the condition (L).



Proof. By Lemma 1.1.5, 7P%(aP)=0 when ©p+q < dim X. But
xf '

5%22(Q§)=0 (p<dim X) implies the exactness of the sequence

(1.2.1)0~——>Q§f>9§3 — o) —> 0 p < dim X

where Qg should be regarded as sheaves over X. Thus we obtain

the long exact sequence

QeaPy Q/aPy _ a,oP o e
— ;%X(Qf) — %X(Qf)  —— %y(QY) —
. e s : AroPy = ;
from which it follows %y(QY) 0 when p+q < dim Y .

Remark. Using Lemma 1.1.1, Lemma 1.1.2 and Nakayama's lemma,
we can supply the argument above to prove the stronger statement
(X,x) satisfies (L) if and only if (Y,y) satisfies (L) and

dim ]@g(sz?)=dim ?f;mlg) (n=dim Y)

Corollary 1.2.1. If (X,x) 1s a complete intersection,

then it satisfies the condition (L).

As indicated before, this follows from Lemma 1.2.1 and Hamm
[51.
Consider the complex |%?O( ») which is the torsion part of
, x

QX and set

vt e O,
Ay = Oy / Hplay)

...'7 -
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We shall now prove the following sharper version of the Poincaré

lemma:

Lemma 1.2.2. If (X,x) 'satisfies the condition (L), then

HP("05)=0 for O<p<dim X.

To profe this,[2] seems té be not adequate. We have
therefore to rely on the earlier works of Herrera [6]1,[7]. When
a semi-analytic set M is given in a real analytic manifold ﬁ,
we define the sheaf' eﬁ as the quotient of the sheaf of G
" p~-forms over -M by the subshéaf of p-forms inducing the null

form on the non-singular part of M. There is a natural onto

homomorphism HP(T(M, e;)) —> HP(M, ).

Proof of Lemma 1.2.2. Take a contractible neighborhood U

of x and consider the commutative diagram

Hp(F(I’ &) —> HP(I(U'\X, e))

1P (U, ¢) — HP’(Uu\x, C) .

This proves the composition Hp(F(U, é;)) — _HP(F(U‘\x, e&))
—_ Hp(U“\x, €) 1is zero. Note that there is a natural map
"Qé —_ eé which induces the mép HP(P(U, "Qé))-——e

HP(r (U, 86))‘ Composing this with the map above, we obtain

the natural map Hp(P(U, "Q&)) R Hp(U‘\x, €), or passing to

the 1imit, the natural map Hp("gi o) —> RP1,C. which is zero.
5 : ¢ N

-8 -
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But this zero map can be factorized as follows: Hp("Qi X)—————>
b

Hp(l*l*ﬂi) —55 RP1,C (1:X\x ©X), where e is injective for
pidim X as the édge homomorphism of spectral sequence Rq}*1*9§
= Rp+q1*c because of the condition (L), and further n is

also injective for p<dimX siﬁce "Q§ —_— 1*1*9§ is isomorphism
when p<dim X-1 and monomorphism when p=dim X-1. This proves
HP("Qy)=0 for Osp<dim X.

From now on we suppose that (X,x)  satisfies the condition

(L), and we put n=dim X-1, that is, n=dim Y. By Lemma 1.1.5

~/POr Dy Pl Py : ;
C%?x(gf)?%Px<Qf)'o for p<n. We thus have the isomorphisms

(1.2.2) Q? = 1*1*9? p<n.

When p=n, %g(ﬂ?bo,but 5@;’;(9?)#0; so we have only the exact

sequence

n

(1.2.3) 0 —> Q? —> 141%Q,

————)%i(ﬂ?) —_ 0

Now we denote by 'Q.

£ the complex

(In general Q? (p>n) are not zero, so 'Q% does not coincide

with Qf

.) Then (1.2.2), (1.2.3) imply that

fie -

(1.2.4) HP((11%Q.) ) v BP(ran ) D <n

s X



and further that the sequence

(1.2.5) 0 —> ®('a; ) —> H((1,1%07))) —> HLeh —o

3

is exact. Since P (p>n) are finite-dimensional, the cokernel
f,x

of Hp(Q% x) [ Hp('Q; X) is always finite-dimensional, which,
3>

b

in view of Theorem A, shows that each Hp('Qg X) is finitely
>

generated Og g-module. Thus (1.2.3), (1.2.4) and Lemma 1.1.2
3

imply

Lemma 1.2.3. For all p, HP((141*Q.) ) are finitely
generated Ob’o—modules. |

Let G/f denote for short the quotient sheaf G/fG for an
Ok—Module G, and let us compute 1*Qp/f . First note there are
isomorphisms 1*1*9?/fA§ Q?/§ 2 Qg (p<n) by (1.2.2). Next
consider the exact sequence 0 ——> 1*1*9? L 1*1*9? ——

1 1*QY-—~9 Rll %l *Ql where the last tern is isomorphic to

f E]
R11*1*Q§ 1 since 1*Qf 1*Q§+1 . But this last space is,

ne;

according to Lemma 1.1.1, the dual of Rn—ll*x*ﬂg =3€?2(Q§)

which is zero because (X,x) satisfies (L). We have thus proved

0 1 a n-1
%
(1.2.6) 141 Qf/f v {0 — Qy 1N oy — —> Qy
d %ol
— 141¥Q, —> 0}

Y

This gives now rise to the exact sequence of complexes

- 10 -



v . 1, ne
0 — "QY ———9-1*1*Qf/f ———>5%?Y(QY) —> 0

where the last term should be considéred to be a complex concen-
trated in the degree n placé. From this sequence and Lemma

1.2.2 it follows that

(1.2.7) HP ((141%Q,/F) ) = 0 0<p<n,

and that the sequence

(1.2.8) 0 —> HN("ay ) —> HW(1p1*0./0) ) —> FPLad) — o
> x y

is exact.

Now consider the long exact sequencé

s BP((1g1%0)) ) I B (Grgr%a)) ) —> B ((1n*an/0) )—> - -

By (1.2.7), Lemma 1.2.3 and Nakayama's lemma, we have that

HP((141%0, ), ) =0 for p<n, H'((141%02./8) JeH ((151%00) )/7,

and that Hn((I*I*Q;)X) is torsion free O ,-moudle. Consider
, i
: . ’ 1,01
the exact sequence O0— 141*Q./f—> 1*1*QY——+aﬂ?y(QY )—> 0
where the last complex should be considered to concentrate in the
degree (n-1) place. (Note that (Y,y) also satisfies (L)
according to Lemma 1.2.1.) By the long exact sequence associated

with this, we obtain the exact sequence
. bl ‘ n-1 %0° 1 n-1
(1.2.9)" 0— E'((141%0y) )—> H @y

— Hn((1*1*Q£)X)/f é—e-Hn((1*1*Q§)y)———+ 0 .

