-

View metadata, citation and similar papers at core.ac.uk brought to you byﬁ CORE

provided by Kyoto University Research Information Repository

Bl
oo o e/,
&

Kyoto University Research Information Repository > KYOTO UNIVERSITY

Recursive Program Schemata and Formal Languages ([[[

Title 0o0oo0o0oon)

Author(s) | ITO, TAKAYASU

Citation Ooooobooogono (1975), 236: 15-20

Issue Date | 1975-05

URL http://hdl.handle.net/2433/105510

Right

Type Departmental Bulletin Paper

Textversion | publisher

Kyoto University

https://core.ac.uk/display/39236286?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ooooobpooooo
236 0 19750 15-20

Recursive Program Schemata

and Formal Languages

Takayasu Ito

(Mitsubishi Electric Corp.)

Introduction

Theory of program schemata was initiated by Yanov.

Yanov solved the equivalence problem of Yanov's program schemata,
which are equivalent to Graph schemata.

Igarashi and Rutledge reduced Yanov's result into the equivalence
problem of finite automata.

Luckham- Park—*Paterson, Karp-Miller, Ershov-Itkin and others ex-
tended Yanov's result in various ways in connection with automate
theory.

In this talk we discuss an application of formal language theory to
program schemata.

Applications of formal language theory to program schemata weze

taken during 1966-1968 while I was in Stanford University.

A part of the results was published in my IEEE symposium on Switching

and Automata Theory. In this talk I am going to introduce some of

my unpublished results while I was in Stanford University,

16

Recursive Program Schemata

Example: fact[n] : function defining n .

fact [n]=if n=o then 1 else n X fact [n-1]

?b (JC,',---,DC%): EL(%; T ?m:x’:”_ 736’"’)

where Ei/is ""conditional expression'
containing fPI s eees Spm’x/ N AP

A class of functions defined recursively in this way is called '"'recursi-

vely-defined functions''.

If an interpretation is not given for elementary functions in recursively-
defined functions, they are called "recursive program schemata'",

Example :

(]D[x] = if T [x] then alx] else h[x, 90[S[JC_]]]
v
fact [x] = if x=o then 1 else multiply [x, fact [x-171]

Definition of Equivalence of Recursive Program Schemata

)) !
so‘u(l)(zl)'~‘ ,x’n): E({/, ((f' , T)(f;), DCI,"-_, x-n)
- (2) (2)
?L(l)(x,,"',fx,«): (E;, (Cf: a”"(ﬁ:zl JC/’-‘-,)C,Q)

()OIL/)(I, ,"’7 xn),:\: (fl(Z)(x,) - 7191)@ VI vﬂ_é [(Jofl)(xlj"’)xn): ?i

(2)

"The equivalence problem of recursive program schemata is
recursively undecidable"
Proof of Theorem 1 can be made by showing that any LPP schema

{ Luckham-Park-Paterson schema) can be simulated by a recursive

(2)

(=, -

.,x")J

17

program schema.

Simple Recursive Program Schemata

If a recursive program schema contains only the functions of one

argument and one variable, then it is called a simple recursive pro-

gram schema.

Example :
Pexa=ifprxithen frxdelse Q[PLfL=]]]

Natation :

uuw&adﬂ&ﬁéi>%dVﬁJ

@ PLPLirx1]] = [P9I

Example :

?[xj=%fo??J[x]
P ELivigy]

This sort of expressions will be called ''simple recursive program
schema''.

Assume that we have a simple recursive program schema defined by
~~ 3
¥, =d. P (%)

and ¢ is the always undefined function. Then the solution of (*) can

be given by%irnw I;ﬁ), the limit of IJO)E OZL (‘P) - 75)
-

2)
Definition 1 I(f”, ‘= d; (x(f JC.(,:%)

>

(i) simple recursive program schema defined by

t_a VLau,x VoL oag, Xa-V O, Xn 17
Fin

(3)

18

is called ''right linear'.

(ii) if the defining equation is
x, -«Labov%a xbu,\/-—-/lg Wy Lo be, VR Fn)o.,,,_l_l o
“A in

then it is called 'linear”.

Definition 2

]E [P] program event of

Program event of P is the set of operator sequences of P under
schematic interpretation.

In case of schematic interpretation, semantic functions are defined on
operator sequences, assigning truth values to predicates and having
the interpretation left open to operators.

Example :

P = LGVLfﬁ"fV?S"QJ
]E(C)D) . sofutlo'ﬂ of SD EUfSDfU8CP%

Theorem 2

(i) If a simple recursive program schema is right-linear, there ex- ’
ists a Yanov schema equivalent to it.
- (ii) Equivalence problem of right linear simple recursive program
schemata is decidable. | |

(iii) For any simple recursive program schemata

Pla'nd P,_: if P,’_Z,Pz ‘then E(P) IE<P)

(4)

1Y
Difinition

For a class of simple recursive program schema 7’0(, we

define the class of program events by E (?‘d) = { IE_ (P)' P € ?o(}

Theorem 3

For the class of simple recursive program schemata gzol

(i) ?d is right linear = [E (%)is regular.
(1) Sy is linear = [F (5,)is linear CFL.

(iii) ?d is the class of simple recursive program schemata;}E(?Q)is CFL.

Y@l][[P] value of P under a schematic interpretation II

ExecvalK[P]: x,%, --— xn%fn
forMH[PJ = X, - Aoy

~ S >S
where . %k : a sequence consisting of O and 1

Brg=TCF3) (xXg--- X))
) %fé) %fel T %f”em
‘Difinition 3
Execution event : E(P): set of ExecvalI [P]

Theorem 4

(i) For any simple recursive program schemata P, and Pz
p~P, = E(P)=E(P)

(ii) For any simple recursive program schema P ,
o~

IE_(P) defines a deterministic CFL.

(iii}) Termination problem for simple recursive program

(5)

schemata is decidable.
Outline of Proof

(1)@ P, 2 P and I is a schematic interpretation
> Valy (P)=valg (P))
and Execvaly (P,) = Exécvall (P
>E (P)-E (P,
OF(P)=E(P)and T is a schematic interpretation
= Execvalp[P,] QE CP,)
= Execvaly [P] = Execvai [P,]

~ ,
(ii) Show that]E(P) is accepted by deterministic pushdown automata.

(iii) Follow from (ii)
The results in this talk and mi IEEE paper tell us that some decision
problems on program schemata are reducibld to decision problems on

formal languages.

(6)