- 11 -
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From the ecaxt sequence 0 —> "QY —_—> 1*1*9 Y,y ——~92ﬁ? (Q%) —>

0 it follows also the exact sequence

(1.2.10) 0 —s Hn“l((x*x*szgf)y) — Hn“l(;?f;(sz;{)) —> (g )
— Hn((t*l*ﬂé)y) — Hn(;gg(ﬂé))~——é 0

To sum up all proved so far, we obtain

Theorem 1.2.1. Let (X,x), f, (Y,y), 'Q;, "Qé be as above

- and assume that (X,x) satisfies the condition (L). Then

Hp('sz ) =0=HP ((1*1*9 )y) (p<n=dim Y), and H™((1,1% )x) is

tors1on free C O—module, moreover the exact sequences (1.2.5),
]

(1.2.9), (1.2.10) are valid.

Remark. The exact sequence (1.2.10) is always valid if
(Y,y) satisfies the condition (L), even in case there is not an

(X,x) of which (Y,y) is a hypersurfacesection.

Remark. By Theorem A and (1.2.5), the Milnor number “u  of
(Y,y) is equal to the rank of Hn((1*1*né)x) over Ob o Provided
4 3>

n=dim Y22. Since this module is torsion free, it follows from (1.2.9)
= A1 1,on-1 n *0° - n-1 %20°
I dmjl?y(ny )+ dim H'N((141%0) ) - dim B L( (140 2g))

‘ 1,.n-1 2,.,n-1 2, n-1
Further, in case n23, 0 — 34? 2y™") — 3?? (") -—4§%;(9f )

— 54? 1) —> 0 1is exact, so dimJ/f>l Qn 1) may be replaced

dim Rl 1*Q§ 1 - Thus the formula (&) of [11] is valid for any

isolated singularity which is a complete intersection.

- 12 -
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Remark. Let (X,x), (Y,y) be as in Theorem 2.2.1 and assume

X 1s smooth. 1In this case there are isomorphisms which are, in

a way, canonical:

ne -

H oy o Hogep o 2 PP D)

e

0, . n 1, .n-1 ‘ n-1,.1
@ v i@y ™ RGOl

Furtheremore the following conditions are equivalent: (i).Hn(Q% y)
3
- . n "t . = N PRy n"'l * ° ) = Y n * ° .
0 (i1) H( QY,y) 0:¢(1i1) dim H ™ ~((141 QY)y) dimH "( (141 QY)y),
according to Saito [13] these are equivalent to the quasi-

“homogenith of (Y,y).

- 13 -



Part II. (%-agctions over isolated singularity

o
p

Gysin seguence. Let C* = C\0. A C¥*-action over

an isolated singularity (X,x) is a family T(ec), ce;C*_ of analytic
homemorphisms of X onto itself satisfying that T(e)x = x,
T(c)T(c') = T(ce') (c, c'e C*)', and that T : XxC¥3 (z,c)>T(e)lzeX
is analytic. Throughout Part II we will requir the following to

be satisfied:

Assumption The constants are the only invariant elements

-of O% . x under the action T. -

3

The meaning of this is the following: Let & be the generating
. vector field of.this action and LE its Lie derivative. Then the
assumption implies that LE induces automcrphsimé qn Qg,x for
p > 0. (More precisely, if O0#w e Qg,x (p > 0)~ and if T(c)*w
= oMy (c eC¥), then such an m 1is either always positive, or
always negative. Note that in the positive case T can be extended
~to C-action.) If we denote the interior multiplication of E'

by 1i(E), then L, = i(£)d + di(£). From this identity we obtain
3 ' _

Lemma 2.1.1. Under the above assumption, the complexes Qi,

v;%?g(ﬂi), "Qy are all acyclic, and the sequence -

cee > g L(E) gp-1 E) ... i(E) 2 2, (1),C—0

is exact, where 1 denotes the inclusion x'g,X, and o the

1
average map Qg,xiaf *'joT(exp(2nie))*f dg € ¢ = (1x)*¢x.

- 14 -
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Consider the two spectral sequences Ei’q(x,x) 'Ei’q(x,x)
whose El-terms are Rq1X1*(Q§),%?2+1(Q§) respectively, where
V: X\x<yX. The limit of EP°3(X,x) is RP*%i,.c, while that
of 'E?’?(X,x) is ;ggfq+l(c). It is evident that the natural maps
Eg’q(x;x) > 'E§5q(X,x5 are isomorphisms when q > 0. Since
Hp("ﬂ}.{) =0 (p >.0) by Lemma 2.1.1, it holds also Eg’o(x,x)

> 'Eg’o(x,x) by the exact sequence (1.2.10) and the remark following
Theorem 1.2.1 provided (X,x) satisfies the condition (L).

Corollary 2.1.1. If (X,x) admits a C¥-action and if it

satisfies the condition (L), then the natural maps Eg’q(x,x)éa

'Eg’q(x,x) are isomorphisms except for the case p = q = 0.

If we set 0F = 1(8)2F™1 (p > 0) and 97 = (1,),C, then

we have the short exact sequences 0 - Qg -> Q§ - Qg-l'+ 0 (p 2 0).

From these,'we obtain the long exact;seguences}of Gysin type

0 Ry FpAaB) A2 (RN P
(2.1.1) 5 . . 5 |
| see AR FHAaR) Apr@E - ee
These play 3ey rble in the study of this sectioﬁ. ‘Before proceeding,
we have to give a more explicit deScribtion to the conﬁecting_ |
homomorphism 6. Since 1(5) is an anti—dérivation, ‘ﬂ; = Zﬂg
is the sheaf of graded algebra (by exterior multiplication), so

A= AP>%, yhere aFP°? = Rq1*1*ﬂg, is a bigraded algebra by the

p,a
cup-multiplication. Thus 1€ A%°C, s1eal?l. we set ch(g) = 6-1

and call it the Chern class of £ (or of the action T). Note that

= p,q P>,a ~/patl, oDy i -~
B Zp,qB , where B | 9%& (Qg)’ is a bigraded A-module such

- 15' -



103
that the natural map A » B 1is a A-homomorphism. Now it is easy

to prove

The connecting homomorphism &: gP>q . Bp+l,q+l

Lemma

fino
=
n

is nothing but the multiplication of ch(g) (up to sign).

Here we shall give a precise formulation of the Serre duality
given in Lemma 1.1.1. Regard the canonical generator <y of

R2n-l 2n_li

142 (¥ 2Z) as an element of R «C and define €' :

Rn—ll*l*gg —C by e€'(a)y = €(a) where n = dim X, € is the

2n-1

- edgehomomorphism of Rn—ll*l*Q; onto R 1,C. Let o e Rq1*1*9£

B e RV 4 1#g0"P  ang set
<a,B> = g'(auB)

where y denote the cup-multiplication. This pairing gives‘the'

‘duality stated in Lemma 1.1.2.

Now note 1*92 = 0, so that 1*92 ¥ 1*92_1. Thus we obtain
the isomorphism n:A(n—l)’(n—l) = Rn—ll*l*ﬂg_l ¥ Rn_ll*l*ﬂg. We

see then that the'value e'on(ch(g)n’l) is not zero. For, using
a suitable embedding of X into its JZariski tangent at x, we
can construct a real valued function ¢ on X\x such that 139y
is positive definite, Lg(w) = y=1I, and that w—l(c) is compact

for_ c €R. It can be shown then:

eton(en(e)™™h) = AT ) sy (emn) T,
v “(e) : :
where the right hand side is obviously not zero. In view of Lemma

2.1.2, this fact proves
- 16 -
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Lemma 2.1.3. The iterated connecting homomorphism

% . ~pPP,op-1, p+L, pHi-ly . 3 .
$ .aﬁ?x(ﬂg ) +Zﬂ?x (QE ) is not zero if p+g < dim X.

From now on we assume that (X,x) satisfies the condition (L).
Then FI(oB) = 0 if p+q<n = dim X, and further, by Lemma 1.1.1,

Eﬁ?%(@%) =0 if p+g>n+l, g<n. 1In view of the sequence (2.1.1),
these imply

Lemma 2.1.4. The connecting homomorphism § :Eﬁ?g(gg_l) >

3%?§+1(Q§) is (1) 4isomorphism in case p+q <n-1 or in case

p+g>n+l, q<n-1, (ii) injective in case p+q = n-1, (iii) surjective

o

in case p+q = n+l, q<n-1.

Trivially Uaoly =0 1f q # 0. We know also APt 1)
X g X g

53%?3(92) =0 for 2 <q <n-1. Lemma 2.1.4, combined with these,

proves

Lemma 2.1.5. %2(9@) = 0 if p+qa<n, q-p # -1 or if p+a>n,

q<p+l. Let p = [n/2]-1, v = -[-n/2]. Then there are isomorphisms

(2.1.2) ¢ 5%02(9;1) 53{0]}-{(92) = ... = j@;ﬂ(n‘g‘)

1.3 Ryran 2Pyt 5 e Pl

Observe that the iterated connecting homomorphism ,

v=u . utl, p . v+l, v . . . T utl, juy o
8 .Eﬂex (Qg) +3€?x (Qg) is injective since di@ﬁ?x (Qg) 1

by (2.1.2) and since this &Y™ 1is not zero by Lemma 2.1.3. We

shall discuss the consequence from this fact and the vanishing of

_17__



105
}f?{(ﬂpg) in Lemma 2.1.5. For this purpose, we separate the case
n = 2m and the case n = 2m+l. a) case n = 2m. By the first
satement of Lemma 2.1.5 and the sequence (2.1.1l) we obtain iso-
morphisms %’%(Qﬁ“‘l) 3%3(92) in case p+q = n, 0 < g <m and
%i(ﬂg) X#g(s}?)‘ in case p+q = n, 0 < g < m. Since fé)g(ﬂg_l)
Q%iﬁl(ﬂg) is injective as observed above, we have also by (2.1.1)
the isomorphism %ﬁ(ffg) :3@;2(01;). Combining these, we obtain
isomorphism ZP (B =#PI(a)) induced by 1(g): R > b rfor
p,ci such that p+q = n, 0 < g < m. But the restriction 0 < q < m
can be replaced by 0 < g < n accordihg to the éerre duality of
Lemma 1.1.1. b) Case n = 2m + 1. The isomorphisms
3{3(954'1) 2 }eg(ﬂ}%), for p,q such that. p+q = n, O<g<mtl,
can immedialely be obtained as in' the previous case. To prove
5[(’9?4'1(5’2?'1) 3#2"‘1({%‘;),. consider the following two exact sequences

which are some parts of (2.1.1)

0 +:7,?r}r{1+1(91)r(1+1) +J£r}r{1+l(ﬂx2) §#1;+2(Qr§+l)
I
o PR S AT,

. 2 ~/pm, om-1 m+2 , jm+1 e
Since 6 '?lLDx(Qg ) +3’(€X (Qg ) 1is injective as was observed
~fpm+l, m+l ~fpm+l, m m+l, my - .
above, the composed map J[Ex (™) +J€x (Qg) ”#x (QX) is
also injective. But by the duality of Lemma 1.1.1 FPT (a1,
~/pm+l , m . . ~fpm+l, m+1
d%x (QX) héve the same dimension. Thus this map ‘/Ex (QX ) -~
%1;+1(Qr}r(1‘) is also isomorphism. Again by the Serre duality we have

Q obPtly ¥ AP = : 5
S{BX(QX ) —>31€X(QX) for p+q = n, 0 < q < n.

To sum up,
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Theorem 2.1.1. Assume that (X,x) satisfies the condition

(L). Then the interior multiplication i(i):Q§+l -> Q§ induces the

isomorphism 3%?3(9§+1) > yfi(ﬂﬁ) for 0 < p < dim X where

q = dim X - p. Further FPU(9}) = 0 if p+q # dim X, a-p # 1,
. V- +1,.v +1 : . : .
0 <gq < dim X, and § ugﬁ?i (QE) > ; (Qz) is isomorphic,

where u,v are as in Lemma 2.1.5.

Finally we remark this theorem prdvides us a clear inzgight
into the structure of Eg?q(X,x). Because of the condition (L)
we have ER*%(X,x) = 0 if p+q # n-1, p+q # n, p+q # 0, ptq # 2n-1
where n = dim X. (For the vanishing of Eg’q(X,x) when q = 0
or q = n-1, see Lemma 1.1.3 and the remark following Lemmé 1.1.1.)
Obviously E%’O(X,x) ¢ Eg’n—l(x,x) ¥ ¢. If p+q = n-1, Corollary
2.1.1 implies then, E5°3(X,x) 2 Ker(jfgfl(szg’() ij§+l(a§+l)),
ES*Lo9(X,x) T cor( AT (a) S (R*)).  In view of the identity

Lg = i(g)d+di(&), Theorem 2.1.1 now proves

e

(2.1.4) EB9(X,x) % Ker(PITH (D) Eér:/’é"g”(flﬁ))
(2.1.5) B 9(x,x) & cox @I (R iﬁfi*l(ﬂﬁﬂ))

. .
(< Ker(}lf?:l(fﬁ;ﬂ) _€¢5€?§+1($§+1))).

where p+q = n-1l. Note also these two groups are isomorphic under

the map induced by i(E):Q§+l > Q§.

.- 19 -
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é.;. Characteristic functions. In this section we also

suppose that (X,x), T are as in Section 2.1, that (X,x)
'satisfies the condition (L), and that the action T fulfills
the assumption mentioned at the beginning of Section 2.1. If V
is a certain‘cohomology group attached to (X,x), we denote by
T(c)*|V the automorphism of V induced bj the map T(c).

(But, in case it 1is _obviously understbodvfrom the context what
this V 1is, we simply write T(c)¥* for T(c)¥*|V.) According

to this convention'we set
xg (£) = Trace (T(t)*|FIay™))

where 0<gq<n = dim X. That 1s, -xﬁ(t), 02q<n are the characters
of the representation of C€¥ over zﬂ?z(ﬂg"q). When regarded as
functions in ¢, they,are'rétional and havé poles only at t = 0.
In view of the duality of Lemma 1.1.1, we have

S
g () = xF*eth 2<q<n-1,

so it will be reasonable to set

Xg (8) = xx (671, xxt (6) = x§ 7D,

We set now

+
xx(s,8) = Igly G (6) 89

and call it the characteristic function of the action T.
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Note the isomorphism j@g(g§+1) __’ujfg(g}lz) (p+q = n, 0<g<n)

of Theorem 2.1.1 is C¥-equivariant. Thus
’ -q+
x%(t) = Trace (T(t)*l%i(ﬂ%? 13)  o0<q<n.
This identity will be frequently used in the following discussion.

Now we shall study how the characteristic function changes

when one makes a hypersurfacesection which is compatible with

C*-action. Let f be analytic function on X such that df #

0 for =zeX\x, T(c)*f = cdf (ceC*) where d 1is a positive
integer. (The assumption d>0 implies that, if 0#mezﬂ§ (p>0)
and if T(c)*w= cmw, then m>0, as was remarked at the beginning
of Section 2.1. Thus, in particular, xg(t) is a polynomial in
t without constant tefm. This kind of remarks will often be
applied below.) As in Part I, we denote by (Y,y) the hyper-
surfacesection defined by f; that is, Y = f-l(o), y=x. Since

T induces naturally a C¥-action on (Y,y), we can define the
characters xg(t), x%(t),..., xﬁ(t), and the charaéteristic
function XY(s,t) of the induced.action, which we shall denote
also by T. The sheaves QP

F being defined as in Part I, we set

further

X3(t) = Trace (T(t)*|#P2(e7™1)  o0zq<n

Xp(t)

+ -— -
xaree) = £7h0 ™.
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Note that, just as we deduced 5%?3(9?) = 0 (pt+g<n) from

3%?3(95) = 0 (p*g<n) in the proof of Lemma 1.1.5, so we can

deduce %3(9?) = 0 (p+g>n; g<n) f‘rom%;(ﬂi) = 0 (p+g>n+l, g<n).
Thus, from the short exact sequence 0 - Q?‘q*l ag ﬂ;‘q - Q?‘q +~ 0,
it follows the commutative diagram with exact rows:

o U — TS I ) ey
T(c)* ' T(c)*l- ' cd T(c)*l T(c)*l

-

0 — T ———— * —— # 5 # > 0

whei’e the bottom row is identical with the top row. .From this

and the Serre duality we obtain for 0<a<n

(2.2.1) e0%F o) - @) = xF o) -y Qo).

Here we have used the isomorphism in Theorem 2.1.1 of caurse.
Using the exact sequence 0 - ﬂ?—q > 5 Q9 4 g5 gpg

hig Y
reasoning similarly, we obtain also

d q = ,3-1 Qrey
(2-2-2) (t -1) Xf(t) XY (t) - Xy(t)
for 0<q<n. In view of the identities xg”(t) = t“dxg.(t"l),
X (e) = xg(e™h), xBe) = x0(t™1), we can veformulate (2.2.1),

(2.2.2) as follows

(2:2.1)1 $%xpls,0) = 3Q(6)) = slxels,6) - 8T £790¢p"1y)
= O(s58) = xp(e)) = s(xy(s,t) - s™,0¢e71y)

- 22 -
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(2.2.2)" (£9-1) (xo(s,8) - x2(8) = 8™ £740c™hy)

= s(xyg(s,8) = eI~ (xy(s,8) = x9(£))

where we have set  g.(s,t) = zg:é X%(t) s3. From these,

we can easily obtain

Theorem 2.2.1 The notation and the assumption being

as above, it holds

(2.2.3)  xp(6) = xqe) + ()

(2.2.4) s(xg(s,>8) = sTHIE™)) - t%(xg(s,t) = X))

= (td—l)(xx(s,t) - x%(t) - sn+lxg(t’l)).

Proof. Setting s=1 in (2.2.1)', (2.2.2)' we have
0 _ _ _
xo(6) = x3) = x3e) = 2™ - 53e™h - S,

But xg(t), xg(t) are polynomials without constant term just as
xg(t) is a polynomial without constant term. . Thus (2.2.3) is
proved. The formula (2.2.4) follows easily from (2.2.1)', (2.2.2)"
and (2.2.3).

Since xg(t) = xx(o,t), by (2.2.4) one can know XY(Sat),
when he knows xg(t), xx(s,t); further to know xg(t) it suffices
to know Xg(t) in view of (2.2.3). This will be of particular

importance when one wants to compute the characteristic functions
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for quasi—hbmogeneous complete intersections.

Now we shall study séme intereéting consequences from Theorem
2.2.1. Let ¢ be a d-th root of unity. Setting t = ¢ in
(2.2.4), we obtain -

Xy (5,2) = O9ee) - ™13y -8

Since the left hand side is a polynomial in s, we have

(2.2.5)  xg(z) = g(e) = -+ = @0 =% (=),

This means that thevautomorphisms of QQ?g(Qg'q';), 0<q<n-1

induced by <P =T(exp(2wi/d)) have all the same characteristic
polynomial. On the other haﬁd, the exact sequence (1.2.9)

(with n replaced by. n-1) shows that ¢4 induces the automorphisms
having the same characteristic polynomial over 34?1 Qn_2) and

" ((rg1®Q ) <)/f. Since . HP ((1*1*9 ) ) is a torsion free (}w’o—
module and since the cokernels of the inclusions Hn(Q;’x) <
Hn(né’x)caff%(l*t*ﬂé)x) are all finite-dimensional, this polynomial
coincides with the char@cteristic polynomial of the monodromy of

the Milnor fibering given in Thébrem A of §1.1. Thus we have proved

ggggg_gﬁgﬁl, The characteristic polynomials of the auto-

morphisms of&ﬁ?q(nn'q'l) (O<q<n-1) induced bx T(exp(2wi/d))

are identical with that of the monodromx of the Milnor fibering

defined by f. In particular

(2.2.6) aim BH(x\Y, €) (=aim E(X\Y,C))
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e

m=0 xg (exp(2mim/d)).

The last formula can be proved by the Wang sequence applied
to the fibering. (See Milnor [10].)
' We»cén now prove the degeneracy of Eg’q(Y,y) Eg’q(x,x).
By Lemma 1.1.1 together with the remark following that and by

(2.1.4), (2.1.5), the sums dim Eg’q(x,x), ¥

2p+q=n—1 p+tg=n-2
dim Eg’q(Y,y) are equal to the constant terms xx(l,t) - '
xg(t) = XTL(t), Xy (1,8) - Xg(t) - X3(t) 1in their laurent
expansions at t=0 respectively. Set s=1 1in (2.2.4) and

observe the resulting identity:
xg(t) + (£9/1-8%) X0c&™h)
o & ' -1
= (xg(L,8) xR 0)-xR(E ™) - (xg (1,8)-x9(£)-xg(s™H) ).

Since xg(t) is a polynomial without constant term, we obtain

by comparing the constant terms of both sides

dim Eg’q(x,X) + z

p+q=n-2 dim Eg?q(Y,y)

Yp+qm-1
=a~1 IS0 xglexp(2mi m/d))
= dim Hn‘i(xxy,c),
From this it foilows the inequality dim Hn—l(X\x, c) +

dim Hn_z(Y\y, €) < dim Hn"l(X\Y,,C). But the opposite inequality

is obvious from the standard exact sequence
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(2.2.7) 0 ~» Hn‘l(x\x, ¢) » B H(x\y, ¢) » HY?(v\vy, ¢)

> H"(x\x, €) » H(X\Y, €) » #H" 1(v\y, €¢) + 0.

Thus dim ED°%(X,x) = dim L (x\x, ¢©),

2p+q=n~l

zp+q=n—2 dim Eg’q(Y,y) = dim Hn_2(Y\y, €). These prove

Theorem 2.2.1. The E,-terms E5’%(X,x), Eg5q(Y,y)

are degnerate. The exact sequence (2.2.7) splits into two exact

Seguencesﬁ'
o » B (x\x, €) » B (xvy, €) » B2 (Y\y, €) > 0

0 » HMX\x, €) » HNX\Y, ¢) ~ #"" Y (v\y, €) » 0
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2.3. Explicit calculation of characteristic function.

In this section we shall briefly discuss the isolated
singularities admitting C¥-action and being complete intér—
sections, and compute some of the characteristic functions
defined for them. First we shall fix a C¥-action T on

CN:(zl,z2,a--,z Let Gy Gpsttc, @ be positive integers

N)' N
and set for z = (zl,z2,---,zN) and ceC¥

a a

1
T(e)z = (¢ "2y, ¢ “z5,000, ¢ zN).

A polynomial f in 2z 1is said to be quasi-homogeneous (with
respect to T) if T(c)¥*f = cdf (ce C¥) for some integer
d > 0. The integer d 15 called the quasi-degree of f.

If sufficiently general (fl,f -.,fr) (r £ N) are given,

22

then X = {z ec";r (2)=0, 1gizr} 1is the complete

(fl’f2" . .,fr)
intersection of the hypersurfaces fi(z) = 0 and has singu-

larity at most at 2z = 0. More precisely, given a system
§ = (di,dg,--°,dr), we define inductively the set V(§) of

r-tupleS of quasi-homogeneous polynomials (fl,f "’fr) of

22"

«5 d respectively, by the require-

quasi-degree dl’-d r

.

23

ment that (fl,f --,fr)GEV(S) if and only if (fz""’fr)

22"

é'V(d2,---,dr) and X is a hypersurfacesection

(fl’fZ""’fr) |
CE) by fl. Ordering the coefficients of
plgigr in gome\fixed manner, we can regard V(§) as
a Zariskl open subset of a complex euclidean space. Now we
shall also fix 6 = (di’d2’°"’dr) and let 1t denote a
general element of V(&8). Thus XT denotes the set

if T = (fl,f "’fr)' By Lemma 1.2.1

X .
(flafZ”"’fr) 2°
each (XT, 0) satisfies the condition (L). By some
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1) it can be shown that the Milnor number

elementary argument,

of (XT, 0) 1s a constant ﬁ(6). We thus have by Lemma 2.2.1
atm #2(2% ) = u(s)
0 XT ’

where n = N -r. Setting t =1 in (2.2.3) we obtain

. fr)e'V(G) and set
n+l

Lemma 2.3.1. Let =1 = (f;,f,,"
n+l

= v _ ~ont+1l r
n = N-r. Then the dimension of Qf 0 =9 /(}::L of49

+Zl ldfiAQ ) does not depend on T, where P is the stalk

QpN over 0 of the p-forms on cV.

Now we can easily prove the stability of the characteristic
function XX (s,t) (defined for the given action T). For
this purpose we set for T = (fl,fz,---,fr)€=V(6)

= n+l r n
zi of;0 + Zi=ldfi/\9

and we set further for all integers m

cmw(c e C*)}

fl

Q(m) =‘{we9n+l; T(c)*y

Q. (m) = {weQ H T(c)*w

Mu(cec*®)}.

Q(m), QT(m) are all finite~dimensional and QT(m) depends
continuously on 1. Thus dim(ﬂ(m)/QT(m)) is upper semi-

continuous. But blm ~d1m(g(m)/QT(m)} is éonstant by Lemma
2.3.1. Thué eaéh dim(Q(m)/QT(m)) itself 1is constant. In

other words, the charaéter of C* over Q? 1b does not

1’
depend on 1. In view of (2.2.3) and (2.2.4) this proves

through the induction on r,

1) This is supplied in the last haff of the appendlx.
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Lemma 2.3.2. The characteristic function of (XT, 0)

with respect to the action T does not depend on special

choice of T e€V(S§).

Here we shall denote this characteristic function by
xa(s,t) though 1t is determined not only by & but also by
(al,az,-~-,aN). Let us now determine xa(s,t) under the

following assumption:

Assumption. Each di is divisible by g Gps®t®y oy

This restriction means that there is in the family (XT,O), T
€ V(§) a complete intersection of the Brieskorn varieties:
~ Let (aij) be a given f(r, N)-matrix " whose all r-minors

are not zero. Set

v a,/a,
0 = 3 = 1,2,
fi(z), zjaijzj i=1,2, ,T.
: 0 _ 0 0 0y . < :
Then certainly 7t = (fl, f2,---,fr)e V(8). According to the

formulas (2.2.3) and (2.2.4), in order to compute xs(s,t)
it is sufficient to determine the character of C* over the

space

0

ntl _ ,sn+l, ¢r O,nt+l r n
a Q /(§n=2fjn + Zj;ldfjj\g R
£150 A

so we have first to make.the structure of this space as clear

1 the analytic

0 0 0
19 df2,---3 dfi are nqt

as possible. For this purpose we denote by F

set where the values of the forms df

linearly independent. (That 1s, the Set where the coordinate
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functions of the form dfg'A"' Adfg (With respect to an
arbitrary trivialization of QiN) vanish. This is obviously
the union of the (i—l)-dimensgonal coordinate linear

N

varieties of C€'.) Set now

ar9 Qp =1

p = oP ,vi
Qv (1) Q‘I:N/Z‘j =195

" Then Qp(i) is locally free outside F Note that F.cC F

i’ 1="2
(< "‘CF‘ and Fi\Fi 1 is non-singular. Thus we have
Jeg \F (Qp(i 1) N ) =0 for gq # N-i+l. 1In particular,
i i~ [} \Fi 1 : :

the.nétural map JCFi (Qp(l 1)) -» J(’_q (@P(1-1)) is isomorphic
for q < N-i+l. Using this fact we shall prove by the induc-
tion on i that ch (Qp(,i)) = 0 when p+q < N-i+l. Suppose
| JC% (@P(i-1)) = o %hen p+q < N-i+2. Then tﬁe isomorphism
pro%gé above shows JC% (Qp(i~i)) = 0 1in case p+q < N-i+l.
Note there is a naturaliexact sequehce Qp_l(i)'+ QP(1-1) -
P(i) » 0 where the first map is mbnomorphic outside Fi'
Hence we obtain the long exact sequence

0 > Ker(@P"L(1) » @P(1-1)) » #Q (@PL(1y)
: ' : i
> ;egi<np<1-1>> > Jegi(ﬂp(i)) - ;e%i(gp‘l(i)) P

Thus we obtain monomorphisms JCq‘(Qp(i)) C—%Kq+1 QP~ 1(1))'
when p+q < N-i. Combining these, we have completed the

0
af

induction. 1In particualr the map 0 (i-1)

is always monomorphic, and thus we obtain monomorphism
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+ -

+
the image of which obviously coincides with that of Q" 1

dfl,\ dfr—l . le/\ .. ',\dZN NA
—> @, Through the isomorphism © N Q
C ,0
n+l r-1
we obtain the isomorphism @ /(X dfj,\Q ) ¥ A where A
(d /o

is the ideal of G ~generated by the elements I J
c¥,0 Jer’y

where I ranges over all sets consisting of r - 1 elements

-1)

of {1,2,:++,N}. We thus obtain finally the isomorphism

n: nglom IVAS% _ngA +A")

-1)

: » (d /aj
where A' 1s the ideal of 0 generated by I

,O ' jed?j
with J ranging over all sets of r-elements of {1,2,---,N}.
Although n 1is not C*—equivariant there is the relation,
neT(c)* = T (c)%on whlch, in view of (2.2.3), implies that
Xg(0,t) + XG'(O t), where &' = (a,,d SPRRRNL o) is equal to
the character of C#¥ over A/(Zj_,2 gA + A') times (n-Z"‘ "ZJ‘).
But this last group is explicit enough to accomplish the
computation of the character over it. The result is, however,
,'rather complicated, and far its formulation we still need
the following notation: Let u = (ul,uz,'~-,uN) be inde-
terminates and define inductively the.pol&nomials Pi(u;zl,

22,---,21), with rational functions in U as coefficients,

by the identitiles:

P (u Z ) = Hl l(z ui)/ui
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. 41
+ .

Pl 1(u;Zl’22’.no,Zi+l)

i i
) zlPl(u;ZZ,z3,---,zi+1)-z2P (u;zl,z3,---,zi+l)

ZA—Z

271

Theorem 2.3.1. The notation being as above, it holds

a
Xg(s,t) = It lo_(6)-s"*2q

t l-s

HETDY

d.
(1-t )

J
s _
+ Szr-l i=1

. (t71y}
i=1 d
j+i,.71
Hi=l(t -s)

d
J+Ln+]
(Q,_;(t)-t 1" g

where Q,(t), 1 <1 < r are given by

d d d

o 1

Q (t) = pl(g 11,006 o1 ¢ 2

-1’.‘..,t -l)o
Remark. The argument used to obtain the isomorphism n
is essentially due to Greuel [4]. See the proof of "De

Rham Lemma" which is formulated in a much more general way.

Let us now discuss the case ) = 0y = ee. = dY =1, In
this case the divisibility assumption given above is trivially
satisfied and the quasi-homogeneity means the usual homogeneity,
s0 each T = (fl’fz""’f}J eV(S). defines the algebraic
manifold VT which is the complete interection of hyper-
surfaces fi = 0, regarding (zi,z2,.--,zN) as the homogeneous
coordinates of PN-I(Q). X, 1s then the cone C(VT). over
.VT; in other words, X%\O 1s identified with LT milnus the

zero section where L 1is the line bundle over VT induced

by the hyperplanesection of PN_l(C). Thus there is the
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canonical projection ﬂ:X{\O > VT. Evidently we have natural

isomorphism
xqP L P
GX\O @ QVT 95'){\0'

(The sheaves QE are to be defined as in'Section 2.1.) Since

the fiber of W:XT\O - VT is Stein, it follows

ne

R%1, 1*qP

q p
£ H*(X\O, QE)

e

ey HLV_, aP@¥))

where 1:XT\0 u»XT and the last sum is infinite sum converg-
ing with respect to some suitable topology when q = 0 or
q = n-1. (Note the sum is finite if 0 < q < n-1 according

to the vanishing theorem of Kodaira.) Using the Gysin.sequence
(2.1.1) and Theorem 2.1.1, we have for 0 < q < n-1

qt+l = _ k .. q P,k
XX% (t) aq’n_q_l + {kezt dim H(V_,Q7(L7)).

Moreover, by the exact sequence Qg > '1*1*{22 > o é(ng) + 0

and by the fact that, 1f 0w €@f | and if T(c)¥u = Ko (ceer),
. L)
then k > p+l (Recall Qg = i(5)9§+1), we can show that
1

xg (8) = Dpent™ atm B0V @™y
T .

is a polynomial divisible by tn.‘ We can as well prove the
vanishings HEY(V_,eP(L¥)) = 0 (p*q # n-1, k # 0) and

#3(v_, 2°) = 0 (p+q #n-1, p # @) by (2.1.1) and Theorem

2.1.1. Now let the polynomials Ri(zl,zz,--f,zi) 1=1,2,---
be defined inductively by

Rl(zl) = (zl—l)n+r
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i+l
R (Z1)Z2"°"Zi+l)

i
le (22,z3,

s o0

...,zi+1)

i
’Zi+l) - 22R (zl,z

Z2',-'Z:L

3’

Then it follows from Theorem 2.3.1

Corollary 2.3.1. Let V be the complete intersection
) n+r—1(c)

of r-hypersurfaces of degree d;, d;, -+, d, in P

and L the line bundle over V 1induced by the hyperplane

section. Then Hq(V,Qp(Lk)) =0 if p+q # nfl, k #0 or

if p+q # n-1, p # q. Further it holds the congruence

0 1 .

n-2_q+l,_ k q n-q-1,.k
*lga18" (8 nige1tlkegt dim HO(V,@TTETR(LO))
a a a
ot r o pelg g T
=a R S A
e i) (1—tdi) dsy4q d,
r=1 “i=1 r-j,t 9711 t F-1
+ SEJ=1 j+1 di R ( t-1 2%, 1 )
Iy_1(t ~-8)
mod Sn

where the right hand should be interpreted as power series in

8 whose coefficients are rational functions in t. More
' k

over xé(vj(t)'— Zk<nt dim HO(V,Qn'l(Lk)) is a polynomial

divisible by t".

This cordllary, combined with Hirzebruch [8], determines

all of the dimensions of HQ(V;Qp(Lk)).
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Appendix

The purpose of this appendix is to prove the duality
stated in Lemma 1.1.1 and the statement mentioned’at the top
of p.28. Let M be a complex manifold of dimension n, V
_an analytic vector bundle over M and V¥ its dual. We
‘denote by A(p’q)(V) A(l”esp-- Qép"”(v*)) the space of V-
valued C° (p,q)~forms on M (resp. the space of V-
valued distribution (p,a)-forms on M with compact support).
Between A(p’q)(V) and Egén'p’n"Q)(v*) there is a natural
pairing which, through the Dolbeault isomorphism, giveé rise

to a pairing
HE(M,0P (V) x BYTO,@7TP(VE)) 3 (0,8) > <a,B> €€

where we have denoted by QS(V), Qs(V*) the sheaves of
analytic s-forms on X with values in V, V¥ respectively.
The problem is to examine whether this < , > define the

actual duality or not. Our object is the following

‘Theorem A.1l. Assume that there is a smooth proper map

¥ of M onto an open interval (a,b) (possibly a = -=

or b = =) such that 4% vanishes nowhere in M and that

the complex Hessian 185? is positive definite everywhere.

Then the pairing < , > defines the duality between ‘Hq(M,

@°(v)) and Hy 3(M,@"P(V*)) for any q g n-2.

Proof, Step I. By Andreotti-Grauert [1], HY(M,oP(V))

. k)
is finite dimensional for 0 < g < n-1l, so A(p’Q)(V) >

A(p,q+1)(v) has closed image for q < n-2. (This is also
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true gq > n-2 by Malgrange, Bull. Soc. Math. France 85 (1957),
p.236.) Hence, by Serre [14], the pairing < , > defines

the duality between HI(M,2°(V)) ana H) %(M,@"7P(V¥)) for
g < n-3. Unfortunately the general theory of [14] seems to

be not adequate to prove the duality for q = n-2. But we

can at least prove the folloWing statement: It holds always

the inequality dim H™ 2(M,0P(V)) < dim B2 (M,@"7P(V*)) where

the equality holds if and only if the duality for q = n-2

holds. For, let we AP P21 (y) pe a  F-closed form such
that <w,y> = 0 for every J-closed Y& @én‘p=2)(v*). Then,
by Hahn-Banach Theorem, w “lies in the closure of the image
ot aPsn3)(y) 3 4(Ps1-2)(yy Byt this image 1s certainely
closed as indicated above. This shows that <a s8> = 0 for
all geH2(M,@""P(V#)) implies o = 0. We have thus proved
-the'rgquired assertion.. |

wggg IT. It remains to prove the opposite inequality
aim 52 (m, np(V)) > dim H (M,@""P(V#)). To show this, it
suffices to prove the 1somorphisms Hq(M f?) Q+1(M,1§),
0 < q<n-1 for any locally free @M-Module 4. For,
if these 1somorphisms are true, then g2 (M, Qp(v))

HEL (M, 0P (V)), H2(M,e"P(ve)) ¥ Bl(m,@"P(V4)). Therefore,
1t suffices to prove dim H (M,.sz“’p(;v*r)) < dim HITH(M,@P (V).
But this 1s Jjust the inequality"bbtained'in Step'i in case
n 5»3 "when p, V are replaced by n-p, V¥, In case n > b,
1 < n-3, so0, again‘by what was proved in Stép I, we obtain

the equality dim HX(M,@"P(v#)) = aim 8® 1(M,oP(V)).

We have thus reduced the roof of Theofem A.1l to the
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124
isomorphisms Hq(M,Q) X Hgﬂ‘(l\’l,g), 0 < @ < n-1, which,
combined again with Theorem A.l, prove Lemma 1.1.1. We start

with the following consequence of Andreotti-Grauert [1].

Lemma A.1. Let ¢:M > (a,b) be as in Theorem A.1. Let

further f? be a locally free c)M—Module. Then, for c¢ €

(a,b), the restriction maps

HAM,4) » HUP ™ ((a,e)),4) (q # 0)
#dm, ¢) » (P ((c,b)),4) (q # n-1)

are lsomorphisms.

Let now <% be as in this lemma. Take a fine resolution

4’ of 4 eandset I, (M,4) = Lp I(¢ie,b)),4),
cfh :
:T_(M, Q ) = 1im I‘(cf ((a c)), 'g' ). Then the restriction

csa .
mapsb'r(M,{g') -> rt(M,—%f) give rise to the exact sequence

0>T,M,4) »T(M, §°) »T, (M, 4 )er_(M,4’) >~ 0 where
FC(M,-gf) denotes the complex of sections with compact

support. From this it follows the long exact sequence
(a.1)  -ev > HIOM,4) > BYM,g) » HI(M,4) @ HI(M,4) > -

where we have put Hq(M g) = 1lim Hq(y ((c,b)),g),

cfb
HI(M,4) = ling Hq(tf ‘((as¢)), §). Combined with Lemma A.1,
this implies

Lemma A.2. Hi(M,f?) 2 Hg+1(M,€;) if q #'0, and HI(M,
g) * #3* (M, 4) if q # n-1. In particular HI(M,4) |

ne
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H2+1(M,f%) if 0 < q < n-1.

Let now (X,Xx) 'be an isolated singularity and suppose

X is imbedded into CN:(zl,zz,-.-,zN) so that x = 0 and
A . . _ N 2

rly\x has no critical point where r(z) Zi=1lzi| . Then,

setting M = X x, g>= and applying Theorem A.l and

Ty
Lemmas A.1 and A.2, we obtain Lemma 1.1.1.

To prove the facfvremarked aftér Lemma 1.1.1, we first
note that the refriction map HO(M,") - HJ(M,@") 1s quasi-
isomorphism. For, by Lemma A.1, H3(M,") » H%(M,Q') (q # 0),
Hq(M,Q.) > H?(M,Q') (q@ # n-1) are actually isomorphisms.
Morover, ED’? = #P(ul(m,0")), ,ED:Y = P(ul(M,27)) are

regarded E_ -terms of the three spectral sequences which

2
converge to the same limit.(The facts that ¢ :M - (a,b) is
proper andléhat ng vanish nowhere, imply that thevinclusions
?—l((a,c)), 9-;((c,b)) G M are homotdpy'equivalences).
Therefore, HP(#%(M,27)) % #P(uI(M,07)).  Next,

and observe that HO(X\x,') =

set M= X\x, Q= r‘X\x
0" D 2P :
(1*} 2y), and that H ((14n Qy),) are finite dimensional
when n > 2. (Note Hp(ni x) are finite-dimensional, and
. Y .

the kernel and the cokernel of Qé,x > (1*1*Q£)x are finite
dimensional) Note that HO(M,qP) are Fréchet, that the
complex Hp(M,Q') has finite-dimensional cohomology and that
H0(M,2P) and H?(Mgnh_p) are dual each other. Thus, argueing
as in [14], we conclude that Hp(HO(M,Q.)) 2 Hp((l*l*ﬂi)x)’

and H'P(HD(M,07)) Y HP (i1, 0°)) ¥ Hn‘p((Rn“li*1*9°)X)4

are mutually dual, which was to .be proved.
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In the rest of this appendix we shall prove the statement
mentioned at the top of p.28, that is, that the Milnor number of
0), TEV(S8) does not depend on 1. Let the action T over
CN:(zl,...,zl) be as in Section 2.3 and recall that V(G)

(6 1is a system (dl’d2""’dr) of quasi-degrees with respect to
T) 'is a Zariski open subset of some complex euclidean space.
In this space we take a 1inear system of coordinotes 1 = (Tl,

rz,...,tp). We shall further deflne the polynomials F 1i=1,

i’
2,...?r of Tl,Tz,...,Tp, zl,zz,...,zN’ ae follows: Recalling

that each T€V(8) 1is a system of quasi-homogeneous polynomials

fl(z),fz(z),...,fr(z) of quasi-degree 2;""dr respectively,

we set F,(t,z) = fi(z), 1<igr. Setting X = {zeC 3 Fi(t,z) =
Fi+l(r,z) = _,, = Fr(T,z)} for TEV(S), we obtain a series of

1solated singularities (X_,0) = (XI,0) G .(X5,0) & ... (x5,0) &

i+l

(GN,O), where each . (Xi,o)‘ is a hypersurfacesection of (X ,0).

%1

lLet al,aé,...,aN be such that T(c)(zl,zz,...,zN) = (¢ Zqs

o o
¢ 2,...,@ zN) and define 81382,'..,BN so that a,B, - are
equal to the smallest common multiple m of al,az,...;uN. If

28

i

‘we set r(z) = Z =1‘Zﬂ , we know by Milnor [10] (Corollary 2.8),

for any TE€V(S8), there is e>0 suchsthat r(z)] 15
X n{zem ,r(z)<a}\0

1<i<r have no critical points. But the formula r(T(e)z) = |dzmr(z)
implies: that r(z)lxi\o havevno critical points. (Note that for
zexi we can find & €C* such that 'T(c)ze Xin{z-;r(zke}.). This
fact means that, for (t,Z)’ such that ze:xi\o, the following
2(r-i+l1)+1 real 1ineef forms in t = (tl,tz,}..,tN)é c¢” are

linearly independent over R:

Aér’z)(t) = Re[§§=l(tiaFk(f,z)/azi + T,0F, (1,2)/8%;)], igksr
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BiT’Z)(t) iIm[2§=l(tiaFk(r,z)/azi + EiaFk(T,z)/BEA)], i<k<r

C(T:z)(t)

1]

2§=l(tiar(z)/azi + Eiar(z)/aii)

(The linear independence of the first 2(r-i+l) forms in the
restatement of that (Xi, 0) is an isolated singularity.) From

this it follows

Lemma A.3. One can find (real) C° vector fields Zi

(1=1,2,...,0) over V(&) x (€Y~0) such that zi = 8440

Zir(z) =0, ZiFj = 0 mod. Fj, ijl,..,f FfFJ, J+1,... F.,

where we have let g = 0 mod. h,, h2,;.;, h ‘mean that g 1ies

in the ideal generated by -hl, h2,..., hS in the ring of c”

functions.

Proof. We express the required Z, 1in the form Re[a/ari_

i

22 =1 is(T z) 3/3z,] where t;.(t,z) are c® functions in

V(§) x (¢ \O). Then Z,F =0 1is equivalent to A(T z)(til(r z),

1
ti2(T,Z),..., tiN(T,z)),=_Be[3F (T z)/ar + aF (T, z)/BTi},

BT (640 (1,2), €15(0,8)5 0y byy0(12)) = Im[OF, (1,2)/37, +

aF (t,2)/97T ], and further 2 r(z) = 0 is equivalent to ;
(T z)(t 1(1 z), 2(t,z),..., tiN(t,z)) = 0. Since 2(r-i+l)+1<
2N (vr<N), by what was remarked before the lemma, in some neighbor-

hood of (ty, z,) such that Oe xJ \0, we can find the solution
0 .
is(r z), l<i<p, 1<s<N of these equations for j<k<r. Suppose now

zexﬁl\ﬂ

Then we can find vector fields Zi 'in a neighborhood of (t,z)

1. = ' = .
such that ZiTk 6ik, Zir(z)' 0, Zj"Fk .vanish identlcally for

J < k. By shrinking the neighborhood if necessary, we also see
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that the vector fields Zi satisfy Z_iFk = 0 mod. Fk,..., Fr’
ﬁk,..., F% for k < j, since Fj 'is among F,..., F, and

z:¢x2 implies FJ(T,Z) # 0. We have thus shown the local existence
of the required vector fields. The global existence is proved

now by using the partition of unity.

Using this lemma, we shall show

Theorem A.2. Set S, = {ze'cN; r(z) =} and Mi(é) =
X: N Ss for 1<i<r, 1eV(8), and € > 0. For any ', ™ e V(6)

there is a diffeomorphism of S_ onto itself which maps _Mi;(e)

onto Ml (e).
Proof It suffices to prove when t', t" are sufficlently
near. Let U be an open subset of V(§) which is convex in the

linear: space containing V(6) and 1let ' = (Ti,ré,Q.., ré);
n - "o " . = 1P no_ :
T (11,12,..., Tp)eIL We set 2. 21=1(Ti ,Ti)zi’ Since

Zzr(z) = 0, Z 1is tangent to the surfaces U x S.. Since the
|

projection U x S€ > U 1is proper, the definition domain of ‘exprtZ
is just the product of Sé and the definition domain of

exp t(2§=1(12-1i)3/ari), for every to€e R. Thus exp Z induces

a diffeomorphism of {t'} x S, onto {1"} x 8_. We regard this

| as a diffeomorphism"yﬁuof Sé onto Se through the projection

UxS_~>3S_. Then the conditon ZF, = 0 mod. F F.» Fj""’Fr'

3 PR
implies & maps each Mi,(e) onto' Min(s).

Recall that the Milnor number of (Xi, 0) is a topological_

i+l
T

with Hamm [ 5]). Hence Theorem A.2 proves that the Milnor number

invariant of M (e)\Mi(e) (Milnor [10](Remark 8.6) combined

“of (XT, 0) 1is a constant, which was to be proved.
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